| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * Implementation of the Transmission Control Protocol(TCP). |
| * |
| * Authors: Ross Biro |
| * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| * Mark Evans, <evansmp@uhura.aston.ac.uk> |
| * Corey Minyard <wf-rch!minyard@relay.EU.net> |
| * Florian La Roche, <flla@stud.uni-sb.de> |
| * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> |
| * Linus Torvalds, <torvalds@cs.helsinki.fi> |
| * Alan Cox, <gw4pts@gw4pts.ampr.org> |
| * Matthew Dillon, <dillon@apollo.west.oic.com> |
| * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| * Jorge Cwik, <jorge@laser.satlink.net> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/gfp.h> |
| #include <net/tcp.h> |
| |
| int sysctl_tcp_syn_retries __read_mostly = TCP_SYN_RETRIES; |
| int sysctl_tcp_synack_retries __read_mostly = TCP_SYNACK_RETRIES; |
| int sysctl_tcp_keepalive_time __read_mostly = TCP_KEEPALIVE_TIME; |
| int sysctl_tcp_keepalive_probes __read_mostly = TCP_KEEPALIVE_PROBES; |
| int sysctl_tcp_keepalive_intvl __read_mostly = TCP_KEEPALIVE_INTVL; |
| int sysctl_tcp_retries1 __read_mostly = TCP_RETR1; |
| int sysctl_tcp_retries2 __read_mostly = TCP_RETR2; |
| int sysctl_tcp_orphan_retries __read_mostly; |
| int sysctl_tcp_thin_linear_timeouts __read_mostly; |
| |
| static void tcp_write_err(struct sock *sk) |
| { |
| sk->sk_err = sk->sk_err_soft ? : ETIMEDOUT; |
| sk->sk_error_report(sk); |
| |
| tcp_done(sk); |
| NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONTIMEOUT); |
| } |
| |
| /* Do not allow orphaned sockets to eat all our resources. |
| * This is direct violation of TCP specs, but it is required |
| * to prevent DoS attacks. It is called when a retransmission timeout |
| * or zero probe timeout occurs on orphaned socket. |
| * |
| * Criteria is still not confirmed experimentally and may change. |
| * We kill the socket, if: |
| * 1. If number of orphaned sockets exceeds an administratively configured |
| * limit. |
| * 2. If we have strong memory pressure. |
| */ |
| static int tcp_out_of_resources(struct sock *sk, int do_reset) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int shift = 0; |
| |
| /* If peer does not open window for long time, or did not transmit |
| * anything for long time, penalize it. */ |
| if ((s32)(tcp_time_stamp - tp->lsndtime) > 2*TCP_RTO_MAX || !do_reset) |
| shift++; |
| |
| /* If some dubious ICMP arrived, penalize even more. */ |
| if (sk->sk_err_soft) |
| shift++; |
| |
| if (tcp_check_oom(sk, shift)) { |
| /* Catch exceptional cases, when connection requires reset. |
| * 1. Last segment was sent recently. */ |
| if ((s32)(tcp_time_stamp - tp->lsndtime) <= TCP_TIMEWAIT_LEN || |
| /* 2. Window is closed. */ |
| (!tp->snd_wnd && !tp->packets_out)) |
| do_reset = 1; |
| if (do_reset) |
| tcp_send_active_reset(sk, GFP_ATOMIC); |
| tcp_done(sk); |
| NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONMEMORY); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Calculate maximal number or retries on an orphaned socket. */ |
| static int tcp_orphan_retries(struct sock *sk, int alive) |
| { |
| int retries = sysctl_tcp_orphan_retries; /* May be zero. */ |
| |
| /* We know from an ICMP that something is wrong. */ |
| if (sk->sk_err_soft && !alive) |
| retries = 0; |
| |
| /* However, if socket sent something recently, select some safe |
| * number of retries. 8 corresponds to >100 seconds with minimal |
| * RTO of 200msec. */ |
| if (retries == 0 && alive) |
| retries = 8; |
| return retries; |
| } |
| |
| static void tcp_mtu_probing(struct inet_connection_sock *icsk, struct sock *sk) |
| { |
| /* Black hole detection */ |
| if (sysctl_tcp_mtu_probing) { |
| if (!icsk->icsk_mtup.enabled) { |
| icsk->icsk_mtup.enabled = 1; |
| tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); |
| } else { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int mss; |
| |
| mss = tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low) >> 1; |
| mss = min(sysctl_tcp_base_mss, mss); |
| mss = max(mss, 68 - tp->tcp_header_len); |
| icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); |
| tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); |
| } |
| } |
| } |
| |
| /* This function calculates a "timeout" which is equivalent to the timeout of a |
| * TCP connection after "boundary" unsuccessful, exponentially backed-off |
| * retransmissions with an initial RTO of TCP_RTO_MIN or TCP_TIMEOUT_INIT if |
| * syn_set flag is set. |
| */ |
| static bool retransmits_timed_out(struct sock *sk, |
| unsigned int boundary, |
| unsigned int timeout, |
| bool syn_set) |
| { |
| unsigned int linear_backoff_thresh, start_ts; |
| unsigned int rto_base = syn_set ? TCP_TIMEOUT_INIT : TCP_RTO_MIN; |
| |
| if (!inet_csk(sk)->icsk_retransmits) |
| return false; |
| |
| if (unlikely(!tcp_sk(sk)->retrans_stamp)) |
| start_ts = TCP_SKB_CB(tcp_write_queue_head(sk))->when; |
| else |
| start_ts = tcp_sk(sk)->retrans_stamp; |
| |
| if (likely(timeout == 0)) { |
| linear_backoff_thresh = ilog2(TCP_RTO_MAX/rto_base); |
| |
| if (boundary <= linear_backoff_thresh) |
| timeout = ((2 << boundary) - 1) * rto_base; |
| else |
| timeout = ((2 << linear_backoff_thresh) - 1) * rto_base + |
| (boundary - linear_backoff_thresh) * TCP_RTO_MAX; |
| } |
| return (tcp_time_stamp - start_ts) >= timeout; |
| } |
| |
| /* A write timeout has occurred. Process the after effects. */ |
| static int tcp_write_timeout(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| int retry_until; |
| bool do_reset, syn_set = false; |
| |
| if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { |
| if (icsk->icsk_retransmits) |
| dst_negative_advice(sk); |
| retry_until = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; |
| syn_set = true; |
| } else { |
| if (retransmits_timed_out(sk, sysctl_tcp_retries1, 0, 0)) { |
| /* Black hole detection */ |
| tcp_mtu_probing(icsk, sk); |
| |
| dst_negative_advice(sk); |
| } |
| |
| retry_until = sysctl_tcp_retries2; |
| if (sock_flag(sk, SOCK_DEAD)) { |
| const int alive = (icsk->icsk_rto < TCP_RTO_MAX); |
| |
| retry_until = tcp_orphan_retries(sk, alive); |
| do_reset = alive || |
| !retransmits_timed_out(sk, retry_until, 0, 0); |
| |
| if (tcp_out_of_resources(sk, do_reset)) |
| return 1; |
| } |
| } |
| |
| if (retransmits_timed_out(sk, retry_until, |
| syn_set ? 0 : icsk->icsk_user_timeout, syn_set)) { |
| /* Has it gone just too far? */ |
| tcp_write_err(sk); |
| return 1; |
| } |
| return 0; |
| } |
| |
| void tcp_delack_timer_handler(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| sk_mem_reclaim_partial(sk); |
| |
| if (sk->sk_state == TCP_CLOSE || !(icsk->icsk_ack.pending & ICSK_ACK_TIMER)) |
| goto out; |
| |
| if (time_after(icsk->icsk_ack.timeout, jiffies)) { |
| sk_reset_timer(sk, &icsk->icsk_delack_timer, icsk->icsk_ack.timeout); |
| goto out; |
| } |
| icsk->icsk_ack.pending &= ~ICSK_ACK_TIMER; |
| |
| if (!skb_queue_empty(&tp->ucopy.prequeue)) { |
| struct sk_buff *skb; |
| |
| NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSCHEDULERFAILED); |
| |
| while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) |
| sk_backlog_rcv(sk, skb); |
| |
| tp->ucopy.memory = 0; |
| } |
| |
| if (inet_csk_ack_scheduled(sk)) { |
| if (!icsk->icsk_ack.pingpong) { |
| /* Delayed ACK missed: inflate ATO. */ |
| icsk->icsk_ack.ato = min(icsk->icsk_ack.ato << 1, icsk->icsk_rto); |
| } else { |
| /* Delayed ACK missed: leave pingpong mode and |
| * deflate ATO. |
| */ |
| icsk->icsk_ack.pingpong = 0; |
| icsk->icsk_ack.ato = TCP_ATO_MIN; |
| } |
| tcp_send_ack(sk); |
| NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKS); |
| } |
| |
| out: |
| if (sk_under_memory_pressure(sk)) |
| sk_mem_reclaim(sk); |
| } |
| |
| static void tcp_delack_timer(unsigned long data) |
| { |
| struct sock *sk = (struct sock *)data; |
| |
| bh_lock_sock(sk); |
| if (!sock_owned_by_user(sk)) { |
| tcp_delack_timer_handler(sk); |
| } else { |
| inet_csk(sk)->icsk_ack.blocked = 1; |
| NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOCKED); |
| /* deleguate our work to tcp_release_cb() */ |
| if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED, &tcp_sk(sk)->tsq_flags)) |
| sock_hold(sk); |
| } |
| bh_unlock_sock(sk); |
| sock_put(sk); |
| } |
| |
| static void tcp_probe_timer(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| int max_probes; |
| |
| if (tp->packets_out || !tcp_send_head(sk)) { |
| icsk->icsk_probes_out = 0; |
| return; |
| } |
| |
| /* *WARNING* RFC 1122 forbids this |
| * |
| * It doesn't AFAIK, because we kill the retransmit timer -AK |
| * |
| * FIXME: We ought not to do it, Solaris 2.5 actually has fixing |
| * this behaviour in Solaris down as a bug fix. [AC] |
| * |
| * Let me to explain. icsk_probes_out is zeroed by incoming ACKs |
| * even if they advertise zero window. Hence, connection is killed only |
| * if we received no ACKs for normal connection timeout. It is not killed |
| * only because window stays zero for some time, window may be zero |
| * until armageddon and even later. We are in full accordance |
| * with RFCs, only probe timer combines both retransmission timeout |
| * and probe timeout in one bottle. --ANK |
| */ |
| max_probes = sysctl_tcp_retries2; |
| |
| if (sock_flag(sk, SOCK_DEAD)) { |
| const int alive = ((icsk->icsk_rto << icsk->icsk_backoff) < TCP_RTO_MAX); |
| |
| max_probes = tcp_orphan_retries(sk, alive); |
| |
| if (tcp_out_of_resources(sk, alive || icsk->icsk_probes_out <= max_probes)) |
| return; |
| } |
| |
| if (icsk->icsk_probes_out > max_probes) { |
| tcp_write_err(sk); |
| } else { |
| /* Only send another probe if we didn't close things up. */ |
| tcp_send_probe0(sk); |
| } |
| } |
| |
| /* |
| * Timer for Fast Open socket to retransmit SYNACK. Note that the |
| * sk here is the child socket, not the parent (listener) socket. |
| */ |
| static void tcp_fastopen_synack_timer(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| int max_retries = icsk->icsk_syn_retries ? : |
| sysctl_tcp_synack_retries + 1; /* add one more retry for fastopen */ |
| struct request_sock *req; |
| |
| req = tcp_sk(sk)->fastopen_rsk; |
| req->rsk_ops->syn_ack_timeout(sk, req); |
| |
| if (req->num_timeout >= max_retries) { |
| tcp_write_err(sk); |
| return; |
| } |
| /* XXX (TFO) - Unlike regular SYN-ACK retransmit, we ignore error |
| * returned from rtx_syn_ack() to make it more persistent like |
| * regular retransmit because if the child socket has been accepted |
| * it's not good to give up too easily. |
| */ |
| inet_rtx_syn_ack(sk, req); |
| req->num_timeout++; |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, |
| TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); |
| } |
| |
| /* |
| * The TCP retransmit timer. |
| */ |
| |
| void tcp_retransmit_timer(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| if (tp->fastopen_rsk) { |
| WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && |
| sk->sk_state != TCP_FIN_WAIT1); |
| tcp_fastopen_synack_timer(sk); |
| /* Before we receive ACK to our SYN-ACK don't retransmit |
| * anything else (e.g., data or FIN segments). |
| */ |
| return; |
| } |
| if (!tp->packets_out) |
| goto out; |
| |
| WARN_ON(tcp_write_queue_empty(sk)); |
| |
| tp->tlp_high_seq = 0; |
| |
| if (!tp->snd_wnd && !sock_flag(sk, SOCK_DEAD) && |
| !((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))) { |
| /* Receiver dastardly shrinks window. Our retransmits |
| * become zero probes, but we should not timeout this |
| * connection. If the socket is an orphan, time it out, |
| * we cannot allow such beasts to hang infinitely. |
| */ |
| struct inet_sock *inet = inet_sk(sk); |
| if (sk->sk_family == AF_INET) { |
| LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("Peer %pI4:%u/%u unexpectedly shrunk window %u:%u (repaired)\n"), |
| &inet->inet_daddr, |
| ntohs(inet->inet_dport), inet->inet_num, |
| tp->snd_una, tp->snd_nxt); |
| } |
| #if IS_ENABLED(CONFIG_IPV6) |
| else if (sk->sk_family == AF_INET6) { |
| LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("Peer %pI6:%u/%u unexpectedly shrunk window %u:%u (repaired)\n"), |
| &sk->sk_v6_daddr, |
| ntohs(inet->inet_dport), inet->inet_num, |
| tp->snd_una, tp->snd_nxt); |
| } |
| #endif |
| if (tcp_time_stamp - tp->rcv_tstamp > TCP_RTO_MAX) { |
| tcp_write_err(sk); |
| goto out; |
| } |
| tcp_enter_loss(sk, 0); |
| tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); |
| __sk_dst_reset(sk); |
| goto out_reset_timer; |
| } |
| |
| if (tcp_write_timeout(sk)) |
| goto out; |
| |
| if (icsk->icsk_retransmits == 0) { |
| int mib_idx; |
| |
| if (icsk->icsk_ca_state == TCP_CA_Recovery) { |
| if (tcp_is_sack(tp)) |
| mib_idx = LINUX_MIB_TCPSACKRECOVERYFAIL; |
| else |
| mib_idx = LINUX_MIB_TCPRENORECOVERYFAIL; |
| } else if (icsk->icsk_ca_state == TCP_CA_Loss) { |
| mib_idx = LINUX_MIB_TCPLOSSFAILURES; |
| } else if ((icsk->icsk_ca_state == TCP_CA_Disorder) || |
| tp->sacked_out) { |
| if (tcp_is_sack(tp)) |
| mib_idx = LINUX_MIB_TCPSACKFAILURES; |
| else |
| mib_idx = LINUX_MIB_TCPRENOFAILURES; |
| } else { |
| mib_idx = LINUX_MIB_TCPTIMEOUTS; |
| } |
| NET_INC_STATS_BH(sock_net(sk), mib_idx); |
| } |
| |
| tcp_enter_loss(sk, 0); |
| |
| if (tcp_retransmit_skb(sk, tcp_write_queue_head(sk)) > 0) { |
| /* Retransmission failed because of local congestion, |
| * do not backoff. |
| */ |
| if (!icsk->icsk_retransmits) |
| icsk->icsk_retransmits = 1; |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, |
| min(icsk->icsk_rto, TCP_RESOURCE_PROBE_INTERVAL), |
| TCP_RTO_MAX); |
| goto out; |
| } |
| |
| /* Increase the timeout each time we retransmit. Note that |
| * we do not increase the rtt estimate. rto is initialized |
| * from rtt, but increases here. Jacobson (SIGCOMM 88) suggests |
| * that doubling rto each time is the least we can get away with. |
| * In KA9Q, Karn uses this for the first few times, and then |
| * goes to quadratic. netBSD doubles, but only goes up to *64, |
| * and clamps at 1 to 64 sec afterwards. Note that 120 sec is |
| * defined in the protocol as the maximum possible RTT. I guess |
| * we'll have to use something other than TCP to talk to the |
| * University of Mars. |
| * |
| * PAWS allows us longer timeouts and large windows, so once |
| * implemented ftp to mars will work nicely. We will have to fix |
| * the 120 second clamps though! |
| */ |
| icsk->icsk_backoff++; |
| icsk->icsk_retransmits++; |
| |
| out_reset_timer: |
| /* If stream is thin, use linear timeouts. Since 'icsk_backoff' is |
| * used to reset timer, set to 0. Recalculate 'icsk_rto' as this |
| * might be increased if the stream oscillates between thin and thick, |
| * thus the old value might already be too high compared to the value |
| * set by 'tcp_set_rto' in tcp_input.c which resets the rto without |
| * backoff. Limit to TCP_THIN_LINEAR_RETRIES before initiating |
| * exponential backoff behaviour to avoid continue hammering |
| * linear-timeout retransmissions into a black hole |
| */ |
| if (sk->sk_state == TCP_ESTABLISHED && |
| (tp->thin_lto || sysctl_tcp_thin_linear_timeouts) && |
| tcp_stream_is_thin(tp) && |
| icsk->icsk_retransmits <= TCP_THIN_LINEAR_RETRIES) { |
| icsk->icsk_backoff = 0; |
| icsk->icsk_rto = min(__tcp_set_rto(tp), TCP_RTO_MAX); |
| } else { |
| /* Use normal (exponential) backoff */ |
| icsk->icsk_rto = min(icsk->icsk_rto << 1, TCP_RTO_MAX); |
| } |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, icsk->icsk_rto, TCP_RTO_MAX); |
| if (retransmits_timed_out(sk, sysctl_tcp_retries1 + 1, 0, 0)) |
| __sk_dst_reset(sk); |
| |
| out:; |
| } |
| |
| void tcp_write_timer_handler(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| int event; |
| |
| if (sk->sk_state == TCP_CLOSE || !icsk->icsk_pending) |
| goto out; |
| |
| if (time_after(icsk->icsk_timeout, jiffies)) { |
| sk_reset_timer(sk, &icsk->icsk_retransmit_timer, icsk->icsk_timeout); |
| goto out; |
| } |
| |
| event = icsk->icsk_pending; |
| |
| switch (event) { |
| case ICSK_TIME_EARLY_RETRANS: |
| tcp_resume_early_retransmit(sk); |
| break; |
| case ICSK_TIME_LOSS_PROBE: |
| tcp_send_loss_probe(sk); |
| break; |
| case ICSK_TIME_RETRANS: |
| icsk->icsk_pending = 0; |
| tcp_retransmit_timer(sk); |
| break; |
| case ICSK_TIME_PROBE0: |
| icsk->icsk_pending = 0; |
| tcp_probe_timer(sk); |
| break; |
| } |
| |
| out: |
| sk_mem_reclaim(sk); |
| } |
| |
| static void tcp_write_timer(unsigned long data) |
| { |
| struct sock *sk = (struct sock *)data; |
| |
| bh_lock_sock(sk); |
| if (!sock_owned_by_user(sk)) { |
| tcp_write_timer_handler(sk); |
| } else { |
| /* deleguate our work to tcp_release_cb() */ |
| if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED, &tcp_sk(sk)->tsq_flags)) |
| sock_hold(sk); |
| } |
| bh_unlock_sock(sk); |
| sock_put(sk); |
| } |
| |
| /* |
| * Timer for listening sockets |
| */ |
| |
| static void tcp_synack_timer(struct sock *sk) |
| { |
| inet_csk_reqsk_queue_prune(sk, TCP_SYNQ_INTERVAL, |
| TCP_TIMEOUT_INIT, TCP_RTO_MAX); |
| } |
| |
| void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req) |
| { |
| NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEOUTS); |
| } |
| EXPORT_SYMBOL(tcp_syn_ack_timeout); |
| |
| void tcp_set_keepalive(struct sock *sk, int val) |
| { |
| if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) |
| return; |
| |
| if (val && !sock_flag(sk, SOCK_KEEPOPEN)) |
| inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tcp_sk(sk))); |
| else if (!val) |
| inet_csk_delete_keepalive_timer(sk); |
| } |
| |
| |
| static void tcp_keepalive_timer (unsigned long data) |
| { |
| struct sock *sk = (struct sock *) data; |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| u32 elapsed; |
| |
| /* Only process if socket is not in use. */ |
| bh_lock_sock(sk); |
| if (sock_owned_by_user(sk)) { |
| /* Try again later. */ |
| inet_csk_reset_keepalive_timer (sk, HZ/20); |
| goto out; |
| } |
| |
| if (sk->sk_state == TCP_LISTEN) { |
| tcp_synack_timer(sk); |
| goto out; |
| } |
| |
| if (sk->sk_state == TCP_FIN_WAIT2 && sock_flag(sk, SOCK_DEAD)) { |
| if (tp->linger2 >= 0) { |
| const int tmo = tcp_fin_time(sk) - TCP_TIMEWAIT_LEN; |
| |
| if (tmo > 0) { |
| tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); |
| goto out; |
| } |
| } |
| tcp_send_active_reset(sk, GFP_ATOMIC); |
| goto death; |
| } |
| |
| if (!sock_flag(sk, SOCK_KEEPOPEN) || sk->sk_state == TCP_CLOSE) |
| goto out; |
| |
| elapsed = keepalive_time_when(tp); |
| |
| /* It is alive without keepalive 8) */ |
| if (tp->packets_out || tcp_send_head(sk)) |
| goto resched; |
| |
| elapsed = keepalive_time_elapsed(tp); |
| |
| if (elapsed >= keepalive_time_when(tp)) { |
| /* If the TCP_USER_TIMEOUT option is enabled, use that |
| * to determine when to timeout instead. |
| */ |
| if ((icsk->icsk_user_timeout != 0 && |
| elapsed >= icsk->icsk_user_timeout && |
| icsk->icsk_probes_out > 0) || |
| (icsk->icsk_user_timeout == 0 && |
| icsk->icsk_probes_out >= keepalive_probes(tp))) { |
| tcp_send_active_reset(sk, GFP_ATOMIC); |
| tcp_write_err(sk); |
| goto out; |
| } |
| if (tcp_write_wakeup(sk) <= 0) { |
| icsk->icsk_probes_out++; |
| elapsed = keepalive_intvl_when(tp); |
| } else { |
| /* If keepalive was lost due to local congestion, |
| * try harder. |
| */ |
| elapsed = TCP_RESOURCE_PROBE_INTERVAL; |
| } |
| } else { |
| /* It is tp->rcv_tstamp + keepalive_time_when(tp) */ |
| elapsed = keepalive_time_when(tp) - elapsed; |
| } |
| |
| sk_mem_reclaim(sk); |
| |
| resched: |
| inet_csk_reset_keepalive_timer (sk, elapsed); |
| goto out; |
| |
| death: |
| tcp_done(sk); |
| |
| out: |
| bh_unlock_sock(sk); |
| sock_put(sk); |
| } |
| |
| void tcp_init_xmit_timers(struct sock *sk) |
| { |
| inet_csk_init_xmit_timers(sk, &tcp_write_timer, &tcp_delack_timer, |
| &tcp_keepalive_timer); |
| } |
| EXPORT_SYMBOL(tcp_init_xmit_timers); |