blob: 9be1b3b004b0bad90bd09c30843121d775ba45e3 [file] [log] [blame]
#include "wb35reg_f.h"
#include <linux/usb.h>
#include <linux/slab.h>
extern void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency);
/*
* true : read command process successfully
* false : register not support
* RegisterNo : start base
* pRegisterData : data point
* NumberOfData : number of register data
* Flag : AUTO_INCREMENT - RegisterNo will auto increment 4
* NO_INCREMENT - Function will write data into the same register
*/
unsigned char Wb35Reg_BurstWrite(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterData, u8 NumberOfData, u8 Flag)
{
struct wb35_reg *reg = &pHwData->reg;
struct urb *urb = NULL;
struct wb35_reg_queue *reg_queue = NULL;
u16 UrbSize;
struct usb_ctrlrequest *dr;
u16 i, DataSize = NumberOfData * 4;
/* Module shutdown */
if (pHwData->SurpriseRemove)
return false;
/* Trying to use burst write function if use new hardware */
UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
if (reg_queue == NULL)
return false;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (urb == NULL) {
kfree(reg_queue);
return false;
}
reg_queue->DIRECT = 2; /* burst write register */
reg_queue->INDEX = RegisterNo;
reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
memcpy(reg_queue->pBuffer, pRegisterData, DataSize);
/* the function for reversing register data from little endian to big endian */
for (i = 0; i < NumberOfData ; i++)
reg_queue->pBuffer[i] = cpu_to_le32(reg_queue->pBuffer[i]);
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize);
dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
dr->bRequest = 0x04; /* USB or vendor-defined request code, burst mode */
dr->wValue = cpu_to_le16(Flag); /* 0: Register number auto-increment, 1: No auto increment */
dr->wIndex = cpu_to_le16(RegisterNo);
dr->wLength = cpu_to_le16(DataSize);
reg_queue->Next = NULL;
reg_queue->pUsbReq = dr;
reg_queue->urb = urb;
spin_lock_irq(&reg->EP0VM_spin_lock);
if (reg->reg_first == NULL)
reg->reg_first = reg_queue;
else
reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue;
spin_unlock_irq(&reg->EP0VM_spin_lock);
/* Start EP0VM */
Wb35Reg_EP0VM_start(pHwData);
return true;
}
void Wb35Reg_Update(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
{
struct wb35_reg *reg = &pHwData->reg;
switch (RegisterNo) {
case 0x3b0: reg->U1B0 = RegisterValue; break;
case 0x3bc: reg->U1BC_LEDConfigure = RegisterValue; break;
case 0x400: reg->D00_DmaControl = RegisterValue; break;
case 0x800: reg->M00_MacControl = RegisterValue; break;
case 0x804: reg->M04_MulticastAddress1 = RegisterValue; break;
case 0x808: reg->M08_MulticastAddress2 = RegisterValue; break;
case 0x824: reg->M24_MacControl = RegisterValue; break;
case 0x828: reg->M28_MacControl = RegisterValue; break;
case 0x82c: reg->M2C_MacControl = RegisterValue; break;
case 0x838: reg->M38_MacControl = RegisterValue; break;
case 0x840: reg->M40_MacControl = RegisterValue; break;
case 0x844: reg->M44_MacControl = RegisterValue; break;
case 0x848: reg->M48_MacControl = RegisterValue; break;
case 0x84c: reg->M4C_MacStatus = RegisterValue; break;
case 0x860: reg->M60_MacControl = RegisterValue; break;
case 0x868: reg->M68_MacControl = RegisterValue; break;
case 0x870: reg->M70_MacControl = RegisterValue; break;
case 0x874: reg->M74_MacControl = RegisterValue; break;
case 0x878: reg->M78_ERPInformation = RegisterValue; break;
case 0x87C: reg->M7C_MacControl = RegisterValue; break;
case 0x880: reg->M80_MacControl = RegisterValue; break;
case 0x884: reg->M84_MacControl = RegisterValue; break;
case 0x888: reg->M88_MacControl = RegisterValue; break;
case 0x898: reg->M98_MacControl = RegisterValue; break;
case 0x100c: reg->BB0C = RegisterValue; break;
case 0x102c: reg->BB2C = RegisterValue; break;
case 0x1030: reg->BB30 = RegisterValue; break;
case 0x103c: reg->BB3C = RegisterValue; break;
case 0x1048: reg->BB48 = RegisterValue; break;
case 0x104c: reg->BB4C = RegisterValue; break;
case 0x1050: reg->BB50 = RegisterValue; break;
case 0x1054: reg->BB54 = RegisterValue; break;
case 0x1058: reg->BB58 = RegisterValue; break;
case 0x105c: reg->BB5C = RegisterValue; break;
case 0x1060: reg->BB60 = RegisterValue; break;
}
}
/*
* true : read command process successfully
* false : register not support
*/
unsigned char Wb35Reg_WriteSync(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
{
struct wb35_reg *reg = &pHwData->reg;
int ret = -1;
/* Module shutdown */
if (pHwData->SurpriseRemove)
return false;
RegisterValue = cpu_to_le32(RegisterValue);
/* update the register by send usb message */
reg->SyncIoPause = 1;
/* Wait until EP0VM stop */
while (reg->EP0vm_state != VM_STOP)
msleep(10);
/* Sync IoCallDriver */
reg->EP0vm_state = VM_RUNNING;
ret = usb_control_msg(pHwData->udev,
usb_sndctrlpipe(pHwData->udev, 0),
0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
0x0, RegisterNo, &RegisterValue, 4, HZ * 100);
reg->EP0vm_state = VM_STOP;
reg->SyncIoPause = 0;
Wb35Reg_EP0VM_start(pHwData);
if (ret < 0) {
pr_debug("EP0 Write register usb message sending error\n");
pHwData->SurpriseRemove = 1;
return false;
}
return true;
}
/*
* true : read command process successfully
* false : register not support
*/
unsigned char Wb35Reg_Write(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
{
struct wb35_reg *reg = &pHwData->reg;
struct usb_ctrlrequest *dr;
struct urb *urb = NULL;
struct wb35_reg_queue *reg_queue = NULL;
u16 UrbSize;
/* Module shutdown */
if (pHwData->SurpriseRemove)
return false;
/* update the register by send urb request */
UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
if (reg_queue == NULL)
return false;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (urb == NULL) {
kfree(reg_queue);
return false;
}
reg_queue->DIRECT = 1; /* burst write register */
reg_queue->INDEX = RegisterNo;
reg_queue->VALUE = cpu_to_le32(RegisterValue);
reg_queue->RESERVED_VALID = false;
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
dr->bRequest = 0x03; /* USB or vendor-defined request code, burst mode */
dr->wValue = cpu_to_le16(0x0);
dr->wIndex = cpu_to_le16(RegisterNo);
dr->wLength = cpu_to_le16(4);
/* Enter the sending queue */
reg_queue->Next = NULL;
reg_queue->pUsbReq = dr;
reg_queue->urb = urb;
spin_lock_irq(&reg->EP0VM_spin_lock);
if (reg->reg_first == NULL)
reg->reg_first = reg_queue;
else
reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue;
spin_unlock_irq(&reg->EP0VM_spin_lock);
/* Start EP0VM */
Wb35Reg_EP0VM_start(pHwData);
return true;
}
/*
* This command will be executed with a user defined value. When it completes,
* this value is useful. For example, hal_set_current_channel will use it.
* true : read command process successfully
* false : register not supported
*/
unsigned char Wb35Reg_WriteWithCallbackValue(struct hw_data *pHwData,
u16 RegisterNo,
u32 RegisterValue,
s8 *pValue,
s8 Len)
{
struct wb35_reg *reg = &pHwData->reg;
struct usb_ctrlrequest *dr;
struct urb *urb = NULL;
struct wb35_reg_queue *reg_queue = NULL;
u16 UrbSize;
/* Module shutdown */
if (pHwData->SurpriseRemove)
return false;
/* update the register by send urb request */
UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
if (reg_queue == NULL)
return false;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (urb == NULL) {
kfree(reg_queue);
return false;
}
reg_queue->DIRECT = 1; /* burst write register */
reg_queue->INDEX = RegisterNo;
reg_queue->VALUE = cpu_to_le32(RegisterValue);
/* NOTE : Users must guarantee the size of value will not exceed the buffer size. */
memcpy(reg_queue->RESERVED, pValue, Len);
reg_queue->RESERVED_VALID = true;
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
dr->bRequest = 0x03; /* USB or vendor-defined request code, burst mode */
dr->wValue = cpu_to_le16(0x0);
dr->wIndex = cpu_to_le16(RegisterNo);
dr->wLength = cpu_to_le16(4);
/* Enter the sending queue */
reg_queue->Next = NULL;
reg_queue->pUsbReq = dr;
reg_queue->urb = urb;
spin_lock_irq(&reg->EP0VM_spin_lock);
if (reg->reg_first == NULL)
reg->reg_first = reg_queue;
else
reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue;
spin_unlock_irq(&reg->EP0VM_spin_lock);
/* Start EP0VM */
Wb35Reg_EP0VM_start(pHwData);
return true;
}
/*
* true : read command process successfully
* false : register not support
* pRegisterValue : It must be a resident buffer due to
* asynchronous read register.
*/
unsigned char Wb35Reg_ReadSync(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterValue)
{
struct wb35_reg *reg = &pHwData->reg;
u32 *pltmp = pRegisterValue;
int ret = -1;
/* Module shutdown */
if (pHwData->SurpriseRemove)
return false;
/* Read the register by send usb message */
reg->SyncIoPause = 1;
/* Wait until EP0VM stop */
while (reg->EP0vm_state != VM_STOP)
msleep(10);
reg->EP0vm_state = VM_RUNNING;
ret = usb_control_msg(pHwData->udev,
usb_rcvctrlpipe(pHwData->udev, 0),
0x01, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
0x0, RegisterNo, pltmp, 4, HZ * 100);
*pRegisterValue = cpu_to_le32(*pltmp);
reg->EP0vm_state = VM_STOP;
Wb35Reg_Update(pHwData, RegisterNo, *pRegisterValue);
reg->SyncIoPause = 0;
Wb35Reg_EP0VM_start(pHwData);
if (ret < 0) {
pr_debug("EP0 Read register usb message sending error\n");
pHwData->SurpriseRemove = 1;
return false;
}
return true;
}
/*
* true : read command process successfully
* false : register not support
* pRegisterValue : It must be a resident buffer due to
* asynchronous read register.
*/
unsigned char Wb35Reg_Read(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterValue)
{
struct wb35_reg *reg = &pHwData->reg;
struct usb_ctrlrequest *dr;
struct urb *urb;
struct wb35_reg_queue *reg_queue;
u16 UrbSize;
/* Module shutdown */
if (pHwData->SurpriseRemove)
return false;
/* update the variable by send Urb to read register */
UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
if (reg_queue == NULL)
return false;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (urb == NULL) {
kfree(reg_queue);
return false;
}
reg_queue->DIRECT = 0; /* read register */
reg_queue->INDEX = RegisterNo;
reg_queue->pBuffer = pRegisterValue;
dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
dr->bRequestType = USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN;
dr->bRequest = 0x01; /* USB or vendor-defined request code, burst mode */
dr->wValue = cpu_to_le16(0x0);
dr->wIndex = cpu_to_le16(RegisterNo);
dr->wLength = cpu_to_le16(4);
/* Enter the sending queue */
reg_queue->Next = NULL;
reg_queue->pUsbReq = dr;
reg_queue->urb = urb;
spin_lock_irq(&reg->EP0VM_spin_lock);
if (reg->reg_first == NULL)
reg->reg_first = reg_queue;
else
reg->reg_last->Next = reg_queue;
reg->reg_last = reg_queue;
spin_unlock_irq(&reg->EP0VM_spin_lock);
/* Start EP0VM */
Wb35Reg_EP0VM_start(pHwData);
return true;
}
void Wb35Reg_EP0VM_start(struct hw_data *pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
if (atomic_inc_return(&reg->RegFireCount) == 1) {
reg->EP0vm_state = VM_RUNNING;
Wb35Reg_EP0VM(pHwData);
} else
atomic_dec(&reg->RegFireCount);
}
void Wb35Reg_EP0VM(struct hw_data *pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
struct urb *urb;
struct usb_ctrlrequest *dr;
u32 *pBuffer;
int ret = -1;
struct wb35_reg_queue *reg_queue;
if (reg->SyncIoPause)
goto cleanup;
if (pHwData->SurpriseRemove)
goto cleanup;
/* Get the register data and send to USB through Irp */
spin_lock_irq(&reg->EP0VM_spin_lock);
reg_queue = reg->reg_first;
spin_unlock_irq(&reg->EP0VM_spin_lock);
if (!reg_queue)
goto cleanup;
/* Get an Urb, send it */
urb = (struct urb *)reg_queue->urb;
dr = reg_queue->pUsbReq;
urb = reg_queue->urb;
pBuffer = reg_queue->pBuffer;
if (reg_queue->DIRECT == 1) /* output */
pBuffer = &reg_queue->VALUE;
usb_fill_control_urb(urb, pHwData->udev,
REG_DIRECTION(pHwData->udev, reg_queue),
(u8 *)dr, pBuffer, cpu_to_le16(dr->wLength),
Wb35Reg_EP0VM_complete, (void *)pHwData);
reg->EP0vm_state = VM_RUNNING;
ret = usb_submit_urb(urb, GFP_ATOMIC);
if (ret < 0) {
pr_debug("EP0 Irp sending error\n");
goto cleanup;
}
return;
cleanup:
reg->EP0vm_state = VM_STOP;
atomic_dec(&reg->RegFireCount);
}
void Wb35Reg_EP0VM_complete(struct urb *urb)
{
struct hw_data *pHwData = (struct hw_data *)urb->context;
struct wb35_reg *reg = &pHwData->reg;
struct wb35_reg_queue *reg_queue;
/* Variable setting */
reg->EP0vm_state = VM_COMPLETED;
reg->EP0VM_status = urb->status;
if (pHwData->SurpriseRemove) { /* Let WbWlanHalt to handle surprise remove */
reg->EP0vm_state = VM_STOP;
atomic_dec(&reg->RegFireCount);
} else {
/* Complete to send, remove the URB from the first */
spin_lock_irq(&reg->EP0VM_spin_lock);
reg_queue = reg->reg_first;
if (reg_queue == reg->reg_last)
reg->reg_last = NULL;
reg->reg_first = reg->reg_first->Next;
spin_unlock_irq(&reg->EP0VM_spin_lock);
if (reg->EP0VM_status) {
pr_debug("EP0 IoCompleteRoutine return error\n");
reg->EP0vm_state = VM_STOP;
pHwData->SurpriseRemove = 1;
} else {
/* Success. Update the result */
/* Start the next send */
Wb35Reg_EP0VM(pHwData);
}
kfree(reg_queue);
}
usb_free_urb(urb);
}
void Wb35Reg_destroy(struct hw_data *pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
struct urb *urb;
struct wb35_reg_queue *reg_queue;
Uxx_power_off_procedure(pHwData);
/* Wait for Reg operation completed */
do {
msleep(10); /* Delay for waiting function enter */
} while (reg->EP0vm_state != VM_STOP);
msleep(10); /* Delay for waiting function enter */
/* Release all the data in RegQueue */
spin_lock_irq(&reg->EP0VM_spin_lock);
reg_queue = reg->reg_first;
while (reg_queue) {
if (reg_queue == reg->reg_last)
reg->reg_last = NULL;
reg->reg_first = reg->reg_first->Next;
urb = reg_queue->urb;
spin_unlock_irq(&reg->EP0VM_spin_lock);
if (urb) {
usb_free_urb(urb);
kfree(reg_queue);
} else {
pr_debug("EP0 queue release error\n");
}
spin_lock_irq(&reg->EP0VM_spin_lock);
reg_queue = reg->reg_first;
}
spin_unlock_irq(&reg->EP0VM_spin_lock);
}
/*
* =======================================================================
* The function can be run in passive-level only.
* =========================================================================
*/
unsigned char Wb35Reg_initial(struct hw_data *pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
u32 ltmp;
u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval;
/* Spin lock is acquired for read and write IRP command */
spin_lock_init(&reg->EP0VM_spin_lock);
/* Getting RF module type from EEPROM */
Wb35Reg_WriteSync(pHwData, 0x03b4, 0x080d0000); /* Start EEPROM access + Read + address(0x0d) */
Wb35Reg_ReadSync(pHwData, 0x03b4, &ltmp);
/* Update RF module type and determine the PHY type by inf or EEPROM */
reg->EEPROMPhyType = (u8)(ltmp & 0xff);
/*
* 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829
* 16V AL2230, 17 - AL7230, 18 - AL2230S
* 32 Reserved
* 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34)
*/
if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) {
if ((reg->EEPROMPhyType == RF_MAXIM_2825) ||
(reg->EEPROMPhyType == RF_MAXIM_2827) ||
(reg->EEPROMPhyType == RF_MAXIM_2828) ||
(reg->EEPROMPhyType == RF_MAXIM_2829) ||
(reg->EEPROMPhyType == RF_MAXIM_V1) ||
(reg->EEPROMPhyType == RF_AIROHA_2230) ||
(reg->EEPROMPhyType == RF_AIROHA_2230S) ||
(reg->EEPROMPhyType == RF_AIROHA_7230) ||
(reg->EEPROMPhyType == RF_WB_242) ||
(reg->EEPROMPhyType == RF_WB_242_1))
pHwData->phy_type = reg->EEPROMPhyType;
}
/* Power On procedure running. The relative parameter will be set according to phy_type */
Uxx_power_on_procedure(pHwData);
/* Reading MAC address */
Uxx_ReadEthernetAddress(pHwData);
/* Read VCO trim for RF parameter */
Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08200000);
Wb35Reg_ReadSync(pHwData, 0x03b4, &VCO_trim);
/* Read Antenna On/Off of software flag */
Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08210000);
Wb35Reg_ReadSync(pHwData, 0x03b4, &SoftwareSet);
/* Read TXVGA */
Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08100000);
Wb35Reg_ReadSync(pHwData, 0x03b4, &TxVga);
/* Get Scan interval setting from EEPROM offset 0x1c */
Wb35Reg_WriteSync(pHwData, 0x03b4, 0x081d0000);
Wb35Reg_ReadSync(pHwData, 0x03b4, &Region_ScanInterval);
/* Update Ethernet address */
memcpy(pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_ALEN);
/* Update software variable */
pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff);
TxVga &= 0x000000ff;
pHwData->PowerIndexFromEEPROM = (u8)TxVga;
pHwData->VCO_trim = (u8)VCO_trim & 0xff;
if (pHwData->VCO_trim == 0xff)
pHwData->VCO_trim = 0x28;
reg->EEPROMRegion = (u8)(Region_ScanInterval >> 8);
if (reg->EEPROMRegion < 1 || reg->EEPROMRegion > 6)
reg->EEPROMRegion = REGION_AUTO;
/* For Get Tx VGA from EEPROM */
GetTxVgaFromEEPROM(pHwData);
/* Set Scan Interval */
pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10;
if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) /* Is default setting 0xff * 10 */
pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME;
/* Initial register */
RFSynthesizer_initial(pHwData);
BBProcessor_initial(pHwData); /* Async write, must wait until complete */
Wb35Reg_phy_calibration(pHwData);
Mxx_initial(pHwData);
Dxx_initial(pHwData);
if (pHwData->SurpriseRemove)
return false;
else
return true; /* Initial fail */
}
/*
* ================================================================
* CardComputeCrc --
*
* Description:
* Runs the AUTODIN II CRC algorithm on the buffers Buffer length.
*
* Arguments:
* Buffer - the input buffer
* Length - the length of Buffer
*
* Return Value:
* The 32-bit CRC value.
* ===================================================================
*/
u32 CardComputeCrc(u8 *Buffer, u32 Length)
{
u32 Crc, Carry;
u32 i, j;
u8 CurByte;
Crc = 0xffffffff;
for (i = 0; i < Length; i++) {
CurByte = Buffer[i];
for (j = 0; j < 8; j++) {
Carry = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01);
Crc <<= 1;
CurByte >>= 1;
if (Carry)
Crc = (Crc ^ 0x04c11db6) | Carry;
}
}
return Crc;
}
/*
* ==================================================================
* BitReverse --
* Reverse the bits in the input argument, dwData, which is
* regarded as a string of bits with the length, DataLength.
*
* Arguments:
* dwData :
* DataLength :
*
* Return:
* The converted value.
* ==================================================================
*/
u32 BitReverse(u32 dwData, u32 DataLength)
{
u32 HalfLength, i, j;
u32 BitA, BitB;
if (DataLength <= 0)
return 0; /* No conversion is done. */
dwData = dwData & (0xffffffff >> (32 - DataLength));
HalfLength = DataLength / 2;
for (i = 0, j = DataLength - 1; i < HalfLength; i++, j--) {
BitA = GetBit(dwData, i);
BitB = GetBit(dwData, j);
if (BitA && !BitB) {
dwData = ClearBit(dwData, i);
dwData = SetBit(dwData, j);
} else if (!BitA && BitB) {
dwData = SetBit(dwData, i);
dwData = ClearBit(dwData, j);
} else {
/* Do nothing since these two bits are of the save values. */
}
}
return dwData;
}
void Wb35Reg_phy_calibration(struct hw_data *pHwData)
{
u32 BB3c, BB54;
if ((pHwData->phy_type == RF_WB_242) ||
(pHwData->phy_type == RF_WB_242_1)) {
phy_calibration_winbond(pHwData, 2412); /* Sync operation */
Wb35Reg_ReadSync(pHwData, 0x103c, &BB3c);
Wb35Reg_ReadSync(pHwData, 0x1054, &BB54);
pHwData->BB3c_cal = BB3c;
pHwData->BB54_cal = BB54;
RFSynthesizer_initial(pHwData);
BBProcessor_initial(pHwData); /* Async operation */
Wb35Reg_WriteSync(pHwData, 0x103c, BB3c);
Wb35Reg_WriteSync(pHwData, 0x1054, BB54);
}
}