| /* |
| * Routines to indentify additional cpu features that are scattered in |
| * cpuid space. |
| */ |
| #include <linux/cpu.h> |
| |
| #include <asm/pat.h> |
| #include <asm/processor.h> |
| |
| #include <asm/apic.h> |
| |
| struct cpuid_bit { |
| u16 feature; |
| u8 reg; |
| u8 bit; |
| u32 level; |
| }; |
| |
| enum cpuid_regs { |
| CR_EAX = 0, |
| CR_ECX, |
| CR_EDX, |
| CR_EBX |
| }; |
| |
| void __cpuinit init_scattered_cpuid_features(struct cpuinfo_x86 *c) |
| { |
| u32 max_level; |
| u32 regs[4]; |
| const struct cpuid_bit *cb; |
| |
| static const struct cpuid_bit __cpuinitconst cpuid_bits[] = { |
| { X86_FEATURE_IDA, CR_EAX, 1, 0x00000006 }, |
| { 0, 0, 0, 0 } |
| }; |
| |
| for (cb = cpuid_bits; cb->feature; cb++) { |
| |
| /* Verify that the level is valid */ |
| max_level = cpuid_eax(cb->level & 0xffff0000); |
| if (max_level < cb->level || |
| max_level > (cb->level | 0xffff)) |
| continue; |
| |
| cpuid(cb->level, ®s[CR_EAX], ®s[CR_EBX], |
| ®s[CR_ECX], ®s[CR_EDX]); |
| |
| if (regs[cb->reg] & (1 << cb->bit)) |
| set_cpu_cap(c, cb->feature); |
| } |
| } |
| |
| /* leaf 0xb SMT level */ |
| #define SMT_LEVEL 0 |
| |
| /* leaf 0xb sub-leaf types */ |
| #define INVALID_TYPE 0 |
| #define SMT_TYPE 1 |
| #define CORE_TYPE 2 |
| |
| #define LEAFB_SUBTYPE(ecx) (((ecx) >> 8) & 0xff) |
| #define BITS_SHIFT_NEXT_LEVEL(eax) ((eax) & 0x1f) |
| #define LEVEL_MAX_SIBLINGS(ebx) ((ebx) & 0xffff) |
| |
| /* |
| * Check for extended topology enumeration cpuid leaf 0xb and if it |
| * exists, use it for populating initial_apicid and cpu topology |
| * detection. |
| */ |
| void __cpuinit detect_extended_topology(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_SMP |
| unsigned int eax, ebx, ecx, edx, sub_index; |
| unsigned int ht_mask_width, core_plus_mask_width; |
| unsigned int core_select_mask, core_level_siblings; |
| |
| if (c->cpuid_level < 0xb) |
| return; |
| |
| cpuid_count(0xb, SMT_LEVEL, &eax, &ebx, &ecx, &edx); |
| |
| /* |
| * check if the cpuid leaf 0xb is actually implemented. |
| */ |
| if (ebx == 0 || (LEAFB_SUBTYPE(ecx) != SMT_TYPE)) |
| return; |
| |
| set_cpu_cap(c, X86_FEATURE_XTOPOLOGY); |
| |
| /* |
| * initial apic id, which also represents 32-bit extended x2apic id. |
| */ |
| c->initial_apicid = edx; |
| |
| /* |
| * Populate HT related information from sub-leaf level 0. |
| */ |
| core_level_siblings = smp_num_siblings = LEVEL_MAX_SIBLINGS(ebx); |
| core_plus_mask_width = ht_mask_width = BITS_SHIFT_NEXT_LEVEL(eax); |
| |
| sub_index = 1; |
| do { |
| cpuid_count(0xb, sub_index, &eax, &ebx, &ecx, &edx); |
| |
| /* |
| * Check for the Core type in the implemented sub leaves. |
| */ |
| if (LEAFB_SUBTYPE(ecx) == CORE_TYPE) { |
| core_level_siblings = LEVEL_MAX_SIBLINGS(ebx); |
| core_plus_mask_width = BITS_SHIFT_NEXT_LEVEL(eax); |
| break; |
| } |
| |
| sub_index++; |
| } while (LEAFB_SUBTYPE(ecx) != INVALID_TYPE); |
| |
| core_select_mask = (~(-1 << core_plus_mask_width)) >> ht_mask_width; |
| |
| c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, ht_mask_width) |
| & core_select_mask; |
| c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, core_plus_mask_width); |
| /* |
| * Reinit the apicid, now that we have extended initial_apicid. |
| */ |
| c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); |
| |
| c->x86_max_cores = (core_level_siblings / smp_num_siblings); |
| |
| |
| printk(KERN_INFO "CPU: Physical Processor ID: %d\n", |
| c->phys_proc_id); |
| if (c->x86_max_cores > 1) |
| printk(KERN_INFO "CPU: Processor Core ID: %d\n", |
| c->cpu_core_id); |
| return; |
| #endif |
| } |