|  | /* | 
|  | * linux/mm/slab.c | 
|  | * Written by Mark Hemment, 1996/97. | 
|  | * (markhe@nextd.demon.co.uk) | 
|  | * | 
|  | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | 
|  | * | 
|  | * Major cleanup, different bufctl logic, per-cpu arrays | 
|  | *	(c) 2000 Manfred Spraul | 
|  | * | 
|  | * Cleanup, make the head arrays unconditional, preparation for NUMA | 
|  | * 	(c) 2002 Manfred Spraul | 
|  | * | 
|  | * An implementation of the Slab Allocator as described in outline in; | 
|  | *	UNIX Internals: The New Frontiers by Uresh Vahalia | 
|  | *	Pub: Prentice Hall	ISBN 0-13-101908-2 | 
|  | * or with a little more detail in; | 
|  | *	The Slab Allocator: An Object-Caching Kernel Memory Allocator | 
|  | *	Jeff Bonwick (Sun Microsystems). | 
|  | *	Presented at: USENIX Summer 1994 Technical Conference | 
|  | * | 
|  | * The memory is organized in caches, one cache for each object type. | 
|  | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | 
|  | * Each cache consists out of many slabs (they are small (usually one | 
|  | * page long) and always contiguous), and each slab contains multiple | 
|  | * initialized objects. | 
|  | * | 
|  | * This means, that your constructor is used only for newly allocated | 
|  | * slabs and you must pass objects with the same initializations to | 
|  | * kmem_cache_free. | 
|  | * | 
|  | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | 
|  | * normal). If you need a special memory type, then must create a new | 
|  | * cache for that memory type. | 
|  | * | 
|  | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | 
|  | *   full slabs with 0 free objects | 
|  | *   partial slabs | 
|  | *   empty slabs with no allocated objects | 
|  | * | 
|  | * If partial slabs exist, then new allocations come from these slabs, | 
|  | * otherwise from empty slabs or new slabs are allocated. | 
|  | * | 
|  | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | 
|  | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | 
|  | * | 
|  | * Each cache has a short per-cpu head array, most allocs | 
|  | * and frees go into that array, and if that array overflows, then 1/2 | 
|  | * of the entries in the array are given back into the global cache. | 
|  | * The head array is strictly LIFO and should improve the cache hit rates. | 
|  | * On SMP, it additionally reduces the spinlock operations. | 
|  | * | 
|  | * The c_cpuarray may not be read with enabled local interrupts - | 
|  | * it's changed with a smp_call_function(). | 
|  | * | 
|  | * SMP synchronization: | 
|  | *  constructors and destructors are called without any locking. | 
|  | *  Several members in struct kmem_cache and struct slab never change, they | 
|  | *	are accessed without any locking. | 
|  | *  The per-cpu arrays are never accessed from the wrong cpu, no locking, | 
|  | *  	and local interrupts are disabled so slab code is preempt-safe. | 
|  | *  The non-constant members are protected with a per-cache irq spinlock. | 
|  | * | 
|  | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | 
|  | * in 2000 - many ideas in the current implementation are derived from | 
|  | * his patch. | 
|  | * | 
|  | * Further notes from the original documentation: | 
|  | * | 
|  | * 11 April '97.  Started multi-threading - markhe | 
|  | *	The global cache-chain is protected by the mutex 'cache_chain_mutex'. | 
|  | *	The sem is only needed when accessing/extending the cache-chain, which | 
|  | *	can never happen inside an interrupt (kmem_cache_create(), | 
|  | *	kmem_cache_shrink() and kmem_cache_reap()). | 
|  | * | 
|  | *	At present, each engine can be growing a cache.  This should be blocked. | 
|  | * | 
|  | * 15 March 2005. NUMA slab allocator. | 
|  | *	Shai Fultheim <shai@scalex86.org>. | 
|  | *	Shobhit Dayal <shobhit@calsoftinc.com> | 
|  | *	Alok N Kataria <alokk@calsoftinc.com> | 
|  | *	Christoph Lameter <christoph@lameter.com> | 
|  | * | 
|  | *	Modified the slab allocator to be node aware on NUMA systems. | 
|  | *	Each node has its own list of partial, free and full slabs. | 
|  | *	All object allocations for a node occur from node specific slab lists. | 
|  | */ | 
|  |  | 
|  | #include	<linux/slab.h> | 
|  | #include	<linux/mm.h> | 
|  | #include	<linux/poison.h> | 
|  | #include	<linux/swap.h> | 
|  | #include	<linux/cache.h> | 
|  | #include	<linux/interrupt.h> | 
|  | #include	<linux/init.h> | 
|  | #include	<linux/compiler.h> | 
|  | #include	<linux/cpuset.h> | 
|  | #include	<linux/proc_fs.h> | 
|  | #include	<linux/seq_file.h> | 
|  | #include	<linux/notifier.h> | 
|  | #include	<linux/kallsyms.h> | 
|  | #include	<linux/cpu.h> | 
|  | #include	<linux/sysctl.h> | 
|  | #include	<linux/module.h> | 
|  | #include	<linux/rcupdate.h> | 
|  | #include	<linux/string.h> | 
|  | #include	<linux/uaccess.h> | 
|  | #include	<linux/nodemask.h> | 
|  | #include	<linux/mempolicy.h> | 
|  | #include	<linux/mutex.h> | 
|  | #include	<linux/fault-inject.h> | 
|  | #include	<linux/rtmutex.h> | 
|  | #include	<linux/reciprocal_div.h> | 
|  | #include	<linux/debugobjects.h> | 
|  |  | 
|  | #include	<asm/cacheflush.h> | 
|  | #include	<asm/tlbflush.h> | 
|  | #include	<asm/page.h> | 
|  |  | 
|  | /* | 
|  | * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. | 
|  | *		  0 for faster, smaller code (especially in the critical paths). | 
|  | * | 
|  | * STATS	- 1 to collect stats for /proc/slabinfo. | 
|  | *		  0 for faster, smaller code (especially in the critical paths). | 
|  | * | 
|  | * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SLAB | 
|  | #define	DEBUG		1 | 
|  | #define	STATS		1 | 
|  | #define	FORCED_DEBUG	1 | 
|  | #else | 
|  | #define	DEBUG		0 | 
|  | #define	STATS		0 | 
|  | #define	FORCED_DEBUG	0 | 
|  | #endif | 
|  |  | 
|  | /* Shouldn't this be in a header file somewhere? */ | 
|  | #define	BYTES_PER_WORD		sizeof(void *) | 
|  | #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long)) | 
|  |  | 
|  | #ifndef ARCH_KMALLOC_MINALIGN | 
|  | /* | 
|  | * Enforce a minimum alignment for the kmalloc caches. | 
|  | * Usually, the kmalloc caches are cache_line_size() aligned, except when | 
|  | * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. | 
|  | * Some archs want to perform DMA into kmalloc caches and need a guaranteed | 
|  | * alignment larger than the alignment of a 64-bit integer. | 
|  | * ARCH_KMALLOC_MINALIGN allows that. | 
|  | * Note that increasing this value may disable some debug features. | 
|  | */ | 
|  | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) | 
|  | #endif | 
|  |  | 
|  | #ifndef ARCH_SLAB_MINALIGN | 
|  | /* | 
|  | * Enforce a minimum alignment for all caches. | 
|  | * Intended for archs that get misalignment faults even for BYTES_PER_WORD | 
|  | * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. | 
|  | * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables | 
|  | * some debug features. | 
|  | */ | 
|  | #define ARCH_SLAB_MINALIGN 0 | 
|  | #endif | 
|  |  | 
|  | #ifndef ARCH_KMALLOC_FLAGS | 
|  | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | 
|  | #endif | 
|  |  | 
|  | /* Legal flag mask for kmem_cache_create(). */ | 
|  | #if DEBUG | 
|  | # define CREATE_MASK	(SLAB_RED_ZONE | \ | 
|  | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ | 
|  | SLAB_CACHE_DMA | \ | 
|  | SLAB_STORE_USER | \ | 
|  | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | 
|  | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ | 
|  | SLAB_DEBUG_OBJECTS) | 
|  | #else | 
|  | # define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \ | 
|  | SLAB_CACHE_DMA | \ | 
|  | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | 
|  | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ | 
|  | SLAB_DEBUG_OBJECTS) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * kmem_bufctl_t: | 
|  | * | 
|  | * Bufctl's are used for linking objs within a slab | 
|  | * linked offsets. | 
|  | * | 
|  | * This implementation relies on "struct page" for locating the cache & | 
|  | * slab an object belongs to. | 
|  | * This allows the bufctl structure to be small (one int), but limits | 
|  | * the number of objects a slab (not a cache) can contain when off-slab | 
|  | * bufctls are used. The limit is the size of the largest general cache | 
|  | * that does not use off-slab slabs. | 
|  | * For 32bit archs with 4 kB pages, is this 56. | 
|  | * This is not serious, as it is only for large objects, when it is unwise | 
|  | * to have too many per slab. | 
|  | * Note: This limit can be raised by introducing a general cache whose size | 
|  | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | 
|  | */ | 
|  |  | 
|  | typedef unsigned int kmem_bufctl_t; | 
|  | #define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0) | 
|  | #define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1) | 
|  | #define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2) | 
|  | #define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3) | 
|  |  | 
|  | /* | 
|  | * struct slab | 
|  | * | 
|  | * Manages the objs in a slab. Placed either at the beginning of mem allocated | 
|  | * for a slab, or allocated from an general cache. | 
|  | * Slabs are chained into three list: fully used, partial, fully free slabs. | 
|  | */ | 
|  | struct slab { | 
|  | struct list_head list; | 
|  | unsigned long colouroff; | 
|  | void *s_mem;		/* including colour offset */ | 
|  | unsigned int inuse;	/* num of objs active in slab */ | 
|  | kmem_bufctl_t free; | 
|  | unsigned short nodeid; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct slab_rcu | 
|  | * | 
|  | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | 
|  | * arrange for kmem_freepages to be called via RCU.  This is useful if | 
|  | * we need to approach a kernel structure obliquely, from its address | 
|  | * obtained without the usual locking.  We can lock the structure to | 
|  | * stabilize it and check it's still at the given address, only if we | 
|  | * can be sure that the memory has not been meanwhile reused for some | 
|  | * other kind of object (which our subsystem's lock might corrupt). | 
|  | * | 
|  | * rcu_read_lock before reading the address, then rcu_read_unlock after | 
|  | * taking the spinlock within the structure expected at that address. | 
|  | * | 
|  | * We assume struct slab_rcu can overlay struct slab when destroying. | 
|  | */ | 
|  | struct slab_rcu { | 
|  | struct rcu_head head; | 
|  | struct kmem_cache *cachep; | 
|  | void *addr; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct array_cache | 
|  | * | 
|  | * Purpose: | 
|  | * - LIFO ordering, to hand out cache-warm objects from _alloc | 
|  | * - reduce the number of linked list operations | 
|  | * - reduce spinlock operations | 
|  | * | 
|  | * The limit is stored in the per-cpu structure to reduce the data cache | 
|  | * footprint. | 
|  | * | 
|  | */ | 
|  | struct array_cache { | 
|  | unsigned int avail; | 
|  | unsigned int limit; | 
|  | unsigned int batchcount; | 
|  | unsigned int touched; | 
|  | spinlock_t lock; | 
|  | void *entry[];	/* | 
|  | * Must have this definition in here for the proper | 
|  | * alignment of array_cache. Also simplifies accessing | 
|  | * the entries. | 
|  | */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * bootstrap: The caches do not work without cpuarrays anymore, but the | 
|  | * cpuarrays are allocated from the generic caches... | 
|  | */ | 
|  | #define BOOT_CPUCACHE_ENTRIES	1 | 
|  | struct arraycache_init { | 
|  | struct array_cache cache; | 
|  | void *entries[BOOT_CPUCACHE_ENTRIES]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The slab lists for all objects. | 
|  | */ | 
|  | struct kmem_list3 { | 
|  | struct list_head slabs_partial;	/* partial list first, better asm code */ | 
|  | struct list_head slabs_full; | 
|  | struct list_head slabs_free; | 
|  | unsigned long free_objects; | 
|  | unsigned int free_limit; | 
|  | unsigned int colour_next;	/* Per-node cache coloring */ | 
|  | spinlock_t list_lock; | 
|  | struct array_cache *shared;	/* shared per node */ | 
|  | struct array_cache **alien;	/* on other nodes */ | 
|  | unsigned long next_reap;	/* updated without locking */ | 
|  | int free_touched;		/* updated without locking */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Need this for bootstrapping a per node allocator. | 
|  | */ | 
|  | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) | 
|  | struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; | 
|  | #define	CACHE_CACHE 0 | 
|  | #define	SIZE_AC MAX_NUMNODES | 
|  | #define	SIZE_L3 (2 * MAX_NUMNODES) | 
|  |  | 
|  | static int drain_freelist(struct kmem_cache *cache, | 
|  | struct kmem_list3 *l3, int tofree); | 
|  | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | 
|  | int node); | 
|  | static int enable_cpucache(struct kmem_cache *cachep); | 
|  | static void cache_reap(struct work_struct *unused); | 
|  |  | 
|  | /* | 
|  | * This function must be completely optimized away if a constant is passed to | 
|  | * it.  Mostly the same as what is in linux/slab.h except it returns an index. | 
|  | */ | 
|  | static __always_inline int index_of(const size_t size) | 
|  | { | 
|  | extern void __bad_size(void); | 
|  |  | 
|  | if (__builtin_constant_p(size)) { | 
|  | int i = 0; | 
|  |  | 
|  | #define CACHE(x) \ | 
|  | if (size <=x) \ | 
|  | return i; \ | 
|  | else \ | 
|  | i++; | 
|  | #include <linux/kmalloc_sizes.h> | 
|  | #undef CACHE | 
|  | __bad_size(); | 
|  | } else | 
|  | __bad_size(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int slab_early_init = 1; | 
|  |  | 
|  | #define INDEX_AC index_of(sizeof(struct arraycache_init)) | 
|  | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | 
|  |  | 
|  | static void kmem_list3_init(struct kmem_list3 *parent) | 
|  | { | 
|  | INIT_LIST_HEAD(&parent->slabs_full); | 
|  | INIT_LIST_HEAD(&parent->slabs_partial); | 
|  | INIT_LIST_HEAD(&parent->slabs_free); | 
|  | parent->shared = NULL; | 
|  | parent->alien = NULL; | 
|  | parent->colour_next = 0; | 
|  | spin_lock_init(&parent->list_lock); | 
|  | parent->free_objects = 0; | 
|  | parent->free_touched = 0; | 
|  | } | 
|  |  | 
|  | #define MAKE_LIST(cachep, listp, slab, nodeid)				\ | 
|  | do {								\ | 
|  | INIT_LIST_HEAD(listp);					\ | 
|  | list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\ | 
|  | do {								\ | 
|  | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\ | 
|  | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | 
|  | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * struct kmem_cache | 
|  | * | 
|  | * manages a cache. | 
|  | */ | 
|  |  | 
|  | struct kmem_cache { | 
|  | /* 1) per-cpu data, touched during every alloc/free */ | 
|  | struct array_cache *array[NR_CPUS]; | 
|  | /* 2) Cache tunables. Protected by cache_chain_mutex */ | 
|  | unsigned int batchcount; | 
|  | unsigned int limit; | 
|  | unsigned int shared; | 
|  |  | 
|  | unsigned int buffer_size; | 
|  | u32 reciprocal_buffer_size; | 
|  | /* 3) touched by every alloc & free from the backend */ | 
|  |  | 
|  | unsigned int flags;		/* constant flags */ | 
|  | unsigned int num;		/* # of objs per slab */ | 
|  |  | 
|  | /* 4) cache_grow/shrink */ | 
|  | /* order of pgs per slab (2^n) */ | 
|  | unsigned int gfporder; | 
|  |  | 
|  | /* force GFP flags, e.g. GFP_DMA */ | 
|  | gfp_t gfpflags; | 
|  |  | 
|  | size_t colour;			/* cache colouring range */ | 
|  | unsigned int colour_off;	/* colour offset */ | 
|  | struct kmem_cache *slabp_cache; | 
|  | unsigned int slab_size; | 
|  | unsigned int dflags;		/* dynamic flags */ | 
|  |  | 
|  | /* constructor func */ | 
|  | void (*ctor)(void *obj); | 
|  |  | 
|  | /* 5) cache creation/removal */ | 
|  | const char *name; | 
|  | struct list_head next; | 
|  |  | 
|  | /* 6) statistics */ | 
|  | #if STATS | 
|  | unsigned long num_active; | 
|  | unsigned long num_allocations; | 
|  | unsigned long high_mark; | 
|  | unsigned long grown; | 
|  | unsigned long reaped; | 
|  | unsigned long errors; | 
|  | unsigned long max_freeable; | 
|  | unsigned long node_allocs; | 
|  | unsigned long node_frees; | 
|  | unsigned long node_overflow; | 
|  | atomic_t allochit; | 
|  | atomic_t allocmiss; | 
|  | atomic_t freehit; | 
|  | atomic_t freemiss; | 
|  | #endif | 
|  | #if DEBUG | 
|  | /* | 
|  | * If debugging is enabled, then the allocator can add additional | 
|  | * fields and/or padding to every object. buffer_size contains the total | 
|  | * object size including these internal fields, the following two | 
|  | * variables contain the offset to the user object and its size. | 
|  | */ | 
|  | int obj_offset; | 
|  | int obj_size; | 
|  | #endif | 
|  | /* | 
|  | * We put nodelists[] at the end of kmem_cache, because we want to size | 
|  | * this array to nr_node_ids slots instead of MAX_NUMNODES | 
|  | * (see kmem_cache_init()) | 
|  | * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache | 
|  | * is statically defined, so we reserve the max number of nodes. | 
|  | */ | 
|  | struct kmem_list3 *nodelists[MAX_NUMNODES]; | 
|  | /* | 
|  | * Do not add fields after nodelists[] | 
|  | */ | 
|  | }; | 
|  |  | 
|  | #define CFLGS_OFF_SLAB		(0x80000000UL) | 
|  | #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB) | 
|  |  | 
|  | #define BATCHREFILL_LIMIT	16 | 
|  | /* | 
|  | * Optimization question: fewer reaps means less probability for unnessary | 
|  | * cpucache drain/refill cycles. | 
|  | * | 
|  | * OTOH the cpuarrays can contain lots of objects, | 
|  | * which could lock up otherwise freeable slabs. | 
|  | */ | 
|  | #define REAPTIMEOUT_CPUC	(2*HZ) | 
|  | #define REAPTIMEOUT_LIST3	(4*HZ) | 
|  |  | 
|  | #if STATS | 
|  | #define	STATS_INC_ACTIVE(x)	((x)->num_active++) | 
|  | #define	STATS_DEC_ACTIVE(x)	((x)->num_active--) | 
|  | #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++) | 
|  | #define	STATS_INC_GROWN(x)	((x)->grown++) | 
|  | #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y)) | 
|  | #define	STATS_SET_HIGH(x)						\ | 
|  | do {								\ | 
|  | if ((x)->num_active > (x)->high_mark)			\ | 
|  | (x)->high_mark = (x)->num_active;		\ | 
|  | } while (0) | 
|  | #define	STATS_INC_ERR(x)	((x)->errors++) | 
|  | #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++) | 
|  | #define	STATS_INC_NODEFREES(x)	((x)->node_frees++) | 
|  | #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++) | 
|  | #define	STATS_SET_FREEABLE(x, i)					\ | 
|  | do {								\ | 
|  | if ((x)->max_freeable < i)				\ | 
|  | (x)->max_freeable = i;				\ | 
|  | } while (0) | 
|  | #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit) | 
|  | #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss) | 
|  | #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit) | 
|  | #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss) | 
|  | #else | 
|  | #define	STATS_INC_ACTIVE(x)	do { } while (0) | 
|  | #define	STATS_DEC_ACTIVE(x)	do { } while (0) | 
|  | #define	STATS_INC_ALLOCED(x)	do { } while (0) | 
|  | #define	STATS_INC_GROWN(x)	do { } while (0) | 
|  | #define	STATS_ADD_REAPED(x,y)	do { } while (0) | 
|  | #define	STATS_SET_HIGH(x)	do { } while (0) | 
|  | #define	STATS_INC_ERR(x)	do { } while (0) | 
|  | #define	STATS_INC_NODEALLOCS(x)	do { } while (0) | 
|  | #define	STATS_INC_NODEFREES(x)	do { } while (0) | 
|  | #define STATS_INC_ACOVERFLOW(x)   do { } while (0) | 
|  | #define	STATS_SET_FREEABLE(x, i) do { } while (0) | 
|  | #define STATS_INC_ALLOCHIT(x)	do { } while (0) | 
|  | #define STATS_INC_ALLOCMISS(x)	do { } while (0) | 
|  | #define STATS_INC_FREEHIT(x)	do { } while (0) | 
|  | #define STATS_INC_FREEMISS(x)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #if DEBUG | 
|  |  | 
|  | /* | 
|  | * memory layout of objects: | 
|  | * 0		: objp | 
|  | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that | 
|  | * 		the end of an object is aligned with the end of the real | 
|  | * 		allocation. Catches writes behind the end of the allocation. | 
|  | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: | 
|  | * 		redzone word. | 
|  | * cachep->obj_offset: The real object. | 
|  | * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | 
|  | * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address | 
|  | *					[BYTES_PER_WORD long] | 
|  | */ | 
|  | static int obj_offset(struct kmem_cache *cachep) | 
|  | { | 
|  | return cachep->obj_offset; | 
|  | } | 
|  |  | 
|  | static int obj_size(struct kmem_cache *cachep) | 
|  | { | 
|  | return cachep->obj_size; | 
|  | } | 
|  |  | 
|  | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 
|  | return (unsigned long long*) (objp + obj_offset(cachep) - | 
|  | sizeof(unsigned long long)); | 
|  | } | 
|  |  | 
|  | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 
|  | if (cachep->flags & SLAB_STORE_USER) | 
|  | return (unsigned long long *)(objp + cachep->buffer_size - | 
|  | sizeof(unsigned long long) - | 
|  | REDZONE_ALIGN); | 
|  | return (unsigned long long *) (objp + cachep->buffer_size - | 
|  | sizeof(unsigned long long)); | 
|  | } | 
|  |  | 
|  | static void **dbg_userword(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | 
|  | return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define obj_offset(x)			0 | 
|  | #define obj_size(cachep)		(cachep->buffer_size) | 
|  | #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;}) | 
|  | #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;}) | 
|  | #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;}) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Do not go above this order unless 0 objects fit into the slab. | 
|  | */ | 
|  | #define	BREAK_GFP_ORDER_HI	1 | 
|  | #define	BREAK_GFP_ORDER_LO	0 | 
|  | static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; | 
|  |  | 
|  | /* | 
|  | * Functions for storing/retrieving the cachep and or slab from the page | 
|  | * allocator.  These are used to find the slab an obj belongs to.  With kfree(), | 
|  | * these are used to find the cache which an obj belongs to. | 
|  | */ | 
|  | static inline void page_set_cache(struct page *page, struct kmem_cache *cache) | 
|  | { | 
|  | page->lru.next = (struct list_head *)cache; | 
|  | } | 
|  |  | 
|  | static inline struct kmem_cache *page_get_cache(struct page *page) | 
|  | { | 
|  | page = compound_head(page); | 
|  | BUG_ON(!PageSlab(page)); | 
|  | return (struct kmem_cache *)page->lru.next; | 
|  | } | 
|  |  | 
|  | static inline void page_set_slab(struct page *page, struct slab *slab) | 
|  | { | 
|  | page->lru.prev = (struct list_head *)slab; | 
|  | } | 
|  |  | 
|  | static inline struct slab *page_get_slab(struct page *page) | 
|  | { | 
|  | BUG_ON(!PageSlab(page)); | 
|  | return (struct slab *)page->lru.prev; | 
|  | } | 
|  |  | 
|  | static inline struct kmem_cache *virt_to_cache(const void *obj) | 
|  | { | 
|  | struct page *page = virt_to_head_page(obj); | 
|  | return page_get_cache(page); | 
|  | } | 
|  |  | 
|  | static inline struct slab *virt_to_slab(const void *obj) | 
|  | { | 
|  | struct page *page = virt_to_head_page(obj); | 
|  | return page_get_slab(page); | 
|  | } | 
|  |  | 
|  | static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, | 
|  | unsigned int idx) | 
|  | { | 
|  | return slab->s_mem + cache->buffer_size * idx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to avoid an expensive divide : (offset / cache->buffer_size) | 
|  | *   Using the fact that buffer_size is a constant for a particular cache, | 
|  | *   we can replace (offset / cache->buffer_size) by | 
|  | *   reciprocal_divide(offset, cache->reciprocal_buffer_size) | 
|  | */ | 
|  | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | 
|  | const struct slab *slab, void *obj) | 
|  | { | 
|  | u32 offset = (obj - slab->s_mem); | 
|  | return reciprocal_divide(offset, cache->reciprocal_buffer_size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are the default caches for kmalloc. Custom caches can have other sizes. | 
|  | */ | 
|  | struct cache_sizes malloc_sizes[] = { | 
|  | #define CACHE(x) { .cs_size = (x) }, | 
|  | #include <linux/kmalloc_sizes.h> | 
|  | CACHE(ULONG_MAX) | 
|  | #undef CACHE | 
|  | }; | 
|  | EXPORT_SYMBOL(malloc_sizes); | 
|  |  | 
|  | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | 
|  | struct cache_names { | 
|  | char *name; | 
|  | char *name_dma; | 
|  | }; | 
|  |  | 
|  | static struct cache_names __initdata cache_names[] = { | 
|  | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | 
|  | #include <linux/kmalloc_sizes.h> | 
|  | {NULL,} | 
|  | #undef CACHE | 
|  | }; | 
|  |  | 
|  | static struct arraycache_init initarray_cache __initdata = | 
|  | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | 
|  | static struct arraycache_init initarray_generic = | 
|  | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | 
|  |  | 
|  | /* internal cache of cache description objs */ | 
|  | static struct kmem_cache cache_cache = { | 
|  | .batchcount = 1, | 
|  | .limit = BOOT_CPUCACHE_ENTRIES, | 
|  | .shared = 1, | 
|  | .buffer_size = sizeof(struct kmem_cache), | 
|  | .name = "kmem_cache", | 
|  | }; | 
|  |  | 
|  | #define BAD_ALIEN_MAGIC 0x01020304ul | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP | 
|  |  | 
|  | /* | 
|  | * Slab sometimes uses the kmalloc slabs to store the slab headers | 
|  | * for other slabs "off slab". | 
|  | * The locking for this is tricky in that it nests within the locks | 
|  | * of all other slabs in a few places; to deal with this special | 
|  | * locking we put on-slab caches into a separate lock-class. | 
|  | * | 
|  | * We set lock class for alien array caches which are up during init. | 
|  | * The lock annotation will be lost if all cpus of a node goes down and | 
|  | * then comes back up during hotplug | 
|  | */ | 
|  | static struct lock_class_key on_slab_l3_key; | 
|  | static struct lock_class_key on_slab_alc_key; | 
|  |  | 
|  | static inline void init_lock_keys(void) | 
|  |  | 
|  | { | 
|  | int q; | 
|  | struct cache_sizes *s = malloc_sizes; | 
|  |  | 
|  | while (s->cs_size != ULONG_MAX) { | 
|  | for_each_node(q) { | 
|  | struct array_cache **alc; | 
|  | int r; | 
|  | struct kmem_list3 *l3 = s->cs_cachep->nodelists[q]; | 
|  | if (!l3 || OFF_SLAB(s->cs_cachep)) | 
|  | continue; | 
|  | lockdep_set_class(&l3->list_lock, &on_slab_l3_key); | 
|  | alc = l3->alien; | 
|  | /* | 
|  | * FIXME: This check for BAD_ALIEN_MAGIC | 
|  | * should go away when common slab code is taught to | 
|  | * work even without alien caches. | 
|  | * Currently, non NUMA code returns BAD_ALIEN_MAGIC | 
|  | * for alloc_alien_cache, | 
|  | */ | 
|  | if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) | 
|  | continue; | 
|  | for_each_node(r) { | 
|  | if (alc[r]) | 
|  | lockdep_set_class(&alc[r]->lock, | 
|  | &on_slab_alc_key); | 
|  | } | 
|  | } | 
|  | s++; | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void init_lock_keys(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Guard access to the cache-chain. | 
|  | */ | 
|  | static DEFINE_MUTEX(cache_chain_mutex); | 
|  | static struct list_head cache_chain; | 
|  |  | 
|  | /* | 
|  | * chicken and egg problem: delay the per-cpu array allocation | 
|  | * until the general caches are up. | 
|  | */ | 
|  | static enum { | 
|  | NONE, | 
|  | PARTIAL_AC, | 
|  | PARTIAL_L3, | 
|  | FULL | 
|  | } g_cpucache_up; | 
|  |  | 
|  | /* | 
|  | * used by boot code to determine if it can use slab based allocator | 
|  | */ | 
|  | int slab_is_available(void) | 
|  | { | 
|  | return g_cpucache_up == FULL; | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(struct delayed_work, reap_work); | 
|  |  | 
|  | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) | 
|  | { | 
|  | return cachep->array[smp_processor_id()]; | 
|  | } | 
|  |  | 
|  | static inline struct kmem_cache *__find_general_cachep(size_t size, | 
|  | gfp_t gfpflags) | 
|  | { | 
|  | struct cache_sizes *csizep = malloc_sizes; | 
|  |  | 
|  | #if DEBUG | 
|  | /* This happens if someone tries to call | 
|  | * kmem_cache_create(), or __kmalloc(), before | 
|  | * the generic caches are initialized. | 
|  | */ | 
|  | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); | 
|  | #endif | 
|  | if (!size) | 
|  | return ZERO_SIZE_PTR; | 
|  |  | 
|  | while (size > csizep->cs_size) | 
|  | csizep++; | 
|  |  | 
|  | /* | 
|  | * Really subtle: The last entry with cs->cs_size==ULONG_MAX | 
|  | * has cs_{dma,}cachep==NULL. Thus no special case | 
|  | * for large kmalloc calls required. | 
|  | */ | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | if (unlikely(gfpflags & GFP_DMA)) | 
|  | return csizep->cs_dmacachep; | 
|  | #endif | 
|  | return csizep->cs_cachep; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) | 
|  | { | 
|  | return __find_general_cachep(size, gfpflags); | 
|  | } | 
|  |  | 
|  | static size_t slab_mgmt_size(size_t nr_objs, size_t align) | 
|  | { | 
|  | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of objects and left-over bytes for a given buffer size. | 
|  | */ | 
|  | static void cache_estimate(unsigned long gfporder, size_t buffer_size, | 
|  | size_t align, int flags, size_t *left_over, | 
|  | unsigned int *num) | 
|  | { | 
|  | int nr_objs; | 
|  | size_t mgmt_size; | 
|  | size_t slab_size = PAGE_SIZE << gfporder; | 
|  |  | 
|  | /* | 
|  | * The slab management structure can be either off the slab or | 
|  | * on it. For the latter case, the memory allocated for a | 
|  | * slab is used for: | 
|  | * | 
|  | * - The struct slab | 
|  | * - One kmem_bufctl_t for each object | 
|  | * - Padding to respect alignment of @align | 
|  | * - @buffer_size bytes for each object | 
|  | * | 
|  | * If the slab management structure is off the slab, then the | 
|  | * alignment will already be calculated into the size. Because | 
|  | * the slabs are all pages aligned, the objects will be at the | 
|  | * correct alignment when allocated. | 
|  | */ | 
|  | if (flags & CFLGS_OFF_SLAB) { | 
|  | mgmt_size = 0; | 
|  | nr_objs = slab_size / buffer_size; | 
|  |  | 
|  | if (nr_objs > SLAB_LIMIT) | 
|  | nr_objs = SLAB_LIMIT; | 
|  | } else { | 
|  | /* | 
|  | * Ignore padding for the initial guess. The padding | 
|  | * is at most @align-1 bytes, and @buffer_size is at | 
|  | * least @align. In the worst case, this result will | 
|  | * be one greater than the number of objects that fit | 
|  | * into the memory allocation when taking the padding | 
|  | * into account. | 
|  | */ | 
|  | nr_objs = (slab_size - sizeof(struct slab)) / | 
|  | (buffer_size + sizeof(kmem_bufctl_t)); | 
|  |  | 
|  | /* | 
|  | * This calculated number will be either the right | 
|  | * amount, or one greater than what we want. | 
|  | */ | 
|  | if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size | 
|  | > slab_size) | 
|  | nr_objs--; | 
|  |  | 
|  | if (nr_objs > SLAB_LIMIT) | 
|  | nr_objs = SLAB_LIMIT; | 
|  |  | 
|  | mgmt_size = slab_mgmt_size(nr_objs, align); | 
|  | } | 
|  | *num = nr_objs; | 
|  | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; | 
|  | } | 
|  |  | 
|  | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) | 
|  |  | 
|  | static void __slab_error(const char *function, struct kmem_cache *cachep, | 
|  | char *msg) | 
|  | { | 
|  | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | 
|  | function, cachep->name, msg); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By default on NUMA we use alien caches to stage the freeing of | 
|  | * objects allocated from other nodes. This causes massive memory | 
|  | * inefficiencies when using fake NUMA setup to split memory into a | 
|  | * large number of small nodes, so it can be disabled on the command | 
|  | * line | 
|  | */ | 
|  |  | 
|  | static int use_alien_caches __read_mostly = 1; | 
|  | static int numa_platform __read_mostly = 1; | 
|  | static int __init noaliencache_setup(char *s) | 
|  | { | 
|  | use_alien_caches = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("noaliencache", noaliencache_setup); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Special reaping functions for NUMA systems called from cache_reap(). | 
|  | * These take care of doing round robin flushing of alien caches (containing | 
|  | * objects freed on different nodes from which they were allocated) and the | 
|  | * flushing of remote pcps by calling drain_node_pages. | 
|  | */ | 
|  | static DEFINE_PER_CPU(unsigned long, reap_node); | 
|  |  | 
|  | static void init_reap_node(int cpu) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | node = next_node(cpu_to_node(cpu), node_online_map); | 
|  | if (node == MAX_NUMNODES) | 
|  | node = first_node(node_online_map); | 
|  |  | 
|  | per_cpu(reap_node, cpu) = node; | 
|  | } | 
|  |  | 
|  | static void next_reap_node(void) | 
|  | { | 
|  | int node = __get_cpu_var(reap_node); | 
|  |  | 
|  | node = next_node(node, node_online_map); | 
|  | if (unlikely(node >= MAX_NUMNODES)) | 
|  | node = first_node(node_online_map); | 
|  | __get_cpu_var(reap_node) = node; | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define init_reap_node(cpu) do { } while (0) | 
|  | #define next_reap_node(void) do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz | 
|  | * via the workqueue/eventd. | 
|  | * Add the CPU number into the expiration time to minimize the possibility of | 
|  | * the CPUs getting into lockstep and contending for the global cache chain | 
|  | * lock. | 
|  | */ | 
|  | static void __cpuinit start_cpu_timer(int cpu) | 
|  | { | 
|  | struct delayed_work *reap_work = &per_cpu(reap_work, cpu); | 
|  |  | 
|  | /* | 
|  | * When this gets called from do_initcalls via cpucache_init(), | 
|  | * init_workqueues() has already run, so keventd will be setup | 
|  | * at that time. | 
|  | */ | 
|  | if (keventd_up() && reap_work->work.func == NULL) { | 
|  | init_reap_node(cpu); | 
|  | INIT_DELAYED_WORK(reap_work, cache_reap); | 
|  | schedule_delayed_work_on(cpu, reap_work, | 
|  | __round_jiffies_relative(HZ, cpu)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct array_cache *alloc_arraycache(int node, int entries, | 
|  | int batchcount) | 
|  | { | 
|  | int memsize = sizeof(void *) * entries + sizeof(struct array_cache); | 
|  | struct array_cache *nc = NULL; | 
|  |  | 
|  | nc = kmalloc_node(memsize, GFP_KERNEL, node); | 
|  | if (nc) { | 
|  | nc->avail = 0; | 
|  | nc->limit = entries; | 
|  | nc->batchcount = batchcount; | 
|  | nc->touched = 0; | 
|  | spin_lock_init(&nc->lock); | 
|  | } | 
|  | return nc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Transfer objects in one arraycache to another. | 
|  | * Locking must be handled by the caller. | 
|  | * | 
|  | * Return the number of entries transferred. | 
|  | */ | 
|  | static int transfer_objects(struct array_cache *to, | 
|  | struct array_cache *from, unsigned int max) | 
|  | { | 
|  | /* Figure out how many entries to transfer */ | 
|  | int nr = min(min(from->avail, max), to->limit - to->avail); | 
|  |  | 
|  | if (!nr) | 
|  | return 0; | 
|  |  | 
|  | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | 
|  | sizeof(void *) *nr); | 
|  |  | 
|  | from->avail -= nr; | 
|  | to->avail += nr; | 
|  | to->touched = 1; | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_NUMA | 
|  |  | 
|  | #define drain_alien_cache(cachep, alien) do { } while (0) | 
|  | #define reap_alien(cachep, l3) do { } while (0) | 
|  |  | 
|  | static inline struct array_cache **alloc_alien_cache(int node, int limit) | 
|  | { | 
|  | return (struct array_cache **)BAD_ALIEN_MAGIC; | 
|  | } | 
|  |  | 
|  | static inline void free_alien_cache(struct array_cache **ac_ptr) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | 
|  | gfp_t flags) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void *____cache_alloc_node(struct kmem_cache *cachep, | 
|  | gfp_t flags, int nodeid) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_NUMA */ | 
|  |  | 
|  | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); | 
|  | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); | 
|  |  | 
|  | static struct array_cache **alloc_alien_cache(int node, int limit) | 
|  | { | 
|  | struct array_cache **ac_ptr; | 
|  | int memsize = sizeof(void *) * nr_node_ids; | 
|  | int i; | 
|  |  | 
|  | if (limit > 1) | 
|  | limit = 12; | 
|  | ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); | 
|  | if (ac_ptr) { | 
|  | for_each_node(i) { | 
|  | if (i == node || !node_online(i)) { | 
|  | ac_ptr[i] = NULL; | 
|  | continue; | 
|  | } | 
|  | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); | 
|  | if (!ac_ptr[i]) { | 
|  | for (i--; i >= 0; i--) | 
|  | kfree(ac_ptr[i]); | 
|  | kfree(ac_ptr); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | return ac_ptr; | 
|  | } | 
|  |  | 
|  | static void free_alien_cache(struct array_cache **ac_ptr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!ac_ptr) | 
|  | return; | 
|  | for_each_node(i) | 
|  | kfree(ac_ptr[i]); | 
|  | kfree(ac_ptr); | 
|  | } | 
|  |  | 
|  | static void __drain_alien_cache(struct kmem_cache *cachep, | 
|  | struct array_cache *ac, int node) | 
|  | { | 
|  | struct kmem_list3 *rl3 = cachep->nodelists[node]; | 
|  |  | 
|  | if (ac->avail) { | 
|  | spin_lock(&rl3->list_lock); | 
|  | /* | 
|  | * Stuff objects into the remote nodes shared array first. | 
|  | * That way we could avoid the overhead of putting the objects | 
|  | * into the free lists and getting them back later. | 
|  | */ | 
|  | if (rl3->shared) | 
|  | transfer_objects(rl3->shared, ac, ac->limit); | 
|  |  | 
|  | free_block(cachep, ac->entry, ac->avail, node); | 
|  | ac->avail = 0; | 
|  | spin_unlock(&rl3->list_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from cache_reap() to regularly drain alien caches round robin. | 
|  | */ | 
|  | static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) | 
|  | { | 
|  | int node = __get_cpu_var(reap_node); | 
|  |  | 
|  | if (l3->alien) { | 
|  | struct array_cache *ac = l3->alien[node]; | 
|  |  | 
|  | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | 
|  | __drain_alien_cache(cachep, ac, node); | 
|  | spin_unlock_irq(&ac->lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void drain_alien_cache(struct kmem_cache *cachep, | 
|  | struct array_cache **alien) | 
|  | { | 
|  | int i = 0; | 
|  | struct array_cache *ac; | 
|  | unsigned long flags; | 
|  |  | 
|  | for_each_online_node(i) { | 
|  | ac = alien[i]; | 
|  | if (ac) { | 
|  | spin_lock_irqsave(&ac->lock, flags); | 
|  | __drain_alien_cache(cachep, ac, i); | 
|  | spin_unlock_irqrestore(&ac->lock, flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | struct slab *slabp = virt_to_slab(objp); | 
|  | int nodeid = slabp->nodeid; | 
|  | struct kmem_list3 *l3; | 
|  | struct array_cache *alien = NULL; | 
|  | int node; | 
|  |  | 
|  | node = numa_node_id(); | 
|  |  | 
|  | /* | 
|  | * Make sure we are not freeing a object from another node to the array | 
|  | * cache on this cpu. | 
|  | */ | 
|  | if (likely(slabp->nodeid == node)) | 
|  | return 0; | 
|  |  | 
|  | l3 = cachep->nodelists[node]; | 
|  | STATS_INC_NODEFREES(cachep); | 
|  | if (l3->alien && l3->alien[nodeid]) { | 
|  | alien = l3->alien[nodeid]; | 
|  | spin_lock(&alien->lock); | 
|  | if (unlikely(alien->avail == alien->limit)) { | 
|  | STATS_INC_ACOVERFLOW(cachep); | 
|  | __drain_alien_cache(cachep, alien, nodeid); | 
|  | } | 
|  | alien->entry[alien->avail++] = objp; | 
|  | spin_unlock(&alien->lock); | 
|  | } else { | 
|  | spin_lock(&(cachep->nodelists[nodeid])->list_lock); | 
|  | free_block(cachep, &objp, 1, nodeid); | 
|  | spin_unlock(&(cachep->nodelists[nodeid])->list_lock); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void __cpuinit cpuup_canceled(long cpu) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  | struct kmem_list3 *l3 = NULL; | 
|  | int node = cpu_to_node(cpu); | 
|  | node_to_cpumask_ptr(mask, node); | 
|  |  | 
|  | list_for_each_entry(cachep, &cache_chain, next) { | 
|  | struct array_cache *nc; | 
|  | struct array_cache *shared; | 
|  | struct array_cache **alien; | 
|  |  | 
|  | /* cpu is dead; no one can alloc from it. */ | 
|  | nc = cachep->array[cpu]; | 
|  | cachep->array[cpu] = NULL; | 
|  | l3 = cachep->nodelists[node]; | 
|  |  | 
|  | if (!l3) | 
|  | goto free_array_cache; | 
|  |  | 
|  | spin_lock_irq(&l3->list_lock); | 
|  |  | 
|  | /* Free limit for this kmem_list3 */ | 
|  | l3->free_limit -= cachep->batchcount; | 
|  | if (nc) | 
|  | free_block(cachep, nc->entry, nc->avail, node); | 
|  |  | 
|  | if (!cpus_empty(*mask)) { | 
|  | spin_unlock_irq(&l3->list_lock); | 
|  | goto free_array_cache; | 
|  | } | 
|  |  | 
|  | shared = l3->shared; | 
|  | if (shared) { | 
|  | free_block(cachep, shared->entry, | 
|  | shared->avail, node); | 
|  | l3->shared = NULL; | 
|  | } | 
|  |  | 
|  | alien = l3->alien; | 
|  | l3->alien = NULL; | 
|  |  | 
|  | spin_unlock_irq(&l3->list_lock); | 
|  |  | 
|  | kfree(shared); | 
|  | if (alien) { | 
|  | drain_alien_cache(cachep, alien); | 
|  | free_alien_cache(alien); | 
|  | } | 
|  | free_array_cache: | 
|  | kfree(nc); | 
|  | } | 
|  | /* | 
|  | * In the previous loop, all the objects were freed to | 
|  | * the respective cache's slabs,  now we can go ahead and | 
|  | * shrink each nodelist to its limit. | 
|  | */ | 
|  | list_for_each_entry(cachep, &cache_chain, next) { | 
|  | l3 = cachep->nodelists[node]; | 
|  | if (!l3) | 
|  | continue; | 
|  | drain_freelist(cachep, l3, l3->free_objects); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __cpuinit cpuup_prepare(long cpu) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  | struct kmem_list3 *l3 = NULL; | 
|  | int node = cpu_to_node(cpu); | 
|  | const int memsize = sizeof(struct kmem_list3); | 
|  |  | 
|  | /* | 
|  | * We need to do this right in the beginning since | 
|  | * alloc_arraycache's are going to use this list. | 
|  | * kmalloc_node allows us to add the slab to the right | 
|  | * kmem_list3 and not this cpu's kmem_list3 | 
|  | */ | 
|  |  | 
|  | list_for_each_entry(cachep, &cache_chain, next) { | 
|  | /* | 
|  | * Set up the size64 kmemlist for cpu before we can | 
|  | * begin anything. Make sure some other cpu on this | 
|  | * node has not already allocated this | 
|  | */ | 
|  | if (!cachep->nodelists[node]) { | 
|  | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | 
|  | if (!l3) | 
|  | goto bad; | 
|  | kmem_list3_init(l3); | 
|  | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | 
|  | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 
|  |  | 
|  | /* | 
|  | * The l3s don't come and go as CPUs come and | 
|  | * go.  cache_chain_mutex is sufficient | 
|  | * protection here. | 
|  | */ | 
|  | cachep->nodelists[node] = l3; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&cachep->nodelists[node]->list_lock); | 
|  | cachep->nodelists[node]->free_limit = | 
|  | (1 + nr_cpus_node(node)) * | 
|  | cachep->batchcount + cachep->num; | 
|  | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we can go ahead with allocating the shared arrays and | 
|  | * array caches | 
|  | */ | 
|  | list_for_each_entry(cachep, &cache_chain, next) { | 
|  | struct array_cache *nc; | 
|  | struct array_cache *shared = NULL; | 
|  | struct array_cache **alien = NULL; | 
|  |  | 
|  | nc = alloc_arraycache(node, cachep->limit, | 
|  | cachep->batchcount); | 
|  | if (!nc) | 
|  | goto bad; | 
|  | if (cachep->shared) { | 
|  | shared = alloc_arraycache(node, | 
|  | cachep->shared * cachep->batchcount, | 
|  | 0xbaadf00d); | 
|  | if (!shared) { | 
|  | kfree(nc); | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  | if (use_alien_caches) { | 
|  | alien = alloc_alien_cache(node, cachep->limit); | 
|  | if (!alien) { | 
|  | kfree(shared); | 
|  | kfree(nc); | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  | cachep->array[cpu] = nc; | 
|  | l3 = cachep->nodelists[node]; | 
|  | BUG_ON(!l3); | 
|  |  | 
|  | spin_lock_irq(&l3->list_lock); | 
|  | if (!l3->shared) { | 
|  | /* | 
|  | * We are serialised from CPU_DEAD or | 
|  | * CPU_UP_CANCELLED by the cpucontrol lock | 
|  | */ | 
|  | l3->shared = shared; | 
|  | shared = NULL; | 
|  | } | 
|  | #ifdef CONFIG_NUMA | 
|  | if (!l3->alien) { | 
|  | l3->alien = alien; | 
|  | alien = NULL; | 
|  | } | 
|  | #endif | 
|  | spin_unlock_irq(&l3->list_lock); | 
|  | kfree(shared); | 
|  | free_alien_cache(alien); | 
|  | } | 
|  | return 0; | 
|  | bad: | 
|  | cpuup_canceled(cpu); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int __cpuinit cpuup_callback(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | long cpu = (long)hcpu; | 
|  | int err = 0; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | mutex_lock(&cache_chain_mutex); | 
|  | err = cpuup_prepare(cpu); | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | break; | 
|  | case CPU_ONLINE: | 
|  | case CPU_ONLINE_FROZEN: | 
|  | start_cpu_timer(cpu); | 
|  | break; | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | case CPU_DOWN_PREPARE: | 
|  | case CPU_DOWN_PREPARE_FROZEN: | 
|  | /* | 
|  | * Shutdown cache reaper. Note that the cache_chain_mutex is | 
|  | * held so that if cache_reap() is invoked it cannot do | 
|  | * anything expensive but will only modify reap_work | 
|  | * and reschedule the timer. | 
|  | */ | 
|  | cancel_rearming_delayed_work(&per_cpu(reap_work, cpu)); | 
|  | /* Now the cache_reaper is guaranteed to be not running. */ | 
|  | per_cpu(reap_work, cpu).work.func = NULL; | 
|  | break; | 
|  | case CPU_DOWN_FAILED: | 
|  | case CPU_DOWN_FAILED_FROZEN: | 
|  | start_cpu_timer(cpu); | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | /* | 
|  | * Even if all the cpus of a node are down, we don't free the | 
|  | * kmem_list3 of any cache. This to avoid a race between | 
|  | * cpu_down, and a kmalloc allocation from another cpu for | 
|  | * memory from the node of the cpu going down.  The list3 | 
|  | * structure is usually allocated from kmem_cache_create() and | 
|  | * gets destroyed at kmem_cache_destroy(). | 
|  | */ | 
|  | /* fall through */ | 
|  | #endif | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_UP_CANCELED_FROZEN: | 
|  | mutex_lock(&cache_chain_mutex); | 
|  | cpuup_canceled(cpu); | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | break; | 
|  | } | 
|  | return err ? NOTIFY_BAD : NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block __cpuinitdata cpucache_notifier = { | 
|  | &cpuup_callback, NULL, 0 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * swap the static kmem_list3 with kmalloced memory | 
|  | */ | 
|  | static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, | 
|  | int nodeid) | 
|  | { | 
|  | struct kmem_list3 *ptr; | 
|  |  | 
|  | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); | 
|  | BUG_ON(!ptr); | 
|  |  | 
|  | local_irq_disable(); | 
|  | memcpy(ptr, list, sizeof(struct kmem_list3)); | 
|  | /* | 
|  | * Do not assume that spinlocks can be initialized via memcpy: | 
|  | */ | 
|  | spin_lock_init(&ptr->list_lock); | 
|  |  | 
|  | MAKE_ALL_LISTS(cachep, ptr, nodeid); | 
|  | cachep->nodelists[nodeid] = ptr; | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For setting up all the kmem_list3s for cache whose buffer_size is same as | 
|  | * size of kmem_list3. | 
|  | */ | 
|  | static void __init set_up_list3s(struct kmem_cache *cachep, int index) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | cachep->nodelists[node] = &initkmem_list3[index + node]; | 
|  | cachep->nodelists[node]->next_reap = jiffies + | 
|  | REAPTIMEOUT_LIST3 + | 
|  | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialisation.  Called after the page allocator have been initialised and | 
|  | * before smp_init(). | 
|  | */ | 
|  | void __init kmem_cache_init(void) | 
|  | { | 
|  | size_t left_over; | 
|  | struct cache_sizes *sizes; | 
|  | struct cache_names *names; | 
|  | int i; | 
|  | int order; | 
|  | int node; | 
|  |  | 
|  | if (num_possible_nodes() == 1) { | 
|  | use_alien_caches = 0; | 
|  | numa_platform = 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NUM_INIT_LISTS; i++) { | 
|  | kmem_list3_init(&initkmem_list3[i]); | 
|  | if (i < MAX_NUMNODES) | 
|  | cache_cache.nodelists[i] = NULL; | 
|  | } | 
|  | set_up_list3s(&cache_cache, CACHE_CACHE); | 
|  |  | 
|  | /* | 
|  | * Fragmentation resistance on low memory - only use bigger | 
|  | * page orders on machines with more than 32MB of memory. | 
|  | */ | 
|  | if (num_physpages > (32 << 20) >> PAGE_SHIFT) | 
|  | slab_break_gfp_order = BREAK_GFP_ORDER_HI; | 
|  |  | 
|  | /* Bootstrap is tricky, because several objects are allocated | 
|  | * from caches that do not exist yet: | 
|  | * 1) initialize the cache_cache cache: it contains the struct | 
|  | *    kmem_cache structures of all caches, except cache_cache itself: | 
|  | *    cache_cache is statically allocated. | 
|  | *    Initially an __init data area is used for the head array and the | 
|  | *    kmem_list3 structures, it's replaced with a kmalloc allocated | 
|  | *    array at the end of the bootstrap. | 
|  | * 2) Create the first kmalloc cache. | 
|  | *    The struct kmem_cache for the new cache is allocated normally. | 
|  | *    An __init data area is used for the head array. | 
|  | * 3) Create the remaining kmalloc caches, with minimally sized | 
|  | *    head arrays. | 
|  | * 4) Replace the __init data head arrays for cache_cache and the first | 
|  | *    kmalloc cache with kmalloc allocated arrays. | 
|  | * 5) Replace the __init data for kmem_list3 for cache_cache and | 
|  | *    the other cache's with kmalloc allocated memory. | 
|  | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | 
|  | */ | 
|  |  | 
|  | node = numa_node_id(); | 
|  |  | 
|  | /* 1) create the cache_cache */ | 
|  | INIT_LIST_HEAD(&cache_chain); | 
|  | list_add(&cache_cache.next, &cache_chain); | 
|  | cache_cache.colour_off = cache_line_size(); | 
|  | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | 
|  | cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; | 
|  |  | 
|  | /* | 
|  | * struct kmem_cache size depends on nr_node_ids, which | 
|  | * can be less than MAX_NUMNODES. | 
|  | */ | 
|  | cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) + | 
|  | nr_node_ids * sizeof(struct kmem_list3 *); | 
|  | #if DEBUG | 
|  | cache_cache.obj_size = cache_cache.buffer_size; | 
|  | #endif | 
|  | cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, | 
|  | cache_line_size()); | 
|  | cache_cache.reciprocal_buffer_size = | 
|  | reciprocal_value(cache_cache.buffer_size); | 
|  |  | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | cache_estimate(order, cache_cache.buffer_size, | 
|  | cache_line_size(), 0, &left_over, &cache_cache.num); | 
|  | if (cache_cache.num) | 
|  | break; | 
|  | } | 
|  | BUG_ON(!cache_cache.num); | 
|  | cache_cache.gfporder = order; | 
|  | cache_cache.colour = left_over / cache_cache.colour_off; | 
|  | cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + | 
|  | sizeof(struct slab), cache_line_size()); | 
|  |  | 
|  | /* 2+3) create the kmalloc caches */ | 
|  | sizes = malloc_sizes; | 
|  | names = cache_names; | 
|  |  | 
|  | /* | 
|  | * Initialize the caches that provide memory for the array cache and the | 
|  | * kmem_list3 structures first.  Without this, further allocations will | 
|  | * bug. | 
|  | */ | 
|  |  | 
|  | sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, | 
|  | sizes[INDEX_AC].cs_size, | 
|  | ARCH_KMALLOC_MINALIGN, | 
|  | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | 
|  | NULL); | 
|  |  | 
|  | if (INDEX_AC != INDEX_L3) { | 
|  | sizes[INDEX_L3].cs_cachep = | 
|  | kmem_cache_create(names[INDEX_L3].name, | 
|  | sizes[INDEX_L3].cs_size, | 
|  | ARCH_KMALLOC_MINALIGN, | 
|  | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | slab_early_init = 0; | 
|  |  | 
|  | while (sizes->cs_size != ULONG_MAX) { | 
|  | /* | 
|  | * For performance, all the general caches are L1 aligned. | 
|  | * This should be particularly beneficial on SMP boxes, as it | 
|  | * eliminates "false sharing". | 
|  | * Note for systems short on memory removing the alignment will | 
|  | * allow tighter packing of the smaller caches. | 
|  | */ | 
|  | if (!sizes->cs_cachep) { | 
|  | sizes->cs_cachep = kmem_cache_create(names->name, | 
|  | sizes->cs_size, | 
|  | ARCH_KMALLOC_MINALIGN, | 
|  | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | 
|  | NULL); | 
|  | } | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | sizes->cs_dmacachep = kmem_cache_create( | 
|  | names->name_dma, | 
|  | sizes->cs_size, | 
|  | ARCH_KMALLOC_MINALIGN, | 
|  | ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| | 
|  | SLAB_PANIC, | 
|  | NULL); | 
|  | #endif | 
|  | sizes++; | 
|  | names++; | 
|  | } | 
|  | /* 4) Replace the bootstrap head arrays */ | 
|  | { | 
|  | struct array_cache *ptr; | 
|  |  | 
|  | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 
|  |  | 
|  | local_irq_disable(); | 
|  | BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); | 
|  | memcpy(ptr, cpu_cache_get(&cache_cache), | 
|  | sizeof(struct arraycache_init)); | 
|  | /* | 
|  | * Do not assume that spinlocks can be initialized via memcpy: | 
|  | */ | 
|  | spin_lock_init(&ptr->lock); | 
|  |  | 
|  | cache_cache.array[smp_processor_id()] = ptr; | 
|  | local_irq_enable(); | 
|  |  | 
|  | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 
|  |  | 
|  | local_irq_disable(); | 
|  | BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) | 
|  | != &initarray_generic.cache); | 
|  | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), | 
|  | sizeof(struct arraycache_init)); | 
|  | /* | 
|  | * Do not assume that spinlocks can be initialized via memcpy: | 
|  | */ | 
|  | spin_lock_init(&ptr->lock); | 
|  |  | 
|  | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = | 
|  | ptr; | 
|  | local_irq_enable(); | 
|  | } | 
|  | /* 5) Replace the bootstrap kmem_list3's */ | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); | 
|  |  | 
|  | init_list(malloc_sizes[INDEX_AC].cs_cachep, | 
|  | &initkmem_list3[SIZE_AC + nid], nid); | 
|  |  | 
|  | if (INDEX_AC != INDEX_L3) { | 
|  | init_list(malloc_sizes[INDEX_L3].cs_cachep, | 
|  | &initkmem_list3[SIZE_L3 + nid], nid); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 6) resize the head arrays to their final sizes */ | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  | mutex_lock(&cache_chain_mutex); | 
|  | list_for_each_entry(cachep, &cache_chain, next) | 
|  | if (enable_cpucache(cachep)) | 
|  | BUG(); | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | } | 
|  |  | 
|  | /* Annotate slab for lockdep -- annotate the malloc caches */ | 
|  | init_lock_keys(); | 
|  |  | 
|  |  | 
|  | /* Done! */ | 
|  | g_cpucache_up = FULL; | 
|  |  | 
|  | /* | 
|  | * Register a cpu startup notifier callback that initializes | 
|  | * cpu_cache_get for all new cpus | 
|  | */ | 
|  | register_cpu_notifier(&cpucache_notifier); | 
|  |  | 
|  | /* | 
|  | * The reap timers are started later, with a module init call: That part | 
|  | * of the kernel is not yet operational. | 
|  | */ | 
|  | } | 
|  |  | 
|  | static int __init cpucache_init(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* | 
|  | * Register the timers that return unneeded pages to the page allocator | 
|  | */ | 
|  | for_each_online_cpu(cpu) | 
|  | start_cpu_timer(cpu); | 
|  | return 0; | 
|  | } | 
|  | __initcall(cpucache_init); | 
|  |  | 
|  | /* | 
|  | * Interface to system's page allocator. No need to hold the cache-lock. | 
|  | * | 
|  | * If we requested dmaable memory, we will get it. Even if we | 
|  | * did not request dmaable memory, we might get it, but that | 
|  | * would be relatively rare and ignorable. | 
|  | */ | 
|  | static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) | 
|  | { | 
|  | struct page *page; | 
|  | int nr_pages; | 
|  | int i; | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | /* | 
|  | * Nommu uses slab's for process anonymous memory allocations, and thus | 
|  | * requires __GFP_COMP to properly refcount higher order allocations | 
|  | */ | 
|  | flags |= __GFP_COMP; | 
|  | #endif | 
|  |  | 
|  | flags |= cachep->gfpflags; | 
|  | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | flags |= __GFP_RECLAIMABLE; | 
|  |  | 
|  | page = alloc_pages_node(nodeid, flags, cachep->gfporder); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | nr_pages = (1 << cachep->gfporder); | 
|  | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | add_zone_page_state(page_zone(page), | 
|  | NR_SLAB_RECLAIMABLE, nr_pages); | 
|  | else | 
|  | add_zone_page_state(page_zone(page), | 
|  | NR_SLAB_UNRECLAIMABLE, nr_pages); | 
|  | for (i = 0; i < nr_pages; i++) | 
|  | __SetPageSlab(page + i); | 
|  | return page_address(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interface to system's page release. | 
|  | */ | 
|  | static void kmem_freepages(struct kmem_cache *cachep, void *addr) | 
|  | { | 
|  | unsigned long i = (1 << cachep->gfporder); | 
|  | struct page *page = virt_to_page(addr); | 
|  | const unsigned long nr_freed = i; | 
|  |  | 
|  | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | sub_zone_page_state(page_zone(page), | 
|  | NR_SLAB_RECLAIMABLE, nr_freed); | 
|  | else | 
|  | sub_zone_page_state(page_zone(page), | 
|  | NR_SLAB_UNRECLAIMABLE, nr_freed); | 
|  | while (i--) { | 
|  | BUG_ON(!PageSlab(page)); | 
|  | __ClearPageSlab(page); | 
|  | page++; | 
|  | } | 
|  | if (current->reclaim_state) | 
|  | current->reclaim_state->reclaimed_slab += nr_freed; | 
|  | free_pages((unsigned long)addr, cachep->gfporder); | 
|  | } | 
|  |  | 
|  | static void kmem_rcu_free(struct rcu_head *head) | 
|  | { | 
|  | struct slab_rcu *slab_rcu = (struct slab_rcu *)head; | 
|  | struct kmem_cache *cachep = slab_rcu->cachep; | 
|  |  | 
|  | kmem_freepages(cachep, slab_rcu->addr); | 
|  | if (OFF_SLAB(cachep)) | 
|  | kmem_cache_free(cachep->slabp_cache, slab_rcu); | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, | 
|  | unsigned long caller) | 
|  | { | 
|  | int size = obj_size(cachep); | 
|  |  | 
|  | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; | 
|  |  | 
|  | if (size < 5 * sizeof(unsigned long)) | 
|  | return; | 
|  |  | 
|  | *addr++ = 0x12345678; | 
|  | *addr++ = caller; | 
|  | *addr++ = smp_processor_id(); | 
|  | size -= 3 * sizeof(unsigned long); | 
|  | { | 
|  | unsigned long *sptr = &caller; | 
|  | unsigned long svalue; | 
|  |  | 
|  | while (!kstack_end(sptr)) { | 
|  | svalue = *sptr++; | 
|  | if (kernel_text_address(svalue)) { | 
|  | *addr++ = svalue; | 
|  | size -= sizeof(unsigned long); | 
|  | if (size <= sizeof(unsigned long)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  | *addr++ = 0x87654321; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) | 
|  | { | 
|  | int size = obj_size(cachep); | 
|  | addr = &((char *)addr)[obj_offset(cachep)]; | 
|  |  | 
|  | memset(addr, val, size); | 
|  | *(unsigned char *)(addr + size - 1) = POISON_END; | 
|  | } | 
|  |  | 
|  | static void dump_line(char *data, int offset, int limit) | 
|  | { | 
|  | int i; | 
|  | unsigned char error = 0; | 
|  | int bad_count = 0; | 
|  |  | 
|  | printk(KERN_ERR "%03x:", offset); | 
|  | for (i = 0; i < limit; i++) { | 
|  | if (data[offset + i] != POISON_FREE) { | 
|  | error = data[offset + i]; | 
|  | bad_count++; | 
|  | } | 
|  | printk(" %02x", (unsigned char)data[offset + i]); | 
|  | } | 
|  | printk("\n"); | 
|  |  | 
|  | if (bad_count == 1) { | 
|  | error ^= POISON_FREE; | 
|  | if (!(error & (error - 1))) { | 
|  | printk(KERN_ERR "Single bit error detected. Probably " | 
|  | "bad RAM.\n"); | 
|  | #ifdef CONFIG_X86 | 
|  | printk(KERN_ERR "Run memtest86+ or a similar memory " | 
|  | "test tool.\n"); | 
|  | #else | 
|  | printk(KERN_ERR "Run a memory test tool.\n"); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG | 
|  |  | 
|  | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) | 
|  | { | 
|  | int i, size; | 
|  | char *realobj; | 
|  |  | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", | 
|  | *dbg_redzone1(cachep, objp), | 
|  | *dbg_redzone2(cachep, objp)); | 
|  | } | 
|  |  | 
|  | if (cachep->flags & SLAB_STORE_USER) { | 
|  | printk(KERN_ERR "Last user: [<%p>]", | 
|  | *dbg_userword(cachep, objp)); | 
|  | print_symbol("(%s)", | 
|  | (unsigned long)*dbg_userword(cachep, objp)); | 
|  | printk("\n"); | 
|  | } | 
|  | realobj = (char *)objp + obj_offset(cachep); | 
|  | size = obj_size(cachep); | 
|  | for (i = 0; i < size && lines; i += 16, lines--) { | 
|  | int limit; | 
|  | limit = 16; | 
|  | if (i + limit > size) | 
|  | limit = size - i; | 
|  | dump_line(realobj, i, limit); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_poison_obj(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | char *realobj; | 
|  | int size, i; | 
|  | int lines = 0; | 
|  |  | 
|  | realobj = (char *)objp + obj_offset(cachep); | 
|  | size = obj_size(cachep); | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | char exp = POISON_FREE; | 
|  | if (i == size - 1) | 
|  | exp = POISON_END; | 
|  | if (realobj[i] != exp) { | 
|  | int limit; | 
|  | /* Mismatch ! */ | 
|  | /* Print header */ | 
|  | if (lines == 0) { | 
|  | printk(KERN_ERR | 
|  | "Slab corruption: %s start=%p, len=%d\n", | 
|  | cachep->name, realobj, size); | 
|  | print_objinfo(cachep, objp, 0); | 
|  | } | 
|  | /* Hexdump the affected line */ | 
|  | i = (i / 16) * 16; | 
|  | limit = 16; | 
|  | if (i + limit > size) | 
|  | limit = size - i; | 
|  | dump_line(realobj, i, limit); | 
|  | i += 16; | 
|  | lines++; | 
|  | /* Limit to 5 lines */ | 
|  | if (lines > 5) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (lines != 0) { | 
|  | /* Print some data about the neighboring objects, if they | 
|  | * exist: | 
|  | */ | 
|  | struct slab *slabp = virt_to_slab(objp); | 
|  | unsigned int objnr; | 
|  |  | 
|  | objnr = obj_to_index(cachep, slabp, objp); | 
|  | if (objnr) { | 
|  | objp = index_to_obj(cachep, slabp, objnr - 1); | 
|  | realobj = (char *)objp + obj_offset(cachep); | 
|  | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", | 
|  | realobj, size); | 
|  | print_objinfo(cachep, objp, 2); | 
|  | } | 
|  | if (objnr + 1 < cachep->num) { | 
|  | objp = index_to_obj(cachep, slabp, objnr + 1); | 
|  | realobj = (char *)objp + obj_offset(cachep); | 
|  | printk(KERN_ERR "Next obj: start=%p, len=%d\n", | 
|  | realobj, size); | 
|  | print_objinfo(cachep, objp, 2); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG | 
|  | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < cachep->num; i++) { | 
|  | void *objp = index_to_obj(cachep, slabp, i); | 
|  |  | 
|  | if (cachep->flags & SLAB_POISON) { | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if (cachep->buffer_size % PAGE_SIZE == 0 && | 
|  | OFF_SLAB(cachep)) | 
|  | kernel_map_pages(virt_to_page(objp), | 
|  | cachep->buffer_size / PAGE_SIZE, 1); | 
|  | else | 
|  | check_poison_obj(cachep, objp); | 
|  | #else | 
|  | check_poison_obj(cachep, objp); | 
|  | #endif | 
|  | } | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | 
|  | slab_error(cachep, "start of a freed object " | 
|  | "was overwritten"); | 
|  | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 
|  | slab_error(cachep, "end of a freed object " | 
|  | "was overwritten"); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * slab_destroy - destroy and release all objects in a slab | 
|  | * @cachep: cache pointer being destroyed | 
|  | * @slabp: slab pointer being destroyed | 
|  | * | 
|  | * Destroy all the objs in a slab, and release the mem back to the system. | 
|  | * Before calling the slab must have been unlinked from the cache.  The | 
|  | * cache-lock is not held/needed. | 
|  | */ | 
|  | static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) | 
|  | { | 
|  | void *addr = slabp->s_mem - slabp->colouroff; | 
|  |  | 
|  | slab_destroy_debugcheck(cachep, slabp); | 
|  | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { | 
|  | struct slab_rcu *slab_rcu; | 
|  |  | 
|  | slab_rcu = (struct slab_rcu *)slabp; | 
|  | slab_rcu->cachep = cachep; | 
|  | slab_rcu->addr = addr; | 
|  | call_rcu(&slab_rcu->head, kmem_rcu_free); | 
|  | } else { | 
|  | kmem_freepages(cachep, addr); | 
|  | if (OFF_SLAB(cachep)) | 
|  | kmem_cache_free(cachep->slabp_cache, slabp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __kmem_cache_destroy(struct kmem_cache *cachep) | 
|  | { | 
|  | int i; | 
|  | struct kmem_list3 *l3; | 
|  |  | 
|  | for_each_online_cpu(i) | 
|  | kfree(cachep->array[i]); | 
|  |  | 
|  | /* NUMA: free the list3 structures */ | 
|  | for_each_online_node(i) { | 
|  | l3 = cachep->nodelists[i]; | 
|  | if (l3) { | 
|  | kfree(l3->shared); | 
|  | free_alien_cache(l3->alien); | 
|  | kfree(l3); | 
|  | } | 
|  | } | 
|  | kmem_cache_free(&cache_cache, cachep); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * calculate_slab_order - calculate size (page order) of slabs | 
|  | * @cachep: pointer to the cache that is being created | 
|  | * @size: size of objects to be created in this cache. | 
|  | * @align: required alignment for the objects. | 
|  | * @flags: slab allocation flags | 
|  | * | 
|  | * Also calculates the number of objects per slab. | 
|  | * | 
|  | * This could be made much more intelligent.  For now, try to avoid using | 
|  | * high order pages for slabs.  When the gfp() functions are more friendly | 
|  | * towards high-order requests, this should be changed. | 
|  | */ | 
|  | static size_t calculate_slab_order(struct kmem_cache *cachep, | 
|  | size_t size, size_t align, unsigned long flags) | 
|  | { | 
|  | unsigned long offslab_limit; | 
|  | size_t left_over = 0; | 
|  | int gfporder; | 
|  |  | 
|  | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { | 
|  | unsigned int num; | 
|  | size_t remainder; | 
|  |  | 
|  | cache_estimate(gfporder, size, align, flags, &remainder, &num); | 
|  | if (!num) | 
|  | continue; | 
|  |  | 
|  | if (flags & CFLGS_OFF_SLAB) { | 
|  | /* | 
|  | * Max number of objs-per-slab for caches which | 
|  | * use off-slab slabs. Needed to avoid a possible | 
|  | * looping condition in cache_grow(). | 
|  | */ | 
|  | offslab_limit = size - sizeof(struct slab); | 
|  | offslab_limit /= sizeof(kmem_bufctl_t); | 
|  |  | 
|  | if (num > offslab_limit) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Found something acceptable - save it away */ | 
|  | cachep->num = num; | 
|  | cachep->gfporder = gfporder; | 
|  | left_over = remainder; | 
|  |  | 
|  | /* | 
|  | * A VFS-reclaimable slab tends to have most allocations | 
|  | * as GFP_NOFS and we really don't want to have to be allocating | 
|  | * higher-order pages when we are unable to shrink dcache. | 
|  | */ | 
|  | if (flags & SLAB_RECLAIM_ACCOUNT) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Large number of objects is good, but very large slabs are | 
|  | * currently bad for the gfp()s. | 
|  | */ | 
|  | if (gfporder >= slab_break_gfp_order) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Acceptable internal fragmentation? | 
|  | */ | 
|  | if (left_over * 8 <= (PAGE_SIZE << gfporder)) | 
|  | break; | 
|  | } | 
|  | return left_over; | 
|  | } | 
|  |  | 
|  | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep) | 
|  | { | 
|  | if (g_cpucache_up == FULL) | 
|  | return enable_cpucache(cachep); | 
|  |  | 
|  | if (g_cpucache_up == NONE) { | 
|  | /* | 
|  | * Note: the first kmem_cache_create must create the cache | 
|  | * that's used by kmalloc(24), otherwise the creation of | 
|  | * further caches will BUG(). | 
|  | */ | 
|  | cachep->array[smp_processor_id()] = &initarray_generic.cache; | 
|  |  | 
|  | /* | 
|  | * If the cache that's used by kmalloc(sizeof(kmem_list3)) is | 
|  | * the first cache, then we need to set up all its list3s, | 
|  | * otherwise the creation of further caches will BUG(). | 
|  | */ | 
|  | set_up_list3s(cachep, SIZE_AC); | 
|  | if (INDEX_AC == INDEX_L3) | 
|  | g_cpucache_up = PARTIAL_L3; | 
|  | else | 
|  | g_cpucache_up = PARTIAL_AC; | 
|  | } else { | 
|  | cachep->array[smp_processor_id()] = | 
|  | kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 
|  |  | 
|  | if (g_cpucache_up == PARTIAL_AC) { | 
|  | set_up_list3s(cachep, SIZE_L3); | 
|  | g_cpucache_up = PARTIAL_L3; | 
|  | } else { | 
|  | int node; | 
|  | for_each_online_node(node) { | 
|  | cachep->nodelists[node] = | 
|  | kmalloc_node(sizeof(struct kmem_list3), | 
|  | GFP_KERNEL, node); | 
|  | BUG_ON(!cachep->nodelists[node]); | 
|  | kmem_list3_init(cachep->nodelists[node]); | 
|  | } | 
|  | } | 
|  | } | 
|  | cachep->nodelists[numa_node_id()]->next_reap = | 
|  | jiffies + REAPTIMEOUT_LIST3 + | 
|  | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 
|  |  | 
|  | cpu_cache_get(cachep)->avail = 0; | 
|  | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | 
|  | cpu_cache_get(cachep)->batchcount = 1; | 
|  | cpu_cache_get(cachep)->touched = 0; | 
|  | cachep->batchcount = 1; | 
|  | cachep->limit = BOOT_CPUCACHE_ENTRIES; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kmem_cache_create - Create a cache. | 
|  | * @name: A string which is used in /proc/slabinfo to identify this cache. | 
|  | * @size: The size of objects to be created in this cache. | 
|  | * @align: The required alignment for the objects. | 
|  | * @flags: SLAB flags | 
|  | * @ctor: A constructor for the objects. | 
|  | * | 
|  | * Returns a ptr to the cache on success, NULL on failure. | 
|  | * Cannot be called within a int, but can be interrupted. | 
|  | * The @ctor is run when new pages are allocated by the cache. | 
|  | * | 
|  | * @name must be valid until the cache is destroyed. This implies that | 
|  | * the module calling this has to destroy the cache before getting unloaded. | 
|  | * | 
|  | * The flags are | 
|  | * | 
|  | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
|  | * to catch references to uninitialised memory. | 
|  | * | 
|  | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | 
|  | * for buffer overruns. | 
|  | * | 
|  | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
|  | * cacheline.  This can be beneficial if you're counting cycles as closely | 
|  | * as davem. | 
|  | */ | 
|  | struct kmem_cache * | 
|  | kmem_cache_create (const char *name, size_t size, size_t align, | 
|  | unsigned long flags, void (*ctor)(void *)) | 
|  | { | 
|  | size_t left_over, slab_size, ralign; | 
|  | struct kmem_cache *cachep = NULL, *pc; | 
|  |  | 
|  | /* | 
|  | * Sanity checks... these are all serious usage bugs. | 
|  | */ | 
|  | if (!name || in_interrupt() || (size < BYTES_PER_WORD) || | 
|  | size > KMALLOC_MAX_SIZE) { | 
|  | printk(KERN_ERR "%s: Early error in slab %s\n", __func__, | 
|  | name); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We use cache_chain_mutex to ensure a consistent view of | 
|  | * cpu_online_map as well.  Please see cpuup_callback | 
|  | */ | 
|  | get_online_cpus(); | 
|  | mutex_lock(&cache_chain_mutex); | 
|  |  | 
|  | list_for_each_entry(pc, &cache_chain, next) { | 
|  | char tmp; | 
|  | int res; | 
|  |  | 
|  | /* | 
|  | * This happens when the module gets unloaded and doesn't | 
|  | * destroy its slab cache and no-one else reuses the vmalloc | 
|  | * area of the module.  Print a warning. | 
|  | */ | 
|  | res = probe_kernel_address(pc->name, tmp); | 
|  | if (res) { | 
|  | printk(KERN_ERR | 
|  | "SLAB: cache with size %d has lost its name\n", | 
|  | pc->buffer_size); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!strcmp(pc->name, name)) { | 
|  | printk(KERN_ERR | 
|  | "kmem_cache_create: duplicate cache %s\n", name); | 
|  | dump_stack(); | 
|  | goto oops; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  | WARN_ON(strchr(name, ' '));	/* It confuses parsers */ | 
|  | #if FORCED_DEBUG | 
|  | /* | 
|  | * Enable redzoning and last user accounting, except for caches with | 
|  | * large objects, if the increased size would increase the object size | 
|  | * above the next power of two: caches with object sizes just above a | 
|  | * power of two have a significant amount of internal fragmentation. | 
|  | */ | 
|  | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + | 
|  | 2 * sizeof(unsigned long long))) | 
|  | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; | 
|  | if (!(flags & SLAB_DESTROY_BY_RCU)) | 
|  | flags |= SLAB_POISON; | 
|  | #endif | 
|  | if (flags & SLAB_DESTROY_BY_RCU) | 
|  | BUG_ON(flags & SLAB_POISON); | 
|  | #endif | 
|  | /* | 
|  | * Always checks flags, a caller might be expecting debug support which | 
|  | * isn't available. | 
|  | */ | 
|  | BUG_ON(flags & ~CREATE_MASK); | 
|  |  | 
|  | /* | 
|  | * Check that size is in terms of words.  This is needed to avoid | 
|  | * unaligned accesses for some archs when redzoning is used, and makes | 
|  | * sure any on-slab bufctl's are also correctly aligned. | 
|  | */ | 
|  | if (size & (BYTES_PER_WORD - 1)) { | 
|  | size += (BYTES_PER_WORD - 1); | 
|  | size &= ~(BYTES_PER_WORD - 1); | 
|  | } | 
|  |  | 
|  | /* calculate the final buffer alignment: */ | 
|  |  | 
|  | /* 1) arch recommendation: can be overridden for debug */ | 
|  | if (flags & SLAB_HWCACHE_ALIGN) { | 
|  | /* | 
|  | * Default alignment: as specified by the arch code.  Except if | 
|  | * an object is really small, then squeeze multiple objects into | 
|  | * one cacheline. | 
|  | */ | 
|  | ralign = cache_line_size(); | 
|  | while (size <= ralign / 2) | 
|  | ralign /= 2; | 
|  | } else { | 
|  | ralign = BYTES_PER_WORD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Redzoning and user store require word alignment or possibly larger. | 
|  | * Note this will be overridden by architecture or caller mandated | 
|  | * alignment if either is greater than BYTES_PER_WORD. | 
|  | */ | 
|  | if (flags & SLAB_STORE_USER) | 
|  | ralign = BYTES_PER_WORD; | 
|  |  | 
|  | if (flags & SLAB_RED_ZONE) { | 
|  | ralign = REDZONE_ALIGN; | 
|  | /* If redzoning, ensure that the second redzone is suitably | 
|  | * aligned, by adjusting the object size accordingly. */ | 
|  | size += REDZONE_ALIGN - 1; | 
|  | size &= ~(REDZONE_ALIGN - 1); | 
|  | } | 
|  |  | 
|  | /* 2) arch mandated alignment */ | 
|  | if (ralign < ARCH_SLAB_MINALIGN) { | 
|  | ralign = ARCH_SLAB_MINALIGN; | 
|  | } | 
|  | /* 3) caller mandated alignment */ | 
|  | if (ralign < align) { | 
|  | ralign = align; | 
|  | } | 
|  | /* disable debug if necessary */ | 
|  | if (ralign > __alignof__(unsigned long long)) | 
|  | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | 
|  | /* | 
|  | * 4) Store it. | 
|  | */ | 
|  | align = ralign; | 
|  |  | 
|  | /* Get cache's description obj. */ | 
|  | cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL); | 
|  | if (!cachep) | 
|  | goto oops; | 
|  |  | 
|  | #if DEBUG | 
|  | cachep->obj_size = size; | 
|  |  | 
|  | /* | 
|  | * Both debugging options require word-alignment which is calculated | 
|  | * into align above. | 
|  | */ | 
|  | if (flags & SLAB_RED_ZONE) { | 
|  | /* add space for red zone words */ | 
|  | cachep->obj_offset += sizeof(unsigned long long); | 
|  | size += 2 * sizeof(unsigned long long); | 
|  | } | 
|  | if (flags & SLAB_STORE_USER) { | 
|  | /* user store requires one word storage behind the end of | 
|  | * the real object. But if the second red zone needs to be | 
|  | * aligned to 64 bits, we must allow that much space. | 
|  | */ | 
|  | if (flags & SLAB_RED_ZONE) | 
|  | size += REDZONE_ALIGN; | 
|  | else | 
|  | size += BYTES_PER_WORD; | 
|  | } | 
|  | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 
|  | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size | 
|  | && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { | 
|  | cachep->obj_offset += PAGE_SIZE - size; | 
|  | size = PAGE_SIZE; | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Determine if the slab management is 'on' or 'off' slab. | 
|  | * (bootstrapping cannot cope with offslab caches so don't do | 
|  | * it too early on.) | 
|  | */ | 
|  | if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init) | 
|  | /* | 
|  | * Size is large, assume best to place the slab management obj | 
|  | * off-slab (should allow better packing of objs). | 
|  | */ | 
|  | flags |= CFLGS_OFF_SLAB; | 
|  |  | 
|  | size = ALIGN(size, align); | 
|  |  | 
|  | left_over = calculate_slab_order(cachep, size, align, flags); | 
|  |  | 
|  | if (!cachep->num) { | 
|  | printk(KERN_ERR | 
|  | "kmem_cache_create: couldn't create cache %s.\n", name); | 
|  | kmem_cache_free(&cache_cache, cachep); | 
|  | cachep = NULL; | 
|  | goto oops; | 
|  | } | 
|  | slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) | 
|  | + sizeof(struct slab), align); | 
|  |  | 
|  | /* | 
|  | * If the slab has been placed off-slab, and we have enough space then | 
|  | * move it on-slab. This is at the expense of any extra colouring. | 
|  | */ | 
|  | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | 
|  | flags &= ~CFLGS_OFF_SLAB; | 
|  | left_over -= slab_size; | 
|  | } | 
|  |  | 
|  | if (flags & CFLGS_OFF_SLAB) { | 
|  | /* really off slab. No need for manual alignment */ | 
|  | slab_size = | 
|  | cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); | 
|  | } | 
|  |  | 
|  | cachep->colour_off = cache_line_size(); | 
|  | /* Offset must be a multiple of the alignment. */ | 
|  | if (cachep->colour_off < align) | 
|  | cachep->colour_off = align; | 
|  | cachep->colour = left_over / cachep->colour_off; | 
|  | cachep->slab_size = slab_size; | 
|  | cachep->flags = flags; | 
|  | cachep->gfpflags = 0; | 
|  | if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) | 
|  | cachep->gfpflags |= GFP_DMA; | 
|  | cachep->buffer_size = size; | 
|  | cachep->reciprocal_buffer_size = reciprocal_value(size); | 
|  |  | 
|  | if (flags & CFLGS_OFF_SLAB) { | 
|  | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); | 
|  | /* | 
|  | * This is a possibility for one of the malloc_sizes caches. | 
|  | * But since we go off slab only for object size greater than | 
|  | * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, | 
|  | * this should not happen at all. | 
|  | * But leave a BUG_ON for some lucky dude. | 
|  | */ | 
|  | BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); | 
|  | } | 
|  | cachep->ctor = ctor; | 
|  | cachep->name = name; | 
|  |  | 
|  | if (setup_cpu_cache(cachep)) { | 
|  | __kmem_cache_destroy(cachep); | 
|  | cachep = NULL; | 
|  | goto oops; | 
|  | } | 
|  |  | 
|  | /* cache setup completed, link it into the list */ | 
|  | list_add(&cachep->next, &cache_chain); | 
|  | oops: | 
|  | if (!cachep && (flags & SLAB_PANIC)) | 
|  | panic("kmem_cache_create(): failed to create slab `%s'\n", | 
|  | name); | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | put_online_cpus(); | 
|  | return cachep; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_create); | 
|  |  | 
|  | #if DEBUG | 
|  | static void check_irq_off(void) | 
|  | { | 
|  | BUG_ON(!irqs_disabled()); | 
|  | } | 
|  |  | 
|  | static void check_irq_on(void) | 
|  | { | 
|  | BUG_ON(irqs_disabled()); | 
|  | } | 
|  |  | 
|  | static void check_spinlock_acquired(struct kmem_cache *cachep) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | check_irq_off(); | 
|  | assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | check_irq_off(); | 
|  | assert_spin_locked(&cachep->nodelists[node]->list_lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define check_irq_off()	do { } while(0) | 
|  | #define check_irq_on()	do { } while(0) | 
|  | #define check_spinlock_acquired(x) do { } while(0) | 
|  | #define check_spinlock_acquired_node(x, y) do { } while(0) | 
|  | #endif | 
|  |  | 
|  | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | 
|  | struct array_cache *ac, | 
|  | int force, int node); | 
|  |  | 
|  | static void do_drain(void *arg) | 
|  | { | 
|  | struct kmem_cache *cachep = arg; | 
|  | struct array_cache *ac; | 
|  | int node = numa_node_id(); | 
|  |  | 
|  | check_irq_off(); | 
|  | ac = cpu_cache_get(cachep); | 
|  | spin_lock(&cachep->nodelists[node]->list_lock); | 
|  | free_block(cachep, ac->entry, ac->avail, node); | 
|  | spin_unlock(&cachep->nodelists[node]->list_lock); | 
|  | ac->avail = 0; | 
|  | } | 
|  |  | 
|  | static void drain_cpu_caches(struct kmem_cache *cachep) | 
|  | { | 
|  | struct kmem_list3 *l3; | 
|  | int node; | 
|  |  | 
|  | on_each_cpu(do_drain, cachep, 1); | 
|  | check_irq_on(); | 
|  | for_each_online_node(node) { | 
|  | l3 = cachep->nodelists[node]; | 
|  | if (l3 && l3->alien) | 
|  | drain_alien_cache(cachep, l3->alien); | 
|  | } | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | l3 = cachep->nodelists[node]; | 
|  | if (l3) | 
|  | drain_array(cachep, l3, l3->shared, 1, node); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove slabs from the list of free slabs. | 
|  | * Specify the number of slabs to drain in tofree. | 
|  | * | 
|  | * Returns the actual number of slabs released. | 
|  | */ | 
|  | static int drain_freelist(struct kmem_cache *cache, | 
|  | struct kmem_list3 *l3, int tofree) | 
|  | { | 
|  | struct list_head *p; | 
|  | int nr_freed; | 
|  | struct slab *slabp; | 
|  |  | 
|  | nr_freed = 0; | 
|  | while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { | 
|  |  | 
|  | spin_lock_irq(&l3->list_lock); | 
|  | p = l3->slabs_free.prev; | 
|  | if (p == &l3->slabs_free) { | 
|  | spin_unlock_irq(&l3->list_lock); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | slabp = list_entry(p, struct slab, list); | 
|  | #if DEBUG | 
|  | BUG_ON(slabp->inuse); | 
|  | #endif | 
|  | list_del(&slabp->list); | 
|  | /* | 
|  | * Safe to drop the lock. The slab is no longer linked | 
|  | * to the cache. | 
|  | */ | 
|  | l3->free_objects -= cache->num; | 
|  | spin_unlock_irq(&l3->list_lock); | 
|  | slab_destroy(cache, slabp); | 
|  | nr_freed++; | 
|  | } | 
|  | out: | 
|  | return nr_freed; | 
|  | } | 
|  |  | 
|  | /* Called with cache_chain_mutex held to protect against cpu hotplug */ | 
|  | static int __cache_shrink(struct kmem_cache *cachep) | 
|  | { | 
|  | int ret = 0, i = 0; | 
|  | struct kmem_list3 *l3; | 
|  |  | 
|  | drain_cpu_caches(cachep); | 
|  |  | 
|  | check_irq_on(); | 
|  | for_each_online_node(i) { | 
|  | l3 = cachep->nodelists[i]; | 
|  | if (!l3) | 
|  | continue; | 
|  |  | 
|  | drain_freelist(cachep, l3, l3->free_objects); | 
|  |  | 
|  | ret += !list_empty(&l3->slabs_full) || | 
|  | !list_empty(&l3->slabs_partial); | 
|  | } | 
|  | return (ret ? 1 : 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kmem_cache_shrink - Shrink a cache. | 
|  | * @cachep: The cache to shrink. | 
|  | * | 
|  | * Releases as many slabs as possible for a cache. | 
|  | * To help debugging, a zero exit status indicates all slabs were released. | 
|  | */ | 
|  | int kmem_cache_shrink(struct kmem_cache *cachep) | 
|  | { | 
|  | int ret; | 
|  | BUG_ON(!cachep || in_interrupt()); | 
|  |  | 
|  | get_online_cpus(); | 
|  | mutex_lock(&cache_chain_mutex); | 
|  | ret = __cache_shrink(cachep); | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | put_online_cpus(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_shrink); | 
|  |  | 
|  | /** | 
|  | * kmem_cache_destroy - delete a cache | 
|  | * @cachep: the cache to destroy | 
|  | * | 
|  | * Remove a &struct kmem_cache object from the slab cache. | 
|  | * | 
|  | * It is expected this function will be called by a module when it is | 
|  | * unloaded.  This will remove the cache completely, and avoid a duplicate | 
|  | * cache being allocated each time a module is loaded and unloaded, if the | 
|  | * module doesn't have persistent in-kernel storage across loads and unloads. | 
|  | * | 
|  | * The cache must be empty before calling this function. | 
|  | * | 
|  | * The caller must guarantee that noone will allocate memory from the cache | 
|  | * during the kmem_cache_destroy(). | 
|  | */ | 
|  | void kmem_cache_destroy(struct kmem_cache *cachep) | 
|  | { | 
|  | BUG_ON(!cachep || in_interrupt()); | 
|  |  | 
|  | /* Find the cache in the chain of caches. */ | 
|  | get_online_cpus(); | 
|  | mutex_lock(&cache_chain_mutex); | 
|  | /* | 
|  | * the chain is never empty, cache_cache is never destroyed | 
|  | */ | 
|  | list_del(&cachep->next); | 
|  | if (__cache_shrink(cachep)) { | 
|  | slab_error(cachep, "Can't free all objects"); | 
|  | list_add(&cachep->next, &cache_chain); | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | put_online_cpus(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | 
|  | synchronize_rcu(); | 
|  |  | 
|  | __kmem_cache_destroy(cachep); | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | put_online_cpus(); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_destroy); | 
|  |  | 
|  | /* | 
|  | * Get the memory for a slab management obj. | 
|  | * For a slab cache when the slab descriptor is off-slab, slab descriptors | 
|  | * always come from malloc_sizes caches.  The slab descriptor cannot | 
|  | * come from the same cache which is getting created because, | 
|  | * when we are searching for an appropriate cache for these | 
|  | * descriptors in kmem_cache_create, we search through the malloc_sizes array. | 
|  | * If we are creating a malloc_sizes cache here it would not be visible to | 
|  | * kmem_find_general_cachep till the initialization is complete. | 
|  | * Hence we cannot have slabp_cache same as the original cache. | 
|  | */ | 
|  | static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, | 
|  | int colour_off, gfp_t local_flags, | 
|  | int nodeid) | 
|  | { | 
|  | struct slab *slabp; | 
|  |  | 
|  | if (OFF_SLAB(cachep)) { | 
|  | /* Slab management obj is off-slab. */ | 
|  | slabp = kmem_cache_alloc_node(cachep->slabp_cache, | 
|  | local_flags & ~GFP_THISNODE, nodeid); | 
|  | if (!slabp) | 
|  | return NULL; | 
|  | } else { | 
|  | slabp = objp + colour_off; | 
|  | colour_off += cachep->slab_size; | 
|  | } | 
|  | slabp->inuse = 0; | 
|  | slabp->colouroff = colour_off; | 
|  | slabp->s_mem = objp + colour_off; | 
|  | slabp->nodeid = nodeid; | 
|  | slabp->free = 0; | 
|  | return slabp; | 
|  | } | 
|  |  | 
|  | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | 
|  | { | 
|  | return (kmem_bufctl_t *) (slabp + 1); | 
|  | } | 
|  |  | 
|  | static void cache_init_objs(struct kmem_cache *cachep, | 
|  | struct slab *slabp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cachep->num; i++) { | 
|  | void *objp = index_to_obj(cachep, slabp, i); | 
|  | #if DEBUG | 
|  | /* need to poison the objs? */ | 
|  | if (cachep->flags & SLAB_POISON) | 
|  | poison_obj(cachep, objp, POISON_FREE); | 
|  | if (cachep->flags & SLAB_STORE_USER) | 
|  | *dbg_userword(cachep, objp) = NULL; | 
|  |  | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | 
|  | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | 
|  | } | 
|  | /* | 
|  | * Constructors are not allowed to allocate memory from the same | 
|  | * cache which they are a constructor for.  Otherwise, deadlock. | 
|  | * They must also be threaded. | 
|  | */ | 
|  | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | 
|  | cachep->ctor(objp + obj_offset(cachep)); | 
|  |  | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 
|  | slab_error(cachep, "constructor overwrote the" | 
|  | " end of an object"); | 
|  | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | 
|  | slab_error(cachep, "constructor overwrote the" | 
|  | " start of an object"); | 
|  | } | 
|  | if ((cachep->buffer_size % PAGE_SIZE) == 0 && | 
|  | OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | 
|  | kernel_map_pages(virt_to_page(objp), | 
|  | cachep->buffer_size / PAGE_SIZE, 0); | 
|  | #else | 
|  | if (cachep->ctor) | 
|  | cachep->ctor(objp); | 
|  | #endif | 
|  | slab_bufctl(slabp)[i] = i + 1; | 
|  | } | 
|  | slab_bufctl(slabp)[i - 1] = BUFCTL_END; | 
|  | } | 
|  |  | 
|  | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | if (CONFIG_ZONE_DMA_FLAG) { | 
|  | if (flags & GFP_DMA) | 
|  | BUG_ON(!(cachep->gfpflags & GFP_DMA)); | 
|  | else | 
|  | BUG_ON(cachep->gfpflags & GFP_DMA); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, | 
|  | int nodeid) | 
|  | { | 
|  | void *objp = index_to_obj(cachep, slabp, slabp->free); | 
|  | kmem_bufctl_t next; | 
|  |  | 
|  | slabp->inuse++; | 
|  | next = slab_bufctl(slabp)[slabp->free]; | 
|  | #if DEBUG | 
|  | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | 
|  | WARN_ON(slabp->nodeid != nodeid); | 
|  | #endif | 
|  | slabp->free = next; | 
|  |  | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, | 
|  | void *objp, int nodeid) | 
|  | { | 
|  | unsigned int objnr = obj_to_index(cachep, slabp, objp); | 
|  |  | 
|  | #if DEBUG | 
|  | /* Verify that the slab belongs to the intended node */ | 
|  | WARN_ON(slabp->nodeid != nodeid); | 
|  |  | 
|  | if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { | 
|  | printk(KERN_ERR "slab: double free detected in cache " | 
|  | "'%s', objp %p\n", cachep->name, objp); | 
|  | BUG(); | 
|  | } | 
|  | #endif | 
|  | slab_bufctl(slabp)[objnr] = slabp->free; | 
|  | slabp->free = objnr; | 
|  | slabp->inuse--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map pages beginning at addr to the given cache and slab. This is required | 
|  | * for the slab allocator to be able to lookup the cache and slab of a | 
|  | * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging. | 
|  | */ | 
|  | static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, | 
|  | void *addr) | 
|  | { | 
|  | int nr_pages; | 
|  | struct page *page; | 
|  |  | 
|  | page = virt_to_page(addr); | 
|  |  | 
|  | nr_pages = 1; | 
|  | if (likely(!PageCompound(page))) | 
|  | nr_pages <<= cache->gfporder; | 
|  |  | 
|  | do { | 
|  | page_set_cache(page, cache); | 
|  | page_set_slab(page, slab); | 
|  | page++; | 
|  | } while (--nr_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grow (by 1) the number of slabs within a cache.  This is called by | 
|  | * kmem_cache_alloc() when there are no active objs left in a cache. | 
|  | */ | 
|  | static int cache_grow(struct kmem_cache *cachep, | 
|  | gfp_t flags, int nodeid, void *objp) | 
|  | { | 
|  | struct slab *slabp; | 
|  | size_t offset; | 
|  | gfp_t local_flags; | 
|  | struct kmem_list3 *l3; | 
|  |  | 
|  | /* | 
|  | * Be lazy and only check for valid flags here,  keeping it out of the | 
|  | * critical path in kmem_cache_alloc(). | 
|  | */ | 
|  | BUG_ON(flags & GFP_SLAB_BUG_MASK); | 
|  | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | 
|  |  | 
|  | /* Take the l3 list lock to change the colour_next on this node */ | 
|  | check_irq_off(); | 
|  | l3 = cachep->nodelists[nodeid]; | 
|  | spin_lock(&l3->list_lock); | 
|  |  | 
|  | /* Get colour for the slab, and cal the next value. */ | 
|  | offset = l3->colour_next; | 
|  | l3->colour_next++; | 
|  | if (l3->colour_next >= cachep->colour) | 
|  | l3->colour_next = 0; | 
|  | spin_unlock(&l3->list_lock); | 
|  |  | 
|  | offset *= cachep->colour_off; | 
|  |  | 
|  | if (local_flags & __GFP_WAIT) | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* | 
|  | * The test for missing atomic flag is performed here, rather than | 
|  | * the more obvious place, simply to reduce the critical path length | 
|  | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | 
|  | * will eventually be caught here (where it matters). | 
|  | */ | 
|  | kmem_flagcheck(cachep, flags); | 
|  |  | 
|  | /* | 
|  | * Get mem for the objs.  Attempt to allocate a physical page from | 
|  | * 'nodeid'. | 
|  | */ | 
|  | if (!objp) | 
|  | objp = kmem_getpages(cachep, local_flags, nodeid); | 
|  | if (!objp) | 
|  | goto failed; | 
|  |  | 
|  | /* Get slab management. */ | 
|  | slabp = alloc_slabmgmt(cachep, objp, offset, | 
|  | local_flags & ~GFP_CONSTRAINT_MASK, nodeid); | 
|  | if (!slabp) | 
|  | goto opps1; | 
|  |  | 
|  | slab_map_pages(cachep, slabp, objp); | 
|  |  | 
|  | cache_init_objs(cachep, slabp); | 
|  |  | 
|  | if (local_flags & __GFP_WAIT) | 
|  | local_irq_disable(); | 
|  | check_irq_off(); | 
|  | spin_lock(&l3->list_lock); | 
|  |  | 
|  | /* Make slab active. */ | 
|  | list_add_tail(&slabp->list, &(l3->slabs_free)); | 
|  | STATS_INC_GROWN(cachep); | 
|  | l3->free_objects += cachep->num; | 
|  | spin_unlock(&l3->list_lock); | 
|  | return 1; | 
|  | opps1: | 
|  | kmem_freepages(cachep, objp); | 
|  | failed: | 
|  | if (local_flags & __GFP_WAIT) | 
|  | local_irq_disable(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  |  | 
|  | /* | 
|  | * Perform extra freeing checks: | 
|  | * - detect bad pointers. | 
|  | * - POISON/RED_ZONE checking | 
|  | */ | 
|  | static void kfree_debugcheck(const void *objp) | 
|  | { | 
|  | if (!virt_addr_valid(objp)) { | 
|  | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | 
|  | (unsigned long)objp); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) | 
|  | { | 
|  | unsigned long long redzone1, redzone2; | 
|  |  | 
|  | redzone1 = *dbg_redzone1(cache, obj); | 
|  | redzone2 = *dbg_redzone2(cache, obj); | 
|  |  | 
|  | /* | 
|  | * Redzone is ok. | 
|  | */ | 
|  | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | 
|  | return; | 
|  |  | 
|  | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | 
|  | slab_error(cache, "double free detected"); | 
|  | else | 
|  | slab_error(cache, "memory outside object was overwritten"); | 
|  |  | 
|  | printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", | 
|  | obj, redzone1, redzone2); | 
|  | } | 
|  |  | 
|  | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, | 
|  | void *caller) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned int objnr; | 
|  | struct slab *slabp; | 
|  |  | 
|  | BUG_ON(virt_to_cache(objp) != cachep); | 
|  |  | 
|  | objp -= obj_offset(cachep); | 
|  | kfree_debugcheck(objp); | 
|  | page = virt_to_head_page(objp); | 
|  |  | 
|  | slabp = page_get_slab(page); | 
|  |  | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | verify_redzone_free(cachep, objp); | 
|  | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | 
|  | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | 
|  | } | 
|  | if (cachep->flags & SLAB_STORE_USER) | 
|  | *dbg_userword(cachep, objp) = caller; | 
|  |  | 
|  | objnr = obj_to_index(cachep, slabp, objp); | 
|  |  | 
|  | BUG_ON(objnr >= cachep->num); | 
|  | BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SLAB_LEAK | 
|  | slab_bufctl(slabp)[objnr] = BUFCTL_FREE; | 
|  | #endif | 
|  | if (cachep->flags & SLAB_POISON) { | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { | 
|  | store_stackinfo(cachep, objp, (unsigned long)caller); | 
|  | kernel_map_pages(virt_to_page(objp), | 
|  | cachep->buffer_size / PAGE_SIZE, 0); | 
|  | } else { | 
|  | poison_obj(cachep, objp, POISON_FREE); | 
|  | } | 
|  | #else | 
|  | poison_obj(cachep, objp, POISON_FREE); | 
|  | #endif | 
|  | } | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) | 
|  | { | 
|  | kmem_bufctl_t i; | 
|  | int entries = 0; | 
|  |  | 
|  | /* Check slab's freelist to see if this obj is there. */ | 
|  | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | 
|  | entries++; | 
|  | if (entries > cachep->num || i >= cachep->num) | 
|  | goto bad; | 
|  | } | 
|  | if (entries != cachep->num - slabp->inuse) { | 
|  | bad: | 
|  | printk(KERN_ERR "slab: Internal list corruption detected in " | 
|  | "cache '%s'(%d), slabp %p(%d). Hexdump:\n", | 
|  | cachep->name, cachep->num, slabp, slabp->inuse); | 
|  | for (i = 0; | 
|  | i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); | 
|  | i++) { | 
|  | if (i % 16 == 0) | 
|  | printk("\n%03x:", i); | 
|  | printk(" %02x", ((unsigned char *)slabp)[i]); | 
|  | } | 
|  | printk("\n"); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | #else | 
|  | #define kfree_debugcheck(x) do { } while(0) | 
|  | #define cache_free_debugcheck(x,objp,z) (objp) | 
|  | #define check_slabp(x,y) do { } while(0) | 
|  | #endif | 
|  |  | 
|  | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | int batchcount; | 
|  | struct kmem_list3 *l3; | 
|  | struct array_cache *ac; | 
|  | int node; | 
|  |  | 
|  | retry: | 
|  | check_irq_off(); | 
|  | node = numa_node_id(); | 
|  | ac = cpu_cache_get(cachep); | 
|  | batchcount = ac->batchcount; | 
|  | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | 
|  | /* | 
|  | * If there was little recent activity on this cache, then | 
|  | * perform only a partial refill.  Otherwise we could generate | 
|  | * refill bouncing. | 
|  | */ | 
|  | batchcount = BATCHREFILL_LIMIT; | 
|  | } | 
|  | l3 = cachep->nodelists[node]; | 
|  |  | 
|  | BUG_ON(ac->avail > 0 || !l3); | 
|  | spin_lock(&l3->list_lock); | 
|  |  | 
|  | /* See if we can refill from the shared array */ | 
|  | if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) | 
|  | goto alloc_done; | 
|  |  | 
|  | while (batchcount > 0) { | 
|  | struct list_head *entry; | 
|  | struct slab *slabp; | 
|  | /* Get slab alloc is to come from. */ | 
|  | entry = l3->slabs_partial.next; | 
|  | if (entry == &l3->slabs_partial) { | 
|  | l3->free_touched = 1; | 
|  | entry = l3->slabs_free.next; | 
|  | if (entry == &l3->slabs_free) | 
|  | goto must_grow; | 
|  | } | 
|  |  | 
|  | slabp = list_entry(entry, struct slab, list); | 
|  | check_slabp(cachep, slabp); | 
|  | check_spinlock_acquired(cachep); | 
|  |  | 
|  | /* | 
|  | * The slab was either on partial or free list so | 
|  | * there must be at least one object available for | 
|  | * allocation. | 
|  | */ | 
|  | BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num); | 
|  |  | 
|  | while (slabp->inuse < cachep->num && batchcount--) { | 
|  | STATS_INC_ALLOCED(cachep); | 
|  | STATS_INC_ACTIVE(cachep); | 
|  | STATS_SET_HIGH(cachep); | 
|  |  | 
|  | ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, | 
|  | node); | 
|  | } | 
|  | check_slabp(cachep, slabp); | 
|  |  | 
|  | /* move slabp to correct slabp list: */ | 
|  | list_del(&slabp->list); | 
|  | if (slabp->free == BUFCTL_END) | 
|  | list_add(&slabp->list, &l3->slabs_full); | 
|  | else | 
|  | list_add(&slabp->list, &l3->slabs_partial); | 
|  | } | 
|  |  | 
|  | must_grow: | 
|  | l3->free_objects -= ac->avail; | 
|  | alloc_done: | 
|  | spin_unlock(&l3->list_lock); | 
|  |  | 
|  | if (unlikely(!ac->avail)) { | 
|  | int x; | 
|  | x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); | 
|  |  | 
|  | /* cache_grow can reenable interrupts, then ac could change. */ | 
|  | ac = cpu_cache_get(cachep); | 
|  | if (!x && ac->avail == 0)	/* no objects in sight? abort */ | 
|  | return NULL; | 
|  |  | 
|  | if (!ac->avail)		/* objects refilled by interrupt? */ | 
|  | goto retry; | 
|  | } | 
|  | ac->touched = 1; | 
|  | return ac->entry[--ac->avail]; | 
|  | } | 
|  |  | 
|  | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, | 
|  | gfp_t flags) | 
|  | { | 
|  | might_sleep_if(flags & __GFP_WAIT); | 
|  | #if DEBUG | 
|  | kmem_flagcheck(cachep, flags); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, | 
|  | gfp_t flags, void *objp, void *caller) | 
|  | { | 
|  | if (!objp) | 
|  | return objp; | 
|  | if (cachep->flags & SLAB_POISON) { | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) | 
|  | kernel_map_pages(virt_to_page(objp), | 
|  | cachep->buffer_size / PAGE_SIZE, 1); | 
|  | else | 
|  | check_poison_obj(cachep, objp); | 
|  | #else | 
|  | check_poison_obj(cachep, objp); | 
|  | #endif | 
|  | poison_obj(cachep, objp, POISON_INUSE); | 
|  | } | 
|  | if (cachep->flags & SLAB_STORE_USER) | 
|  | *dbg_userword(cachep, objp) = caller; | 
|  |  | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || | 
|  | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | 
|  | slab_error(cachep, "double free, or memory outside" | 
|  | " object was overwritten"); | 
|  | printk(KERN_ERR | 
|  | "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", | 
|  | objp, *dbg_redzone1(cachep, objp), | 
|  | *dbg_redzone2(cachep, objp)); | 
|  | } | 
|  | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | 
|  | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | 
|  | } | 
|  | #ifdef CONFIG_DEBUG_SLAB_LEAK | 
|  | { | 
|  | struct slab *slabp; | 
|  | unsigned objnr; | 
|  |  | 
|  | slabp = page_get_slab(virt_to_head_page(objp)); | 
|  | objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; | 
|  | slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; | 
|  | } | 
|  | #endif | 
|  | objp += obj_offset(cachep); | 
|  | if (cachep->ctor && cachep->flags & SLAB_POISON) | 
|  | cachep->ctor(objp); | 
|  | #if ARCH_SLAB_MINALIGN | 
|  | if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { | 
|  | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", | 
|  | objp, ARCH_SLAB_MINALIGN); | 
|  | } | 
|  | #endif | 
|  | return objp; | 
|  | } | 
|  | #else | 
|  | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FAILSLAB | 
|  |  | 
|  | static struct failslab_attr { | 
|  |  | 
|  | struct fault_attr attr; | 
|  |  | 
|  | u32 ignore_gfp_wait; | 
|  | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | 
|  | struct dentry *ignore_gfp_wait_file; | 
|  | #endif | 
|  |  | 
|  | } failslab = { | 
|  | .attr = FAULT_ATTR_INITIALIZER, | 
|  | .ignore_gfp_wait = 1, | 
|  | }; | 
|  |  | 
|  | static int __init setup_failslab(char *str) | 
|  | { | 
|  | return setup_fault_attr(&failslab.attr, str); | 
|  | } | 
|  | __setup("failslab=", setup_failslab); | 
|  |  | 
|  | static int should_failslab(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | if (cachep == &cache_cache) | 
|  | return 0; | 
|  | if (flags & __GFP_NOFAIL) | 
|  | return 0; | 
|  | if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT)) | 
|  | return 0; | 
|  |  | 
|  | return should_fail(&failslab.attr, obj_size(cachep)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | 
|  |  | 
|  | static int __init failslab_debugfs(void) | 
|  | { | 
|  | mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; | 
|  | struct dentry *dir; | 
|  | int err; | 
|  |  | 
|  | err = init_fault_attr_dentries(&failslab.attr, "failslab"); | 
|  | if (err) | 
|  | return err; | 
|  | dir = failslab.attr.dentries.dir; | 
|  |  | 
|  | failslab.ignore_gfp_wait_file = | 
|  | debugfs_create_bool("ignore-gfp-wait", mode, dir, | 
|  | &failslab.ignore_gfp_wait); | 
|  |  | 
|  | if (!failslab.ignore_gfp_wait_file) { | 
|  | err = -ENOMEM; | 
|  | debugfs_remove(failslab.ignore_gfp_wait_file); | 
|  | cleanup_fault_attr_dentries(&failslab.attr); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | late_initcall(failslab_debugfs); | 
|  |  | 
|  | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | 
|  |  | 
|  | #else /* CONFIG_FAILSLAB */ | 
|  |  | 
|  | static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_FAILSLAB */ | 
|  |  | 
|  | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | void *objp; | 
|  | struct array_cache *ac; | 
|  |  | 
|  | check_irq_off(); | 
|  |  | 
|  | ac = cpu_cache_get(cachep); | 
|  | if (likely(ac->avail)) { | 
|  | STATS_INC_ALLOCHIT(cachep); | 
|  | ac->touched = 1; | 
|  | objp = ac->entry[--ac->avail]; | 
|  | } else { | 
|  | STATS_INC_ALLOCMISS(cachep); | 
|  | objp = cache_alloc_refill(cachep, flags); | 
|  | } | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. | 
|  | * | 
|  | * If we are in_interrupt, then process context, including cpusets and | 
|  | * mempolicy, may not apply and should not be used for allocation policy. | 
|  | */ | 
|  | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | int nid_alloc, nid_here; | 
|  |  | 
|  | if (in_interrupt() || (flags & __GFP_THISNODE)) | 
|  | return NULL; | 
|  | nid_alloc = nid_here = numa_node_id(); | 
|  | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) | 
|  | nid_alloc = cpuset_mem_spread_node(); | 
|  | else if (current->mempolicy) | 
|  | nid_alloc = slab_node(current->mempolicy); | 
|  | if (nid_alloc != nid_here) | 
|  | return ____cache_alloc_node(cachep, flags, nid_alloc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fallback function if there was no memory available and no objects on a | 
|  | * certain node and fall back is permitted. First we scan all the | 
|  | * available nodelists for available objects. If that fails then we | 
|  | * perform an allocation without specifying a node. This allows the page | 
|  | * allocator to do its reclaim / fallback magic. We then insert the | 
|  | * slab into the proper nodelist and then allocate from it. | 
|  | */ | 
|  | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) | 
|  | { | 
|  | struct zonelist *zonelist; | 
|  | gfp_t local_flags; | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  | enum zone_type high_zoneidx = gfp_zone(flags); | 
|  | void *obj = NULL; | 
|  | int nid; | 
|  |  | 
|  | if (flags & __GFP_THISNODE) | 
|  | return NULL; | 
|  |  | 
|  | zonelist = node_zonelist(slab_node(current->mempolicy), flags); | 
|  | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Look through allowed nodes for objects available | 
|  | * from existing per node queues. | 
|  | */ | 
|  | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 
|  | nid = zone_to_nid(zone); | 
|  |  | 
|  | if (cpuset_zone_allowed_hardwall(zone, flags) && | 
|  | cache->nodelists[nid] && | 
|  | cache->nodelists[nid]->free_objects) { | 
|  | obj = ____cache_alloc_node(cache, | 
|  | flags | GFP_THISNODE, nid); | 
|  | if (obj) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!obj) { | 
|  | /* | 
|  | * This allocation will be performed within the constraints | 
|  | * of the current cpuset / memory policy requirements. | 
|  | * We may trigger various forms of reclaim on the allowed | 
|  | * set and go into memory reserves if necessary. | 
|  | */ | 
|  | if (local_flags & __GFP_WAIT) | 
|  | local_irq_enable(); | 
|  | kmem_flagcheck(cache, flags); | 
|  | obj = kmem_getpages(cache, local_flags, -1); | 
|  | if (local_flags & __GFP_WAIT) | 
|  | local_irq_disable(); | 
|  | if (obj) { | 
|  | /* | 
|  | * Insert into the appropriate per node queues | 
|  | */ | 
|  | nid = page_to_nid(virt_to_page(obj)); | 
|  | if (cache_grow(cache, flags, nid, obj)) { | 
|  | obj = ____cache_alloc_node(cache, | 
|  | flags | GFP_THISNODE, nid); | 
|  | if (!obj) | 
|  | /* | 
|  | * Another processor may allocate the | 
|  | * objects in the slab since we are | 
|  | * not holding any locks. | 
|  | */ | 
|  | goto retry; | 
|  | } else { | 
|  | /* cache_grow already freed obj */ | 
|  | obj = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A interface to enable slab creation on nodeid | 
|  | */ | 
|  | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, | 
|  | int nodeid) | 
|  | { | 
|  | struct list_head *entry; | 
|  | struct slab *slabp; | 
|  | struct kmem_list3 *l3; | 
|  | void *obj; | 
|  | int x; | 
|  |  | 
|  | l3 = cachep->nodelists[nodeid]; | 
|  | BUG_ON(!l3); | 
|  |  | 
|  | retry: | 
|  | check_irq_off(); | 
|  | spin_lock(&l3->list_lock); | 
|  | entry = l3->slabs_partial.next; | 
|  | if (entry == &l3->slabs_partial) { | 
|  | l3->free_touched = 1; | 
|  | entry = l3->slabs_free.next; | 
|  | if (entry == &l3->slabs_free) | 
|  | goto must_grow; | 
|  | } | 
|  |  | 
|  | slabp = list_entry(entry, struct slab, list); | 
|  | check_spinlock_acquired_node(cachep, nodeid); | 
|  | check_slabp(cachep, slabp); | 
|  |  | 
|  | STATS_INC_NODEALLOCS(cachep); | 
|  | STATS_INC_ACTIVE(cachep); | 
|  | STATS_SET_HIGH(cachep); | 
|  |  | 
|  | BUG_ON(slabp->inuse == cachep->num); | 
|  |  | 
|  | obj = slab_get_obj(cachep, slabp, nodeid); | 
|  | check_slabp(cachep, slabp); | 
|  | l3->free_objects--; | 
|  | /* move slabp to correct slabp list: */ | 
|  | list_del(&slabp->list); | 
|  |  | 
|  | if (slabp->free == BUFCTL_END) | 
|  | list_add(&slabp->list, &l3->slabs_full); | 
|  | else | 
|  | list_add(&slabp->list, &l3->slabs_partial); | 
|  |  | 
|  | spin_unlock(&l3->list_lock); | 
|  | goto done; | 
|  |  | 
|  | must_grow: | 
|  | spin_unlock(&l3->list_lock); | 
|  | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); | 
|  | if (x) | 
|  | goto retry; | 
|  |  | 
|  | return fallback_alloc(cachep, flags); | 
|  |  | 
|  | done: | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kmem_cache_alloc_node - Allocate an object on the specified node | 
|  | * @cachep: The cache to allocate from. | 
|  | * @flags: See kmalloc(). | 
|  | * @nodeid: node number of the target node. | 
|  | * @caller: return address of caller, used for debug information | 
|  | * | 
|  | * Identical to kmem_cache_alloc but it will allocate memory on the given | 
|  | * node, which can improve the performance for cpu bound structures. | 
|  | * | 
|  | * Fallback to other node is possible if __GFP_THISNODE is not set. | 
|  | */ | 
|  | static __always_inline void * | 
|  | __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | 
|  | void *caller) | 
|  | { | 
|  | unsigned long save_flags; | 
|  | void *ptr; | 
|  |  | 
|  | if (should_failslab(cachep, flags)) | 
|  | return NULL; | 
|  |  | 
|  | cache_alloc_debugcheck_before(cachep, flags); | 
|  | local_irq_save(save_flags); | 
|  |  | 
|  | if (unlikely(nodeid == -1)) | 
|  | nodeid = numa_node_id(); | 
|  |  | 
|  | if (unlikely(!cachep->nodelists[nodeid])) { | 
|  | /* Node not bootstrapped yet */ | 
|  | ptr = fallback_alloc(cachep, flags); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (nodeid == numa_node_id()) { | 
|  | /* | 
|  | * Use the locally cached objects if possible. | 
|  | * However ____cache_alloc does not allow fallback | 
|  | * to other nodes. It may fail while we still have | 
|  | * objects on other nodes available. | 
|  | */ | 
|  | ptr = ____cache_alloc(cachep, flags); | 
|  | if (ptr) | 
|  | goto out; | 
|  | } | 
|  | /* ___cache_alloc_node can fall back to other nodes */ | 
|  | ptr = ____cache_alloc_node(cachep, flags, nodeid); | 
|  | out: | 
|  | local_irq_restore(save_flags); | 
|  | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | 
|  |  | 
|  | if (unlikely((flags & __GFP_ZERO) && ptr)) | 
|  | memset(ptr, 0, obj_size(cachep)); | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static __always_inline void * | 
|  | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | 
|  | { | 
|  | void *objp; | 
|  |  | 
|  | if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { | 
|  | objp = alternate_node_alloc(cache, flags); | 
|  | if (objp) | 
|  | goto out; | 
|  | } | 
|  | objp = ____cache_alloc(cache, flags); | 
|  |  | 
|  | /* | 
|  | * We may just have run out of memory on the local node. | 
|  | * ____cache_alloc_node() knows how to locate memory on other nodes | 
|  | */ | 
|  | if (!objp) | 
|  | objp = ____cache_alloc_node(cache, flags, numa_node_id()); | 
|  |  | 
|  | out: | 
|  | return objp; | 
|  | } | 
|  | #else | 
|  |  | 
|  | static __always_inline void * | 
|  | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | return ____cache_alloc(cachep, flags); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | static __always_inline void * | 
|  | __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) | 
|  | { | 
|  | unsigned long save_flags; | 
|  | void *objp; | 
|  |  | 
|  | if (should_failslab(cachep, flags)) | 
|  | return NULL; | 
|  |  | 
|  | cache_alloc_debugcheck_before(cachep, flags); | 
|  | local_irq_save(save_flags); | 
|  | objp = __do_cache_alloc(cachep, flags); | 
|  | local_irq_restore(save_flags); | 
|  | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | 
|  | prefetchw(objp); | 
|  |  | 
|  | if (unlikely((flags & __GFP_ZERO) && objp)) | 
|  | memset(objp, 0, obj_size(cachep)); | 
|  |  | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller needs to acquire correct kmem_list's list_lock | 
|  | */ | 
|  | static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | 
|  | int node) | 
|  | { | 
|  | int i; | 
|  | struct kmem_list3 *l3; | 
|  |  | 
|  | for (i = 0; i < nr_objects; i++) { | 
|  | void *objp = objpp[i]; | 
|  | struct slab *slabp; | 
|  |  | 
|  | slabp = virt_to_slab(objp); | 
|  | l3 = cachep->nodelists[node]; | 
|  | list_del(&slabp->list); | 
|  | check_spinlock_acquired_node(cachep, node); | 
|  | check_slabp(cachep, slabp); | 
|  | slab_put_obj(cachep, slabp, objp, node); | 
|  | STATS_DEC_ACTIVE(cachep); | 
|  | l3->free_objects++; | 
|  | check_slabp(cachep, slabp); | 
|  |  | 
|  | /* fixup slab chains */ | 
|  | if (slabp->inuse == 0) { | 
|  | if (l3->free_objects > l3->free_limit) { | 
|  | l3->free_objects -= cachep->num; | 
|  | /* No need to drop any previously held | 
|  | * lock here, even if we have a off-slab slab | 
|  | * descriptor it is guaranteed to come from | 
|  | * a different cache, refer to comments before | 
|  | * alloc_slabmgmt. | 
|  | */ | 
|  | slab_destroy(cachep, slabp); | 
|  | } else { | 
|  | list_add(&slabp->list, &l3->slabs_free); | 
|  | } | 
|  | } else { | 
|  | /* Unconditionally move a slab to the end of the | 
|  | * partial list on free - maximum time for the | 
|  | * other objects to be freed, too. | 
|  | */ | 
|  | list_add_tail(&slabp->list, &l3->slabs_partial); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) | 
|  | { | 
|  | int batchcount; | 
|  | struct kmem_list3 *l3; | 
|  | int node = numa_node_id(); | 
|  |  | 
|  | batchcount = ac->batchcount; | 
|  | #if DEBUG | 
|  | BUG_ON(!batchcount || batchcount > ac->avail); | 
|  | #endif | 
|  | check_irq_off(); | 
|  | l3 = cachep->nodelists[node]; | 
|  | spin_lock(&l3->list_lock); | 
|  | if (l3->shared) { | 
|  | struct array_cache *shared_array = l3->shared; | 
|  | int max = shared_array->limit - shared_array->avail; | 
|  | if (max) { | 
|  | if (batchcount > max) | 
|  | batchcount = max; | 
|  | memcpy(&(shared_array->entry[shared_array->avail]), | 
|  | ac->entry, sizeof(void *) * batchcount); | 
|  | shared_array->avail += batchcount; | 
|  | goto free_done; | 
|  | } | 
|  | } | 
|  |  | 
|  | free_block(cachep, ac->entry, batchcount, node); | 
|  | free_done: | 
|  | #if STATS | 
|  | { | 
|  | int i = 0; | 
|  | struct list_head *p; | 
|  |  | 
|  | p = l3->slabs_free.next; | 
|  | while (p != &(l3->slabs_free)) { | 
|  | struct slab *slabp; | 
|  |  | 
|  | slabp = list_entry(p, struct slab, list); | 
|  | BUG_ON(slabp->inuse); | 
|  |  | 
|  | i++; | 
|  | p = p->next; | 
|  | } | 
|  | STATS_SET_FREEABLE(cachep, i); | 
|  | } | 
|  | #endif | 
|  | spin_unlock(&l3->list_lock); | 
|  | ac->avail -= batchcount; | 
|  | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release an obj back to its cache. If the obj has a constructed state, it must | 
|  | * be in this state _before_ it is released.  Called with disabled ints. | 
|  | */ | 
|  | static inline void __cache_free(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | struct array_cache *ac = cpu_cache_get(cachep); | 
|  |  | 
|  | check_irq_off(); | 
|  | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); | 
|  |  | 
|  | /* | 
|  | * Skip calling cache_free_alien() when the platform is not numa. | 
|  | * This will avoid cache misses that happen while accessing slabp (which | 
|  | * is per page memory  reference) to get nodeid. Instead use a global | 
|  | * variable to skip the call, which is mostly likely to be present in | 
|  | * the cache. | 
|  | */ | 
|  | if (numa_platform && cache_free_alien(cachep, objp)) | 
|  | return; | 
|  |  | 
|  | if (likely(ac->avail < ac->limit)) { | 
|  | STATS_INC_FREEHIT(cachep); | 
|  | ac->entry[ac->avail++] = objp; | 
|  | return; | 
|  | } else { | 
|  | STATS_INC_FREEMISS(cachep); | 
|  | cache_flusharray(cachep, ac); | 
|  | ac->entry[ac->avail++] = objp; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kmem_cache_alloc - Allocate an object | 
|  | * @cachep: The cache to allocate from. | 
|  | * @flags: See kmalloc(). | 
|  | * | 
|  | * Allocate an object from this cache.  The flags are only relevant | 
|  | * if the cache has no available objects. | 
|  | */ | 
|  | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | return __cache_alloc(cachep, flags, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc); | 
|  |  | 
|  | /** | 
|  | * kmem_ptr_validate - check if an untrusted pointer might be a slab entry. | 
|  | * @cachep: the cache we're checking against | 
|  | * @ptr: pointer to validate | 
|  | * | 
|  | * This verifies that the untrusted pointer looks sane; | 
|  | * it is _not_ a guarantee that the pointer is actually | 
|  | * part of the slab cache in question, but it at least | 
|  | * validates that the pointer can be dereferenced and | 
|  | * looks half-way sane. | 
|  | * | 
|  | * Currently only used for dentry validation. | 
|  | */ | 
|  | int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr) | 
|  | { | 
|  | unsigned long addr = (unsigned long)ptr; | 
|  | unsigned long min_addr = PAGE_OFFSET; | 
|  | unsigned long align_mask = BYTES_PER_WORD - 1; | 
|  | unsigned long size = cachep->buffer_size; | 
|  | struct page *page; | 
|  |  | 
|  | if (unlikely(addr < min_addr)) | 
|  | goto out; | 
|  | if (unlikely(addr > (unsigned long)high_memory - size)) | 
|  | goto out; | 
|  | if (unlikely(addr & align_mask)) | 
|  | goto out; | 
|  | if (unlikely(!kern_addr_valid(addr))) | 
|  | goto out; | 
|  | if (unlikely(!kern_addr_valid(addr + size - 1))) | 
|  | goto out; | 
|  | page = virt_to_page(ptr); | 
|  | if (unlikely(!PageSlab(page))) | 
|  | goto out; | 
|  | if (unlikely(page_get_cache(page) != cachep)) | 
|  | goto out; | 
|  | return 1; | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) | 
|  | { | 
|  | return __cache_alloc_node(cachep, flags, nodeid, | 
|  | __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
|  |  | 
|  | static __always_inline void * | 
|  | __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  |  | 
|  | cachep = kmem_find_general_cachep(size, flags); | 
|  | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 
|  | return cachep; | 
|  | return kmem_cache_alloc_node(cachep, flags, node); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SLAB | 
|  | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | return __do_kmalloc_node(size, flags, node, | 
|  | __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_node); | 
|  |  | 
|  | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | 
|  | int node, void *caller) | 
|  | { | 
|  | return __do_kmalloc_node(size, flags, node, caller); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_node_track_caller); | 
|  | #else | 
|  | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | return __do_kmalloc_node(size, flags, node, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_node); | 
|  | #endif /* CONFIG_DEBUG_SLAB */ | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | /** | 
|  | * __do_kmalloc - allocate memory | 
|  | * @size: how many bytes of memory are required. | 
|  | * @flags: the type of memory to allocate (see kmalloc). | 
|  | * @caller: function caller for debug tracking of the caller | 
|  | */ | 
|  | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, | 
|  | void *caller) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  |  | 
|  | /* If you want to save a few bytes .text space: replace | 
|  | * __ with kmem_. | 
|  | * Then kmalloc uses the uninlined functions instead of the inline | 
|  | * functions. | 
|  | */ | 
|  | cachep = __find_general_cachep(size, flags); | 
|  | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 
|  | return cachep; | 
|  | return __cache_alloc(cachep, flags, caller); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SLAB | 
|  | void *__kmalloc(size_t size, gfp_t flags) | 
|  | { | 
|  | return __do_kmalloc(size, flags, __builtin_return_address(0)); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc); | 
|  |  | 
|  | void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller) | 
|  | { | 
|  | return __do_kmalloc(size, flags, caller); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_track_caller); | 
|  |  | 
|  | #else | 
|  | void *__kmalloc(size_t size, gfp_t flags) | 
|  | { | 
|  | return __do_kmalloc(size, flags, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * kmem_cache_free - Deallocate an object | 
|  | * @cachep: The cache the allocation was from. | 
|  | * @objp: The previously allocated object. | 
|  | * | 
|  | * Free an object which was previously allocated from this | 
|  | * cache. | 
|  | */ | 
|  | void kmem_cache_free(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | debug_check_no_locks_freed(objp, obj_size(cachep)); | 
|  | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) | 
|  | debug_check_no_obj_freed(objp, obj_size(cachep)); | 
|  | __cache_free(cachep, objp); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_free); | 
|  |  | 
|  | /** | 
|  | * kfree - free previously allocated memory | 
|  | * @objp: pointer returned by kmalloc. | 
|  | * | 
|  | * If @objp is NULL, no operation is performed. | 
|  | * | 
|  | * Don't free memory not originally allocated by kmalloc() | 
|  | * or you will run into trouble. | 
|  | */ | 
|  | void kfree(const void *objp) | 
|  | { | 
|  | struct kmem_cache *c; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(objp))) | 
|  | return; | 
|  | local_irq_save(flags); | 
|  | kfree_debugcheck(objp); | 
|  | c = virt_to_cache(objp); | 
|  | debug_check_no_locks_freed(objp, obj_size(c)); | 
|  | debug_check_no_obj_freed(objp, obj_size(c)); | 
|  | __cache_free(c, (void *)objp); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree); | 
|  |  | 
|  | unsigned int kmem_cache_size(struct kmem_cache *cachep) | 
|  | { | 
|  | return obj_size(cachep); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_size); | 
|  |  | 
|  | const char *kmem_cache_name(struct kmem_cache *cachep) | 
|  | { | 
|  | return cachep->name; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kmem_cache_name); | 
|  |  | 
|  | /* | 
|  | * This initializes kmem_list3 or resizes various caches for all nodes. | 
|  | */ | 
|  | static int alloc_kmemlist(struct kmem_cache *cachep) | 
|  | { | 
|  | int node; | 
|  | struct kmem_list3 *l3; | 
|  | struct array_cache *new_shared; | 
|  | struct array_cache **new_alien = NULL; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  |  | 
|  | if (use_alien_caches) { | 
|  | new_alien = alloc_alien_cache(node, cachep->limit); | 
|  | if (!new_alien) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | new_shared = NULL; | 
|  | if (cachep->shared) { | 
|  | new_shared = alloc_arraycache(node, | 
|  | cachep->shared*cachep->batchcount, | 
|  | 0xbaadf00d); | 
|  | if (!new_shared) { | 
|  | free_alien_cache(new_alien); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | l3 = cachep->nodelists[node]; | 
|  | if (l3) { | 
|  | struct array_cache *shared = l3->shared; | 
|  |  | 
|  | spin_lock_irq(&l3->list_lock); | 
|  |  | 
|  | if (shared) | 
|  | free_block(cachep, shared->entry, | 
|  | shared->avail, node); | 
|  |  | 
|  | l3->shared = new_shared; | 
|  | if (!l3->alien) { | 
|  | l3->alien = new_alien; | 
|  | new_alien = NULL; | 
|  | } | 
|  | l3->free_limit = (1 + nr_cpus_node(node)) * | 
|  | cachep->batchcount + cachep->num; | 
|  | spin_unlock_irq(&l3->list_lock); | 
|  | kfree(shared); | 
|  | free_alien_cache(new_alien); | 
|  | continue; | 
|  | } | 
|  | l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node); | 
|  | if (!l3) { | 
|  | free_alien_cache(new_alien); | 
|  | kfree(new_shared); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | kmem_list3_init(l3); | 
|  | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | 
|  | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 
|  | l3->shared = new_shared; | 
|  | l3->alien = new_alien; | 
|  | l3->free_limit = (1 + nr_cpus_node(node)) * | 
|  | cachep->batchcount + cachep->num; | 
|  | cachep->nodelists[node] = l3; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | if (!cachep->next.next) { | 
|  | /* Cache is not active yet. Roll back what we did */ | 
|  | node--; | 
|  | while (node >= 0) { | 
|  | if (cachep->nodelists[node]) { | 
|  | l3 = cachep->nodelists[node]; | 
|  |  | 
|  | kfree(l3->shared); | 
|  | free_alien_cache(l3->alien); | 
|  | kfree(l3); | 
|  | cachep->nodelists[node] = NULL; | 
|  | } | 
|  | node--; | 
|  | } | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | struct ccupdate_struct { | 
|  | struct kmem_cache *cachep; | 
|  | struct array_cache *new[NR_CPUS]; | 
|  | }; | 
|  |  | 
|  | static void do_ccupdate_local(void *info) | 
|  | { | 
|  | struct ccupdate_struct *new = info; | 
|  | struct array_cache *old; | 
|  |  | 
|  | check_irq_off(); | 
|  | old = cpu_cache_get(new->cachep); | 
|  |  | 
|  | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; | 
|  | new->new[smp_processor_id()] = old; | 
|  | } | 
|  |  | 
|  | /* Always called with the cache_chain_mutex held */ | 
|  | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, | 
|  | int batchcount, int shared) | 
|  | { | 
|  | struct ccupdate_struct *new; | 
|  | int i; | 
|  |  | 
|  | new = kzalloc(sizeof(*new), GFP_KERNEL); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | new->new[i] = alloc_arraycache(cpu_to_node(i), limit, | 
|  | batchcount); | 
|  | if (!new->new[i]) { | 
|  | for (i--; i >= 0; i--) | 
|  | kfree(new->new[i]); | 
|  | kfree(new); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | new->cachep = cachep; | 
|  |  | 
|  | on_each_cpu(do_ccupdate_local, (void *)new, 1); | 
|  |  | 
|  | check_irq_on(); | 
|  | cachep->batchcount = batchcount; | 
|  | cachep->limit = limit; | 
|  | cachep->shared = shared; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | struct array_cache *ccold = new->new[i]; | 
|  | if (!ccold) | 
|  | continue; | 
|  | spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); | 
|  | free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); | 
|  | spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); | 
|  | kfree(ccold); | 
|  | } | 
|  | kfree(new); | 
|  | return alloc_kmemlist(cachep); | 
|  | } | 
|  |  | 
|  | /* Called with cache_chain_mutex held always */ | 
|  | static int enable_cpucache(struct kmem_cache *cachep) | 
|  | { | 
|  | int err; | 
|  | int limit, shared; | 
|  |  | 
|  | /* | 
|  | * The head array serves three purposes: | 
|  | * - create a LIFO ordering, i.e. return objects that are cache-warm | 
|  | * - reduce the number of spinlock operations. | 
|  | * - reduce the number of linked list operations on the slab and | 
|  | *   bufctl chains: array operations are cheaper. | 
|  | * The numbers are guessed, we should auto-tune as described by | 
|  | * Bonwick. | 
|  | */ | 
|  | if (cachep->buffer_size > 131072) | 
|  | limit = 1; | 
|  | else if (cachep->buffer_size > PAGE_SIZE) | 
|  | limit = 8; | 
|  | else if (cachep->buffer_size > 1024) | 
|  | limit = 24; | 
|  | else if (cachep->buffer_size > 256) | 
|  | limit = 54; | 
|  | else | 
|  | limit = 120; | 
|  |  | 
|  | /* | 
|  | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | 
|  | * allocation behaviour: Most allocs on one cpu, most free operations | 
|  | * on another cpu. For these cases, an efficient object passing between | 
|  | * cpus is necessary. This is provided by a shared array. The array | 
|  | * replaces Bonwick's magazine layer. | 
|  | * On uniprocessor, it's functionally equivalent (but less efficient) | 
|  | * to a larger limit. Thus disabled by default. | 
|  | */ | 
|  | shared = 0; | 
|  | if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) | 
|  | shared = 8; | 
|  |  | 
|  | #if DEBUG | 
|  | /* | 
|  | * With debugging enabled, large batchcount lead to excessively long | 
|  | * periods with disabled local interrupts. Limit the batchcount | 
|  | */ | 
|  | if (limit > 32) | 
|  | limit = 32; | 
|  | #endif | 
|  | err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared); | 
|  | if (err) | 
|  | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | 
|  | cachep->name, -err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drain an array if it contains any elements taking the l3 lock only if | 
|  | * necessary. Note that the l3 listlock also protects the array_cache | 
|  | * if drain_array() is used on the shared array. | 
|  | */ | 
|  | void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | 
|  | struct array_cache *ac, int force, int node) | 
|  | { | 
|  | int tofree; | 
|  |  | 
|  | if (!ac || !ac->avail) | 
|  | return; | 
|  | if (ac->touched && !force) { | 
|  | ac->touched = 0; | 
|  | } else { | 
|  | spin_lock_irq(&l3->list_lock); | 
|  | if (ac->avail) { | 
|  | tofree = force ? ac->avail : (ac->limit + 4) / 5; | 
|  | if (tofree > ac->avail) | 
|  | tofree = (ac->avail + 1) / 2; | 
|  | free_block(cachep, ac->entry, tofree, node); | 
|  | ac->avail -= tofree; | 
|  | memmove(ac->entry, &(ac->entry[tofree]), | 
|  | sizeof(void *) * ac->avail); | 
|  | } | 
|  | spin_unlock_irq(&l3->list_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cache_reap - Reclaim memory from caches. | 
|  | * @w: work descriptor | 
|  | * | 
|  | * Called from workqueue/eventd every few seconds. | 
|  | * Purpose: | 
|  | * - clear the per-cpu caches for this CPU. | 
|  | * - return freeable pages to the main free memory pool. | 
|  | * | 
|  | * If we cannot acquire the cache chain mutex then just give up - we'll try | 
|  | * again on the next iteration. | 
|  | */ | 
|  | static void cache_reap(struct work_struct *w) | 
|  | { | 
|  | struct kmem_cache *searchp; | 
|  | struct kmem_list3 *l3; | 
|  | int node = numa_node_id(); | 
|  | struct delayed_work *work = | 
|  | container_of(w, struct delayed_work, work); | 
|  |  | 
|  | if (!mutex_trylock(&cache_chain_mutex)) | 
|  | /* Give up. Setup the next iteration. */ | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(searchp, &cache_chain, next) { | 
|  | check_irq_on(); | 
|  |  | 
|  | /* | 
|  | * We only take the l3 lock if absolutely necessary and we | 
|  | * have established with reasonable certainty that | 
|  | * we can do some work if the lock was obtained. | 
|  | */ | 
|  | l3 = searchp->nodelists[node]; | 
|  |  | 
|  | reap_alien(searchp, l3); | 
|  |  | 
|  | drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); | 
|  |  | 
|  | /* | 
|  | * These are racy checks but it does not matter | 
|  | * if we skip one check or scan twice. | 
|  | */ | 
|  | if (time_after(l3->next_reap, jiffies)) | 
|  | goto next; | 
|  |  | 
|  | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; | 
|  |  | 
|  | drain_array(searchp, l3, l3->shared, 0, node); | 
|  |  | 
|  | if (l3->free_touched) | 
|  | l3->free_touched = 0; | 
|  | else { | 
|  | int freed; | 
|  |  | 
|  | freed = drain_freelist(searchp, l3, (l3->free_limit + | 
|  | 5 * searchp->num - 1) / (5 * searchp->num)); | 
|  | STATS_ADD_REAPED(searchp, freed); | 
|  | } | 
|  | next: | 
|  | cond_resched(); | 
|  | } | 
|  | check_irq_on(); | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | next_reap_node(); | 
|  | out: | 
|  | /* Set up the next iteration */ | 
|  | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLABINFO | 
|  |  | 
|  | static void print_slabinfo_header(struct seq_file *m) | 
|  | { | 
|  | /* | 
|  | * Output format version, so at least we can change it | 
|  | * without _too_ many complaints. | 
|  | */ | 
|  | #if STATS | 
|  | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | 
|  | #else | 
|  | seq_puts(m, "slabinfo - version: 2.1\n"); | 
|  | #endif | 
|  | seq_puts(m, "# name            <active_objs> <num_objs> <objsize> " | 
|  | "<objperslab> <pagesperslab>"); | 
|  | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
|  | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
|  | #if STATS | 
|  | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " | 
|  | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); | 
|  | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | 
|  | #endif | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | static void *s_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | loff_t n = *pos; | 
|  |  | 
|  | mutex_lock(&cache_chain_mutex); | 
|  | if (!n) | 
|  | print_slabinfo_header(m); | 
|  |  | 
|  | return seq_list_start(&cache_chain, *pos); | 
|  | } | 
|  |  | 
|  | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | { | 
|  | return seq_list_next(p, &cache_chain, pos); | 
|  | } | 
|  |  | 
|  | static void s_stop(struct seq_file *m, void *p) | 
|  | { | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | } | 
|  |  | 
|  | static int s_show(struct seq_file *m, void *p) | 
|  | { | 
|  | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); | 
|  | struct slab *slabp; | 
|  | unsigned long active_objs; | 
|  | unsigned long num_objs; | 
|  | unsigned long active_slabs = 0; | 
|  | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | 
|  | const char *name; | 
|  | char *error = NULL; | 
|  | int node; | 
|  | struct kmem_list3 *l3; | 
|  |  | 
|  | active_objs = 0; | 
|  | num_slabs = 0; | 
|  | for_each_online_node(node) { | 
|  | l3 = cachep->nodelists[node]; | 
|  | if (!l3) | 
|  | continue; | 
|  |  | 
|  | check_irq_on(); | 
|  | spin_lock_irq(&l3->list_lock); | 
|  |  | 
|  | list_for_each_entry(slabp, &l3->slabs_full, list) { | 
|  | if (slabp->inuse != cachep->num && !error) | 
|  | error = "slabs_full accounting error"; | 
|  | active_objs += cachep->num; | 
|  | active_slabs++; | 
|  | } | 
|  | list_for_each_entry(slabp, &l3->slabs_partial, list) { | 
|  | if (slabp->inuse == cachep->num && !error) | 
|  | error = "slabs_partial inuse accounting error"; | 
|  | if (!slabp->inuse && !error) | 
|  | error = "slabs_partial/inuse accounting error"; | 
|  | active_objs += slabp->inuse; | 
|  | active_slabs++; | 
|  | } | 
|  | list_for_each_entry(slabp, &l3->slabs_free, list) { | 
|  | if (slabp->inuse && !error) | 
|  | error = "slabs_free/inuse accounting error"; | 
|  | num_slabs++; | 
|  | } | 
|  | free_objects += l3->free_objects; | 
|  | if (l3->shared) | 
|  | shared_avail += l3->shared->avail; | 
|  |  | 
|  | spin_unlock_irq(&l3->list_lock); | 
|  | } | 
|  | num_slabs += active_slabs; | 
|  | num_objs = num_slabs * cachep->num; | 
|  | if (num_objs - active_objs != free_objects && !error) | 
|  | error = "free_objects accounting error"; | 
|  |  | 
|  | name = cachep->name; | 
|  | if (error) | 
|  | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | 
|  |  | 
|  | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | 
|  | name, active_objs, num_objs, cachep->buffer_size, | 
|  | cachep->num, (1 << cachep->gfporder)); | 
|  | seq_printf(m, " : tunables %4u %4u %4u", | 
|  | cachep->limit, cachep->batchcount, cachep->shared); | 
|  | seq_printf(m, " : slabdata %6lu %6lu %6lu", | 
|  | active_slabs, num_slabs, shared_avail); | 
|  | #if STATS | 
|  | {			/* list3 stats */ | 
|  | unsigned long high = cachep->high_mark; | 
|  | unsigned long allocs = cachep->num_allocations; | 
|  | unsigned long grown = cachep->grown; | 
|  | unsigned long reaped = cachep->reaped; | 
|  | unsigned long errors = cachep->errors; | 
|  | unsigned long max_freeable = cachep->max_freeable; | 
|  | unsigned long node_allocs = cachep->node_allocs; | 
|  | unsigned long node_frees = cachep->node_frees; | 
|  | unsigned long overflows = cachep->node_overflow; | 
|  |  | 
|  | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ | 
|  | %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, | 
|  | reaped, errors, max_freeable, node_allocs, | 
|  | node_frees, overflows); | 
|  | } | 
|  | /* cpu stats */ | 
|  | { | 
|  | unsigned long allochit = atomic_read(&cachep->allochit); | 
|  | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | 
|  | unsigned long freehit = atomic_read(&cachep->freehit); | 
|  | unsigned long freemiss = atomic_read(&cachep->freemiss); | 
|  |  | 
|  | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | 
|  | allochit, allocmiss, freehit, freemiss); | 
|  | } | 
|  | #endif | 
|  | seq_putc(m, '\n'); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * slabinfo_op - iterator that generates /proc/slabinfo | 
|  | * | 
|  | * Output layout: | 
|  | * cache-name | 
|  | * num-active-objs | 
|  | * total-objs | 
|  | * object size | 
|  | * num-active-slabs | 
|  | * total-slabs | 
|  | * num-pages-per-slab | 
|  | * + further values on SMP and with statistics enabled | 
|  | */ | 
|  |  | 
|  | static const struct seq_operations slabinfo_op = { | 
|  | .start = s_start, | 
|  | .next = s_next, | 
|  | .stop = s_stop, | 
|  | .show = s_show, | 
|  | }; | 
|  |  | 
|  | #define MAX_SLABINFO_WRITE 128 | 
|  | /** | 
|  | * slabinfo_write - Tuning for the slab allocator | 
|  | * @file: unused | 
|  | * @buffer: user buffer | 
|  | * @count: data length | 
|  | * @ppos: unused | 
|  | */ | 
|  | ssize_t slabinfo_write(struct file *file, const char __user * buffer, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; | 
|  | int limit, batchcount, shared, res; | 
|  | struct kmem_cache *cachep; | 
|  |  | 
|  | if (count > MAX_SLABINFO_WRITE) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&kbuf, buffer, count)) | 
|  | return -EFAULT; | 
|  | kbuf[MAX_SLABINFO_WRITE] = '\0'; | 
|  |  | 
|  | tmp = strchr(kbuf, ' '); | 
|  | if (!tmp) | 
|  | return -EINVAL; | 
|  | *tmp = '\0'; | 
|  | tmp++; | 
|  | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Find the cache in the chain of caches. */ | 
|  | mutex_lock(&cache_chain_mutex); | 
|  | res = -EINVAL; | 
|  | list_for_each_entry(cachep, &cache_chain, next) { | 
|  | if (!strcmp(cachep->name, kbuf)) { | 
|  | if (limit < 1 || batchcount < 1 || | 
|  | batchcount > limit || shared < 0) { | 
|  | res = 0; | 
|  | } else { | 
|  | res = do_tune_cpucache(cachep, limit, | 
|  | batchcount, shared); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | if (res >= 0) | 
|  | res = count; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int slabinfo_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &slabinfo_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_slabinfo_operations = { | 
|  | .open		= slabinfo_open, | 
|  | .read		= seq_read, | 
|  | .write		= slabinfo_write, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SLAB_LEAK | 
|  |  | 
|  | static void *leaks_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | mutex_lock(&cache_chain_mutex); | 
|  | return seq_list_start(&cache_chain, *pos); | 
|  | } | 
|  |  | 
|  | static inline int add_caller(unsigned long *n, unsigned long v) | 
|  | { | 
|  | unsigned long *p; | 
|  | int l; | 
|  | if (!v) | 
|  | return 1; | 
|  | l = n[1]; | 
|  | p = n + 2; | 
|  | while (l) { | 
|  | int i = l/2; | 
|  | unsigned long *q = p + 2 * i; | 
|  | if (*q == v) { | 
|  | q[1]++; | 
|  | return 1; | 
|  | } | 
|  | if (*q > v) { | 
|  | l = i; | 
|  | } else { | 
|  | p = q + 2; | 
|  | l -= i + 1; | 
|  | } | 
|  | } | 
|  | if (++n[1] == n[0]) | 
|  | return 0; | 
|  | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | 
|  | p[0] = v; | 
|  | p[1] = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) | 
|  | { | 
|  | void *p; | 
|  | int i; | 
|  | if (n[0] == n[1]) | 
|  | return; | 
|  | for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { | 
|  | if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) | 
|  | continue; | 
|  | if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void show_symbol(struct seq_file *m, unsigned long address) | 
|  | { | 
|  | #ifdef CONFIG_KALLSYMS | 
|  | unsigned long offset, size; | 
|  | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; | 
|  |  | 
|  | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { | 
|  | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); | 
|  | if (modname[0]) | 
|  | seq_printf(m, " [%s]", modname); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | seq_printf(m, "%p", (void *)address); | 
|  | } | 
|  |  | 
|  | static int leaks_show(struct seq_file *m, void *p) | 
|  | { | 
|  | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); | 
|  | struct slab *slabp; | 
|  | struct kmem_list3 *l3; | 
|  | const char *name; | 
|  | unsigned long *n = m->private; | 
|  | int node; | 
|  | int i; | 
|  |  | 
|  | if (!(cachep->flags & SLAB_STORE_USER)) | 
|  | return 0; | 
|  | if (!(cachep->flags & SLAB_RED_ZONE)) | 
|  | return 0; | 
|  |  | 
|  | /* OK, we can do it */ | 
|  |  | 
|  | n[1] = 0; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | l3 = cachep->nodelists[node]; | 
|  | if (!l3) | 
|  | continue; | 
|  |  | 
|  | check_irq_on(); | 
|  | spin_lock_irq(&l3->list_lock); | 
|  |  | 
|  | list_for_each_entry(slabp, &l3->slabs_full, list) | 
|  | handle_slab(n, cachep, slabp); | 
|  | list_for_each_entry(slabp, &l3->slabs_partial, list) | 
|  | handle_slab(n, cachep, slabp); | 
|  | spin_unlock_irq(&l3->list_lock); | 
|  | } | 
|  | name = cachep->name; | 
|  | if (n[0] == n[1]) { | 
|  | /* Increase the buffer size */ | 
|  | mutex_unlock(&cache_chain_mutex); | 
|  | m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); | 
|  | if (!m->private) { | 
|  | /* Too bad, we are really out */ | 
|  | m->private = n; | 
|  | mutex_lock(&cache_chain_mutex); | 
|  | return -ENOMEM; | 
|  | } | 
|  | *(unsigned long *)m->private = n[0] * 2; | 
|  | kfree(n); | 
|  | mutex_lock(&cache_chain_mutex); | 
|  | /* Now make sure this entry will be retried */ | 
|  | m->count = m->size; | 
|  | return 0; | 
|  | } | 
|  | for (i = 0; i < n[1]; i++) { | 
|  | seq_printf(m, "%s: %lu ", name, n[2*i+3]); | 
|  | show_symbol(m, n[2*i+2]); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations slabstats_op = { | 
|  | .start = leaks_start, | 
|  | .next = s_next, | 
|  | .stop = s_stop, | 
|  | .show = leaks_show, | 
|  | }; | 
|  |  | 
|  | static int slabstats_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | int ret = -ENOMEM; | 
|  | if (n) { | 
|  | ret = seq_open(file, &slabstats_op); | 
|  | if (!ret) { | 
|  | struct seq_file *m = file->private_data; | 
|  | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | 
|  | m->private = n; | 
|  | n = NULL; | 
|  | } | 
|  | kfree(n); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_slabstats_operations = { | 
|  | .open		= slabstats_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release_private, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static int __init slab_proc_init(void) | 
|  | { | 
|  | proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); | 
|  | #ifdef CONFIG_DEBUG_SLAB_LEAK | 
|  | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | module_init(slab_proc_init); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * ksize - get the actual amount of memory allocated for a given object | 
|  | * @objp: Pointer to the object | 
|  | * | 
|  | * kmalloc may internally round up allocations and return more memory | 
|  | * than requested. ksize() can be used to determine the actual amount of | 
|  | * memory allocated. The caller may use this additional memory, even though | 
|  | * a smaller amount of memory was initially specified with the kmalloc call. | 
|  | * The caller must guarantee that objp points to a valid object previously | 
|  | * allocated with either kmalloc() or kmem_cache_alloc(). The object | 
|  | * must not be freed during the duration of the call. | 
|  | */ | 
|  | size_t ksize(const void *objp) | 
|  | { | 
|  | BUG_ON(!objp); | 
|  | if (unlikely(objp == ZERO_SIZE_PTR)) | 
|  | return 0; | 
|  |  | 
|  | return obj_size(virt_to_cache(objp)); | 
|  | } |