blob: 69282f31d519e81ee02a86ad106c6040479c0912 [file] [log] [blame]
/*
* sonic.c
*
* (C) 2005 Finn Thain
*
* Converted to DMA API, added zero-copy buffer handling, and
* (from the mac68k project) introduced dhd's support for 16-bit cards.
*
* (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
*
* This driver is based on work from Andreas Busse, but most of
* the code is rewritten.
*
* (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
*
* Core code included by system sonic drivers
*
* And... partially rewritten again by David Huggins-Daines in order
* to cope with screwed up Macintosh NICs that may or may not use
* 16-bit DMA.
*
* (C) 1999 David Huggins-Daines <dhd@debian.org>
*
*/
/*
* Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
* National Semiconductors data sheet for the DP83932B Sonic Ethernet
* controller, and the files "8390.c" and "skeleton.c" in this directory.
*
* Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
* Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
* the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
*/
static unsigned int version_printed;
static int sonic_debug = -1;
module_param(sonic_debug, int, 0);
MODULE_PARM_DESC(sonic_debug, "debug message level");
static void sonic_msg_init(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
lp->msg_enable = netif_msg_init(sonic_debug, 0);
if (version_printed++ == 0)
netif_dbg(lp, drv, dev, "%s", version);
}
/*
* Open/initialize the SONIC controller.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int sonic_open(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
int i;
netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
spin_lock_init(&lp->lock);
for (i = 0; i < SONIC_NUM_RRS; i++) {
struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
if (skb == NULL) {
while(i > 0) { /* free any that were allocated successfully */
i--;
dev_kfree_skb(lp->rx_skb[i]);
lp->rx_skb[i] = NULL;
}
printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
dev->name);
return -ENOMEM;
}
/* align IP header unless DMA requires otherwise */
if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
skb_reserve(skb, 2);
lp->rx_skb[i] = skb;
}
for (i = 0; i < SONIC_NUM_RRS; i++) {
dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
SONIC_RBSIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(lp->device, laddr)) {
while(i > 0) { /* free any that were mapped successfully */
i--;
dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
lp->rx_laddr[i] = (dma_addr_t)0;
}
for (i = 0; i < SONIC_NUM_RRS; i++) {
dev_kfree_skb(lp->rx_skb[i]);
lp->rx_skb[i] = NULL;
}
printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
dev->name);
return -ENOMEM;
}
lp->rx_laddr[i] = laddr;
}
/*
* Initialize the SONIC
*/
sonic_init(dev);
netif_start_queue(dev);
netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
return 0;
}
/* Wait for the SONIC to become idle. */
static void sonic_quiesce(struct net_device *dev, u16 mask)
{
struct sonic_local * __maybe_unused lp = netdev_priv(dev);
int i;
u16 bits;
for (i = 0; i < 1000; ++i) {
bits = SONIC_READ(SONIC_CMD) & mask;
if (!bits)
return;
if (irqs_disabled() || in_interrupt())
udelay(20);
else
usleep_range(100, 200);
}
WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
}
/*
* Close the SONIC device
*/
static int sonic_close(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
int i;
netif_dbg(lp, ifdown, dev, "%s\n", __func__);
netif_stop_queue(dev);
/*
* stop the SONIC, disable interrupts
*/
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
sonic_quiesce(dev, SONIC_CR_ALL);
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
/* unmap and free skbs that haven't been transmitted */
for (i = 0; i < SONIC_NUM_TDS; i++) {
if(lp->tx_laddr[i]) {
dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
lp->tx_laddr[i] = (dma_addr_t)0;
}
if(lp->tx_skb[i]) {
dev_kfree_skb(lp->tx_skb[i]);
lp->tx_skb[i] = NULL;
}
}
/* unmap and free the receive buffers */
for (i = 0; i < SONIC_NUM_RRS; i++) {
if(lp->rx_laddr[i]) {
dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
lp->rx_laddr[i] = (dma_addr_t)0;
}
if(lp->rx_skb[i]) {
dev_kfree_skb(lp->rx_skb[i]);
lp->rx_skb[i] = NULL;
}
}
return 0;
}
static void sonic_tx_timeout(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
int i;
/*
* put the Sonic into software-reset mode and
* disable all interrupts before releasing DMA buffers
*/
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
sonic_quiesce(dev, SONIC_CR_ALL);
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
/* We could resend the original skbs. Easier to re-initialise. */
for (i = 0; i < SONIC_NUM_TDS; i++) {
if(lp->tx_laddr[i]) {
dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
lp->tx_laddr[i] = (dma_addr_t)0;
}
if(lp->tx_skb[i]) {
dev_kfree_skb(lp->tx_skb[i]);
lp->tx_skb[i] = NULL;
}
}
/* Try to restart the adaptor. */
sonic_init(dev);
lp->stats.tx_errors++;
netif_trans_update(dev); /* prevent tx timeout */
netif_wake_queue(dev);
}
/*
* transmit packet
*
* Appends new TD during transmission thus avoiding any TX interrupts
* until we run out of TDs.
* This routine interacts closely with the ISR in that it may,
* set tx_skb[i]
* reset the status flags of the new TD
* set and reset EOL flags
* stop the tx queue
* The ISR interacts with this routine in various ways. It may,
* reset tx_skb[i]
* test the EOL and status flags of the TDs
* wake the tx queue
* Concurrently with all of this, the SONIC is potentially writing to
* the status flags of the TDs.
*/
static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
dma_addr_t laddr;
int length;
int entry;
unsigned long flags;
netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
length = skb->len;
if (length < ETH_ZLEN) {
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
length = ETH_ZLEN;
}
/*
* Map the packet data into the logical DMA address space
*/
laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
if (!laddr) {
pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
spin_lock_irqsave(&lp->lock, flags);
entry = lp->next_tx;
sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */
sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */
sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
sonic_tda_put(dev, entry, SONIC_TD_LINK,
sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
wmb();
lp->tx_len[entry] = length;
lp->tx_laddr[entry] = laddr;
lp->tx_skb[entry] = skb;
wmb();
sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK,
sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL);
lp->eol_tx = entry;
lp->next_tx = (entry + 1) & SONIC_TDS_MASK;
if (lp->tx_skb[lp->next_tx] != NULL) {
/* The ring is full, the ISR has yet to process the next TD. */
netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
netif_stop_queue(dev);
/* after this packet, wait for ISR to free up some TDAs */
} else netif_start_queue(dev);
netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
}
/*
* The typical workload of the driver:
* Handle the network interface interrupts.
*/
static irqreturn_t sonic_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct sonic_local *lp = netdev_priv(dev);
int status;
unsigned long flags;
/* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
* with sonic_send_packet() so that the two functions can share state.
* Secondly, it makes sonic_interrupt() re-entrant, as that is required
* by macsonic which must use two IRQs with different priority levels.
*/
spin_lock_irqsave(&lp->lock, flags);
status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
if (!status) {
spin_unlock_irqrestore(&lp->lock, flags);
return IRQ_NONE;
}
do {
SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */
if (status & SONIC_INT_PKTRX) {
netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
sonic_rx(dev); /* got packet(s) */
}
if (status & SONIC_INT_TXDN) {
int entry = lp->cur_tx;
int td_status;
int freed_some = 0;
/* The state of a Transmit Descriptor may be inferred
* from { tx_skb[entry], td_status } as follows.
* { clear, clear } => the TD has never been used
* { set, clear } => the TD was handed to SONIC
* { set, set } => the TD was handed back
* { clear, set } => the TD is available for re-use
*/
netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
while (lp->tx_skb[entry] != NULL) {
if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
break;
if (td_status & SONIC_TCR_PTX) {
lp->stats.tx_packets++;
lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
} else {
if (td_status & (SONIC_TCR_EXD |
SONIC_TCR_EXC | SONIC_TCR_BCM))
lp->stats.tx_aborted_errors++;
if (td_status &
(SONIC_TCR_NCRS | SONIC_TCR_CRLS))
lp->stats.tx_carrier_errors++;
if (td_status & SONIC_TCR_OWC)
lp->stats.tx_window_errors++;
if (td_status & SONIC_TCR_FU)
lp->stats.tx_fifo_errors++;
}
/* We must free the original skb */
dev_kfree_skb_irq(lp->tx_skb[entry]);
lp->tx_skb[entry] = NULL;
/* and unmap DMA buffer */
dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
lp->tx_laddr[entry] = (dma_addr_t)0;
freed_some = 1;
if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
entry = (entry + 1) & SONIC_TDS_MASK;
break;
}
entry = (entry + 1) & SONIC_TDS_MASK;
}
if (freed_some || lp->tx_skb[entry] == NULL)
netif_wake_queue(dev); /* The ring is no longer full */
lp->cur_tx = entry;
}
/*
* check error conditions
*/
if (status & SONIC_INT_RFO) {
netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
__func__);
}
if (status & SONIC_INT_RDE) {
netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
__func__);
}
if (status & SONIC_INT_RBAE) {
netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
__func__);
}
/* counter overruns; all counters are 16bit wide */
if (status & SONIC_INT_FAE)
lp->stats.rx_frame_errors += 65536;
if (status & SONIC_INT_CRC)
lp->stats.rx_crc_errors += 65536;
if (status & SONIC_INT_MP)
lp->stats.rx_missed_errors += 65536;
/* transmit error */
if (status & SONIC_INT_TXER) {
u16 tcr = SONIC_READ(SONIC_TCR);
netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
__func__, tcr);
if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
SONIC_TCR_FU | SONIC_TCR_BCM)) {
/* Aborted transmission. Try again. */
netif_stop_queue(dev);
SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
}
}
/* bus retry */
if (status & SONIC_INT_BR) {
printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
dev->name);
/* ... to help debug DMA problems causing endless interrupts. */
/* Bounce the eth interface to turn on the interrupt again. */
SONIC_WRITE(SONIC_IMR, 0);
}
status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
} while (status);
spin_unlock_irqrestore(&lp->lock, flags);
return IRQ_HANDLED;
}
/* Return the array index corresponding to a given Receive Buffer pointer. */
static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
unsigned int last)
{
unsigned int i = last;
do {
i = (i + 1) & SONIC_RRS_MASK;
if (addr == lp->rx_laddr[i])
return i;
} while (i != last);
return -ENOENT;
}
/* Allocate and map a new skb to be used as a receive buffer. */
static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
struct sk_buff **new_skb, dma_addr_t *new_addr)
{
*new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
if (!*new_skb)
return false;
if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
skb_reserve(*new_skb, 2);
*new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
SONIC_RBSIZE, DMA_FROM_DEVICE);
if (!*new_addr) {
dev_kfree_skb(*new_skb);
*new_skb = NULL;
return false;
}
return true;
}
/* Place a new receive resource in the Receive Resource Area and update RWP. */
static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
dma_addr_t old_addr, dma_addr_t new_addr)
{
unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
u32 buf;
/* The resources in the range [RRP, RWP) belong to the SONIC. This loop
* scans the other resources in the RRA, those in the range [RWP, RRP).
*/
do {
buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);
if (buf == old_addr)
break;
entry = (entry + 1) & SONIC_RRS_MASK;
} while (entry != end);
WARN_ONCE(buf != old_addr, "failed to find resource!\n");
sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);
entry = (entry + 1) & SONIC_RRS_MASK;
SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
}
/*
* We have a good packet(s), pass it/them up the network stack.
*/
static void sonic_rx(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
int entry = lp->cur_rx;
int prev_entry = lp->eol_rx;
bool rbe = false;
while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
/* If the RD has LPKT set, the chip has finished with the RB */
if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
struct sk_buff *new_skb;
dma_addr_t new_laddr;
u32 addr = (sonic_rda_get(dev, entry,
SONIC_RD_PKTPTR_H) << 16) |
sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
int i = index_from_addr(lp, addr, entry);
if (i < 0) {
WARN_ONCE(1, "failed to find buffer!\n");
break;
}
if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
struct sk_buff *used_skb = lp->rx_skb[i];
int pkt_len;
/* Pass the used buffer up the stack */
dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
DMA_FROM_DEVICE);
pkt_len = sonic_rda_get(dev, entry,
SONIC_RD_PKTLEN);
skb_trim(used_skb, pkt_len);
used_skb->protocol = eth_type_trans(used_skb,
dev);
netif_rx(used_skb);
lp->stats.rx_packets++;
lp->stats.rx_bytes += pkt_len;
lp->rx_skb[i] = new_skb;
lp->rx_laddr[i] = new_laddr;
} else {
/* Failed to obtain a new buffer so re-use it */
new_laddr = addr;
lp->stats.rx_dropped++;
}
/* If RBE is already asserted when RWP advances then
* it's safe to clear RBE after processing this packet.
*/
rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
sonic_update_rra(dev, lp, addr, new_laddr);
}
/*
* give back the descriptor
*/
sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
prev_entry = entry;
entry = (entry + 1) & SONIC_RDS_MASK;
}
lp->cur_rx = entry;
if (prev_entry != lp->eol_rx) {
/* Advance the EOL flag to put descriptors back into service */
sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
lp->eol_rx = prev_entry;
}
if (rbe)
SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
/*
* If any worth-while packets have been received, netif_rx()
* has done a mark_bh(NET_BH) for us and will work on them
* when we get to the bottom-half routine.
*/
}
/*
* Get the current statistics.
* This may be called with the device open or closed.
*/
static struct net_device_stats *sonic_get_stats(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
/* read the tally counter from the SONIC and reset them */
lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
SONIC_WRITE(SONIC_CRCT, 0xffff);
lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
SONIC_WRITE(SONIC_FAET, 0xffff);
lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
SONIC_WRITE(SONIC_MPT, 0xffff);
return &lp->stats;
}
/*
* Set or clear the multicast filter for this adaptor.
*/
static void sonic_multicast_list(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
unsigned int rcr;
struct netdev_hw_addr *ha;
unsigned char *addr;
int i;
rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
rcr |= SONIC_RCR_BRD; /* accept broadcast packets */
if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
rcr |= SONIC_RCR_PRO;
} else {
if ((dev->flags & IFF_ALLMULTI) ||
(netdev_mc_count(dev) > 15)) {
rcr |= SONIC_RCR_AMC;
} else {
unsigned long flags;
netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
netdev_mc_count(dev));
sonic_set_cam_enable(dev, 1); /* always enable our own address */
i = 1;
netdev_for_each_mc_addr(ha, dev) {
addr = ha->addr;
sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
i++;
}
SONIC_WRITE(SONIC_CDC, 16);
SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
/* LCAM and TXP commands can't be used simultaneously */
spin_lock_irqsave(&lp->lock, flags);
sonic_quiesce(dev, SONIC_CR_TXP);
SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
sonic_quiesce(dev, SONIC_CR_LCAM);
spin_unlock_irqrestore(&lp->lock, flags);
}
}
netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
SONIC_WRITE(SONIC_RCR, rcr);
}
/*
* Initialize the SONIC ethernet controller.
*/
static int sonic_init(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
int i;
/*
* put the Sonic into software-reset mode and
* disable all interrupts
*/
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
/* While in reset mode, clear CAM Enable register */
SONIC_WRITE(SONIC_CE, 0);
/*
* clear software reset flag, disable receiver, clear and
* enable interrupts, then completely initialize the SONIC
*/
SONIC_WRITE(SONIC_CMD, 0);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
sonic_quiesce(dev, SONIC_CR_ALL);
/*
* initialize the receive resource area
*/
netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
__func__);
for (i = 0; i < SONIC_NUM_RRS; i++) {
u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
}
/* initialize all RRA registers */
SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
/* load the resource pointers */
netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
sonic_quiesce(dev, SONIC_CR_RRRA);
/*
* Initialize the receive descriptors so that they
* become a circular linked list, ie. let the last
* descriptor point to the first again.
*/
netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
__func__);
for (i=0; i<SONIC_NUM_RDS; i++) {
sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
sonic_rda_put(dev, i, SONIC_RD_LINK,
lp->rda_laddr +
((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
}
/* fix last descriptor */
sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
(lp->rda_laddr & 0xffff) | SONIC_EOL);
lp->eol_rx = SONIC_NUM_RDS - 1;
lp->cur_rx = 0;
SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
/*
* initialize transmit descriptors
*/
netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
__func__);
for (i = 0; i < SONIC_NUM_TDS; i++) {
sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
sonic_tda_put(dev, i, SONIC_TD_LINK,
(lp->tda_laddr & 0xffff) +
(i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
lp->tx_skb[i] = NULL;
}
/* fix last descriptor */
sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
(lp->tda_laddr & 0xffff));
SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
lp->cur_tx = lp->next_tx = 0;
lp->eol_tx = SONIC_NUM_TDS - 1;
/*
* put our own address to CAM desc[0]
*/
sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
sonic_set_cam_enable(dev, 1);
for (i = 0; i < 16; i++)
sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
/*
* initialize CAM registers
*/
SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
SONIC_WRITE(SONIC_CDC, 16);
/*
* load the CAM
*/
SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
sonic_quiesce(dev, SONIC_CR_LCAM);
/*
* enable receiver, disable loopback
* and enable all interrupts
*/
SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);
netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
SONIC_READ(SONIC_CMD));
return 0;
}
MODULE_LICENSE("GPL");