| /* |
| * Copyright (C) 2015 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/arm-smccc.h> |
| #include <linux/types.h> |
| #include <linux/jump_label.h> |
| #include <uapi/linux/psci.h> |
| |
| #include <kvm/arm_psci.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/kprobes.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_host.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/fpsimd.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/processor.h> |
| #include <asm/thread_info.h> |
| |
| /* Check whether the FP regs were dirtied while in the host-side run loop: */ |
| static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * When the system doesn't support FP/SIMD, we cannot rely on |
| * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an |
| * abort on the very first access to FP and thus we should never |
| * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always |
| * trap the accesses. |
| */ |
| if (!system_supports_fpsimd() || |
| vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE) |
| vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED | |
| KVM_ARM64_FP_HOST); |
| |
| return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED); |
| } |
| |
| /* Save the 32-bit only FPSIMD system register state */ |
| static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu_el1_is_32bit(vcpu)) |
| return; |
| |
| vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2); |
| } |
| |
| static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * We are about to set CPTR_EL2.TFP to trap all floating point |
| * register accesses to EL2, however, the ARM ARM clearly states that |
| * traps are only taken to EL2 if the operation would not otherwise |
| * trap to EL1. Therefore, always make sure that for 32-bit guests, |
| * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. |
| * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to |
| * it will cause an exception. |
| */ |
| if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { |
| write_sysreg(1 << 30, fpexc32_el2); |
| isb(); |
| } |
| } |
| |
| static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu) |
| { |
| /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ |
| write_sysreg(1 << 15, hstr_el2); |
| |
| /* |
| * Make sure we trap PMU access from EL0 to EL2. Also sanitize |
| * PMSELR_EL0 to make sure it never contains the cycle |
| * counter, which could make a PMXEVCNTR_EL0 access UNDEF at |
| * EL1 instead of being trapped to EL2. |
| */ |
| write_sysreg(0, pmselr_el0); |
| write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); |
| write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); |
| } |
| |
| static void __hyp_text __deactivate_traps_common(void) |
| { |
| write_sysreg(0, hstr_el2); |
| write_sysreg(0, pmuserenr_el0); |
| } |
| |
| static void activate_traps_vhe(struct kvm_vcpu *vcpu) |
| { |
| u64 val; |
| |
| val = read_sysreg(cpacr_el1); |
| val |= CPACR_EL1_TTA; |
| val &= ~CPACR_EL1_ZEN; |
| if (!update_fp_enabled(vcpu)) { |
| val &= ~CPACR_EL1_FPEN; |
| __activate_traps_fpsimd32(vcpu); |
| } |
| |
| write_sysreg(val, cpacr_el1); |
| |
| write_sysreg(kvm_get_hyp_vector(), vbar_el1); |
| } |
| NOKPROBE_SYMBOL(activate_traps_vhe); |
| |
| static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu) |
| { |
| u64 val; |
| |
| __activate_traps_common(vcpu); |
| |
| val = CPTR_EL2_DEFAULT; |
| val |= CPTR_EL2_TTA | CPTR_EL2_TZ; |
| if (!update_fp_enabled(vcpu)) { |
| val |= CPTR_EL2_TFP; |
| __activate_traps_fpsimd32(vcpu); |
| } |
| |
| write_sysreg(val, cptr_el2); |
| } |
| |
| static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu) |
| { |
| u64 hcr = vcpu->arch.hcr_el2; |
| |
| write_sysreg(hcr, hcr_el2); |
| |
| if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) |
| write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); |
| |
| if (has_vhe()) |
| activate_traps_vhe(vcpu); |
| else |
| __activate_traps_nvhe(vcpu); |
| } |
| |
| static void deactivate_traps_vhe(void) |
| { |
| extern char vectors[]; /* kernel exception vectors */ |
| write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); |
| write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1); |
| write_sysreg(vectors, vbar_el1); |
| } |
| NOKPROBE_SYMBOL(deactivate_traps_vhe); |
| |
| static void __hyp_text __deactivate_traps_nvhe(void) |
| { |
| u64 mdcr_el2 = read_sysreg(mdcr_el2); |
| |
| __deactivate_traps_common(); |
| |
| mdcr_el2 &= MDCR_EL2_HPMN_MASK; |
| mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT; |
| |
| write_sysreg(mdcr_el2, mdcr_el2); |
| write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2); |
| write_sysreg(CPTR_EL2_DEFAULT, cptr_el2); |
| } |
| |
| static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * If we pended a virtual abort, preserve it until it gets |
| * cleared. See D1.14.3 (Virtual Interrupts) for details, but |
| * the crucial bit is "On taking a vSError interrupt, |
| * HCR_EL2.VSE is cleared to 0." |
| */ |
| if (vcpu->arch.hcr_el2 & HCR_VSE) |
| vcpu->arch.hcr_el2 = read_sysreg(hcr_el2); |
| |
| if (has_vhe()) |
| deactivate_traps_vhe(); |
| else |
| __deactivate_traps_nvhe(); |
| } |
| |
| void activate_traps_vhe_load(struct kvm_vcpu *vcpu) |
| { |
| __activate_traps_common(vcpu); |
| } |
| |
| void deactivate_traps_vhe_put(void) |
| { |
| u64 mdcr_el2 = read_sysreg(mdcr_el2); |
| |
| mdcr_el2 &= MDCR_EL2_HPMN_MASK | |
| MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT | |
| MDCR_EL2_TPMS; |
| |
| write_sysreg(mdcr_el2, mdcr_el2); |
| |
| __deactivate_traps_common(); |
| } |
| |
| static void __hyp_text __activate_vm(struct kvm *kvm) |
| { |
| write_sysreg(kvm->arch.vttbr, vttbr_el2); |
| } |
| |
| static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu) |
| { |
| write_sysreg(0, vttbr_el2); |
| } |
| |
| /* Save VGICv3 state on non-VHE systems */ |
| static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu) |
| { |
| if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { |
| __vgic_v3_save_state(vcpu); |
| __vgic_v3_deactivate_traps(vcpu); |
| } |
| } |
| |
| /* Restore VGICv3 state on non_VEH systems */ |
| static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) |
| { |
| if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { |
| __vgic_v3_activate_traps(vcpu); |
| __vgic_v3_restore_state(vcpu); |
| } |
| } |
| |
| static bool __hyp_text __true_value(void) |
| { |
| return true; |
| } |
| |
| static bool __hyp_text __false_value(void) |
| { |
| return false; |
| } |
| |
| static hyp_alternate_select(__check_arm_834220, |
| __false_value, __true_value, |
| ARM64_WORKAROUND_834220); |
| |
| static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar) |
| { |
| u64 par, tmp; |
| |
| /* |
| * Resolve the IPA the hard way using the guest VA. |
| * |
| * Stage-1 translation already validated the memory access |
| * rights. As such, we can use the EL1 translation regime, and |
| * don't have to distinguish between EL0 and EL1 access. |
| * |
| * We do need to save/restore PAR_EL1 though, as we haven't |
| * saved the guest context yet, and we may return early... |
| */ |
| par = read_sysreg(par_el1); |
| asm volatile("at s1e1r, %0" : : "r" (far)); |
| isb(); |
| |
| tmp = read_sysreg(par_el1); |
| write_sysreg(par, par_el1); |
| |
| if (unlikely(tmp & 1)) |
| return false; /* Translation failed, back to guest */ |
| |
| /* Convert PAR to HPFAR format */ |
| *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4; |
| return true; |
| } |
| |
| static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu) |
| { |
| u8 ec; |
| u64 esr; |
| u64 hpfar, far; |
| |
| esr = vcpu->arch.fault.esr_el2; |
| ec = ESR_ELx_EC(esr); |
| |
| if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW) |
| return true; |
| |
| far = read_sysreg_el2(far); |
| |
| /* |
| * The HPFAR can be invalid if the stage 2 fault did not |
| * happen during a stage 1 page table walk (the ESR_EL2.S1PTW |
| * bit is clear) and one of the two following cases are true: |
| * 1. The fault was due to a permission fault |
| * 2. The processor carries errata 834220 |
| * |
| * Therefore, for all non S1PTW faults where we either have a |
| * permission fault or the errata workaround is enabled, we |
| * resolve the IPA using the AT instruction. |
| */ |
| if (!(esr & ESR_ELx_S1PTW) && |
| (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) { |
| if (!__translate_far_to_hpfar(far, &hpfar)) |
| return false; |
| } else { |
| hpfar = read_sysreg(hpfar_el2); |
| } |
| |
| vcpu->arch.fault.far_el2 = far; |
| vcpu->arch.fault.hpfar_el2 = hpfar; |
| return true; |
| } |
| |
| /* Skip an instruction which has been emulated. Returns true if |
| * execution can continue or false if we need to exit hyp mode because |
| * single-step was in effect. |
| */ |
| static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu) |
| { |
| *vcpu_pc(vcpu) = read_sysreg_el2(elr); |
| |
| if (vcpu_mode_is_32bit(vcpu)) { |
| vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr); |
| kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr); |
| } else { |
| *vcpu_pc(vcpu) += 4; |
| } |
| |
| write_sysreg_el2(*vcpu_pc(vcpu), elr); |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| vcpu->arch.fault.esr_el2 = |
| (ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22; |
| return false; |
| } else { |
| return true; |
| } |
| } |
| |
| static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu) |
| { |
| struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state; |
| |
| if (has_vhe()) |
| write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN, |
| cpacr_el1); |
| else |
| write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP, |
| cptr_el2); |
| |
| isb(); |
| |
| if (vcpu->arch.flags & KVM_ARM64_FP_HOST) { |
| /* |
| * In the SVE case, VHE is assumed: it is enforced by |
| * Kconfig and kvm_arch_init(). |
| */ |
| if (system_supports_sve() && |
| (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) { |
| struct thread_struct *thread = container_of( |
| host_fpsimd, |
| struct thread_struct, uw.fpsimd_state); |
| |
| sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr); |
| } else { |
| __fpsimd_save_state(host_fpsimd); |
| } |
| |
| vcpu->arch.flags &= ~KVM_ARM64_FP_HOST; |
| } |
| |
| __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs); |
| |
| /* Skip restoring fpexc32 for AArch64 guests */ |
| if (!(read_sysreg(hcr_el2) & HCR_RW)) |
| write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2], |
| fpexc32_el2); |
| |
| vcpu->arch.flags |= KVM_ARM64_FP_ENABLED; |
| |
| return true; |
| } |
| |
| /* |
| * Return true when we were able to fixup the guest exit and should return to |
| * the guest, false when we should restore the host state and return to the |
| * main run loop. |
| */ |
| static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) |
| vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr); |
| |
| /* |
| * We're using the raw exception code in order to only process |
| * the trap if no SError is pending. We will come back to the |
| * same PC once the SError has been injected, and replay the |
| * trapping instruction. |
| */ |
| if (*exit_code != ARM_EXCEPTION_TRAP) |
| goto exit; |
| |
| /* |
| * We trap the first access to the FP/SIMD to save the host context |
| * and restore the guest context lazily. |
| * If FP/SIMD is not implemented, handle the trap and inject an |
| * undefined instruction exception to the guest. |
| */ |
| if (system_supports_fpsimd() && |
| kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD) |
| return __hyp_switch_fpsimd(vcpu); |
| |
| if (!__populate_fault_info(vcpu)) |
| return true; |
| |
| if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { |
| bool valid; |
| |
| valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW && |
| kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT && |
| kvm_vcpu_dabt_isvalid(vcpu) && |
| !kvm_vcpu_dabt_isextabt(vcpu) && |
| !kvm_vcpu_dabt_iss1tw(vcpu); |
| |
| if (valid) { |
| int ret = __vgic_v2_perform_cpuif_access(vcpu); |
| |
| if (ret == 1 && __skip_instr(vcpu)) |
| return true; |
| |
| if (ret == -1) { |
| /* Promote an illegal access to an |
| * SError. If we would be returning |
| * due to single-step clear the SS |
| * bit so handle_exit knows what to |
| * do after dealing with the error. |
| */ |
| if (!__skip_instr(vcpu)) |
| *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS; |
| *exit_code = ARM_EXCEPTION_EL1_SERROR; |
| } |
| |
| goto exit; |
| } |
| } |
| |
| if (static_branch_unlikely(&vgic_v3_cpuif_trap) && |
| (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 || |
| kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) { |
| int ret = __vgic_v3_perform_cpuif_access(vcpu); |
| |
| if (ret == 1 && __skip_instr(vcpu)) |
| return true; |
| } |
| |
| exit: |
| /* Return to the host kernel and handle the exit */ |
| return false; |
| } |
| |
| static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu) |
| { |
| if (!cpus_have_const_cap(ARM64_SSBD)) |
| return false; |
| |
| return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG); |
| } |
| |
| static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_ARM64_SSBD |
| /* |
| * The host runs with the workaround always present. If the |
| * guest wants it disabled, so be it... |
| */ |
| if (__needs_ssbd_off(vcpu) && |
| __hyp_this_cpu_read(arm64_ssbd_callback_required)) |
| arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL); |
| #endif |
| } |
| |
| static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_ARM64_SSBD |
| /* |
| * If the guest has disabled the workaround, bring it back on. |
| */ |
| if (__needs_ssbd_off(vcpu) && |
| __hyp_this_cpu_read(arm64_ssbd_callback_required)) |
| arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL); |
| #endif |
| } |
| |
| /* Switch to the guest for VHE systems running in EL2 */ |
| int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_cpu_context *guest_ctxt; |
| u64 exit_code; |
| |
| host_ctxt = vcpu->arch.host_cpu_context; |
| host_ctxt->__hyp_running_vcpu = vcpu; |
| guest_ctxt = &vcpu->arch.ctxt; |
| |
| sysreg_save_host_state_vhe(host_ctxt); |
| |
| __activate_traps(vcpu); |
| __activate_vm(vcpu->kvm); |
| |
| sysreg_restore_guest_state_vhe(guest_ctxt); |
| __debug_switch_to_guest(vcpu); |
| |
| __set_guest_arch_workaround_state(vcpu); |
| |
| do { |
| /* Jump in the fire! */ |
| exit_code = __guest_enter(vcpu, host_ctxt); |
| |
| /* And we're baaack! */ |
| } while (fixup_guest_exit(vcpu, &exit_code)); |
| |
| __set_host_arch_workaround_state(vcpu); |
| |
| sysreg_save_guest_state_vhe(guest_ctxt); |
| |
| __deactivate_traps(vcpu); |
| |
| sysreg_restore_host_state_vhe(host_ctxt); |
| |
| if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) |
| __fpsimd_save_fpexc32(vcpu); |
| |
| __debug_switch_to_host(vcpu); |
| |
| return exit_code; |
| } |
| NOKPROBE_SYMBOL(kvm_vcpu_run_vhe); |
| |
| /* Switch to the guest for legacy non-VHE systems */ |
| int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_cpu_context *guest_ctxt; |
| u64 exit_code; |
| |
| vcpu = kern_hyp_va(vcpu); |
| |
| host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context); |
| host_ctxt->__hyp_running_vcpu = vcpu; |
| guest_ctxt = &vcpu->arch.ctxt; |
| |
| __sysreg_save_state_nvhe(host_ctxt); |
| |
| __activate_traps(vcpu); |
| __activate_vm(kern_hyp_va(vcpu->kvm)); |
| |
| __hyp_vgic_restore_state(vcpu); |
| __timer_enable_traps(vcpu); |
| |
| /* |
| * We must restore the 32-bit state before the sysregs, thanks |
| * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). |
| */ |
| __sysreg32_restore_state(vcpu); |
| __sysreg_restore_state_nvhe(guest_ctxt); |
| __debug_switch_to_guest(vcpu); |
| |
| __set_guest_arch_workaround_state(vcpu); |
| |
| do { |
| /* Jump in the fire! */ |
| exit_code = __guest_enter(vcpu, host_ctxt); |
| |
| /* And we're baaack! */ |
| } while (fixup_guest_exit(vcpu, &exit_code)); |
| |
| __set_host_arch_workaround_state(vcpu); |
| |
| __sysreg_save_state_nvhe(guest_ctxt); |
| __sysreg32_save_state(vcpu); |
| __timer_disable_traps(vcpu); |
| __hyp_vgic_save_state(vcpu); |
| |
| __deactivate_traps(vcpu); |
| __deactivate_vm(vcpu); |
| |
| __sysreg_restore_state_nvhe(host_ctxt); |
| |
| if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) |
| __fpsimd_save_fpexc32(vcpu); |
| |
| /* |
| * This must come after restoring the host sysregs, since a non-VHE |
| * system may enable SPE here and make use of the TTBRs. |
| */ |
| __debug_switch_to_host(vcpu); |
| |
| return exit_code; |
| } |
| |
| static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n"; |
| |
| static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par, |
| struct kvm_cpu_context *__host_ctxt) |
| { |
| struct kvm_vcpu *vcpu; |
| unsigned long str_va; |
| |
| vcpu = __host_ctxt->__hyp_running_vcpu; |
| |
| if (read_sysreg(vttbr_el2)) { |
| __timer_disable_traps(vcpu); |
| __deactivate_traps(vcpu); |
| __deactivate_vm(vcpu); |
| __sysreg_restore_state_nvhe(__host_ctxt); |
| } |
| |
| /* |
| * Force the panic string to be loaded from the literal pool, |
| * making sure it is a kernel address and not a PC-relative |
| * reference. |
| */ |
| asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va)); |
| |
| __hyp_do_panic(str_va, |
| spsr, elr, |
| read_sysreg(esr_el2), read_sysreg_el2(far), |
| read_sysreg(hpfar_el2), par, vcpu); |
| } |
| |
| static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par, |
| struct kvm_cpu_context *host_ctxt) |
| { |
| struct kvm_vcpu *vcpu; |
| vcpu = host_ctxt->__hyp_running_vcpu; |
| |
| __deactivate_traps(vcpu); |
| sysreg_restore_host_state_vhe(host_ctxt); |
| |
| panic(__hyp_panic_string, |
| spsr, elr, |
| read_sysreg_el2(esr), read_sysreg_el2(far), |
| read_sysreg(hpfar_el2), par, vcpu); |
| } |
| NOKPROBE_SYMBOL(__hyp_call_panic_vhe); |
| |
| void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt) |
| { |
| u64 spsr = read_sysreg_el2(spsr); |
| u64 elr = read_sysreg_el2(elr); |
| u64 par = read_sysreg(par_el1); |
| |
| if (!has_vhe()) |
| __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt); |
| else |
| __hyp_call_panic_vhe(spsr, elr, par, host_ctxt); |
| |
| unreachable(); |
| } |