|  | #include <linux/linkage.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  | #include <asm/timer.h> | 
|  | #include <asm/hw_irq.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/i8259.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/prom.h> | 
|  |  | 
|  | /* | 
|  | * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts: | 
|  | * (these are usually mapped to vectors 0x30-0x3f) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The IO-APIC gives us many more interrupt sources. Most of these | 
|  | * are unused but an SMP system is supposed to have enough memory ... | 
|  | * sometimes (mostly wrt. hw bugs) we get corrupted vectors all | 
|  | * across the spectrum, so we really want to be prepared to get all | 
|  | * of these. Plus, more powerful systems might have more than 64 | 
|  | * IO-APIC registers. | 
|  | * | 
|  | * (these are usually mapped into the 0x30-0xff vector range) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * IRQ2 is cascade interrupt to second interrupt controller | 
|  | */ | 
|  | static struct irqaction irq2 = { | 
|  | .handler = no_action, | 
|  | .name = "cascade", | 
|  | .flags = IRQF_NO_THREAD, | 
|  | }; | 
|  |  | 
|  | DEFINE_PER_CPU(vector_irq_t, vector_irq) = { | 
|  | [0 ... NR_VECTORS - 1] = -1, | 
|  | }; | 
|  |  | 
|  | int vector_used_by_percpu_irq(unsigned int vector) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | if (per_cpu(vector_irq, cpu)[vector] != -1) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init init_ISA_irqs(void) | 
|  | { | 
|  | struct irq_chip *chip = legacy_pic->chip; | 
|  | const char *name = chip->name; | 
|  | int i; | 
|  |  | 
|  | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) | 
|  | init_bsp_APIC(); | 
|  | #endif | 
|  | legacy_pic->init(0); | 
|  |  | 
|  | for (i = 0; i < legacy_pic->nr_legacy_irqs; i++) | 
|  | irq_set_chip_and_handler_name(i, chip, handle_level_irq, name); | 
|  | } | 
|  |  | 
|  | void __init init_IRQ(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * We probably need a better place for this, but it works for | 
|  | * now ... | 
|  | */ | 
|  | x86_add_irq_domains(); | 
|  |  | 
|  | /* | 
|  | * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15. | 
|  | * If these IRQ's are handled by legacy interrupt-controllers like PIC, | 
|  | * then this configuration will likely be static after the boot. If | 
|  | * these IRQ's are handled by more mordern controllers like IO-APIC, | 
|  | * then this vector space can be freed and re-used dynamically as the | 
|  | * irq's migrate etc. | 
|  | */ | 
|  | for (i = 0; i < legacy_pic->nr_legacy_irqs; i++) | 
|  | per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i; | 
|  |  | 
|  | x86_init.irqs.intr_init(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup the vector to irq mappings. | 
|  | */ | 
|  | void setup_vector_irq(int cpu) | 
|  | { | 
|  | #ifndef CONFIG_X86_IO_APIC | 
|  | int irq; | 
|  |  | 
|  | /* | 
|  | * On most of the platforms, legacy PIC delivers the interrupts on the | 
|  | * boot cpu. But there are certain platforms where PIC interrupts are | 
|  | * delivered to multiple cpu's. If the legacy IRQ is handled by the | 
|  | * legacy PIC, for the new cpu that is coming online, setup the static | 
|  | * legacy vector to irq mapping: | 
|  | */ | 
|  | for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++) | 
|  | per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq; | 
|  | #endif | 
|  |  | 
|  | __setup_vector_irq(cpu); | 
|  | } | 
|  |  | 
|  | static void __init smp_intr_init(void) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) | 
|  | /* | 
|  | * The reschedule interrupt is a CPU-to-CPU reschedule-helper | 
|  | * IPI, driven by wakeup. | 
|  | */ | 
|  | alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt); | 
|  |  | 
|  | /* IPI for generic function call */ | 
|  | alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt); | 
|  |  | 
|  | /* IPI for generic single function call */ | 
|  | alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR, | 
|  | call_function_single_interrupt); | 
|  |  | 
|  | /* Low priority IPI to cleanup after moving an irq */ | 
|  | set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt); | 
|  | set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors); | 
|  |  | 
|  | /* IPI used for rebooting/stopping */ | 
|  | alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt); | 
|  | #endif | 
|  | #endif /* CONFIG_SMP */ | 
|  | } | 
|  |  | 
|  | static void __init apic_intr_init(void) | 
|  | { | 
|  | smp_intr_init(); | 
|  |  | 
|  | #ifdef CONFIG_X86_THERMAL_VECTOR | 
|  | alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt); | 
|  | #endif | 
|  | #ifdef CONFIG_X86_MCE_THRESHOLD | 
|  | alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt); | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC) | 
|  | /* self generated IPI for local APIC timer */ | 
|  | alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt); | 
|  |  | 
|  | /* IPI for X86 platform specific use */ | 
|  | alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi); | 
|  | #ifdef CONFIG_HAVE_KVM | 
|  | /* IPI for KVM to deliver posted interrupt */ | 
|  | alloc_intr_gate(POSTED_INTR_VECTOR, kvm_posted_intr_ipi); | 
|  | #endif | 
|  |  | 
|  | /* IPI vectors for APIC spurious and error interrupts */ | 
|  | alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt); | 
|  | alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt); | 
|  |  | 
|  | /* IRQ work interrupts: */ | 
|  | # ifdef CONFIG_IRQ_WORK | 
|  | alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt); | 
|  | # endif | 
|  |  | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __init native_init_IRQ(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Execute any quirks before the call gates are initialised: */ | 
|  | x86_init.irqs.pre_vector_init(); | 
|  |  | 
|  | apic_intr_init(); | 
|  |  | 
|  | /* | 
|  | * Cover the whole vector space, no vector can escape | 
|  | * us. (some of these will be overridden and become | 
|  | * 'special' SMP interrupts) | 
|  | */ | 
|  | i = FIRST_EXTERNAL_VECTOR; | 
|  | for_each_clear_bit_from(i, used_vectors, NR_VECTORS) { | 
|  | /* IA32_SYSCALL_VECTOR could be used in trap_init already. */ | 
|  | set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]); | 
|  | } | 
|  |  | 
|  | if (!acpi_ioapic && !of_ioapic) | 
|  | setup_irq(2, &irq2); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | irq_ctx_init(smp_processor_id()); | 
|  | #endif | 
|  | } |