| /* |
| * Copyright © 2010 Daniel Vetter |
| * Copyright © 2011-2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/slab.h> /* fault-inject.h is not standalone! */ |
| |
| #include <linux/fault-inject.h> |
| #include <linux/log2.h> |
| #include <linux/random.h> |
| #include <linux/seq_file.h> |
| #include <linux/stop_machine.h> |
| |
| #include <asm/set_memory.h> |
| |
| #include <drm/drmP.h> |
| #include <drm/i915_drm.h> |
| |
| #include "i915_drv.h" |
| #include "i915_vgpu.h" |
| #include "i915_trace.h" |
| #include "intel_drv.h" |
| #include "intel_frontbuffer.h" |
| |
| #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) |
| |
| /** |
| * DOC: Global GTT views |
| * |
| * Background and previous state |
| * |
| * Historically objects could exists (be bound) in global GTT space only as |
| * singular instances with a view representing all of the object's backing pages |
| * in a linear fashion. This view will be called a normal view. |
| * |
| * To support multiple views of the same object, where the number of mapped |
| * pages is not equal to the backing store, or where the layout of the pages |
| * is not linear, concept of a GGTT view was added. |
| * |
| * One example of an alternative view is a stereo display driven by a single |
| * image. In this case we would have a framebuffer looking like this |
| * (2x2 pages): |
| * |
| * 12 |
| * 34 |
| * |
| * Above would represent a normal GGTT view as normally mapped for GPU or CPU |
| * rendering. In contrast, fed to the display engine would be an alternative |
| * view which could look something like this: |
| * |
| * 1212 |
| * 3434 |
| * |
| * In this example both the size and layout of pages in the alternative view is |
| * different from the normal view. |
| * |
| * Implementation and usage |
| * |
| * GGTT views are implemented using VMAs and are distinguished via enum |
| * i915_ggtt_view_type and struct i915_ggtt_view. |
| * |
| * A new flavour of core GEM functions which work with GGTT bound objects were |
| * added with the _ggtt_ infix, and sometimes with _view postfix to avoid |
| * renaming in large amounts of code. They take the struct i915_ggtt_view |
| * parameter encapsulating all metadata required to implement a view. |
| * |
| * As a helper for callers which are only interested in the normal view, |
| * globally const i915_ggtt_view_normal singleton instance exists. All old core |
| * GEM API functions, the ones not taking the view parameter, are operating on, |
| * or with the normal GGTT view. |
| * |
| * Code wanting to add or use a new GGTT view needs to: |
| * |
| * 1. Add a new enum with a suitable name. |
| * 2. Extend the metadata in the i915_ggtt_view structure if required. |
| * 3. Add support to i915_get_vma_pages(). |
| * |
| * New views are required to build a scatter-gather table from within the |
| * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and |
| * exists for the lifetime of an VMA. |
| * |
| * Core API is designed to have copy semantics which means that passed in |
| * struct i915_ggtt_view does not need to be persistent (left around after |
| * calling the core API functions). |
| * |
| */ |
| |
| static int |
| i915_get_ggtt_vma_pages(struct i915_vma *vma); |
| |
| static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv) |
| { |
| /* |
| * Note that as an uncached mmio write, this will flush the |
| * WCB of the writes into the GGTT before it triggers the invalidate. |
| */ |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| } |
| |
| static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv) |
| { |
| gen6_ggtt_invalidate(dev_priv); |
| I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); |
| } |
| |
| static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv) |
| { |
| intel_gtt_chipset_flush(); |
| } |
| |
| static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) |
| { |
| i915->ggtt.invalidate(i915); |
| } |
| |
| int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, |
| int enable_ppgtt) |
| { |
| bool has_full_ppgtt; |
| bool has_full_48bit_ppgtt; |
| |
| if (!dev_priv->info.has_aliasing_ppgtt) |
| return 0; |
| |
| has_full_ppgtt = dev_priv->info.has_full_ppgtt; |
| has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt; |
| |
| if (intel_vgpu_active(dev_priv)) { |
| /* GVT-g has no support for 32bit ppgtt */ |
| has_full_ppgtt = false; |
| has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv); |
| } |
| |
| /* |
| * We don't allow disabling PPGTT for gen9+ as it's a requirement for |
| * execlists, the sole mechanism available to submit work. |
| */ |
| if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9) |
| return 0; |
| |
| /* Full PPGTT is required by the Gen9 cmdparser */ |
| if (enable_ppgtt == 1 && INTEL_GEN(dev_priv) != 9) |
| return 1; |
| |
| if (enable_ppgtt == 2 && has_full_ppgtt) |
| return 2; |
| |
| if (enable_ppgtt == 3 && has_full_48bit_ppgtt) |
| return 3; |
| |
| /* Disable ppgtt on SNB if VT-d is on. */ |
| if (IS_GEN6(dev_priv) && intel_vtd_active()) { |
| DRM_INFO("Disabling PPGTT because VT-d is on\n"); |
| return 0; |
| } |
| |
| /* Early VLV doesn't have this */ |
| if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) { |
| DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); |
| return 0; |
| } |
| |
| if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { |
| if (has_full_48bit_ppgtt) |
| return 3; |
| |
| if (has_full_ppgtt) |
| return 2; |
| } |
| |
| return 1; |
| } |
| |
| static int ppgtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| u32 pte_flags; |
| int err; |
| |
| if (!(vma->flags & I915_VMA_LOCAL_BIND)) { |
| err = vma->vm->allocate_va_range(vma->vm, |
| vma->node.start, vma->size); |
| if (err) |
| return err; |
| } |
| |
| /* Applicable to VLV, and gen8+ */ |
| pte_flags = 0; |
| if (i915_gem_object_is_readonly(vma->obj)) |
| pte_flags |= PTE_READ_ONLY; |
| |
| vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); |
| |
| return 0; |
| } |
| |
| static void ppgtt_unbind_vma(struct i915_vma *vma) |
| { |
| vma->vm->clear_range(vma->vm, vma->node.start, vma->size); |
| } |
| |
| static int ppgtt_set_pages(struct i915_vma *vma) |
| { |
| GEM_BUG_ON(vma->pages); |
| |
| vma->pages = vma->obj->mm.pages; |
| |
| vma->page_sizes = vma->obj->mm.page_sizes; |
| |
| return 0; |
| } |
| |
| static void clear_pages(struct i915_vma *vma) |
| { |
| GEM_BUG_ON(!vma->pages); |
| |
| if (vma->pages != vma->obj->mm.pages) { |
| sg_free_table(vma->pages); |
| kfree(vma->pages); |
| } |
| vma->pages = NULL; |
| |
| memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); |
| } |
| |
| static gen8_pte_t gen8_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW; |
| |
| if (unlikely(flags & PTE_READ_ONLY)) |
| pte &= ~_PAGE_RW; |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| pte |= PPAT_UNCACHED; |
| break; |
| case I915_CACHE_WT: |
| pte |= PPAT_DISPLAY_ELLC; |
| break; |
| default: |
| pte |= PPAT_CACHED; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, |
| const enum i915_cache_level level) |
| { |
| gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; |
| pde |= addr; |
| if (level != I915_CACHE_NONE) |
| pde |= PPAT_CACHED_PDE; |
| else |
| pde |= PPAT_UNCACHED; |
| return pde; |
| } |
| |
| #define gen8_pdpe_encode gen8_pde_encode |
| #define gen8_pml4e_encode gen8_pde_encode |
| |
| static gen6_pte_t snb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| gen6_pte_t pte = GEN6_PTE_VALID; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| MISSING_CASE(level); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_pte_t ivb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| gen6_pte_t pte = GEN6_PTE_VALID; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| pte |= GEN7_PTE_CACHE_L3_LLC; |
| break; |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| MISSING_CASE(level); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_pte_t byt_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| gen6_pte_t pte = GEN6_PTE_VALID; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| if (!(flags & PTE_READ_ONLY)) |
| pte |= BYT_PTE_WRITEABLE; |
| |
| if (level != I915_CACHE_NONE) |
| pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; |
| |
| return pte; |
| } |
| |
| static gen6_pte_t hsw_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| gen6_pte_t pte = GEN6_PTE_VALID; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| if (level != I915_CACHE_NONE) |
| pte |= HSW_WB_LLC_AGE3; |
| |
| return pte; |
| } |
| |
| static gen6_pte_t iris_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| gen6_pte_t pte = GEN6_PTE_VALID; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| break; |
| case I915_CACHE_WT: |
| pte |= HSW_WT_ELLC_LLC_AGE3; |
| break; |
| default: |
| pte |= HSW_WB_ELLC_LLC_AGE3; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| static void stash_init(struct pagestash *stash) |
| { |
| pagevec_init(&stash->pvec); |
| spin_lock_init(&stash->lock); |
| } |
| |
| static struct page *stash_pop_page(struct pagestash *stash) |
| { |
| struct page *page = NULL; |
| |
| spin_lock(&stash->lock); |
| if (likely(stash->pvec.nr)) |
| page = stash->pvec.pages[--stash->pvec.nr]; |
| spin_unlock(&stash->lock); |
| |
| return page; |
| } |
| |
| static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec) |
| { |
| int nr; |
| |
| spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING); |
| |
| nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec)); |
| memcpy(stash->pvec.pages + stash->pvec.nr, |
| pvec->pages + pvec->nr - nr, |
| sizeof(pvec->pages[0]) * nr); |
| stash->pvec.nr += nr; |
| |
| spin_unlock(&stash->lock); |
| |
| pvec->nr -= nr; |
| } |
| |
| static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) |
| { |
| struct pagevec stack; |
| struct page *page; |
| |
| if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) |
| i915_gem_shrink_all(vm->i915); |
| |
| page = stash_pop_page(&vm->free_pages); |
| if (page) |
| return page; |
| |
| if (!vm->pt_kmap_wc) |
| return alloc_page(gfp); |
| |
| /* Look in our global stash of WC pages... */ |
| page = stash_pop_page(&vm->i915->mm.wc_stash); |
| if (page) |
| return page; |
| |
| /* |
| * Otherwise batch allocate pages to amortize cost of set_pages_wc. |
| * |
| * We have to be careful as page allocation may trigger the shrinker |
| * (via direct reclaim) which will fill up the WC stash underneath us. |
| * So we add our WB pages into a temporary pvec on the stack and merge |
| * them into the WC stash after all the allocations are complete. |
| */ |
| pagevec_init(&stack); |
| do { |
| struct page *page; |
| |
| page = alloc_page(gfp); |
| if (unlikely(!page)) |
| break; |
| |
| stack.pages[stack.nr++] = page; |
| } while (pagevec_space(&stack)); |
| |
| if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) { |
| page = stack.pages[--stack.nr]; |
| |
| /* Merge spare WC pages to the global stash */ |
| stash_push_pagevec(&vm->i915->mm.wc_stash, &stack); |
| |
| /* Push any surplus WC pages onto the local VM stash */ |
| if (stack.nr) |
| stash_push_pagevec(&vm->free_pages, &stack); |
| } |
| |
| /* Return unwanted leftovers */ |
| if (unlikely(stack.nr)) { |
| WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr)); |
| __pagevec_release(&stack); |
| } |
| |
| return page; |
| } |
| |
| static void vm_free_pages_release(struct i915_address_space *vm, |
| bool immediate) |
| { |
| struct pagevec *pvec = &vm->free_pages.pvec; |
| struct pagevec stack; |
| |
| lockdep_assert_held(&vm->free_pages.lock); |
| GEM_BUG_ON(!pagevec_count(pvec)); |
| |
| if (vm->pt_kmap_wc) { |
| /* |
| * When we use WC, first fill up the global stash and then |
| * only if full immediately free the overflow. |
| */ |
| stash_push_pagevec(&vm->i915->mm.wc_stash, pvec); |
| |
| /* |
| * As we have made some room in the VM's free_pages, |
| * we can wait for it to fill again. Unless we are |
| * inside i915_address_space_fini() and must |
| * immediately release the pages! |
| */ |
| if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1)) |
| return; |
| |
| /* |
| * We have to drop the lock to allow ourselves to sleep, |
| * so take a copy of the pvec and clear the stash for |
| * others to use it as we sleep. |
| */ |
| stack = *pvec; |
| pagevec_reinit(pvec); |
| spin_unlock(&vm->free_pages.lock); |
| |
| pvec = &stack; |
| set_pages_array_wb(pvec->pages, pvec->nr); |
| |
| spin_lock(&vm->free_pages.lock); |
| } |
| |
| __pagevec_release(pvec); |
| } |
| |
| static void vm_free_page(struct i915_address_space *vm, struct page *page) |
| { |
| /* |
| * On !llc, we need to change the pages back to WB. We only do so |
| * in bulk, so we rarely need to change the page attributes here, |
| * but doing so requires a stop_machine() from deep inside arch/x86/mm. |
| * To make detection of the possible sleep more likely, use an |
| * unconditional might_sleep() for everybody. |
| */ |
| might_sleep(); |
| spin_lock(&vm->free_pages.lock); |
| if (!pagevec_add(&vm->free_pages.pvec, page)) |
| vm_free_pages_release(vm, false); |
| spin_unlock(&vm->free_pages.lock); |
| } |
| |
| static void i915_address_space_init(struct i915_address_space *vm, |
| struct drm_i915_private *dev_priv) |
| { |
| /* |
| * The vm->mutex must be reclaim safe (for use in the shrinker). |
| * Do a dummy acquire now under fs_reclaim so that any allocation |
| * attempt holding the lock is immediately reported by lockdep. |
| */ |
| mutex_init(&vm->mutex); |
| i915_gem_shrinker_taints_mutex(&vm->mutex); |
| |
| GEM_BUG_ON(!vm->total); |
| drm_mm_init(&vm->mm, 0, vm->total); |
| vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; |
| |
| stash_init(&vm->free_pages); |
| |
| INIT_LIST_HEAD(&vm->active_list); |
| INIT_LIST_HEAD(&vm->inactive_list); |
| INIT_LIST_HEAD(&vm->unbound_list); |
| } |
| |
| static void i915_address_space_fini(struct i915_address_space *vm) |
| { |
| spin_lock(&vm->free_pages.lock); |
| if (pagevec_count(&vm->free_pages.pvec)) |
| vm_free_pages_release(vm, true); |
| GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec)); |
| spin_unlock(&vm->free_pages.lock); |
| |
| drm_mm_takedown(&vm->mm); |
| |
| mutex_destroy(&vm->mutex); |
| } |
| |
| static int __setup_page_dma(struct i915_address_space *vm, |
| struct i915_page_dma *p, |
| gfp_t gfp) |
| { |
| p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL); |
| if (unlikely(!p->page)) |
| return -ENOMEM; |
| |
| p->daddr = dma_map_page_attrs(vm->dma, |
| p->page, 0, PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL, |
| DMA_ATTR_SKIP_CPU_SYNC | |
| DMA_ATTR_NO_WARN); |
| if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { |
| vm_free_page(vm, p->page); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int setup_page_dma(struct i915_address_space *vm, |
| struct i915_page_dma *p) |
| { |
| return __setup_page_dma(vm, p, __GFP_HIGHMEM); |
| } |
| |
| static void cleanup_page_dma(struct i915_address_space *vm, |
| struct i915_page_dma *p) |
| { |
| dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| vm_free_page(vm, p->page); |
| } |
| |
| #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) |
| |
| #define setup_px(vm, px) setup_page_dma((vm), px_base(px)) |
| #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px)) |
| #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v)) |
| #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v)) |
| |
| static void fill_page_dma(struct i915_address_space *vm, |
| struct i915_page_dma *p, |
| const u64 val) |
| { |
| u64 * const vaddr = kmap_atomic(p->page); |
| |
| memset64(vaddr, val, PAGE_SIZE / sizeof(val)); |
| |
| kunmap_atomic(vaddr); |
| } |
| |
| static void fill_page_dma_32(struct i915_address_space *vm, |
| struct i915_page_dma *p, |
| const u32 v) |
| { |
| fill_page_dma(vm, p, (u64)v << 32 | v); |
| } |
| |
| static int |
| setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) |
| { |
| unsigned long size; |
| |
| /* |
| * In order to utilize 64K pages for an object with a size < 2M, we will |
| * need to support a 64K scratch page, given that every 16th entry for a |
| * page-table operating in 64K mode must point to a properly aligned 64K |
| * region, including any PTEs which happen to point to scratch. |
| * |
| * This is only relevant for the 48b PPGTT where we support |
| * huge-gtt-pages, see also i915_vma_insert(). |
| * |
| * TODO: we should really consider write-protecting the scratch-page and |
| * sharing between ppgtt |
| */ |
| size = I915_GTT_PAGE_SIZE_4K; |
| if (i915_vm_is_48bit(vm) && |
| HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) { |
| size = I915_GTT_PAGE_SIZE_64K; |
| gfp |= __GFP_NOWARN; |
| } |
| gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL; |
| |
| do { |
| int order = get_order(size); |
| struct page *page; |
| dma_addr_t addr; |
| |
| page = alloc_pages(gfp, order); |
| if (unlikely(!page)) |
| goto skip; |
| |
| addr = dma_map_page_attrs(vm->dma, |
| page, 0, size, |
| PCI_DMA_BIDIRECTIONAL, |
| DMA_ATTR_SKIP_CPU_SYNC | |
| DMA_ATTR_NO_WARN); |
| if (unlikely(dma_mapping_error(vm->dma, addr))) |
| goto free_page; |
| |
| if (unlikely(!IS_ALIGNED(addr, size))) |
| goto unmap_page; |
| |
| vm->scratch_page.page = page; |
| vm->scratch_page.daddr = addr; |
| vm->scratch_page.order = order; |
| return 0; |
| |
| unmap_page: |
| dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL); |
| free_page: |
| __free_pages(page, order); |
| skip: |
| if (size == I915_GTT_PAGE_SIZE_4K) |
| return -ENOMEM; |
| |
| size = I915_GTT_PAGE_SIZE_4K; |
| gfp &= ~__GFP_NOWARN; |
| } while (1); |
| } |
| |
| static void cleanup_scratch_page(struct i915_address_space *vm) |
| { |
| struct i915_page_dma *p = &vm->scratch_page; |
| |
| dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT, |
| PCI_DMA_BIDIRECTIONAL); |
| __free_pages(p->page, p->order); |
| } |
| |
| static struct i915_page_table *alloc_pt(struct i915_address_space *vm) |
| { |
| struct i915_page_table *pt; |
| |
| pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL); |
| if (unlikely(!pt)) |
| return ERR_PTR(-ENOMEM); |
| |
| if (unlikely(setup_px(vm, pt))) { |
| kfree(pt); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| pt->used_ptes = 0; |
| return pt; |
| } |
| |
| static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt) |
| { |
| cleanup_px(vm, pt); |
| kfree(pt); |
| } |
| |
| static void gen8_initialize_pt(struct i915_address_space *vm, |
| struct i915_page_table *pt) |
| { |
| fill_px(vm, pt, |
| gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0)); |
| } |
| |
| static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt, |
| struct i915_page_table *pt) |
| { |
| fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte); |
| } |
| |
| static struct i915_page_directory *alloc_pd(struct i915_address_space *vm) |
| { |
| struct i915_page_directory *pd; |
| |
| pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL); |
| if (unlikely(!pd)) |
| return ERR_PTR(-ENOMEM); |
| |
| if (unlikely(setup_px(vm, pd))) { |
| kfree(pd); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| pd->used_pdes = 0; |
| return pd; |
| } |
| |
| static void free_pd(struct i915_address_space *vm, |
| struct i915_page_directory *pd) |
| { |
| cleanup_px(vm, pd); |
| kfree(pd); |
| } |
| |
| static void gen8_initialize_pd(struct i915_address_space *vm, |
| struct i915_page_directory *pd) |
| { |
| fill_px(vm, pd, |
| gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC)); |
| memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES); |
| } |
| |
| static int __pdp_init(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp) |
| { |
| const unsigned int pdpes = i915_pdpes_per_pdp(vm); |
| |
| pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory), |
| I915_GFP_ALLOW_FAIL); |
| if (unlikely(!pdp->page_directory)) |
| return -ENOMEM; |
| |
| memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes); |
| |
| return 0; |
| } |
| |
| static void __pdp_fini(struct i915_page_directory_pointer *pdp) |
| { |
| kfree(pdp->page_directory); |
| pdp->page_directory = NULL; |
| } |
| |
| static inline bool use_4lvl(const struct i915_address_space *vm) |
| { |
| return i915_vm_is_48bit(vm); |
| } |
| |
| static struct i915_page_directory_pointer * |
| alloc_pdp(struct i915_address_space *vm) |
| { |
| struct i915_page_directory_pointer *pdp; |
| int ret = -ENOMEM; |
| |
| GEM_BUG_ON(!use_4lvl(vm)); |
| |
| pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); |
| if (!pdp) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = __pdp_init(vm, pdp); |
| if (ret) |
| goto fail_bitmap; |
| |
| ret = setup_px(vm, pdp); |
| if (ret) |
| goto fail_page_m; |
| |
| return pdp; |
| |
| fail_page_m: |
| __pdp_fini(pdp); |
| fail_bitmap: |
| kfree(pdp); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static void free_pdp(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp) |
| { |
| __pdp_fini(pdp); |
| |
| if (!use_4lvl(vm)) |
| return; |
| |
| cleanup_px(vm, pdp); |
| kfree(pdp); |
| } |
| |
| static void gen8_initialize_pdp(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp) |
| { |
| gen8_ppgtt_pdpe_t scratch_pdpe; |
| |
| scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); |
| |
| fill_px(vm, pdp, scratch_pdpe); |
| } |
| |
| static void gen8_initialize_pml4(struct i915_address_space *vm, |
| struct i915_pml4 *pml4) |
| { |
| fill_px(vm, pml4, |
| gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC)); |
| memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4); |
| } |
| |
| /* PDE TLBs are a pain to invalidate on GEN8+. When we modify |
| * the page table structures, we mark them dirty so that |
| * context switching/execlist queuing code takes extra steps |
| * to ensure that tlbs are flushed. |
| */ |
| static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) |
| { |
| ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask; |
| } |
| |
| /* Removes entries from a single page table, releasing it if it's empty. |
| * Caller can use the return value to update higher-level entries. |
| */ |
| static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm, |
| struct i915_page_table *pt, |
| u64 start, u64 length) |
| { |
| unsigned int num_entries = gen8_pte_count(start, length); |
| unsigned int pte = gen8_pte_index(start); |
| unsigned int pte_end = pte + num_entries; |
| const gen8_pte_t scratch_pte = |
| gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); |
| gen8_pte_t *vaddr; |
| |
| GEM_BUG_ON(num_entries > pt->used_ptes); |
| |
| pt->used_ptes -= num_entries; |
| if (!pt->used_ptes) |
| return true; |
| |
| vaddr = kmap_atomic_px(pt); |
| while (pte < pte_end) |
| vaddr[pte++] = scratch_pte; |
| kunmap_atomic(vaddr); |
| |
| return false; |
| } |
| |
| static void gen8_ppgtt_set_pde(struct i915_address_space *vm, |
| struct i915_page_directory *pd, |
| struct i915_page_table *pt, |
| unsigned int pde) |
| { |
| gen8_pde_t *vaddr; |
| |
| pd->page_table[pde] = pt; |
| |
| vaddr = kmap_atomic_px(pd); |
| vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); |
| kunmap_atomic(vaddr); |
| } |
| |
| static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, |
| struct i915_page_directory *pd, |
| u64 start, u64 length) |
| { |
| struct i915_page_table *pt; |
| u32 pde; |
| |
| gen8_for_each_pde(pt, pd, start, length, pde) { |
| GEM_BUG_ON(pt == vm->scratch_pt); |
| |
| if (!gen8_ppgtt_clear_pt(vm, pt, start, length)) |
| continue; |
| |
| gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde); |
| GEM_BUG_ON(!pd->used_pdes); |
| pd->used_pdes--; |
| |
| free_pt(vm, pt); |
| } |
| |
| return !pd->used_pdes; |
| } |
| |
| static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| struct i915_page_directory *pd, |
| unsigned int pdpe) |
| { |
| gen8_ppgtt_pdpe_t *vaddr; |
| |
| pdp->page_directory[pdpe] = pd; |
| if (!use_4lvl(vm)) |
| return; |
| |
| vaddr = kmap_atomic_px(pdp); |
| vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); |
| kunmap_atomic(vaddr); |
| } |
| |
| /* Removes entries from a single page dir pointer, releasing it if it's empty. |
| * Caller can use the return value to update higher-level entries |
| */ |
| static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| u64 start, u64 length) |
| { |
| struct i915_page_directory *pd; |
| unsigned int pdpe; |
| |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| GEM_BUG_ON(pd == vm->scratch_pd); |
| |
| if (!gen8_ppgtt_clear_pd(vm, pd, start, length)) |
| continue; |
| |
| gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); |
| GEM_BUG_ON(!pdp->used_pdpes); |
| pdp->used_pdpes--; |
| |
| free_pd(vm, pd); |
| } |
| |
| return !pdp->used_pdpes; |
| } |
| |
| static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); |
| } |
| |
| static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4, |
| struct i915_page_directory_pointer *pdp, |
| unsigned int pml4e) |
| { |
| gen8_ppgtt_pml4e_t *vaddr; |
| |
| pml4->pdps[pml4e] = pdp; |
| |
| vaddr = kmap_atomic_px(pml4); |
| vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); |
| kunmap_atomic(vaddr); |
| } |
| |
| /* Removes entries from a single pml4. |
| * This is the top-level structure in 4-level page tables used on gen8+. |
| * Empty entries are always scratch pml4e. |
| */ |
| static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_pml4 *pml4 = &ppgtt->pml4; |
| struct i915_page_directory_pointer *pdp; |
| unsigned int pml4e; |
| |
| GEM_BUG_ON(!use_4lvl(vm)); |
| |
| gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { |
| GEM_BUG_ON(pdp == vm->scratch_pdp); |
| |
| if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length)) |
| continue; |
| |
| gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); |
| |
| free_pdp(vm, pdp); |
| } |
| } |
| |
| static inline struct sgt_dma { |
| struct scatterlist *sg; |
| dma_addr_t dma, max; |
| } sgt_dma(struct i915_vma *vma) { |
| struct scatterlist *sg = vma->pages->sgl; |
| dma_addr_t addr = sg_dma_address(sg); |
| return (struct sgt_dma) { sg, addr, addr + sg->length }; |
| } |
| |
| struct gen8_insert_pte { |
| u16 pml4e; |
| u16 pdpe; |
| u16 pde; |
| u16 pte; |
| }; |
| |
| static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start) |
| { |
| return (struct gen8_insert_pte) { |
| gen8_pml4e_index(start), |
| gen8_pdpe_index(start), |
| gen8_pde_index(start), |
| gen8_pte_index(start), |
| }; |
| } |
| |
| static __always_inline bool |
| gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt, |
| struct i915_page_directory_pointer *pdp, |
| struct sgt_dma *iter, |
| struct gen8_insert_pte *idx, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct i915_page_directory *pd; |
| const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); |
| gen8_pte_t *vaddr; |
| bool ret; |
| |
| GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); |
| pd = pdp->page_directory[idx->pdpe]; |
| vaddr = kmap_atomic_px(pd->page_table[idx->pde]); |
| do { |
| vaddr[idx->pte] = pte_encode | iter->dma; |
| |
| iter->dma += I915_GTT_PAGE_SIZE; |
| if (iter->dma >= iter->max) { |
| iter->sg = __sg_next(iter->sg); |
| if (!iter->sg) { |
| ret = false; |
| break; |
| } |
| |
| iter->dma = sg_dma_address(iter->sg); |
| iter->max = iter->dma + iter->sg->length; |
| } |
| |
| if (++idx->pte == GEN8_PTES) { |
| idx->pte = 0; |
| |
| if (++idx->pde == I915_PDES) { |
| idx->pde = 0; |
| |
| /* Limited by sg length for 3lvl */ |
| if (++idx->pdpe == GEN8_PML4ES_PER_PML4) { |
| idx->pdpe = 0; |
| ret = true; |
| break; |
| } |
| |
| GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); |
| pd = pdp->page_directory[idx->pdpe]; |
| } |
| |
| kunmap_atomic(vaddr); |
| vaddr = kmap_atomic_px(pd->page_table[idx->pde]); |
| } |
| } while (1); |
| kunmap_atomic(vaddr); |
| |
| return ret; |
| } |
| |
| static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm, |
| struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct sgt_dma iter = sgt_dma(vma); |
| struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); |
| |
| gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx, |
| cache_level, flags); |
| |
| vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; |
| } |
| |
| static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma, |
| struct i915_page_directory_pointer **pdps, |
| struct sgt_dma *iter, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); |
| u64 start = vma->node.start; |
| dma_addr_t rem = iter->sg->length; |
| |
| do { |
| struct gen8_insert_pte idx = gen8_insert_pte(start); |
| struct i915_page_directory_pointer *pdp = pdps[idx.pml4e]; |
| struct i915_page_directory *pd = pdp->page_directory[idx.pdpe]; |
| unsigned int page_size; |
| bool maybe_64K = false; |
| gen8_pte_t encode = pte_encode; |
| gen8_pte_t *vaddr; |
| u16 index, max; |
| |
| if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M && |
| IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && |
| rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) { |
| index = idx.pde; |
| max = I915_PDES; |
| page_size = I915_GTT_PAGE_SIZE_2M; |
| |
| encode |= GEN8_PDE_PS_2M; |
| |
| vaddr = kmap_atomic_px(pd); |
| } else { |
| struct i915_page_table *pt = pd->page_table[idx.pde]; |
| |
| index = idx.pte; |
| max = GEN8_PTES; |
| page_size = I915_GTT_PAGE_SIZE; |
| |
| if (!index && |
| vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K && |
| IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && |
| (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || |
| rem >= (max - index) << PAGE_SHIFT)) |
| maybe_64K = true; |
| |
| vaddr = kmap_atomic_px(pt); |
| } |
| |
| do { |
| GEM_BUG_ON(iter->sg->length < page_size); |
| vaddr[index++] = encode | iter->dma; |
| |
| start += page_size; |
| iter->dma += page_size; |
| rem -= page_size; |
| if (iter->dma >= iter->max) { |
| iter->sg = __sg_next(iter->sg); |
| if (!iter->sg) |
| break; |
| |
| rem = iter->sg->length; |
| iter->dma = sg_dma_address(iter->sg); |
| iter->max = iter->dma + rem; |
| |
| if (maybe_64K && index < max && |
| !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && |
| (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || |
| rem >= (max - index) << PAGE_SHIFT))) |
| maybe_64K = false; |
| |
| if (unlikely(!IS_ALIGNED(iter->dma, page_size))) |
| break; |
| } |
| } while (rem >= page_size && index < max); |
| |
| kunmap_atomic(vaddr); |
| |
| /* |
| * Is it safe to mark the 2M block as 64K? -- Either we have |
| * filled whole page-table with 64K entries, or filled part of |
| * it and have reached the end of the sg table and we have |
| * enough padding. |
| */ |
| if (maybe_64K && |
| (index == max || |
| (i915_vm_has_scratch_64K(vma->vm) && |
| !iter->sg && IS_ALIGNED(vma->node.start + |
| vma->node.size, |
| I915_GTT_PAGE_SIZE_2M)))) { |
| vaddr = kmap_atomic_px(pd); |
| vaddr[idx.pde] |= GEN8_PDE_IPS_64K; |
| kunmap_atomic(vaddr); |
| page_size = I915_GTT_PAGE_SIZE_64K; |
| |
| /* |
| * We write all 4K page entries, even when using 64K |
| * pages. In order to verify that the HW isn't cheating |
| * by using the 4K PTE instead of the 64K PTE, we want |
| * to remove all the surplus entries. If the HW skipped |
| * the 64K PTE, it will read/write into the scratch page |
| * instead - which we detect as missing results during |
| * selftests. |
| */ |
| if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) { |
| u16 i; |
| |
| encode = pte_encode | vma->vm->scratch_page.daddr; |
| vaddr = kmap_atomic_px(pd->page_table[idx.pde]); |
| |
| for (i = 1; i < index; i += 16) |
| memset64(vaddr + i, encode, 15); |
| |
| kunmap_atomic(vaddr); |
| } |
| } |
| |
| vma->page_sizes.gtt |= page_size; |
| } while (iter->sg); |
| } |
| |
| static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm, |
| struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct sgt_dma iter = sgt_dma(vma); |
| struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps; |
| |
| if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { |
| gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level, |
| flags); |
| } else { |
| struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); |
| |
| while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], |
| &iter, &idx, cache_level, |
| flags)) |
| GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4); |
| |
| vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; |
| } |
| } |
| |
| static void gen8_free_page_tables(struct i915_address_space *vm, |
| struct i915_page_directory *pd) |
| { |
| int i; |
| |
| if (!px_page(pd)) |
| return; |
| |
| for (i = 0; i < I915_PDES; i++) { |
| if (pd->page_table[i] != vm->scratch_pt) |
| free_pt(vm, pd->page_table[i]); |
| } |
| } |
| |
| static int gen8_init_scratch(struct i915_address_space *vm) |
| { |
| int ret; |
| |
| ret = setup_scratch_page(vm, __GFP_HIGHMEM); |
| if (ret) |
| return ret; |
| |
| vm->scratch_pt = alloc_pt(vm); |
| if (IS_ERR(vm->scratch_pt)) { |
| ret = PTR_ERR(vm->scratch_pt); |
| goto free_scratch_page; |
| } |
| |
| vm->scratch_pd = alloc_pd(vm); |
| if (IS_ERR(vm->scratch_pd)) { |
| ret = PTR_ERR(vm->scratch_pd); |
| goto free_pt; |
| } |
| |
| if (use_4lvl(vm)) { |
| vm->scratch_pdp = alloc_pdp(vm); |
| if (IS_ERR(vm->scratch_pdp)) { |
| ret = PTR_ERR(vm->scratch_pdp); |
| goto free_pd; |
| } |
| } |
| |
| gen8_initialize_pt(vm, vm->scratch_pt); |
| gen8_initialize_pd(vm, vm->scratch_pd); |
| if (use_4lvl(vm)) |
| gen8_initialize_pdp(vm, vm->scratch_pdp); |
| |
| return 0; |
| |
| free_pd: |
| free_pd(vm, vm->scratch_pd); |
| free_pt: |
| free_pt(vm, vm->scratch_pt); |
| free_scratch_page: |
| cleanup_scratch_page(vm); |
| |
| return ret; |
| } |
| |
| static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) |
| { |
| struct i915_address_space *vm = &ppgtt->vm; |
| struct drm_i915_private *dev_priv = vm->i915; |
| enum vgt_g2v_type msg; |
| int i; |
| |
| if (use_4lvl(vm)) { |
| const u64 daddr = px_dma(&ppgtt->pml4); |
| |
| I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); |
| I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); |
| |
| msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : |
| VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); |
| } else { |
| for (i = 0; i < GEN8_3LVL_PDPES; i++) { |
| const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); |
| |
| I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); |
| I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); |
| } |
| |
| msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : |
| VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); |
| } |
| |
| I915_WRITE(vgtif_reg(g2v_notify), msg); |
| |
| return 0; |
| } |
| |
| static void gen8_free_scratch(struct i915_address_space *vm) |
| { |
| if (use_4lvl(vm)) |
| free_pdp(vm, vm->scratch_pdp); |
| free_pd(vm, vm->scratch_pd); |
| free_pt(vm, vm->scratch_pt); |
| cleanup_scratch_page(vm); |
| } |
| |
| static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp) |
| { |
| const unsigned int pdpes = i915_pdpes_per_pdp(vm); |
| int i; |
| |
| for (i = 0; i < pdpes; i++) { |
| if (pdp->page_directory[i] == vm->scratch_pd) |
| continue; |
| |
| gen8_free_page_tables(vm, pdp->page_directory[i]); |
| free_pd(vm, pdp->page_directory[i]); |
| } |
| |
| free_pdp(vm, pdp); |
| } |
| |
| static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) |
| { |
| int i; |
| |
| for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) { |
| if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp) |
| continue; |
| |
| gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]); |
| } |
| |
| cleanup_px(&ppgtt->vm, &ppgtt->pml4); |
| } |
| |
| static void gen8_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct drm_i915_private *dev_priv = vm->i915; |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| |
| if (intel_vgpu_active(dev_priv)) |
| gen8_ppgtt_notify_vgt(ppgtt, false); |
| |
| if (use_4lvl(vm)) |
| gen8_ppgtt_cleanup_4lvl(ppgtt); |
| else |
| gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp); |
| |
| gen8_free_scratch(vm); |
| } |
| |
| static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm, |
| struct i915_page_directory *pd, |
| u64 start, u64 length) |
| { |
| struct i915_page_table *pt; |
| u64 from = start; |
| unsigned int pde; |
| |
| gen8_for_each_pde(pt, pd, start, length, pde) { |
| int count = gen8_pte_count(start, length); |
| |
| if (pt == vm->scratch_pt) { |
| pd->used_pdes++; |
| |
| pt = alloc_pt(vm); |
| if (IS_ERR(pt)) { |
| pd->used_pdes--; |
| goto unwind; |
| } |
| |
| if (count < GEN8_PTES || intel_vgpu_active(vm->i915)) |
| gen8_initialize_pt(vm, pt); |
| |
| gen8_ppgtt_set_pde(vm, pd, pt, pde); |
| GEM_BUG_ON(pd->used_pdes > I915_PDES); |
| } |
| |
| pt->used_ptes += count; |
| } |
| return 0; |
| |
| unwind: |
| gen8_ppgtt_clear_pd(vm, pd, from, start - from); |
| return -ENOMEM; |
| } |
| |
| static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| u64 start, u64 length) |
| { |
| struct i915_page_directory *pd; |
| u64 from = start; |
| unsigned int pdpe; |
| int ret; |
| |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| if (pd == vm->scratch_pd) { |
| pdp->used_pdpes++; |
| |
| pd = alloc_pd(vm); |
| if (IS_ERR(pd)) { |
| pdp->used_pdpes--; |
| goto unwind; |
| } |
| |
| gen8_initialize_pd(vm, pd); |
| gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); |
| GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm)); |
| |
| mark_tlbs_dirty(i915_vm_to_ppgtt(vm)); |
| } |
| |
| ret = gen8_ppgtt_alloc_pd(vm, pd, start, length); |
| if (unlikely(ret)) |
| goto unwind_pd; |
| } |
| |
| return 0; |
| |
| unwind_pd: |
| if (!pd->used_pdes) { |
| gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); |
| GEM_BUG_ON(!pdp->used_pdpes); |
| pdp->used_pdpes--; |
| free_pd(vm, pd); |
| } |
| unwind: |
| gen8_ppgtt_clear_pdp(vm, pdp, from, start - from); |
| return -ENOMEM; |
| } |
| |
| static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| return gen8_ppgtt_alloc_pdp(vm, |
| &i915_vm_to_ppgtt(vm)->pdp, start, length); |
| } |
| |
| static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_pml4 *pml4 = &ppgtt->pml4; |
| struct i915_page_directory_pointer *pdp; |
| u64 from = start; |
| u32 pml4e; |
| int ret; |
| |
| gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { |
| if (pml4->pdps[pml4e] == vm->scratch_pdp) { |
| pdp = alloc_pdp(vm); |
| if (IS_ERR(pdp)) |
| goto unwind; |
| |
| gen8_initialize_pdp(vm, pdp); |
| gen8_ppgtt_set_pml4e(pml4, pdp, pml4e); |
| } |
| |
| ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length); |
| if (unlikely(ret)) |
| goto unwind_pdp; |
| } |
| |
| return 0; |
| |
| unwind_pdp: |
| if (!pdp->used_pdpes) { |
| gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); |
| free_pdp(vm, pdp); |
| } |
| unwind: |
| gen8_ppgtt_clear_4lvl(vm, from, start - from); |
| return -ENOMEM; |
| } |
| |
| static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt, |
| struct i915_page_directory_pointer *pdp, |
| u64 start, u64 length, |
| gen8_pte_t scratch_pte, |
| struct seq_file *m) |
| { |
| struct i915_address_space *vm = &ppgtt->vm; |
| struct i915_page_directory *pd; |
| u32 pdpe; |
| |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| struct i915_page_table *pt; |
| u64 pd_len = length; |
| u64 pd_start = start; |
| u32 pde; |
| |
| if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd) |
| continue; |
| |
| seq_printf(m, "\tPDPE #%d\n", pdpe); |
| gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { |
| u32 pte; |
| gen8_pte_t *pt_vaddr; |
| |
| if (pd->page_table[pde] == ppgtt->vm.scratch_pt) |
| continue; |
| |
| pt_vaddr = kmap_atomic_px(pt); |
| for (pte = 0; pte < GEN8_PTES; pte += 4) { |
| u64 va = (pdpe << GEN8_PDPE_SHIFT | |
| pde << GEN8_PDE_SHIFT | |
| pte << GEN8_PTE_SHIFT); |
| int i; |
| bool found = false; |
| |
| for (i = 0; i < 4; i++) |
| if (pt_vaddr[pte + i] != scratch_pte) |
| found = true; |
| if (!found) |
| continue; |
| |
| seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte); |
| for (i = 0; i < 4; i++) { |
| if (pt_vaddr[pte + i] != scratch_pte) |
| seq_printf(m, " %llx", pt_vaddr[pte + i]); |
| else |
| seq_puts(m, " SCRATCH "); |
| } |
| seq_puts(m, "\n"); |
| } |
| kunmap_atomic(pt_vaddr); |
| } |
| } |
| } |
| |
| static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) |
| { |
| struct i915_address_space *vm = &ppgtt->vm; |
| const gen8_pte_t scratch_pte = |
| gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); |
| u64 start = 0, length = ppgtt->vm.total; |
| |
| if (use_4lvl(vm)) { |
| u64 pml4e; |
| struct i915_pml4 *pml4 = &ppgtt->pml4; |
| struct i915_page_directory_pointer *pdp; |
| |
| gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { |
| if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp) |
| continue; |
| |
| seq_printf(m, " PML4E #%llu\n", pml4e); |
| gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m); |
| } |
| } else { |
| gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m); |
| } |
| } |
| |
| static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct i915_address_space *vm = &ppgtt->vm; |
| struct i915_page_directory_pointer *pdp = &ppgtt->pdp; |
| struct i915_page_directory *pd; |
| u64 start = 0, length = ppgtt->vm.total; |
| u64 from = start; |
| unsigned int pdpe; |
| |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| pd = alloc_pd(vm); |
| if (IS_ERR(pd)) |
| goto unwind; |
| |
| gen8_initialize_pd(vm, pd); |
| gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); |
| pdp->used_pdpes++; |
| } |
| |
| pdp->used_pdpes++; /* never remove */ |
| return 0; |
| |
| unwind: |
| start -= from; |
| gen8_for_each_pdpe(pd, pdp, from, start, pdpe) { |
| gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); |
| free_pd(vm, pd); |
| } |
| pdp->used_pdpes = 0; |
| return -ENOMEM; |
| } |
| |
| /* |
| * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers |
| * with a net effect resembling a 2-level page table in normal x86 terms. Each |
| * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address |
| * space. |
| * |
| */ |
| static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915) |
| { |
| struct i915_hw_ppgtt *ppgtt; |
| int err; |
| |
| ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); |
| if (!ppgtt) |
| return ERR_PTR(-ENOMEM); |
| |
| kref_init(&ppgtt->ref); |
| |
| ppgtt->vm.i915 = i915; |
| ppgtt->vm.dma = &i915->drm.pdev->dev; |
| |
| ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ? |
| 1ULL << 48 : |
| 1ULL << 32; |
| |
| /* |
| * From bdw, there is support for read-only pages in the PPGTT. |
| * |
| * XXX GVT is not honouring the lack of RW in the PTE bits. |
| */ |
| ppgtt->vm.has_read_only = !intel_vgpu_active(i915); |
| |
| i915_address_space_init(&ppgtt->vm, i915); |
| |
| /* There are only few exceptions for gen >=6. chv and bxt. |
| * And we are not sure about the latter so play safe for now. |
| */ |
| if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915)) |
| ppgtt->vm.pt_kmap_wc = true; |
| |
| err = gen8_init_scratch(&ppgtt->vm); |
| if (err) |
| goto err_free; |
| |
| if (use_4lvl(&ppgtt->vm)) { |
| err = setup_px(&ppgtt->vm, &ppgtt->pml4); |
| if (err) |
| goto err_scratch; |
| |
| gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4); |
| |
| ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl; |
| ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl; |
| ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl; |
| } else { |
| err = __pdp_init(&ppgtt->vm, &ppgtt->pdp); |
| if (err) |
| goto err_scratch; |
| |
| if (intel_vgpu_active(i915)) { |
| err = gen8_preallocate_top_level_pdp(ppgtt); |
| if (err) { |
| __pdp_fini(&ppgtt->pdp); |
| goto err_scratch; |
| } |
| } |
| |
| ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl; |
| ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl; |
| ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl; |
| } |
| |
| if (intel_vgpu_active(i915)) |
| gen8_ppgtt_notify_vgt(ppgtt, true); |
| |
| ppgtt->vm.cleanup = gen8_ppgtt_cleanup; |
| ppgtt->debug_dump = gen8_dump_ppgtt; |
| |
| ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma; |
| ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma; |
| ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages; |
| ppgtt->vm.vma_ops.clear_pages = clear_pages; |
| |
| return ppgtt; |
| |
| err_scratch: |
| gen8_free_scratch(&ppgtt->vm); |
| err_free: |
| kfree(ppgtt); |
| return ERR_PTR(err); |
| } |
| |
| static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m) |
| { |
| struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); |
| const gen6_pte_t scratch_pte = ppgtt->scratch_pte; |
| struct i915_page_table *pt; |
| u32 pte, pde; |
| |
| gen6_for_all_pdes(pt, &base->pd, pde) { |
| gen6_pte_t *vaddr; |
| |
| if (pt == base->vm.scratch_pt) |
| continue; |
| |
| if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) { |
| u32 expected = |
| GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | |
| GEN6_PDE_VALID; |
| u32 pd_entry = readl(ppgtt->pd_addr + pde); |
| |
| if (pd_entry != expected) |
| seq_printf(m, |
| "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", |
| pde, |
| pd_entry, |
| expected); |
| |
| seq_printf(m, "\tPDE: %x\n", pd_entry); |
| } |
| |
| vaddr = kmap_atomic_px(base->pd.page_table[pde]); |
| for (pte = 0; pte < GEN6_PTES; pte += 4) { |
| int i; |
| |
| for (i = 0; i < 4; i++) |
| if (vaddr[pte + i] != scratch_pte) |
| break; |
| if (i == 4) |
| continue; |
| |
| seq_printf(m, "\t\t(%03d, %04d) %08llx: ", |
| pde, pte, |
| (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE); |
| for (i = 0; i < 4; i++) { |
| if (vaddr[pte + i] != scratch_pte) |
| seq_printf(m, " %08x", vaddr[pte + i]); |
| else |
| seq_puts(m, " SCRATCH"); |
| } |
| seq_puts(m, "\n"); |
| } |
| kunmap_atomic(vaddr); |
| } |
| } |
| |
| /* Write pde (index) from the page directory @pd to the page table @pt */ |
| static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt, |
| const unsigned int pde, |
| const struct i915_page_table *pt) |
| { |
| /* Caller needs to make sure the write completes if necessary */ |
| iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID, |
| ppgtt->pd_addr + pde); |
| } |
| |
| static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, dev_priv, id) { |
| u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ? |
| GEN8_GFX_PPGTT_48B : 0; |
| I915_WRITE(RING_MODE_GEN7(engine), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level)); |
| } |
| } |
| |
| static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| u32 ecochk, ecobits; |
| enum intel_engine_id id; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| if (IS_HASWELL(dev_priv)) { |
| ecochk |= ECOCHK_PPGTT_WB_HSW; |
| } else { |
| ecochk |= ECOCHK_PPGTT_LLC_IVB; |
| ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; |
| } |
| I915_WRITE(GAM_ECOCHK, ecochk); |
| |
| for_each_engine(engine, dev_priv, id) { |
| /* GFX_MODE is per-ring on gen7+ */ |
| I915_WRITE(RING_MODE_GEN7(engine), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } |
| } |
| |
| static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) |
| { |
| u32 ecochk, gab_ctl, ecobits; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | |
| ECOBITS_PPGTT_CACHE64B); |
| |
| gab_ctl = I915_READ(GAB_CTL); |
| I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); |
| |
| I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } |
| |
| /* PPGTT support for Sandybdrige/Gen6 and later */ |
| static void gen6_ppgtt_clear_range(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); |
| unsigned int first_entry = start >> PAGE_SHIFT; |
| unsigned int pde = first_entry / GEN6_PTES; |
| unsigned int pte = first_entry % GEN6_PTES; |
| unsigned int num_entries = length >> PAGE_SHIFT; |
| const gen6_pte_t scratch_pte = ppgtt->scratch_pte; |
| |
| while (num_entries) { |
| struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++]; |
| const unsigned int end = min(pte + num_entries, GEN6_PTES); |
| const unsigned int count = end - pte; |
| gen6_pte_t *vaddr; |
| |
| GEM_BUG_ON(pt == vm->scratch_pt); |
| |
| num_entries -= count; |
| |
| GEM_BUG_ON(count > pt->used_ptes); |
| pt->used_ptes -= count; |
| if (!pt->used_ptes) |
| ppgtt->scan_for_unused_pt = true; |
| |
| /* |
| * Note that the hw doesn't support removing PDE on the fly |
| * (they are cached inside the context with no means to |
| * invalidate the cache), so we can only reset the PTE |
| * entries back to scratch. |
| */ |
| |
| vaddr = kmap_atomic_px(pt); |
| do { |
| vaddr[pte++] = scratch_pte; |
| } while (pte < end); |
| kunmap_atomic(vaddr); |
| |
| pte = 0; |
| } |
| } |
| |
| static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| unsigned first_entry = vma->node.start >> PAGE_SHIFT; |
| unsigned act_pt = first_entry / GEN6_PTES; |
| unsigned act_pte = first_entry % GEN6_PTES; |
| const u32 pte_encode = vm->pte_encode(0, cache_level, flags); |
| struct sgt_dma iter = sgt_dma(vma); |
| gen6_pte_t *vaddr; |
| |
| GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt); |
| |
| vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]); |
| do { |
| vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); |
| |
| iter.dma += I915_GTT_PAGE_SIZE; |
| if (iter.dma == iter.max) { |
| iter.sg = __sg_next(iter.sg); |
| if (!iter.sg) |
| break; |
| |
| iter.dma = sg_dma_address(iter.sg); |
| iter.max = iter.dma + iter.sg->length; |
| } |
| |
| if (++act_pte == GEN6_PTES) { |
| kunmap_atomic(vaddr); |
| vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]); |
| act_pte = 0; |
| } |
| } while (1); |
| kunmap_atomic(vaddr); |
| |
| vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; |
| } |
| |
| static int gen6_alloc_va_range(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); |
| struct i915_page_table *pt; |
| u64 from = start; |
| unsigned int pde; |
| bool flush = false; |
| |
| gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) { |
| const unsigned int count = gen6_pte_count(start, length); |
| |
| if (pt == vm->scratch_pt) { |
| pt = alloc_pt(vm); |
| if (IS_ERR(pt)) |
| goto unwind_out; |
| |
| gen6_initialize_pt(ppgtt, pt); |
| ppgtt->base.pd.page_table[pde] = pt; |
| |
| if (i915_vma_is_bound(ppgtt->vma, |
| I915_VMA_GLOBAL_BIND)) { |
| gen6_write_pde(ppgtt, pde, pt); |
| flush = true; |
| } |
| |
| GEM_BUG_ON(pt->used_ptes); |
| } |
| |
| pt->used_ptes += count; |
| } |
| |
| if (flush) { |
| mark_tlbs_dirty(&ppgtt->base); |
| gen6_ggtt_invalidate(ppgtt->base.vm.i915); |
| } |
| |
| return 0; |
| |
| unwind_out: |
| gen6_ppgtt_clear_range(vm, from, start - from); |
| return -ENOMEM; |
| } |
| |
| static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt) |
| { |
| struct i915_address_space * const vm = &ppgtt->base.vm; |
| struct i915_page_table *unused; |
| u32 pde; |
| int ret; |
| |
| ret = setup_scratch_page(vm, __GFP_HIGHMEM); |
| if (ret) |
| return ret; |
| |
| ppgtt->scratch_pte = |
| vm->pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_NONE, PTE_READ_ONLY); |
| |
| vm->scratch_pt = alloc_pt(vm); |
| if (IS_ERR(vm->scratch_pt)) { |
| cleanup_scratch_page(vm); |
| return PTR_ERR(vm->scratch_pt); |
| } |
| |
| gen6_initialize_pt(ppgtt, vm->scratch_pt); |
| gen6_for_all_pdes(unused, &ppgtt->base.pd, pde) |
| ppgtt->base.pd.page_table[pde] = vm->scratch_pt; |
| |
| return 0; |
| } |
| |
| static void gen6_ppgtt_free_scratch(struct i915_address_space *vm) |
| { |
| free_pt(vm, vm->scratch_pt); |
| cleanup_scratch_page(vm); |
| } |
| |
| static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt) |
| { |
| struct i915_page_table *pt; |
| u32 pde; |
| |
| gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) |
| if (pt != ppgtt->base.vm.scratch_pt) |
| free_pt(&ppgtt->base.vm, pt); |
| } |
| |
| static void gen6_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); |
| |
| i915_vma_destroy(ppgtt->vma); |
| |
| gen6_ppgtt_free_pd(ppgtt); |
| gen6_ppgtt_free_scratch(vm); |
| } |
| |
| static int pd_vma_set_pages(struct i915_vma *vma) |
| { |
| vma->pages = ERR_PTR(-ENODEV); |
| return 0; |
| } |
| |
| static void pd_vma_clear_pages(struct i915_vma *vma) |
| { |
| GEM_BUG_ON(!vma->pages); |
| |
| vma->pages = NULL; |
| } |
| |
| static int pd_vma_bind(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm); |
| struct gen6_hw_ppgtt *ppgtt = vma->private; |
| u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE; |
| struct i915_page_table *pt; |
| unsigned int pde; |
| |
| ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t); |
| ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset; |
| |
| gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) |
| gen6_write_pde(ppgtt, pde, pt); |
| |
| mark_tlbs_dirty(&ppgtt->base); |
| gen6_ggtt_invalidate(ppgtt->base.vm.i915); |
| |
| return 0; |
| } |
| |
| static void pd_vma_unbind(struct i915_vma *vma) |
| { |
| struct gen6_hw_ppgtt *ppgtt = vma->private; |
| struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt; |
| struct i915_page_table *pt; |
| unsigned int pde; |
| |
| if (!ppgtt->scan_for_unused_pt) |
| return; |
| |
| /* Free all no longer used page tables */ |
| gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) { |
| if (pt->used_ptes || pt == scratch_pt) |
| continue; |
| |
| free_pt(&ppgtt->base.vm, pt); |
| ppgtt->base.pd.page_table[pde] = scratch_pt; |
| } |
| |
| ppgtt->scan_for_unused_pt = false; |
| } |
| |
| static const struct i915_vma_ops pd_vma_ops = { |
| .set_pages = pd_vma_set_pages, |
| .clear_pages = pd_vma_clear_pages, |
| .bind_vma = pd_vma_bind, |
| .unbind_vma = pd_vma_unbind, |
| }; |
| |
| static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size) |
| { |
| struct drm_i915_private *i915 = ppgtt->base.vm.i915; |
| struct i915_ggtt *ggtt = &i915->ggtt; |
| struct i915_vma *vma; |
| |
| GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); |
| GEM_BUG_ON(size > ggtt->vm.total); |
| |
| vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL); |
| if (!vma) |
| return ERR_PTR(-ENOMEM); |
| |
| init_request_active(&vma->last_fence, NULL); |
| |
| vma->vm = &ggtt->vm; |
| vma->ops = &pd_vma_ops; |
| vma->private = ppgtt; |
| |
| vma->active = RB_ROOT; |
| |
| vma->size = size; |
| vma->fence_size = size; |
| vma->flags = I915_VMA_GGTT; |
| vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */ |
| |
| INIT_LIST_HEAD(&vma->obj_link); |
| list_add(&vma->vm_link, &vma->vm->unbound_list); |
| |
| return vma; |
| } |
| |
| int gen6_ppgtt_pin(struct i915_hw_ppgtt *base) |
| { |
| struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); |
| int err; |
| |
| /* |
| * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt |
| * which will be pinned into every active context. |
| * (When vma->pin_count becomes atomic, I expect we will naturally |
| * need a larger, unpacked, type and kill this redundancy.) |
| */ |
| if (ppgtt->pin_count++) |
| return 0; |
| |
| /* |
| * PPGTT PDEs reside in the GGTT and consists of 512 entries. The |
| * allocator works in address space sizes, so it's multiplied by page |
| * size. We allocate at the top of the GTT to avoid fragmentation. |
| */ |
| err = i915_vma_pin(ppgtt->vma, |
| 0, GEN6_PD_ALIGN, |
| PIN_GLOBAL | PIN_HIGH); |
| if (err) |
| goto unpin; |
| |
| return 0; |
| |
| unpin: |
| ppgtt->pin_count = 0; |
| return err; |
| } |
| |
| void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base) |
| { |
| struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); |
| |
| GEM_BUG_ON(!ppgtt->pin_count); |
| if (--ppgtt->pin_count) |
| return; |
| |
| i915_vma_unpin(ppgtt->vma); |
| } |
| |
| static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915) |
| { |
| struct i915_ggtt * const ggtt = &i915->ggtt; |
| struct gen6_hw_ppgtt *ppgtt; |
| int err; |
| |
| ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); |
| if (!ppgtt) |
| return ERR_PTR(-ENOMEM); |
| |
| kref_init(&ppgtt->base.ref); |
| |
| ppgtt->base.vm.i915 = i915; |
| ppgtt->base.vm.dma = &i915->drm.pdev->dev; |
| |
| ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE; |
| |
| i915_address_space_init(&ppgtt->base.vm, i915); |
| |
| ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range; |
| ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range; |
| ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries; |
| ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup; |
| ppgtt->base.debug_dump = gen6_dump_ppgtt; |
| |
| ppgtt->base.vm.vma_ops.bind_vma = ppgtt_bind_vma; |
| ppgtt->base.vm.vma_ops.unbind_vma = ppgtt_unbind_vma; |
| ppgtt->base.vm.vma_ops.set_pages = ppgtt_set_pages; |
| ppgtt->base.vm.vma_ops.clear_pages = clear_pages; |
| |
| ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode; |
| |
| err = gen6_ppgtt_init_scratch(ppgtt); |
| if (err) |
| goto err_free; |
| |
| ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE); |
| if (IS_ERR(ppgtt->vma)) { |
| err = PTR_ERR(ppgtt->vma); |
| goto err_scratch; |
| } |
| |
| return &ppgtt->base; |
| |
| err_scratch: |
| gen6_ppgtt_free_scratch(&ppgtt->base.vm); |
| err_free: |
| kfree(ppgtt); |
| return ERR_PTR(err); |
| } |
| |
| static void gtt_write_workarounds(struct drm_i915_private *dev_priv) |
| { |
| /* This function is for gtt related workarounds. This function is |
| * called on driver load and after a GPU reset, so you can place |
| * workarounds here even if they get overwritten by GPU reset. |
| */ |
| /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ |
| if (IS_BROADWELL(dev_priv)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); |
| else if (IS_CHERRYVIEW(dev_priv)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); |
| else if (IS_GEN9_LP(dev_priv)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); |
| else if (INTEL_GEN(dev_priv) >= 9) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); |
| |
| /* |
| * To support 64K PTEs we need to first enable the use of the |
| * Intermediate-Page-Size(IPS) bit of the PDE field via some magical |
| * mmio, otherwise the page-walker will simply ignore the IPS bit. This |
| * shouldn't be needed after GEN10. |
| * |
| * 64K pages were first introduced from BDW+, although technically they |
| * only *work* from gen9+. For pre-BDW we instead have the option for |
| * 32K pages, but we don't currently have any support for it in our |
| * driver. |
| */ |
| if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) && |
| INTEL_GEN(dev_priv) <= 10) |
| I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA, |
| I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) | |
| GAMW_ECO_ENABLE_64K_IPS_FIELD); |
| } |
| |
| int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) |
| { |
| gtt_write_workarounds(dev_priv); |
| |
| /* In the case of execlists, PPGTT is enabled by the context descriptor |
| * and the PDPs are contained within the context itself. We don't |
| * need to do anything here. */ |
| if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) |
| return 0; |
| |
| if (!USES_PPGTT(dev_priv)) |
| return 0; |
| |
| if (IS_GEN6(dev_priv)) |
| gen6_ppgtt_enable(dev_priv); |
| else if (IS_GEN7(dev_priv)) |
| gen7_ppgtt_enable(dev_priv); |
| else if (INTEL_GEN(dev_priv) >= 8) |
| gen8_ppgtt_enable(dev_priv); |
| else |
| MISSING_CASE(INTEL_GEN(dev_priv)); |
| |
| return 0; |
| } |
| |
| static struct i915_hw_ppgtt * |
| __hw_ppgtt_create(struct drm_i915_private *i915) |
| { |
| if (INTEL_GEN(i915) < 8) |
| return gen6_ppgtt_create(i915); |
| else |
| return gen8_ppgtt_create(i915); |
| } |
| |
| struct i915_hw_ppgtt * |
| i915_ppgtt_create(struct drm_i915_private *i915, |
| struct drm_i915_file_private *fpriv) |
| { |
| struct i915_hw_ppgtt *ppgtt; |
| |
| ppgtt = __hw_ppgtt_create(i915); |
| if (IS_ERR(ppgtt)) |
| return ppgtt; |
| |
| ppgtt->vm.file = fpriv; |
| |
| trace_i915_ppgtt_create(&ppgtt->vm); |
| |
| return ppgtt; |
| } |
| |
| void i915_ppgtt_close(struct i915_address_space *vm) |
| { |
| GEM_BUG_ON(vm->closed); |
| vm->closed = true; |
| } |
| |
| static void ppgtt_destroy_vma(struct i915_address_space *vm) |
| { |
| struct list_head *phases[] = { |
| &vm->active_list, |
| &vm->inactive_list, |
| &vm->unbound_list, |
| NULL, |
| }, **phase; |
| |
| vm->closed = true; |
| for (phase = phases; *phase; phase++) { |
| struct i915_vma *vma, *vn; |
| |
| list_for_each_entry_safe(vma, vn, *phase, vm_link) |
| i915_vma_destroy(vma); |
| } |
| } |
| |
| void i915_ppgtt_release(struct kref *kref) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(kref, struct i915_hw_ppgtt, ref); |
| |
| trace_i915_ppgtt_release(&ppgtt->vm); |
| |
| ppgtt_destroy_vma(&ppgtt->vm); |
| |
| GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list)); |
| GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list)); |
| GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list)); |
| |
| ppgtt->vm.cleanup(&ppgtt->vm); |
| i915_address_space_fini(&ppgtt->vm); |
| kfree(ppgtt); |
| } |
| |
| /* Certain Gen5 chipsets require require idling the GPU before |
| * unmapping anything from the GTT when VT-d is enabled. |
| */ |
| static bool needs_idle_maps(struct drm_i915_private *dev_priv) |
| { |
| /* Query intel_iommu to see if we need the workaround. Presumably that |
| * was loaded first. |
| */ |
| return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active(); |
| } |
| |
| static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| u32 fault; |
| |
| for_each_engine(engine, dev_priv, id) { |
| fault = I915_READ(RING_FAULT_REG(engine)); |
| if (fault & RING_FAULT_VALID) { |
| DRM_DEBUG_DRIVER("Unexpected fault\n" |
| "\tAddr: 0x%08lx\n" |
| "\tAddress space: %s\n" |
| "\tSource ID: %d\n" |
| "\tType: %d\n", |
| fault & PAGE_MASK, |
| fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", |
| RING_FAULT_SRCID(fault), |
| RING_FAULT_FAULT_TYPE(fault)); |
| I915_WRITE(RING_FAULT_REG(engine), |
| fault & ~RING_FAULT_VALID); |
| } |
| } |
| |
| POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS])); |
| } |
| |
| static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv) |
| { |
| u32 fault = I915_READ(GEN8_RING_FAULT_REG); |
| |
| if (fault & RING_FAULT_VALID) { |
| u32 fault_data0, fault_data1; |
| u64 fault_addr; |
| |
| fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0); |
| fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1); |
| fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | |
| ((u64)fault_data0 << 12); |
| |
| DRM_DEBUG_DRIVER("Unexpected fault\n" |
| "\tAddr: 0x%08x_%08x\n" |
| "\tAddress space: %s\n" |
| "\tEngine ID: %d\n" |
| "\tSource ID: %d\n" |
| "\tType: %d\n", |
| upper_32_bits(fault_addr), |
| lower_32_bits(fault_addr), |
| fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", |
| GEN8_RING_FAULT_ENGINE_ID(fault), |
| RING_FAULT_SRCID(fault), |
| RING_FAULT_FAULT_TYPE(fault)); |
| I915_WRITE(GEN8_RING_FAULT_REG, |
| fault & ~RING_FAULT_VALID); |
| } |
| |
| POSTING_READ(GEN8_RING_FAULT_REG); |
| } |
| |
| void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) |
| { |
| /* From GEN8 onwards we only have one 'All Engine Fault Register' */ |
| if (INTEL_GEN(dev_priv) >= 8) |
| gen8_check_and_clear_faults(dev_priv); |
| else if (INTEL_GEN(dev_priv) >= 6) |
| gen6_check_and_clear_faults(dev_priv); |
| else |
| return; |
| } |
| |
| void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| |
| /* Don't bother messing with faults pre GEN6 as we have little |
| * documentation supporting that it's a good idea. |
| */ |
| if (INTEL_GEN(dev_priv) < 6) |
| return; |
| |
| i915_check_and_clear_faults(dev_priv); |
| |
| ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); |
| |
| i915_ggtt_invalidate(dev_priv); |
| } |
| |
| int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, |
| struct sg_table *pages) |
| { |
| do { |
| if (dma_map_sg_attrs(&obj->base.dev->pdev->dev, |
| pages->sgl, pages->nents, |
| PCI_DMA_BIDIRECTIONAL, |
| DMA_ATTR_NO_WARN)) |
| return 0; |
| |
| /* If the DMA remap fails, one cause can be that we have |
| * too many objects pinned in a small remapping table, |
| * such as swiotlb. Incrementally purge all other objects and |
| * try again - if there are no more pages to remove from |
| * the DMA remapper, i915_gem_shrink will return 0. |
| */ |
| GEM_BUG_ON(obj->mm.pages == pages); |
| } while (i915_gem_shrink(to_i915(obj->base.dev), |
| obj->base.size >> PAGE_SHIFT, NULL, |
| I915_SHRINK_BOUND | |
| I915_SHRINK_UNBOUND | |
| I915_SHRINK_ACTIVE)); |
| |
| return -ENOSPC; |
| } |
| |
| static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) |
| { |
| writeq(pte, addr); |
| } |
| |
| static void gen8_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| u64 offset, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| gen8_pte_t __iomem *pte = |
| (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); |
| |
| gen8_set_pte(pte, gen8_pte_encode(addr, level, 0)); |
| |
| ggtt->invalidate(vm->i915); |
| } |
| |
| static void gen8_ggtt_insert_entries(struct i915_address_space *vm, |
| struct i915_vma *vma, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| struct sgt_iter sgt_iter; |
| gen8_pte_t __iomem *gtt_entries; |
| const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0); |
| dma_addr_t addr; |
| |
| /* |
| * Note that we ignore PTE_READ_ONLY here. The caller must be careful |
| * not to allow the user to override access to a read only page. |
| */ |
| |
| gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; |
| gtt_entries += vma->node.start >> PAGE_SHIFT; |
| for_each_sgt_dma(addr, sgt_iter, vma->pages) |
| gen8_set_pte(gtt_entries++, pte_encode | addr); |
| |
| /* |
| * We want to flush the TLBs only after we're certain all the PTE |
| * updates have finished. |
| */ |
| ggtt->invalidate(vm->i915); |
| } |
| |
| static void gen6_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| u64 offset, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| gen6_pte_t __iomem *pte = |
| (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); |
| |
| iowrite32(vm->pte_encode(addr, level, flags), pte); |
| |
| ggtt->invalidate(vm->i915); |
| } |
| |
| /* |
| * Binds an object into the global gtt with the specified cache level. The object |
| * will be accessible to the GPU via commands whose operands reference offsets |
| * within the global GTT as well as accessible by the GPU through the GMADR |
| * mapped BAR (dev_priv->mm.gtt->gtt). |
| */ |
| static void gen6_ggtt_insert_entries(struct i915_address_space *vm, |
| struct i915_vma *vma, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; |
| unsigned int i = vma->node.start >> PAGE_SHIFT; |
| struct sgt_iter iter; |
| dma_addr_t addr; |
| for_each_sgt_dma(addr, iter, vma->pages) |
| iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); |
| |
| /* |
| * We want to flush the TLBs only after we're certain all the PTE |
| * updates have finished. |
| */ |
| ggtt->invalidate(vm->i915); |
| } |
| |
| static void nop_clear_range(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| } |
| |
| static void gen8_ggtt_clear_range(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| const gen8_pte_t scratch_pte = |
| gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); |
| gen8_pte_t __iomem *gtt_base = |
| (gen8_pte_t __iomem *)ggtt->gsm + first_entry; |
| const int max_entries = ggtt_total_entries(ggtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| for (i = 0; i < num_entries; i++) |
| gen8_set_pte(>t_base[i], scratch_pte); |
| } |
| |
| static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) |
| { |
| struct drm_i915_private *dev_priv = vm->i915; |
| |
| /* |
| * Make sure the internal GAM fifo has been cleared of all GTT |
| * writes before exiting stop_machine(). This guarantees that |
| * any aperture accesses waiting to start in another process |
| * cannot back up behind the GTT writes causing a hang. |
| * The register can be any arbitrary GAM register. |
| */ |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| } |
| |
| struct insert_page { |
| struct i915_address_space *vm; |
| dma_addr_t addr; |
| u64 offset; |
| enum i915_cache_level level; |
| }; |
| |
| static int bxt_vtd_ggtt_insert_page__cb(void *_arg) |
| { |
| struct insert_page *arg = _arg; |
| |
| gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); |
| bxt_vtd_ggtt_wa(arg->vm); |
| |
| return 0; |
| } |
| |
| static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, |
| dma_addr_t addr, |
| u64 offset, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| struct insert_page arg = { vm, addr, offset, level }; |
| |
| stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); |
| } |
| |
| struct insert_entries { |
| struct i915_address_space *vm; |
| struct i915_vma *vma; |
| enum i915_cache_level level; |
| u32 flags; |
| }; |
| |
| static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) |
| { |
| struct insert_entries *arg = _arg; |
| |
| gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags); |
| bxt_vtd_ggtt_wa(arg->vm); |
| |
| return 0; |
| } |
| |
| static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, |
| struct i915_vma *vma, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| struct insert_entries arg = { vm, vma, level, flags }; |
| |
| stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); |
| } |
| |
| struct clear_range { |
| struct i915_address_space *vm; |
| u64 start; |
| u64 length; |
| }; |
| |
| static int bxt_vtd_ggtt_clear_range__cb(void *_arg) |
| { |
| struct clear_range *arg = _arg; |
| |
| gen8_ggtt_clear_range(arg->vm, arg->start, arg->length); |
| bxt_vtd_ggtt_wa(arg->vm); |
| |
| return 0; |
| } |
| |
| static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm, |
| u64 start, |
| u64 length) |
| { |
| struct clear_range arg = { vm, start, length }; |
| |
| stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL); |
| } |
| |
| static void gen6_ggtt_clear_range(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| gen6_pte_t scratch_pte, __iomem *gtt_base = |
| (gen6_pte_t __iomem *)ggtt->gsm + first_entry; |
| const int max_entries = ggtt_total_entries(ggtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = vm->pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, 0); |
| |
| for (i = 0; i < num_entries; i++) |
| iowrite32(scratch_pte, >t_base[i]); |
| } |
| |
| static void i915_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| u64 offset, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| unsigned int flags = (cache_level == I915_CACHE_NONE) ? |
| AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; |
| |
| intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); |
| } |
| |
| static void i915_ggtt_insert_entries(struct i915_address_space *vm, |
| struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| unsigned int flags = (cache_level == I915_CACHE_NONE) ? |
| AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; |
| |
| intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, |
| flags); |
| } |
| |
| static void i915_ggtt_clear_range(struct i915_address_space *vm, |
| u64 start, u64 length) |
| { |
| intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); |
| } |
| |
| static int ggtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct drm_i915_private *i915 = vma->vm->i915; |
| struct drm_i915_gem_object *obj = vma->obj; |
| u32 pte_flags; |
| |
| /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ |
| pte_flags = 0; |
| if (i915_gem_object_is_readonly(obj)) |
| pte_flags |= PTE_READ_ONLY; |
| |
| intel_runtime_pm_get(i915); |
| vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); |
| intel_runtime_pm_put(i915); |
| |
| vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; |
| |
| /* |
| * Without aliasing PPGTT there's no difference between |
| * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally |
| * upgrade to both bound if we bind either to avoid double-binding. |
| */ |
| vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; |
| |
| return 0; |
| } |
| |
| static void ggtt_unbind_vma(struct i915_vma *vma) |
| { |
| struct drm_i915_private *i915 = vma->vm->i915; |
| |
| intel_runtime_pm_get(i915); |
| vma->vm->clear_range(vma->vm, vma->node.start, vma->size); |
| intel_runtime_pm_put(i915); |
| } |
| |
| static int aliasing_gtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct drm_i915_private *i915 = vma->vm->i915; |
| u32 pte_flags; |
| int ret; |
| |
| /* Currently applicable only to VLV */ |
| pte_flags = 0; |
| if (i915_gem_object_is_readonly(vma->obj)) |
| pte_flags |= PTE_READ_ONLY; |
| |
| if (flags & I915_VMA_LOCAL_BIND) { |
| struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; |
| |
| if (!(vma->flags & I915_VMA_LOCAL_BIND)) { |
| ret = appgtt->vm.allocate_va_range(&appgtt->vm, |
| vma->node.start, |
| vma->size); |
| if (ret) |
| return ret; |
| } |
| |
| appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level, |
| pte_flags); |
| } |
| |
| if (flags & I915_VMA_GLOBAL_BIND) { |
| intel_runtime_pm_get(i915); |
| vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); |
| intel_runtime_pm_put(i915); |
| } |
| |
| return 0; |
| } |
| |
| static void aliasing_gtt_unbind_vma(struct i915_vma *vma) |
| { |
| struct drm_i915_private *i915 = vma->vm->i915; |
| |
| if (vma->flags & I915_VMA_GLOBAL_BIND) { |
| intel_runtime_pm_get(i915); |
| vma->vm->clear_range(vma->vm, vma->node.start, vma->size); |
| intel_runtime_pm_put(i915); |
| } |
| |
| if (vma->flags & I915_VMA_LOCAL_BIND) { |
| struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm; |
| |
| vm->clear_range(vm, vma->node.start, vma->size); |
| } |
| } |
| |
| void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, |
| struct sg_table *pages) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| struct device *kdev = &dev_priv->drm.pdev->dev; |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| |
| if (unlikely(ggtt->do_idle_maps)) { |
| if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) { |
| DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); |
| /* Wait a bit, in hopes it avoids the hang */ |
| udelay(10); |
| } |
| } |
| |
| dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); |
| } |
| |
| static int ggtt_set_pages(struct i915_vma *vma) |
| { |
| int ret; |
| |
| GEM_BUG_ON(vma->pages); |
| |
| ret = i915_get_ggtt_vma_pages(vma); |
| if (ret) |
| return ret; |
| |
| vma->page_sizes = vma->obj->mm.page_sizes; |
| |
| return 0; |
| } |
| |
| static void i915_gtt_color_adjust(const struct drm_mm_node *node, |
| unsigned long color, |
| u64 *start, |
| u64 *end) |
| { |
| if (node->allocated && node->color != color) |
| *start += I915_GTT_PAGE_SIZE; |
| |
| /* Also leave a space between the unallocated reserved node after the |
| * GTT and any objects within the GTT, i.e. we use the color adjustment |
| * to insert a guard page to prevent prefetches crossing over the |
| * GTT boundary. |
| */ |
| node = list_next_entry(node, node_list); |
| if (node->color != color) |
| *end -= I915_GTT_PAGE_SIZE; |
| } |
| |
| int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915) |
| { |
| struct i915_ggtt *ggtt = &i915->ggtt; |
| struct i915_hw_ppgtt *ppgtt; |
| int err; |
| |
| ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM)); |
| if (IS_ERR(ppgtt)) |
| return PTR_ERR(ppgtt); |
| |
| if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { |
| err = -ENODEV; |
| goto err_ppgtt; |
| } |
| |
| /* |
| * Note we only pre-allocate as far as the end of the global |
| * GTT. On 48b / 4-level page-tables, the difference is very, |
| * very significant! We have to preallocate as GVT/vgpu does |
| * not like the page directory disappearing. |
| */ |
| err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total); |
| if (err) |
| goto err_ppgtt; |
| |
| i915->mm.aliasing_ppgtt = ppgtt; |
| |
| GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); |
| ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; |
| |
| GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); |
| ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; |
| |
| return 0; |
| |
| err_ppgtt: |
| i915_ppgtt_put(ppgtt); |
| return err; |
| } |
| |
| void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915) |
| { |
| struct i915_ggtt *ggtt = &i915->ggtt; |
| struct i915_hw_ppgtt *ppgtt; |
| |
| ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt); |
| if (!ppgtt) |
| return; |
| |
| i915_ppgtt_put(ppgtt); |
| |
| ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; |
| ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; |
| } |
| |
| int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) |
| { |
| /* Let GEM Manage all of the aperture. |
| * |
| * However, leave one page at the end still bound to the scratch page. |
| * There are a number of places where the hardware apparently prefetches |
| * past the end of the object, and we've seen multiple hangs with the |
| * GPU head pointer stuck in a batchbuffer bound at the last page of the |
| * aperture. One page should be enough to keep any prefetching inside |
| * of the aperture. |
| */ |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| unsigned long hole_start, hole_end; |
| struct drm_mm_node *entry; |
| int ret; |
| |
| ret = intel_vgt_balloon(dev_priv); |
| if (ret) |
| return ret; |
| |
| /* Reserve a mappable slot for our lockless error capture */ |
| ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture, |
| PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, |
| 0, ggtt->mappable_end, |
| DRM_MM_INSERT_LOW); |
| if (ret) |
| return ret; |
| |
| /* Clear any non-preallocated blocks */ |
| drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { |
| DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", |
| hole_start, hole_end); |
| ggtt->vm.clear_range(&ggtt->vm, hole_start, |
| hole_end - hole_start); |
| } |
| |
| /* And finally clear the reserved guard page */ |
| ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); |
| |
| if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) { |
| ret = i915_gem_init_aliasing_ppgtt(dev_priv); |
| if (ret) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| drm_mm_remove_node(&ggtt->error_capture); |
| return ret; |
| } |
| |
| /** |
| * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization |
| * @dev_priv: i915 device |
| */ |
| void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct i915_vma *vma, *vn; |
| struct pagevec *pvec; |
| |
| ggtt->vm.closed = true; |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| i915_gem_fini_aliasing_ppgtt(dev_priv); |
| |
| GEM_BUG_ON(!list_empty(&ggtt->vm.active_list)); |
| list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) |
| WARN_ON(i915_vma_unbind(vma)); |
| |
| if (drm_mm_node_allocated(&ggtt->error_capture)) |
| drm_mm_remove_node(&ggtt->error_capture); |
| |
| if (drm_mm_initialized(&ggtt->vm.mm)) { |
| intel_vgt_deballoon(dev_priv); |
| i915_address_space_fini(&ggtt->vm); |
| } |
| |
| ggtt->vm.cleanup(&ggtt->vm); |
| |
| pvec = &dev_priv->mm.wc_stash.pvec; |
| if (pvec->nr) { |
| set_pages_array_wb(pvec->pages, pvec->nr); |
| __pagevec_release(pvec); |
| } |
| |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| arch_phys_wc_del(ggtt->mtrr); |
| io_mapping_fini(&ggtt->iomap); |
| |
| i915_gem_cleanup_stolen(&dev_priv->drm); |
| } |
| |
| static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; |
| return snb_gmch_ctl << 20; |
| } |
| |
| static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; |
| if (bdw_gmch_ctl) |
| bdw_gmch_ctl = 1 << bdw_gmch_ctl; |
| |
| #ifdef CONFIG_X86_32 |
| /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ |
| if (bdw_gmch_ctl > 4) |
| bdw_gmch_ctl = 4; |
| #endif |
| |
| return bdw_gmch_ctl << 20; |
| } |
| |
| static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) |
| { |
| gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; |
| gmch_ctrl &= SNB_GMCH_GGMS_MASK; |
| |
| if (gmch_ctrl) |
| return 1 << (20 + gmch_ctrl); |
| |
| return 0; |
| } |
| |
| static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) |
| { |
| struct drm_i915_private *dev_priv = ggtt->vm.i915; |
| struct pci_dev *pdev = dev_priv->drm.pdev; |
| phys_addr_t phys_addr; |
| int ret; |
| |
| /* For Modern GENs the PTEs and register space are split in the BAR */ |
| phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; |
| |
| /* |
| * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range |
| * will be dropped. For WC mappings in general we have 64 byte burst |
| * writes when the WC buffer is flushed, so we can't use it, but have to |
| * resort to an uncached mapping. The WC issue is easily caught by the |
| * readback check when writing GTT PTE entries. |
| */ |
| if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) |
| ggtt->gsm = ioremap_nocache(phys_addr, size); |
| else |
| ggtt->gsm = ioremap_wc(phys_addr, size); |
| if (!ggtt->gsm) { |
| DRM_ERROR("Failed to map the ggtt page table\n"); |
| return -ENOMEM; |
| } |
| |
| ret = setup_scratch_page(&ggtt->vm, GFP_DMA32); |
| if (ret) { |
| DRM_ERROR("Scratch setup failed\n"); |
| /* iounmap will also get called at remove, but meh */ |
| iounmap(ggtt->gsm); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static struct intel_ppat_entry * |
| __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value) |
| { |
| struct intel_ppat_entry *entry = &ppat->entries[index]; |
| |
| GEM_BUG_ON(index >= ppat->max_entries); |
| GEM_BUG_ON(test_bit(index, ppat->used)); |
| |
| entry->ppat = ppat; |
| entry->value = value; |
| kref_init(&entry->ref); |
| set_bit(index, ppat->used); |
| set_bit(index, ppat->dirty); |
| |
| return entry; |
| } |
| |
| static void __free_ppat_entry(struct intel_ppat_entry *entry) |
| { |
| struct intel_ppat *ppat = entry->ppat; |
| unsigned int index = entry - ppat->entries; |
| |
| GEM_BUG_ON(index >= ppat->max_entries); |
| GEM_BUG_ON(!test_bit(index, ppat->used)); |
| |
| entry->value = ppat->clear_value; |
| clear_bit(index, ppat->used); |
| set_bit(index, ppat->dirty); |
| } |
| |
| /** |
| * intel_ppat_get - get a usable PPAT entry |
| * @i915: i915 device instance |
| * @value: the PPAT value required by the caller |
| * |
| * The function tries to search if there is an existing PPAT entry which |
| * matches with the required value. If perfectly matched, the existing PPAT |
| * entry will be used. If only partially matched, it will try to check if |
| * there is any available PPAT index. If yes, it will allocate a new PPAT |
| * index for the required entry and update the HW. If not, the partially |
| * matched entry will be used. |
| */ |
| const struct intel_ppat_entry * |
| intel_ppat_get(struct drm_i915_private *i915, u8 value) |
| { |
| struct intel_ppat *ppat = &i915->ppat; |
| struct intel_ppat_entry *entry = NULL; |
| unsigned int scanned, best_score; |
| int i; |
| |
| GEM_BUG_ON(!ppat->max_entries); |
| |
| scanned = best_score = 0; |
| for_each_set_bit(i, ppat->used, ppat->max_entries) { |
| unsigned int score; |
| |
| score = ppat->match(ppat->entries[i].value, value); |
| if (score > best_score) { |
| entry = &ppat->entries[i]; |
| if (score == INTEL_PPAT_PERFECT_MATCH) { |
| kref_get(&entry->ref); |
| return entry; |
| } |
| best_score = score; |
| } |
| scanned++; |
| } |
| |
| if (scanned == ppat->max_entries) { |
| if (!entry) |
| return ERR_PTR(-ENOSPC); |
| |
| kref_get(&entry->ref); |
| return entry; |
| } |
| |
| i = find_first_zero_bit(ppat->used, ppat->max_entries); |
| entry = __alloc_ppat_entry(ppat, i, value); |
| ppat->update_hw(i915); |
| return entry; |
| } |
| |
| static void release_ppat(struct kref *kref) |
| { |
| struct intel_ppat_entry *entry = |
| container_of(kref, struct intel_ppat_entry, ref); |
| struct drm_i915_private *i915 = entry->ppat->i915; |
| |
| __free_ppat_entry(entry); |
| entry->ppat->update_hw(i915); |
| } |
| |
| /** |
| * intel_ppat_put - put back the PPAT entry got from intel_ppat_get() |
| * @entry: an intel PPAT entry |
| * |
| * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the |
| * entry is dynamically allocated, its reference count will be decreased. Once |
| * the reference count becomes into zero, the PPAT index becomes free again. |
| */ |
| void intel_ppat_put(const struct intel_ppat_entry *entry) |
| { |
| struct intel_ppat *ppat = entry->ppat; |
| unsigned int index = entry - ppat->entries; |
| |
| GEM_BUG_ON(!ppat->max_entries); |
| |
| kref_put(&ppat->entries[index].ref, release_ppat); |
| } |
| |
| static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv) |
| { |
| struct intel_ppat *ppat = &dev_priv->ppat; |
| int i; |
| |
| for_each_set_bit(i, ppat->dirty, ppat->max_entries) { |
| I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value); |
| clear_bit(i, ppat->dirty); |
| } |
| } |
| |
| static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv) |
| { |
| struct intel_ppat *ppat = &dev_priv->ppat; |
| u64 pat = 0; |
| int i; |
| |
| for (i = 0; i < ppat->max_entries; i++) |
| pat |= GEN8_PPAT(i, ppat->entries[i].value); |
| |
| bitmap_clear(ppat->dirty, 0, ppat->max_entries); |
| |
| I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); |
| I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); |
| } |
| |
| static unsigned int bdw_private_pat_match(u8 src, u8 dst) |
| { |
| unsigned int score = 0; |
| enum { |
| AGE_MATCH = BIT(0), |
| TC_MATCH = BIT(1), |
| CA_MATCH = BIT(2), |
| }; |
| |
| /* Cache attribute has to be matched. */ |
| if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst)) |
| return 0; |
| |
| score |= CA_MATCH; |
| |
| if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst)) |
| score |= TC_MATCH; |
| |
| if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst)) |
| score |= AGE_MATCH; |
| |
| if (score == (AGE_MATCH | TC_MATCH | CA_MATCH)) |
| return INTEL_PPAT_PERFECT_MATCH; |
| |
| return score; |
| } |
| |
| static unsigned int chv_private_pat_match(u8 src, u8 dst) |
| { |
| return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ? |
| INTEL_PPAT_PERFECT_MATCH : 0; |
| } |
| |
| static void cnl_setup_private_ppat(struct intel_ppat *ppat) |
| { |
| ppat->max_entries = 8; |
| ppat->update_hw = cnl_private_pat_update_hw; |
| ppat->match = bdw_private_pat_match; |
| ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); |
| |
| __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); |
| __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); |
| __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); |
| __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); |
| __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); |
| __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); |
| __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); |
| __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); |
| } |
| |
| /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability |
| * bits. When using advanced contexts each context stores its own PAT, but |
| * writing this data shouldn't be harmful even in those cases. */ |
| static void bdw_setup_private_ppat(struct intel_ppat *ppat) |
| { |
| ppat->max_entries = 8; |
| ppat->update_hw = bdw_private_pat_update_hw; |
| ppat->match = bdw_private_pat_match; |
| ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); |
| |
| if (!USES_PPGTT(ppat->i915)) { |
| /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, |
| * so RTL will always use the value corresponding to |
| * pat_sel = 000". |
| * So let's disable cache for GGTT to avoid screen corruptions. |
| * MOCS still can be used though. |
| * - System agent ggtt writes (i.e. cpu gtt mmaps) already work |
| * before this patch, i.e. the same uncached + snooping access |
| * like on gen6/7 seems to be in effect. |
| * - So this just fixes blitter/render access. Again it looks |
| * like it's not just uncached access, but uncached + snooping. |
| * So we can still hold onto all our assumptions wrt cpu |
| * clflushing on LLC machines. |
| */ |
| __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC); |
| return; |
| } |
| |
| __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */ |
| __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */ |
| __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */ |
| __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */ |
| __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); |
| __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); |
| __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); |
| __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); |
| } |
| |
| static void chv_setup_private_ppat(struct intel_ppat *ppat) |
| { |
| ppat->max_entries = 8; |
| ppat->update_hw = bdw_private_pat_update_hw; |
| ppat->match = chv_private_pat_match; |
| ppat->clear_value = CHV_PPAT_SNOOP; |
| |
| /* |
| * Map WB on BDW to snooped on CHV. |
| * |
| * Only the snoop bit has meaning for CHV, the rest is |
| * ignored. |
| * |
| * The hardware will never snoop for certain types of accesses: |
| * - CPU GTT (GMADR->GGTT->no snoop->memory) |
| * - PPGTT page tables |
| * - some other special cycles |
| * |
| * As with BDW, we also need to consider the following for GT accesses: |
| * "For GGTT, there is NO pat_sel[2:0] from the entry, |
| * so RTL will always use the value corresponding to |
| * pat_sel = 000". |
| * Which means we must set the snoop bit in PAT entry 0 |
| * in order to keep the global status page working. |
| */ |
| |
| __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP); |
| __alloc_ppat_entry(ppat, 1, 0); |
| __alloc_ppat_entry(ppat, 2, 0); |
| __alloc_ppat_entry(ppat, 3, 0); |
| __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP); |
| __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP); |
| __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP); |
| __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP); |
| } |
| |
| static void gen6_gmch_remove(struct i915_address_space *vm) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| |
| iounmap(ggtt->gsm); |
| cleanup_scratch_page(vm); |
| } |
| |
| static void setup_private_pat(struct drm_i915_private *dev_priv) |
| { |
| struct intel_ppat *ppat = &dev_priv->ppat; |
| int i; |
| |
| ppat->i915 = dev_priv; |
| |
| if (INTEL_GEN(dev_priv) >= 10) |
| cnl_setup_private_ppat(ppat); |
| else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) |
| chv_setup_private_ppat(ppat); |
| else |
| bdw_setup_private_ppat(ppat); |
| |
| GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES); |
| |
| for_each_clear_bit(i, ppat->used, ppat->max_entries) { |
| ppat->entries[i].value = ppat->clear_value; |
| ppat->entries[i].ppat = ppat; |
| set_bit(i, ppat->dirty); |
| } |
| |
| ppat->update_hw(dev_priv); |
| } |
| |
| static int gen8_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *dev_priv = ggtt->vm.i915; |
| struct pci_dev *pdev = dev_priv->drm.pdev; |
| unsigned int size; |
| u16 snb_gmch_ctl; |
| int err; |
| |
| /* TODO: We're not aware of mappable constraints on gen8 yet */ |
| ggtt->gmadr = |
| (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), |
| pci_resource_len(pdev, 2)); |
| ggtt->mappable_end = resource_size(&ggtt->gmadr); |
| |
| err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39)); |
| if (!err) |
| err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); |
| if (err) |
| DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); |
| |
| pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| if (IS_CHERRYVIEW(dev_priv)) |
| size = chv_get_total_gtt_size(snb_gmch_ctl); |
| else |
| size = gen8_get_total_gtt_size(snb_gmch_ctl); |
| |
| ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT; |
| ggtt->vm.cleanup = gen6_gmch_remove; |
| ggtt->vm.insert_page = gen8_ggtt_insert_page; |
| ggtt->vm.clear_range = nop_clear_range; |
| if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) |
| ggtt->vm.clear_range = gen8_ggtt_clear_range; |
| |
| ggtt->vm.insert_entries = gen8_ggtt_insert_entries; |
| |
| /* Serialize GTT updates with aperture access on BXT if VT-d is on. */ |
| if (intel_ggtt_update_needs_vtd_wa(dev_priv)) { |
| ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; |
| ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; |
| if (ggtt->vm.clear_range != nop_clear_range) |
| ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL; |
| } |
| |
| ggtt->invalidate = gen6_ggtt_invalidate; |
| |
| ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; |
| ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; |
| ggtt->vm.vma_ops.set_pages = ggtt_set_pages; |
| ggtt->vm.vma_ops.clear_pages = clear_pages; |
| |
| setup_private_pat(dev_priv); |
| |
| return ggtt_probe_common(ggtt, size); |
| } |
| |
| static int gen6_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *dev_priv = ggtt->vm.i915; |
| struct pci_dev *pdev = dev_priv->drm.pdev; |
| unsigned int size; |
| u16 snb_gmch_ctl; |
| int err; |
| |
| ggtt->gmadr = |
| (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), |
| pci_resource_len(pdev, 2)); |
| ggtt->mappable_end = resource_size(&ggtt->gmadr); |
| |
| /* 64/512MB is the current min/max we actually know of, but this is just |
| * a coarse sanity check. |
| */ |
| if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { |
| DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end); |
| return -ENXIO; |
| } |
| |
| err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); |
| if (!err) |
| err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); |
| if (err) |
| DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); |
| pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| size = gen6_get_total_gtt_size(snb_gmch_ctl); |
| ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT; |
| |
| ggtt->vm.clear_range = gen6_ggtt_clear_range; |
| ggtt->vm.insert_page = gen6_ggtt_insert_page; |
| ggtt->vm.insert_entries = gen6_ggtt_insert_entries; |
| ggtt->vm.cleanup = gen6_gmch_remove; |
| |
| ggtt->invalidate = gen6_ggtt_invalidate; |
| |
| if (HAS_EDRAM(dev_priv)) |
| ggtt->vm.pte_encode = iris_pte_encode; |
| else if (IS_HASWELL(dev_priv)) |
| ggtt->vm.pte_encode = hsw_pte_encode; |
| else if (IS_VALLEYVIEW(dev_priv)) |
| ggtt->vm.pte_encode = byt_pte_encode; |
| else if (INTEL_GEN(dev_priv) >= 7) |
| ggtt->vm.pte_encode = ivb_pte_encode; |
| else |
| ggtt->vm.pte_encode = snb_pte_encode; |
| |
| ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; |
| ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; |
| ggtt->vm.vma_ops.set_pages = ggtt_set_pages; |
| ggtt->vm.vma_ops.clear_pages = clear_pages; |
| |
| return ggtt_probe_common(ggtt, size); |
| } |
| |
| static void i915_gmch_remove(struct i915_address_space *vm) |
| { |
| intel_gmch_remove(); |
| } |
| |
| static int i915_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *dev_priv = ggtt->vm.i915; |
| phys_addr_t gmadr_base; |
| int ret; |
| |
| ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); |
| if (!ret) { |
| DRM_ERROR("failed to set up gmch\n"); |
| return -EIO; |
| } |
| |
| intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); |
| |
| ggtt->gmadr = |
| (struct resource) DEFINE_RES_MEM(gmadr_base, |
| ggtt->mappable_end); |
| |
| ggtt->do_idle_maps = needs_idle_maps(dev_priv); |
| ggtt->vm.insert_page = i915_ggtt_insert_page; |
| ggtt->vm.insert_entries = i915_ggtt_insert_entries; |
| ggtt->vm.clear_range = i915_ggtt_clear_range; |
| ggtt->vm.cleanup = i915_gmch_remove; |
| |
| ggtt->invalidate = gmch_ggtt_invalidate; |
| |
| ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; |
| ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; |
| ggtt->vm.vma_ops.set_pages = ggtt_set_pages; |
| ggtt->vm.vma_ops.clear_pages = clear_pages; |
| |
| if (unlikely(ggtt->do_idle_maps)) |
| DRM_INFO("applying Ironlake quirks for intel_iommu\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_probe_hw - Probe GGTT hardware location |
| * @dev_priv: i915 device |
| */ |
| int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| int ret; |
| |
| ggtt->vm.i915 = dev_priv; |
| ggtt->vm.dma = &dev_priv->drm.pdev->dev; |
| |
| if (INTEL_GEN(dev_priv) <= 5) |
| ret = i915_gmch_probe(ggtt); |
| else if (INTEL_GEN(dev_priv) < 8) |
| ret = gen6_gmch_probe(ggtt); |
| else |
| ret = gen8_gmch_probe(ggtt); |
| if (ret) |
| return ret; |
| |
| /* Trim the GGTT to fit the GuC mappable upper range (when enabled). |
| * This is easier than doing range restriction on the fly, as we |
| * currently don't have any bits spare to pass in this upper |
| * restriction! |
| */ |
| if (USES_GUC(dev_priv)) { |
| ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP); |
| ggtt->mappable_end = |
| min_t(u64, ggtt->mappable_end, ggtt->vm.total); |
| } |
| |
| if ((ggtt->vm.total - 1) >> 32) { |
| DRM_ERROR("We never expected a Global GTT with more than 32bits" |
| " of address space! Found %lldM!\n", |
| ggtt->vm.total >> 20); |
| ggtt->vm.total = 1ULL << 32; |
| ggtt->mappable_end = |
| min_t(u64, ggtt->mappable_end, ggtt->vm.total); |
| } |
| |
| if (ggtt->mappable_end > ggtt->vm.total) { |
| DRM_ERROR("mappable aperture extends past end of GGTT," |
| " aperture=%pa, total=%llx\n", |
| &ggtt->mappable_end, ggtt->vm.total); |
| ggtt->mappable_end = ggtt->vm.total; |
| } |
| |
| /* GMADR is the PCI mmio aperture into the global GTT. */ |
| DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20); |
| DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20); |
| DRM_DEBUG_DRIVER("DSM size = %lluM\n", |
| (u64)resource_size(&intel_graphics_stolen_res) >> 20); |
| if (intel_vtd_active()) |
| DRM_INFO("VT-d active for gfx access\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_init_hw - Initialize GGTT hardware |
| * @dev_priv: i915 device |
| */ |
| int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| int ret; |
| |
| stash_init(&dev_priv->mm.wc_stash); |
| |
| /* Note that we use page colouring to enforce a guard page at the |
| * end of the address space. This is required as the CS may prefetch |
| * beyond the end of the batch buffer, across the page boundary, |
| * and beyond the end of the GTT if we do not provide a guard. |
| */ |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| i915_address_space_init(&ggtt->vm, dev_priv); |
| |
| /* Only VLV supports read-only GGTT mappings */ |
| ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv); |
| |
| if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv)) |
| ggtt->vm.mm.color_adjust = i915_gtt_color_adjust; |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| if (!io_mapping_init_wc(&dev_priv->ggtt.iomap, |
| dev_priv->ggtt.gmadr.start, |
| dev_priv->ggtt.mappable_end)) { |
| ret = -EIO; |
| goto out_gtt_cleanup; |
| } |
| |
| ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end); |
| |
| /* |
| * Initialise stolen early so that we may reserve preallocated |
| * objects for the BIOS to KMS transition. |
| */ |
| ret = i915_gem_init_stolen(dev_priv); |
| if (ret) |
| goto out_gtt_cleanup; |
| |
| return 0; |
| |
| out_gtt_cleanup: |
| ggtt->vm.cleanup(&ggtt->vm); |
| return ret; |
| } |
| |
| int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| void i915_ggtt_enable_guc(struct drm_i915_private *i915) |
| { |
| GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate); |
| |
| i915->ggtt.invalidate = guc_ggtt_invalidate; |
| |
| i915_ggtt_invalidate(i915); |
| } |
| |
| void i915_ggtt_disable_guc(struct drm_i915_private *i915) |
| { |
| /* We should only be called after i915_ggtt_enable_guc() */ |
| GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate); |
| |
| i915->ggtt.invalidate = gen6_ggtt_invalidate; |
| |
| i915_ggtt_invalidate(i915); |
| } |
| |
| void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct i915_vma *vma, *vn; |
| |
| i915_check_and_clear_faults(dev_priv); |
| |
| /* First fill our portion of the GTT with scratch pages */ |
| ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); |
| |
| ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */ |
| |
| /* clflush objects bound into the GGTT and rebind them. */ |
| GEM_BUG_ON(!list_empty(&ggtt->vm.active_list)); |
| list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) { |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| if (!(vma->flags & I915_VMA_GLOBAL_BIND)) |
| continue; |
| |
| if (!i915_vma_unbind(vma)) |
| continue; |
| |
| WARN_ON(i915_vma_bind(vma, |
| obj ? obj->cache_level : 0, |
| PIN_UPDATE)); |
| if (obj) |
| WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); |
| } |
| |
| ggtt->vm.closed = false; |
| i915_ggtt_invalidate(dev_priv); |
| |
| if (INTEL_GEN(dev_priv) >= 8) { |
| struct intel_ppat *ppat = &dev_priv->ppat; |
| |
| bitmap_set(ppat->dirty, 0, ppat->max_entries); |
| dev_priv->ppat.update_hw(dev_priv); |
| return; |
| } |
| } |
| |
| static struct scatterlist * |
| rotate_pages(const dma_addr_t *in, unsigned int offset, |
| unsigned int width, unsigned int height, |
| unsigned int stride, |
| struct sg_table *st, struct scatterlist *sg) |
| { |
| unsigned int column, row; |
| unsigned int src_idx; |
| |
| for (column = 0; column < width; column++) { |
| src_idx = stride * (height - 1) + column; |
| for (row = 0; row < height; row++) { |
| st->nents++; |
| /* We don't need the pages, but need to initialize |
| * the entries so the sg list can be happily traversed. |
| * The only thing we need are DMA addresses. |
| */ |
| sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); |
| sg_dma_address(sg) = in[offset + src_idx]; |
| sg_dma_len(sg) = I915_GTT_PAGE_SIZE; |
| sg = sg_next(sg); |
| src_idx -= stride; |
| } |
| } |
| |
| return sg; |
| } |
| |
| static noinline struct sg_table * |
| intel_rotate_pages(struct intel_rotation_info *rot_info, |
| struct drm_i915_gem_object *obj) |
| { |
| const unsigned long n_pages = obj->base.size / I915_GTT_PAGE_SIZE; |
| unsigned int size = intel_rotation_info_size(rot_info); |
| struct sgt_iter sgt_iter; |
| dma_addr_t dma_addr; |
| unsigned long i; |
| dma_addr_t *page_addr_list; |
| struct sg_table *st; |
| struct scatterlist *sg; |
| int ret = -ENOMEM; |
| |
| /* Allocate a temporary list of source pages for random access. */ |
| page_addr_list = kvmalloc_array(n_pages, |
| sizeof(dma_addr_t), |
| GFP_KERNEL); |
| if (!page_addr_list) |
| return ERR_PTR(ret); |
| |
| /* Allocate target SG list. */ |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) |
| goto err_st_alloc; |
| |
| ret = sg_alloc_table(st, size, GFP_KERNEL); |
| if (ret) |
| goto err_sg_alloc; |
| |
| /* Populate source page list from the object. */ |
| i = 0; |
| for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages) |
| page_addr_list[i++] = dma_addr; |
| |
| GEM_BUG_ON(i != n_pages); |
| st->nents = 0; |
| sg = st->sgl; |
| |
| for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { |
| sg = rotate_pages(page_addr_list, rot_info->plane[i].offset, |
| rot_info->plane[i].width, rot_info->plane[i].height, |
| rot_info->plane[i].stride, st, sg); |
| } |
| |
| kvfree(page_addr_list); |
| |
| return st; |
| |
| err_sg_alloc: |
| kfree(st); |
| err_st_alloc: |
| kvfree(page_addr_list); |
| |
| DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", |
| obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static noinline struct sg_table * |
| intel_partial_pages(const struct i915_ggtt_view *view, |
| struct drm_i915_gem_object *obj) |
| { |
| struct sg_table *st; |
| struct scatterlist *sg, *iter; |
| unsigned int count = view->partial.size; |
| unsigned int offset; |
| int ret = -ENOMEM; |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) |
| goto err_st_alloc; |
| |
| ret = sg_alloc_table(st, count, GFP_KERNEL); |
| if (ret) |
| goto err_sg_alloc; |
| |
| iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); |
| GEM_BUG_ON(!iter); |
| |
| sg = st->sgl; |
| st->nents = 0; |
| do { |
| unsigned int len; |
| |
| len = min(iter->length - (offset << PAGE_SHIFT), |
| count << PAGE_SHIFT); |
| sg_set_page(sg, NULL, len, 0); |
| sg_dma_address(sg) = |
| sg_dma_address(iter) + (offset << PAGE_SHIFT); |
| sg_dma_len(sg) = len; |
| |
| st->nents++; |
| count -= len >> PAGE_SHIFT; |
| if (count == 0) { |
| sg_mark_end(sg); |
| return st; |
| } |
| |
| sg = __sg_next(sg); |
| iter = __sg_next(iter); |
| offset = 0; |
| } while (1); |
| |
| err_sg_alloc: |
| kfree(st); |
| err_st_alloc: |
| return ERR_PTR(ret); |
| } |
| |
| static int |
| i915_get_ggtt_vma_pages(struct i915_vma *vma) |
| { |
| int ret; |
| |
| /* The vma->pages are only valid within the lifespan of the borrowed |
| * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so |
| * must be the vma->pages. A simple rule is that vma->pages must only |
| * be accessed when the obj->mm.pages are pinned. |
| */ |
| GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); |
| |
| switch (vma->ggtt_view.type) { |
| default: |
| GEM_BUG_ON(vma->ggtt_view.type); |
| /* fall through */ |
| case I915_GGTT_VIEW_NORMAL: |
| vma->pages = vma->obj->mm.pages; |
| return 0; |
| |
| case I915_GGTT_VIEW_ROTATED: |
| vma->pages = |
| intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); |
| break; |
| |
| case I915_GGTT_VIEW_PARTIAL: |
| vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); |
| break; |
| } |
| |
| ret = 0; |
| if (unlikely(IS_ERR(vma->pages))) { |
| ret = PTR_ERR(vma->pages); |
| vma->pages = NULL; |
| DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", |
| vma->ggtt_view.type, ret); |
| } |
| return ret; |
| } |
| |
| /** |
| * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) |
| * @vm: the &struct i915_address_space |
| * @node: the &struct drm_mm_node (typically i915_vma.mode) |
| * @size: how much space to allocate inside the GTT, |
| * must be #I915_GTT_PAGE_SIZE aligned |
| * @offset: where to insert inside the GTT, |
| * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node |
| * (@offset + @size) must fit within the address space |
| * @color: color to apply to node, if this node is not from a VMA, |
| * color must be #I915_COLOR_UNEVICTABLE |
| * @flags: control search and eviction behaviour |
| * |
| * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside |
| * the address space (using @size and @color). If the @node does not fit, it |
| * tries to evict any overlapping nodes from the GTT, including any |
| * neighbouring nodes if the colors do not match (to ensure guard pages between |
| * differing domains). See i915_gem_evict_for_node() for the gory details |
| * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on |
| * evicting active overlapping objects, and any overlapping node that is pinned |
| * or marked as unevictable will also result in failure. |
| * |
| * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if |
| * asked to wait for eviction and interrupted. |
| */ |
| int i915_gem_gtt_reserve(struct i915_address_space *vm, |
| struct drm_mm_node *node, |
| u64 size, u64 offset, unsigned long color, |
| unsigned int flags) |
| { |
| int err; |
| |
| GEM_BUG_ON(!size); |
| GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); |
| GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); |
| GEM_BUG_ON(range_overflows(offset, size, vm->total)); |
| GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); |
| GEM_BUG_ON(drm_mm_node_allocated(node)); |
| |
| node->size = size; |
| node->start = offset; |
| node->color = color; |
| |
| err = drm_mm_reserve_node(&vm->mm, node); |
| if (err != -ENOSPC) |
| return err; |
| |
| if (flags & PIN_NOEVICT) |
| return -ENOSPC; |
| |
| err = i915_gem_evict_for_node(vm, node, flags); |
| if (err == 0) |
| err = drm_mm_reserve_node(&vm->mm, node); |
| |
| return err; |
| } |
| |
| static u64 random_offset(u64 start, u64 end, u64 len, u64 align) |
| { |
| u64 range, addr; |
| |
| GEM_BUG_ON(range_overflows(start, len, end)); |
| GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); |
| |
| range = round_down(end - len, align) - round_up(start, align); |
| if (range) { |
| if (sizeof(unsigned long) == sizeof(u64)) { |
| addr = get_random_long(); |
| } else { |
| addr = get_random_int(); |
| if (range > U32_MAX) { |
| addr <<= 32; |
| addr |= get_random_int(); |
| } |
| } |
| div64_u64_rem(addr, range, &addr); |
| start += addr; |
| } |
| |
| return round_up(start, align); |
| } |
| |
| /** |
| * i915_gem_gtt_insert - insert a node into an address_space (GTT) |
| * @vm: the &struct i915_address_space |
| * @node: the &struct drm_mm_node (typically i915_vma.node) |
| * @size: how much space to allocate inside the GTT, |
| * must be #I915_GTT_PAGE_SIZE aligned |
| * @alignment: required alignment of starting offset, may be 0 but |
| * if specified, this must be a power-of-two and at least |
| * #I915_GTT_MIN_ALIGNMENT |
| * @color: color to apply to node |
| * @start: start of any range restriction inside GTT (0 for all), |
| * must be #I915_GTT_PAGE_SIZE aligned |
| * @end: end of any range restriction inside GTT (U64_MAX for all), |
| * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX |
| * @flags: control search and eviction behaviour |
| * |
| * i915_gem_gtt_insert() first searches for an available hole into which |
| * is can insert the node. The hole address is aligned to @alignment and |
| * its @size must then fit entirely within the [@start, @end] bounds. The |
| * nodes on either side of the hole must match @color, or else a guard page |
| * will be inserted between the two nodes (or the node evicted). If no |
| * suitable hole is found, first a victim is randomly selected and tested |
| * for eviction, otherwise then the LRU list of objects within the GTT |
| * is scanned to find the first set of replacement nodes to create the hole. |
| * Those old overlapping nodes are evicted from the GTT (and so must be |
| * rebound before any future use). Any node that is currently pinned cannot |
| * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently |
| * active and #PIN_NONBLOCK is specified, that node is also skipped when |
| * searching for an eviction candidate. See i915_gem_evict_something() for |
| * the gory details on the eviction algorithm. |
| * |
| * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if |
| * asked to wait for eviction and interrupted. |
| */ |
| int i915_gem_gtt_insert(struct i915_address_space *vm, |
| struct drm_mm_node *node, |
| u64 size, u64 alignment, unsigned long color, |
| u64 start, u64 end, unsigned int flags) |
| { |
| enum drm_mm_insert_mode mode; |
| u64 offset; |
| int err; |
| |
| lockdep_assert_held(&vm->i915->drm.struct_mutex); |
| GEM_BUG_ON(!size); |
| GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); |
| GEM_BUG_ON(alignment && !is_power_of_2(alignment)); |
| GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); |
| GEM_BUG_ON(start >= end); |
| GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); |
| GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); |
| GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); |
| GEM_BUG_ON(drm_mm_node_allocated(node)); |
| |
| if (unlikely(range_overflows(start, size, end))) |
| return -ENOSPC; |
| |
| if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) |
| return -ENOSPC; |
| |
| mode = DRM_MM_INSERT_BEST; |
| if (flags & PIN_HIGH) |
| mode = DRM_MM_INSERT_HIGHEST; |
| if (flags & PIN_MAPPABLE) |
| mode = DRM_MM_INSERT_LOW; |
| |
| /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, |
| * so we know that we always have a minimum alignment of 4096. |
| * The drm_mm range manager is optimised to return results |
| * with zero alignment, so where possible use the optimal |
| * path. |
| */ |
| BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); |
| if (alignment <= I915_GTT_MIN_ALIGNMENT) |
| alignment = 0; |
| |
| err = drm_mm_insert_node_in_range(&vm->mm, node, |
| size, alignment, color, |
| start, end, mode); |
| if (err != -ENOSPC) |
| return err; |
| |
| if (mode & DRM_MM_INSERT_ONCE) { |
| err = drm_mm_insert_node_in_range(&vm->mm, node, |
| size, alignment, color, |
| start, end, |
| DRM_MM_INSERT_BEST); |
| if (err != -ENOSPC) |
| return err; |
| } |
| |
| if (flags & PIN_NOEVICT) |
| return -ENOSPC; |
| |
| /* No free space, pick a slot at random. |
| * |
| * There is a pathological case here using a GTT shared between |
| * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): |
| * |
| * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| |
| * (64k objects) (448k objects) |
| * |
| * Now imagine that the eviction LRU is ordered top-down (just because |
| * pathology meets real life), and that we need to evict an object to |
| * make room inside the aperture. The eviction scan then has to walk |
| * the 448k list before it finds one within range. And now imagine that |
| * it has to search for a new hole between every byte inside the memcpy, |
| * for several simultaneous clients. |
| * |
| * On a full-ppgtt system, if we have run out of available space, there |
| * will be lots and lots of objects in the eviction list! Again, |
| * searching that LRU list may be slow if we are also applying any |
| * range restrictions (e.g. restriction to low 4GiB) and so, for |
| * simplicity and similarilty between different GTT, try the single |
| * random replacement first. |
| */ |
| offset = random_offset(start, end, |
| size, alignment ?: I915_GTT_MIN_ALIGNMENT); |
| err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); |
| if (err != -ENOSPC) |
| return err; |
| |
| /* Randomly selected placement is pinned, do a search */ |
| err = i915_gem_evict_something(vm, size, alignment, color, |
| start, end, flags); |
| if (err) |
| return err; |
| |
| return drm_mm_insert_node_in_range(&vm->mm, node, |
| size, alignment, color, |
| start, end, DRM_MM_INSERT_EVICT); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftests/mock_gtt.c" |
| #include "selftests/i915_gem_gtt.c" |
| #endif |