|  | /** | 
|  | * attrib.c - NTFS attribute operations.  Part of the Linux-NTFS project. | 
|  | * | 
|  | * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. | 
|  | * Copyright (c) 2002 Richard Russon | 
|  | * | 
|  | * This program/include file is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as published | 
|  | * by the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program/include file is distributed in the hope that it will be | 
|  | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty | 
|  | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program (in the main directory of the Linux-NTFS | 
|  | * distribution in the file COPYING); if not, write to the Free Software | 
|  | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/writeback.h> | 
|  |  | 
|  | #include "attrib.h" | 
|  | #include "debug.h" | 
|  | #include "layout.h" | 
|  | #include "lcnalloc.h" | 
|  | #include "malloc.h" | 
|  | #include "mft.h" | 
|  | #include "ntfs.h" | 
|  | #include "types.h" | 
|  |  | 
|  | /** | 
|  | * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode | 
|  | * @ni:		ntfs inode for which to map (part of) a runlist | 
|  | * @vcn:	map runlist part containing this vcn | 
|  | * @ctx:	active attribute search context if present or NULL if not | 
|  | * | 
|  | * Map the part of a runlist containing the @vcn of the ntfs inode @ni. | 
|  | * | 
|  | * If @ctx is specified, it is an active search context of @ni and its base mft | 
|  | * record.  This is needed when ntfs_map_runlist_nolock() encounters unmapped | 
|  | * runlist fragments and allows their mapping.  If you do not have the mft | 
|  | * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock() | 
|  | * will perform the necessary mapping and unmapping. | 
|  | * | 
|  | * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and | 
|  | * restores it before returning.  Thus, @ctx will be left pointing to the same | 
|  | * attribute on return as on entry.  However, the actual pointers in @ctx may | 
|  | * point to different memory locations on return, so you must remember to reset | 
|  | * any cached pointers from the @ctx, i.e. after the call to | 
|  | * ntfs_map_runlist_nolock(), you will probably want to do: | 
|  | *	m = ctx->mrec; | 
|  | *	a = ctx->attr; | 
|  | * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that | 
|  | * you cache ctx->mrec in a variable @m of type MFT_RECORD *. | 
|  | * | 
|  | * Return 0 on success and -errno on error.  There is one special error code | 
|  | * which is not an error as such.  This is -ENOENT.  It means that @vcn is out | 
|  | * of bounds of the runlist. | 
|  | * | 
|  | * Note the runlist can be NULL after this function returns if @vcn is zero and | 
|  | * the attribute has zero allocated size, i.e. there simply is no runlist. | 
|  | * | 
|  | * WARNING: If @ctx is supplied, regardless of whether success or failure is | 
|  | *	    returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx | 
|  | *	    is no longer valid, i.e. you need to either call | 
|  | *	    ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. | 
|  | *	    In that case PTR_ERR(@ctx->mrec) will give you the error code for | 
|  | *	    why the mapping of the old inode failed. | 
|  | * | 
|  | * Locking: - The runlist described by @ni must be locked for writing on entry | 
|  | *	      and is locked on return.  Note the runlist will be modified. | 
|  | *	    - If @ctx is NULL, the base mft record of @ni must not be mapped on | 
|  | *	      entry and it will be left unmapped on return. | 
|  | *	    - If @ctx is not NULL, the base mft record must be mapped on entry | 
|  | *	      and it will be left mapped on return. | 
|  | */ | 
|  | int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | VCN end_vcn; | 
|  | unsigned long flags; | 
|  | ntfs_inode *base_ni; | 
|  | MFT_RECORD *m; | 
|  | ATTR_RECORD *a; | 
|  | runlist_element *rl; | 
|  | struct page *put_this_page = NULL; | 
|  | int err = 0; | 
|  | bool ctx_is_temporary, ctx_needs_reset; | 
|  | ntfs_attr_search_ctx old_ctx = { NULL, }; | 
|  |  | 
|  | ntfs_debug("Mapping runlist part containing vcn 0x%llx.", | 
|  | (unsigned long long)vcn); | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | if (!ctx) { | 
|  | ctx_is_temporary = ctx_needs_reset = true; | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) | 
|  | return PTR_ERR(m); | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | } else { | 
|  | VCN allocated_size_vcn; | 
|  |  | 
|  | BUG_ON(IS_ERR(ctx->mrec)); | 
|  | a = ctx->attr; | 
|  | BUG_ON(!a->non_resident); | 
|  | ctx_is_temporary = false; | 
|  | end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | allocated_size_vcn = ni->allocated_size >> | 
|  | ni->vol->cluster_size_bits; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (!a->data.non_resident.lowest_vcn && end_vcn <= 0) | 
|  | end_vcn = allocated_size_vcn - 1; | 
|  | /* | 
|  | * If we already have the attribute extent containing @vcn in | 
|  | * @ctx, no need to look it up again.  We slightly cheat in | 
|  | * that if vcn exceeds the allocated size, we will refuse to | 
|  | * map the runlist below, so there is definitely no need to get | 
|  | * the right attribute extent. | 
|  | */ | 
|  | if (vcn >= allocated_size_vcn || (a->type == ni->type && | 
|  | a->name_length == ni->name_len && | 
|  | !memcmp((u8*)a + le16_to_cpu(a->name_offset), | 
|  | ni->name, ni->name_len) && | 
|  | sle64_to_cpu(a->data.non_resident.lowest_vcn) | 
|  | <= vcn && end_vcn >= vcn)) | 
|  | ctx_needs_reset = false; | 
|  | else { | 
|  | /* Save the old search context. */ | 
|  | old_ctx = *ctx; | 
|  | /* | 
|  | * If the currently mapped (extent) inode is not the | 
|  | * base inode we will unmap it when we reinitialize the | 
|  | * search context which means we need to get a | 
|  | * reference to the page containing the mapped mft | 
|  | * record so we do not accidentally drop changes to the | 
|  | * mft record when it has not been marked dirty yet. | 
|  | */ | 
|  | if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino != | 
|  | old_ctx.base_ntfs_ino) { | 
|  | put_this_page = old_ctx.ntfs_ino->page; | 
|  | page_cache_get(put_this_page); | 
|  | } | 
|  | /* | 
|  | * Reinitialize the search context so we can lookup the | 
|  | * needed attribute extent. | 
|  | */ | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | ctx_needs_reset = true; | 
|  | } | 
|  | } | 
|  | if (ctx_needs_reset) { | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, vcn, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  | BUG_ON(!ctx->attr->non_resident); | 
|  | } | 
|  | a = ctx->attr; | 
|  | /* | 
|  | * Only decompress the mapping pairs if @vcn is inside it.  Otherwise | 
|  | * we get into problems when we try to map an out of bounds vcn because | 
|  | * we then try to map the already mapped runlist fragment and | 
|  | * ntfs_mapping_pairs_decompress() fails. | 
|  | */ | 
|  | end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1; | 
|  | if (unlikely(vcn && vcn >= end_vcn)) { | 
|  | err = -ENOENT; | 
|  | goto err_out; | 
|  | } | 
|  | rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl); | 
|  | if (IS_ERR(rl)) | 
|  | err = PTR_ERR(rl); | 
|  | else | 
|  | ni->runlist.rl = rl; | 
|  | err_out: | 
|  | if (ctx_is_temporary) { | 
|  | if (likely(ctx)) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | } else if (ctx_needs_reset) { | 
|  | /* | 
|  | * If there is no attribute list, restoring the search context | 
|  | * is accomplished simply by copying the saved context back over | 
|  | * the caller supplied context.  If there is an attribute list, | 
|  | * things are more complicated as we need to deal with mapping | 
|  | * of mft records and resulting potential changes in pointers. | 
|  | */ | 
|  | if (NInoAttrList(base_ni)) { | 
|  | /* | 
|  | * If the currently mapped (extent) inode is not the | 
|  | * one we had before, we need to unmap it and map the | 
|  | * old one. | 
|  | */ | 
|  | if (ctx->ntfs_ino != old_ctx.ntfs_ino) { | 
|  | /* | 
|  | * If the currently mapped inode is not the | 
|  | * base inode, unmap it. | 
|  | */ | 
|  | if (ctx->base_ntfs_ino && ctx->ntfs_ino != | 
|  | ctx->base_ntfs_ino) { | 
|  | unmap_extent_mft_record(ctx->ntfs_ino); | 
|  | ctx->mrec = ctx->base_mrec; | 
|  | BUG_ON(!ctx->mrec); | 
|  | } | 
|  | /* | 
|  | * If the old mapped inode is not the base | 
|  | * inode, map it. | 
|  | */ | 
|  | if (old_ctx.base_ntfs_ino && | 
|  | old_ctx.ntfs_ino != | 
|  | old_ctx.base_ntfs_ino) { | 
|  | retry_map: | 
|  | ctx->mrec = map_mft_record( | 
|  | old_ctx.ntfs_ino); | 
|  | /* | 
|  | * Something bad has happened.  If out | 
|  | * of memory retry till it succeeds. | 
|  | * Any other errors are fatal and we | 
|  | * return the error code in ctx->mrec. | 
|  | * Let the caller deal with it...  We | 
|  | * just need to fudge things so the | 
|  | * caller can reinit and/or put the | 
|  | * search context safely. | 
|  | */ | 
|  | if (IS_ERR(ctx->mrec)) { | 
|  | if (PTR_ERR(ctx->mrec) == | 
|  | -ENOMEM) { | 
|  | schedule(); | 
|  | goto retry_map; | 
|  | } else | 
|  | old_ctx.ntfs_ino = | 
|  | old_ctx. | 
|  | base_ntfs_ino; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Update the changed pointers in the saved context. */ | 
|  | if (ctx->mrec != old_ctx.mrec) { | 
|  | if (!IS_ERR(ctx->mrec)) | 
|  | old_ctx.attr = (ATTR_RECORD*)( | 
|  | (u8*)ctx->mrec + | 
|  | ((u8*)old_ctx.attr - | 
|  | (u8*)old_ctx.mrec)); | 
|  | old_ctx.mrec = ctx->mrec; | 
|  | } | 
|  | } | 
|  | /* Restore the search context to the saved one. */ | 
|  | *ctx = old_ctx; | 
|  | /* | 
|  | * We drop the reference on the page we took earlier.  In the | 
|  | * case that IS_ERR(ctx->mrec) is true this means we might lose | 
|  | * some changes to the mft record that had been made between | 
|  | * the last time it was marked dirty/written out and now.  This | 
|  | * at this stage is not a problem as the mapping error is fatal | 
|  | * enough that the mft record cannot be written out anyway and | 
|  | * the caller is very likely to shutdown the whole inode | 
|  | * immediately and mark the volume dirty for chkdsk to pick up | 
|  | * the pieces anyway. | 
|  | */ | 
|  | if (put_this_page) | 
|  | page_cache_release(put_this_page); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode | 
|  | * @ni:		ntfs inode for which to map (part of) a runlist | 
|  | * @vcn:	map runlist part containing this vcn | 
|  | * | 
|  | * Map the part of a runlist containing the @vcn of the ntfs inode @ni. | 
|  | * | 
|  | * Return 0 on success and -errno on error.  There is one special error code | 
|  | * which is not an error as such.  This is -ENOENT.  It means that @vcn is out | 
|  | * of bounds of the runlist. | 
|  | * | 
|  | * Locking: - The runlist must be unlocked on entry and is unlocked on return. | 
|  | *	    - This function takes the runlist lock for writing and may modify | 
|  | *	      the runlist. | 
|  | */ | 
|  | int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | down_write(&ni->runlist.lock); | 
|  | /* Make sure someone else didn't do the work while we were sleeping. */ | 
|  | if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <= | 
|  | LCN_RL_NOT_MAPPED)) | 
|  | err = ntfs_map_runlist_nolock(ni, vcn, NULL); | 
|  | up_write(&ni->runlist.lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode | 
|  | * @ni:			ntfs inode of the attribute whose runlist to search | 
|  | * @vcn:		vcn to convert | 
|  | * @write_locked:	true if the runlist is locked for writing | 
|  | * | 
|  | * Find the virtual cluster number @vcn in the runlist of the ntfs attribute | 
|  | * described by the ntfs inode @ni and return the corresponding logical cluster | 
|  | * number (lcn). | 
|  | * | 
|  | * If the @vcn is not mapped yet, the attempt is made to map the attribute | 
|  | * extent containing the @vcn and the vcn to lcn conversion is retried. | 
|  | * | 
|  | * If @write_locked is true the caller has locked the runlist for writing and | 
|  | * if false for reading. | 
|  | * | 
|  | * Since lcns must be >= 0, we use negative return codes with special meaning: | 
|  | * | 
|  | * Return code	Meaning / Description | 
|  | * ========================================== | 
|  | *  LCN_HOLE	Hole / not allocated on disk. | 
|  | *  LCN_ENOENT	There is no such vcn in the runlist, i.e. @vcn is out of bounds. | 
|  | *  LCN_ENOMEM	Not enough memory to map runlist. | 
|  | *  LCN_EIO	Critical error (runlist/file is corrupt, i/o error, etc). | 
|  | * | 
|  | * Locking: - The runlist must be locked on entry and is left locked on return. | 
|  | *	    - If @write_locked is 'false', i.e. the runlist is locked for reading, | 
|  | *	      the lock may be dropped inside the function so you cannot rely on | 
|  | *	      the runlist still being the same when this function returns. | 
|  | */ | 
|  | LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn, | 
|  | const bool write_locked) | 
|  | { | 
|  | LCN lcn; | 
|  | unsigned long flags; | 
|  | bool is_retry = false; | 
|  |  | 
|  | BUG_ON(!ni); | 
|  | ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.", | 
|  | ni->mft_no, (unsigned long long)vcn, | 
|  | write_locked ? "write" : "read"); | 
|  | BUG_ON(!NInoNonResident(ni)); | 
|  | BUG_ON(vcn < 0); | 
|  | if (!ni->runlist.rl) { | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | if (!ni->allocated_size) { | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | return LCN_ENOENT; | 
|  | } | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | } | 
|  | retry_remap: | 
|  | /* Convert vcn to lcn.  If that fails map the runlist and retry once. */ | 
|  | lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn); | 
|  | if (likely(lcn >= LCN_HOLE)) { | 
|  | ntfs_debug("Done, lcn 0x%llx.", (long long)lcn); | 
|  | return lcn; | 
|  | } | 
|  | if (lcn != LCN_RL_NOT_MAPPED) { | 
|  | if (lcn != LCN_ENOENT) | 
|  | lcn = LCN_EIO; | 
|  | } else if (!is_retry) { | 
|  | int err; | 
|  |  | 
|  | if (!write_locked) { | 
|  | up_read(&ni->runlist.lock); | 
|  | down_write(&ni->runlist.lock); | 
|  | if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) != | 
|  | LCN_RL_NOT_MAPPED)) { | 
|  | up_write(&ni->runlist.lock); | 
|  | down_read(&ni->runlist.lock); | 
|  | goto retry_remap; | 
|  | } | 
|  | } | 
|  | err = ntfs_map_runlist_nolock(ni, vcn, NULL); | 
|  | if (!write_locked) { | 
|  | up_write(&ni->runlist.lock); | 
|  | down_read(&ni->runlist.lock); | 
|  | } | 
|  | if (likely(!err)) { | 
|  | is_retry = true; | 
|  | goto retry_remap; | 
|  | } | 
|  | if (err == -ENOENT) | 
|  | lcn = LCN_ENOENT; | 
|  | else if (err == -ENOMEM) | 
|  | lcn = LCN_ENOMEM; | 
|  | else | 
|  | lcn = LCN_EIO; | 
|  | } | 
|  | if (lcn != LCN_ENOENT) | 
|  | ntfs_error(ni->vol->sb, "Failed with error code %lli.", | 
|  | (long long)lcn); | 
|  | return lcn; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode | 
|  | * @ni:		ntfs inode describing the runlist to search | 
|  | * @vcn:	vcn to find | 
|  | * @ctx:	active attribute search context if present or NULL if not | 
|  | * | 
|  | * Find the virtual cluster number @vcn in the runlist described by the ntfs | 
|  | * inode @ni and return the address of the runlist element containing the @vcn. | 
|  | * | 
|  | * If the @vcn is not mapped yet, the attempt is made to map the attribute | 
|  | * extent containing the @vcn and the vcn to lcn conversion is retried. | 
|  | * | 
|  | * If @ctx is specified, it is an active search context of @ni and its base mft | 
|  | * record.  This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped | 
|  | * runlist fragments and allows their mapping.  If you do not have the mft | 
|  | * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock() | 
|  | * will perform the necessary mapping and unmapping. | 
|  | * | 
|  | * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and | 
|  | * restores it before returning.  Thus, @ctx will be left pointing to the same | 
|  | * attribute on return as on entry.  However, the actual pointers in @ctx may | 
|  | * point to different memory locations on return, so you must remember to reset | 
|  | * any cached pointers from the @ctx, i.e. after the call to | 
|  | * ntfs_attr_find_vcn_nolock(), you will probably want to do: | 
|  | *	m = ctx->mrec; | 
|  | *	a = ctx->attr; | 
|  | * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that | 
|  | * you cache ctx->mrec in a variable @m of type MFT_RECORD *. | 
|  | * Note you need to distinguish between the lcn of the returned runlist element | 
|  | * being >= 0 and LCN_HOLE.  In the later case you have to return zeroes on | 
|  | * read and allocate clusters on write. | 
|  | * | 
|  | * Return the runlist element containing the @vcn on success and | 
|  | * ERR_PTR(-errno) on error.  You need to test the return value with IS_ERR() | 
|  | * to decide if the return is success or failure and PTR_ERR() to get to the | 
|  | * error code if IS_ERR() is true. | 
|  | * | 
|  | * The possible error return codes are: | 
|  | *	-ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds. | 
|  | *	-ENOMEM - Not enough memory to map runlist. | 
|  | *	-EIO	- Critical error (runlist/file is corrupt, i/o error, etc). | 
|  | * | 
|  | * WARNING: If @ctx is supplied, regardless of whether success or failure is | 
|  | *	    returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx | 
|  | *	    is no longer valid, i.e. you need to either call | 
|  | *	    ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. | 
|  | *	    In that case PTR_ERR(@ctx->mrec) will give you the error code for | 
|  | *	    why the mapping of the old inode failed. | 
|  | * | 
|  | * Locking: - The runlist described by @ni must be locked for writing on entry | 
|  | *	      and is locked on return.  Note the runlist may be modified when | 
|  | *	      needed runlist fragments need to be mapped. | 
|  | *	    - If @ctx is NULL, the base mft record of @ni must not be mapped on | 
|  | *	      entry and it will be left unmapped on return. | 
|  | *	    - If @ctx is not NULL, the base mft record must be mapped on entry | 
|  | *	      and it will be left mapped on return. | 
|  | */ | 
|  | runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn, | 
|  | ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | unsigned long flags; | 
|  | runlist_element *rl; | 
|  | int err = 0; | 
|  | bool is_retry = false; | 
|  |  | 
|  | BUG_ON(!ni); | 
|  | ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.", | 
|  | ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out"); | 
|  | BUG_ON(!NInoNonResident(ni)); | 
|  | BUG_ON(vcn < 0); | 
|  | if (!ni->runlist.rl) { | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | if (!ni->allocated_size) { | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | return ERR_PTR(-ENOENT); | 
|  | } | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | } | 
|  | retry_remap: | 
|  | rl = ni->runlist.rl; | 
|  | if (likely(rl && vcn >= rl[0].vcn)) { | 
|  | while (likely(rl->length)) { | 
|  | if (unlikely(vcn < rl[1].vcn)) { | 
|  | if (likely(rl->lcn >= LCN_HOLE)) { | 
|  | ntfs_debug("Done."); | 
|  | return rl; | 
|  | } | 
|  | break; | 
|  | } | 
|  | rl++; | 
|  | } | 
|  | if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) { | 
|  | if (likely(rl->lcn == LCN_ENOENT)) | 
|  | err = -ENOENT; | 
|  | else | 
|  | err = -EIO; | 
|  | } | 
|  | } | 
|  | if (!err && !is_retry) { | 
|  | /* | 
|  | * If the search context is invalid we cannot map the unmapped | 
|  | * region. | 
|  | */ | 
|  | if (IS_ERR(ctx->mrec)) | 
|  | err = PTR_ERR(ctx->mrec); | 
|  | else { | 
|  | /* | 
|  | * The @vcn is in an unmapped region, map the runlist | 
|  | * and retry. | 
|  | */ | 
|  | err = ntfs_map_runlist_nolock(ni, vcn, ctx); | 
|  | if (likely(!err)) { | 
|  | is_retry = true; | 
|  | goto retry_remap; | 
|  | } | 
|  | } | 
|  | if (err == -EINVAL) | 
|  | err = -EIO; | 
|  | } else if (!err) | 
|  | err = -EIO; | 
|  | if (err != -ENOENT) | 
|  | ntfs_error(ni->vol->sb, "Failed with error code %i.", err); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_find - find (next) attribute in mft record | 
|  | * @type:	attribute type to find | 
|  | * @name:	attribute name to find (optional, i.e. NULL means don't care) | 
|  | * @name_len:	attribute name length (only needed if @name present) | 
|  | * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) | 
|  | * @val:	attribute value to find (optional, resident attributes only) | 
|  | * @val_len:	attribute value length | 
|  | * @ctx:	search context with mft record and attribute to search from | 
|  | * | 
|  | * You should not need to call this function directly.  Use ntfs_attr_lookup() | 
|  | * instead. | 
|  | * | 
|  | * ntfs_attr_find() takes a search context @ctx as parameter and searches the | 
|  | * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an | 
|  | * attribute of @type, optionally @name and @val. | 
|  | * | 
|  | * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will | 
|  | * point to the found attribute. | 
|  | * | 
|  | * If the attribute is not found, ntfs_attr_find() returns -ENOENT and | 
|  | * @ctx->attr will point to the attribute before which the attribute being | 
|  | * searched for would need to be inserted if such an action were to be desired. | 
|  | * | 
|  | * On actual error, ntfs_attr_find() returns -EIO.  In this case @ctx->attr is | 
|  | * undefined and in particular do not rely on it not changing. | 
|  | * | 
|  | * If @ctx->is_first is 'true', the search begins with @ctx->attr itself.  If it | 
|  | * is 'false', the search begins after @ctx->attr. | 
|  | * | 
|  | * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and | 
|  | * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record | 
|  | * @ctx->mrec belongs.  This is so we can get at the ntfs volume and hence at | 
|  | * the upcase table.  If @ic is CASE_SENSITIVE, the comparison is case | 
|  | * sensitive.  When @name is present, @name_len is the @name length in Unicode | 
|  | * characters. | 
|  | * | 
|  | * If @name is not present (NULL), we assume that the unnamed attribute is | 
|  | * being searched for. | 
|  | * | 
|  | * Finally, the resident attribute value @val is looked for, if present.  If | 
|  | * @val is not present (NULL), @val_len is ignored. | 
|  | * | 
|  | * ntfs_attr_find() only searches the specified mft record and it ignores the | 
|  | * presence of an attribute list attribute (unless it is the one being searched | 
|  | * for, obviously).  If you need to take attribute lists into consideration, | 
|  | * use ntfs_attr_lookup() instead (see below).  This also means that you cannot | 
|  | * use ntfs_attr_find() to search for extent records of non-resident | 
|  | * attributes, as extents with lowest_vcn != 0 are usually described by the | 
|  | * attribute list attribute only. - Note that it is possible that the first | 
|  | * extent is only in the attribute list while the last extent is in the base | 
|  | * mft record, so do not rely on being able to find the first extent in the | 
|  | * base mft record. | 
|  | * | 
|  | * Warning: Never use @val when looking for attribute types which can be | 
|  | *	    non-resident as this most likely will result in a crash! | 
|  | */ | 
|  | static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name, | 
|  | const u32 name_len, const IGNORE_CASE_BOOL ic, | 
|  | const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | ATTR_RECORD *a; | 
|  | ntfs_volume *vol = ctx->ntfs_ino->vol; | 
|  | ntfschar *upcase = vol->upcase; | 
|  | u32 upcase_len = vol->upcase_len; | 
|  |  | 
|  | /* | 
|  | * Iterate over attributes in mft record starting at @ctx->attr, or the | 
|  | * attribute following that, if @ctx->is_first is 'true'. | 
|  | */ | 
|  | if (ctx->is_first) { | 
|  | a = ctx->attr; | 
|  | ctx->is_first = false; | 
|  | } else | 
|  | a = (ATTR_RECORD*)((u8*)ctx->attr + | 
|  | le32_to_cpu(ctx->attr->length)); | 
|  | for (;;	a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) { | 
|  | if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + | 
|  | le32_to_cpu(ctx->mrec->bytes_allocated)) | 
|  | break; | 
|  | ctx->attr = a; | 
|  | if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) || | 
|  | a->type == AT_END)) | 
|  | return -ENOENT; | 
|  | if (unlikely(!a->length)) | 
|  | break; | 
|  | if (a->type != type) | 
|  | continue; | 
|  | /* | 
|  | * If @name is present, compare the two names.  If @name is | 
|  | * missing, assume we want an unnamed attribute. | 
|  | */ | 
|  | if (!name) { | 
|  | /* The search failed if the found attribute is named. */ | 
|  | if (a->name_length) | 
|  | return -ENOENT; | 
|  | } else if (!ntfs_are_names_equal(name, name_len, | 
|  | (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), | 
|  | a->name_length, ic, upcase, upcase_len)) { | 
|  | register int rc; | 
|  |  | 
|  | rc = ntfs_collate_names(name, name_len, | 
|  | (ntfschar*)((u8*)a + | 
|  | le16_to_cpu(a->name_offset)), | 
|  | a->name_length, 1, IGNORE_CASE, | 
|  | upcase, upcase_len); | 
|  | /* | 
|  | * If @name collates before a->name, there is no | 
|  | * matching attribute. | 
|  | */ | 
|  | if (rc == -1) | 
|  | return -ENOENT; | 
|  | /* If the strings are not equal, continue search. */ | 
|  | if (rc) | 
|  | continue; | 
|  | rc = ntfs_collate_names(name, name_len, | 
|  | (ntfschar*)((u8*)a + | 
|  | le16_to_cpu(a->name_offset)), | 
|  | a->name_length, 1, CASE_SENSITIVE, | 
|  | upcase, upcase_len); | 
|  | if (rc == -1) | 
|  | return -ENOENT; | 
|  | if (rc) | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * The names match or @name not present and attribute is | 
|  | * unnamed.  If no @val specified, we have found the attribute | 
|  | * and are done. | 
|  | */ | 
|  | if (!val) | 
|  | return 0; | 
|  | /* @val is present; compare values. */ | 
|  | else { | 
|  | register int rc; | 
|  |  | 
|  | rc = memcmp(val, (u8*)a + le16_to_cpu( | 
|  | a->data.resident.value_offset), | 
|  | min_t(u32, val_len, le32_to_cpu( | 
|  | a->data.resident.value_length))); | 
|  | /* | 
|  | * If @val collates before the current attribute's | 
|  | * value, there is no matching attribute. | 
|  | */ | 
|  | if (!rc) { | 
|  | register u32 avl; | 
|  |  | 
|  | avl = le32_to_cpu( | 
|  | a->data.resident.value_length); | 
|  | if (val_len == avl) | 
|  | return 0; | 
|  | if (val_len < avl) | 
|  | return -ENOENT; | 
|  | } else if (rc < 0) | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  | ntfs_error(vol->sb, "Inode is corrupt.  Run chkdsk."); | 
|  | NVolSetErrors(vol); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * load_attribute_list - load an attribute list into memory | 
|  | * @vol:		ntfs volume from which to read | 
|  | * @runlist:		runlist of the attribute list | 
|  | * @al_start:		destination buffer | 
|  | * @size:		size of the destination buffer in bytes | 
|  | * @initialized_size:	initialized size of the attribute list | 
|  | * | 
|  | * Walk the runlist @runlist and load all clusters from it copying them into | 
|  | * the linear buffer @al. The maximum number of bytes copied to @al is @size | 
|  | * bytes. Note, @size does not need to be a multiple of the cluster size. If | 
|  | * @initialized_size is less than @size, the region in @al between | 
|  | * @initialized_size and @size will be zeroed and not read from disk. | 
|  | * | 
|  | * Return 0 on success or -errno on error. | 
|  | */ | 
|  | int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start, | 
|  | const s64 size, const s64 initialized_size) | 
|  | { | 
|  | LCN lcn; | 
|  | u8 *al = al_start; | 
|  | u8 *al_end = al + initialized_size; | 
|  | runlist_element *rl; | 
|  | struct buffer_head *bh; | 
|  | struct super_block *sb; | 
|  | unsigned long block_size; | 
|  | unsigned long block, max_block; | 
|  | int err = 0; | 
|  | unsigned char block_size_bits; | 
|  |  | 
|  | ntfs_debug("Entering."); | 
|  | if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 || | 
|  | initialized_size > size) | 
|  | return -EINVAL; | 
|  | if (!initialized_size) { | 
|  | memset(al, 0, size); | 
|  | return 0; | 
|  | } | 
|  | sb = vol->sb; | 
|  | block_size = sb->s_blocksize; | 
|  | block_size_bits = sb->s_blocksize_bits; | 
|  | down_read(&runlist->lock); | 
|  | rl = runlist->rl; | 
|  | if (!rl) { | 
|  | ntfs_error(sb, "Cannot read attribute list since runlist is " | 
|  | "missing."); | 
|  | goto err_out; | 
|  | } | 
|  | /* Read all clusters specified by the runlist one run at a time. */ | 
|  | while (rl->length) { | 
|  | lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn); | 
|  | ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.", | 
|  | (unsigned long long)rl->vcn, | 
|  | (unsigned long long)lcn); | 
|  | /* The attribute list cannot be sparse. */ | 
|  | if (lcn < 0) { | 
|  | ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed.  Cannot " | 
|  | "read attribute list."); | 
|  | goto err_out; | 
|  | } | 
|  | block = lcn << vol->cluster_size_bits >> block_size_bits; | 
|  | /* Read the run from device in chunks of block_size bytes. */ | 
|  | max_block = block + (rl->length << vol->cluster_size_bits >> | 
|  | block_size_bits); | 
|  | ntfs_debug("max_block = 0x%lx.", max_block); | 
|  | do { | 
|  | ntfs_debug("Reading block = 0x%lx.", block); | 
|  | bh = sb_bread(sb, block); | 
|  | if (!bh) { | 
|  | ntfs_error(sb, "sb_bread() failed. Cannot " | 
|  | "read attribute list."); | 
|  | goto err_out; | 
|  | } | 
|  | if (al + block_size >= al_end) | 
|  | goto do_final; | 
|  | memcpy(al, bh->b_data, block_size); | 
|  | brelse(bh); | 
|  | al += block_size; | 
|  | } while (++block < max_block); | 
|  | rl++; | 
|  | } | 
|  | if (initialized_size < size) { | 
|  | initialize: | 
|  | memset(al_start + initialized_size, 0, size - initialized_size); | 
|  | } | 
|  | done: | 
|  | up_read(&runlist->lock); | 
|  | return err; | 
|  | do_final: | 
|  | if (al < al_end) { | 
|  | /* | 
|  | * Partial block. | 
|  | * | 
|  | * Note: The attribute list can be smaller than its allocation | 
|  | * by multiple clusters.  This has been encountered by at least | 
|  | * two people running Windows XP, thus we cannot do any | 
|  | * truncation sanity checking here. (AIA) | 
|  | */ | 
|  | memcpy(al, bh->b_data, al_end - al); | 
|  | brelse(bh); | 
|  | if (initialized_size < size) | 
|  | goto initialize; | 
|  | goto done; | 
|  | } | 
|  | brelse(bh); | 
|  | /* Real overflow! */ | 
|  | ntfs_error(sb, "Attribute list buffer overflow. Read attribute list " | 
|  | "is truncated."); | 
|  | err_out: | 
|  | err = -EIO; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_external_attr_find - find an attribute in the attribute list of an inode | 
|  | * @type:	attribute type to find | 
|  | * @name:	attribute name to find (optional, i.e. NULL means don't care) | 
|  | * @name_len:	attribute name length (only needed if @name present) | 
|  | * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) | 
|  | * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only) | 
|  | * @val:	attribute value to find (optional, resident attributes only) | 
|  | * @val_len:	attribute value length | 
|  | * @ctx:	search context with mft record and attribute to search from | 
|  | * | 
|  | * You should not need to call this function directly.  Use ntfs_attr_lookup() | 
|  | * instead. | 
|  | * | 
|  | * Find an attribute by searching the attribute list for the corresponding | 
|  | * attribute list entry.  Having found the entry, map the mft record if the | 
|  | * attribute is in a different mft record/inode, ntfs_attr_find() the attribute | 
|  | * in there and return it. | 
|  | * | 
|  | * On first search @ctx->ntfs_ino must be the base mft record and @ctx must | 
|  | * have been obtained from a call to ntfs_attr_get_search_ctx().  On subsequent | 
|  | * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is | 
|  | * then the base inode). | 
|  | * | 
|  | * After finishing with the attribute/mft record you need to call | 
|  | * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any | 
|  | * mapped inodes, etc). | 
|  | * | 
|  | * If the attribute is found, ntfs_external_attr_find() returns 0 and | 
|  | * @ctx->attr will point to the found attribute.  @ctx->mrec will point to the | 
|  | * mft record in which @ctx->attr is located and @ctx->al_entry will point to | 
|  | * the attribute list entry for the attribute. | 
|  | * | 
|  | * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and | 
|  | * @ctx->attr will point to the attribute in the base mft record before which | 
|  | * the attribute being searched for would need to be inserted if such an action | 
|  | * were to be desired.  @ctx->mrec will point to the mft record in which | 
|  | * @ctx->attr is located and @ctx->al_entry will point to the attribute list | 
|  | * entry of the attribute before which the attribute being searched for would | 
|  | * need to be inserted if such an action were to be desired. | 
|  | * | 
|  | * Thus to insert the not found attribute, one wants to add the attribute to | 
|  | * @ctx->mrec (the base mft record) and if there is not enough space, the | 
|  | * attribute should be placed in a newly allocated extent mft record.  The | 
|  | * attribute list entry for the inserted attribute should be inserted in the | 
|  | * attribute list attribute at @ctx->al_entry. | 
|  | * | 
|  | * On actual error, ntfs_external_attr_find() returns -EIO.  In this case | 
|  | * @ctx->attr is undefined and in particular do not rely on it not changing. | 
|  | */ | 
|  | static int ntfs_external_attr_find(const ATTR_TYPE type, | 
|  | const ntfschar *name, const u32 name_len, | 
|  | const IGNORE_CASE_BOOL ic, const VCN lowest_vcn, | 
|  | const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | ntfs_inode *base_ni, *ni; | 
|  | ntfs_volume *vol; | 
|  | ATTR_LIST_ENTRY *al_entry, *next_al_entry; | 
|  | u8 *al_start, *al_end; | 
|  | ATTR_RECORD *a; | 
|  | ntfschar *al_name; | 
|  | u32 al_name_len; | 
|  | int err = 0; | 
|  | static const char *es = " Unmount and run chkdsk."; | 
|  |  | 
|  | ni = ctx->ntfs_ino; | 
|  | base_ni = ctx->base_ntfs_ino; | 
|  | ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type); | 
|  | if (!base_ni) { | 
|  | /* First call happens with the base mft record. */ | 
|  | base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino; | 
|  | ctx->base_mrec = ctx->mrec; | 
|  | } | 
|  | if (ni == base_ni) | 
|  | ctx->base_attr = ctx->attr; | 
|  | if (type == AT_END) | 
|  | goto not_found; | 
|  | vol = base_ni->vol; | 
|  | al_start = base_ni->attr_list; | 
|  | al_end = al_start + base_ni->attr_list_size; | 
|  | if (!ctx->al_entry) | 
|  | ctx->al_entry = (ATTR_LIST_ENTRY*)al_start; | 
|  | /* | 
|  | * Iterate over entries in attribute list starting at @ctx->al_entry, | 
|  | * or the entry following that, if @ctx->is_first is 'true'. | 
|  | */ | 
|  | if (ctx->is_first) { | 
|  | al_entry = ctx->al_entry; | 
|  | ctx->is_first = false; | 
|  | } else | 
|  | al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry + | 
|  | le16_to_cpu(ctx->al_entry->length)); | 
|  | for (;; al_entry = next_al_entry) { | 
|  | /* Out of bounds check. */ | 
|  | if ((u8*)al_entry < base_ni->attr_list || | 
|  | (u8*)al_entry > al_end) | 
|  | break;	/* Inode is corrupt. */ | 
|  | ctx->al_entry = al_entry; | 
|  | /* Catch the end of the attribute list. */ | 
|  | if ((u8*)al_entry == al_end) | 
|  | goto not_found; | 
|  | if (!al_entry->length) | 
|  | break; | 
|  | if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + | 
|  | le16_to_cpu(al_entry->length) > al_end) | 
|  | break; | 
|  | next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + | 
|  | le16_to_cpu(al_entry->length)); | 
|  | if (le32_to_cpu(al_entry->type) > le32_to_cpu(type)) | 
|  | goto not_found; | 
|  | if (type != al_entry->type) | 
|  | continue; | 
|  | /* | 
|  | * If @name is present, compare the two names.  If @name is | 
|  | * missing, assume we want an unnamed attribute. | 
|  | */ | 
|  | al_name_len = al_entry->name_length; | 
|  | al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset); | 
|  | if (!name) { | 
|  | if (al_name_len) | 
|  | goto not_found; | 
|  | } else if (!ntfs_are_names_equal(al_name, al_name_len, name, | 
|  | name_len, ic, vol->upcase, vol->upcase_len)) { | 
|  | register int rc; | 
|  |  | 
|  | rc = ntfs_collate_names(name, name_len, al_name, | 
|  | al_name_len, 1, IGNORE_CASE, | 
|  | vol->upcase, vol->upcase_len); | 
|  | /* | 
|  | * If @name collates before al_name, there is no | 
|  | * matching attribute. | 
|  | */ | 
|  | if (rc == -1) | 
|  | goto not_found; | 
|  | /* If the strings are not equal, continue search. */ | 
|  | if (rc) | 
|  | continue; | 
|  | /* | 
|  | * FIXME: Reverse engineering showed 0, IGNORE_CASE but | 
|  | * that is inconsistent with ntfs_attr_find().  The | 
|  | * subsequent rc checks were also different.  Perhaps I | 
|  | * made a mistake in one of the two.  Need to recheck | 
|  | * which is correct or at least see what is going on... | 
|  | * (AIA) | 
|  | */ | 
|  | rc = ntfs_collate_names(name, name_len, al_name, | 
|  | al_name_len, 1, CASE_SENSITIVE, | 
|  | vol->upcase, vol->upcase_len); | 
|  | if (rc == -1) | 
|  | goto not_found; | 
|  | if (rc) | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * The names match or @name not present and attribute is | 
|  | * unnamed.  Now check @lowest_vcn.  Continue search if the | 
|  | * next attribute list entry still fits @lowest_vcn.  Otherwise | 
|  | * we have reached the right one or the search has failed. | 
|  | */ | 
|  | if (lowest_vcn && (u8*)next_al_entry >= al_start	    && | 
|  | (u8*)next_al_entry + 6 < al_end		    && | 
|  | (u8*)next_al_entry + le16_to_cpu( | 
|  | next_al_entry->length) <= al_end    && | 
|  | sle64_to_cpu(next_al_entry->lowest_vcn) <= | 
|  | lowest_vcn			    && | 
|  | next_al_entry->type == al_entry->type	    && | 
|  | next_al_entry->name_length == al_name_len   && | 
|  | ntfs_are_names_equal((ntfschar*)((u8*) | 
|  | next_al_entry + | 
|  | next_al_entry->name_offset), | 
|  | next_al_entry->name_length, | 
|  | al_name, al_name_len, CASE_SENSITIVE, | 
|  | vol->upcase, vol->upcase_len)) | 
|  | continue; | 
|  | if (MREF_LE(al_entry->mft_reference) == ni->mft_no) { | 
|  | if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) { | 
|  | ntfs_error(vol->sb, "Found stale mft " | 
|  | "reference in attribute list " | 
|  | "of base inode 0x%lx.%s", | 
|  | base_ni->mft_no, es); | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | } else { /* Mft references do not match. */ | 
|  | /* If there is a mapped record unmap it first. */ | 
|  | if (ni != base_ni) | 
|  | unmap_extent_mft_record(ni); | 
|  | /* Do we want the base record back? */ | 
|  | if (MREF_LE(al_entry->mft_reference) == | 
|  | base_ni->mft_no) { | 
|  | ni = ctx->ntfs_ino = base_ni; | 
|  | ctx->mrec = ctx->base_mrec; | 
|  | } else { | 
|  | /* We want an extent record. */ | 
|  | ctx->mrec = map_extent_mft_record(base_ni, | 
|  | le64_to_cpu( | 
|  | al_entry->mft_reference), &ni); | 
|  | if (IS_ERR(ctx->mrec)) { | 
|  | ntfs_error(vol->sb, "Failed to map " | 
|  | "extent mft record " | 
|  | "0x%lx of base inode " | 
|  | "0x%lx.%s", | 
|  | MREF_LE(al_entry-> | 
|  | mft_reference), | 
|  | base_ni->mft_no, es); | 
|  | err = PTR_ERR(ctx->mrec); | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | /* Cause @ctx to be sanitized below. */ | 
|  | ni = NULL; | 
|  | break; | 
|  | } | 
|  | ctx->ntfs_ino = ni; | 
|  | } | 
|  | ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + | 
|  | le16_to_cpu(ctx->mrec->attrs_offset)); | 
|  | } | 
|  | /* | 
|  | * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the | 
|  | * mft record containing the attribute represented by the | 
|  | * current al_entry. | 
|  | */ | 
|  | /* | 
|  | * We could call into ntfs_attr_find() to find the right | 
|  | * attribute in this mft record but this would be less | 
|  | * efficient and not quite accurate as ntfs_attr_find() ignores | 
|  | * the attribute instance numbers for example which become | 
|  | * important when one plays with attribute lists.  Also, | 
|  | * because a proper match has been found in the attribute list | 
|  | * entry above, the comparison can now be optimized.  So it is | 
|  | * worth re-implementing a simplified ntfs_attr_find() here. | 
|  | */ | 
|  | a = ctx->attr; | 
|  | /* | 
|  | * Use a manual loop so we can still use break and continue | 
|  | * with the same meanings as above. | 
|  | */ | 
|  | do_next_attr_loop: | 
|  | if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + | 
|  | le32_to_cpu(ctx->mrec->bytes_allocated)) | 
|  | break; | 
|  | if (a->type == AT_END) | 
|  | break; | 
|  | if (!a->length) | 
|  | break; | 
|  | if (al_entry->instance != a->instance) | 
|  | goto do_next_attr; | 
|  | /* | 
|  | * If the type and/or the name are mismatched between the | 
|  | * attribute list entry and the attribute record, there is | 
|  | * corruption so we break and return error EIO. | 
|  | */ | 
|  | if (al_entry->type != a->type) | 
|  | break; | 
|  | if (!ntfs_are_names_equal((ntfschar*)((u8*)a + | 
|  | le16_to_cpu(a->name_offset)), a->name_length, | 
|  | al_name, al_name_len, CASE_SENSITIVE, | 
|  | vol->upcase, vol->upcase_len)) | 
|  | break; | 
|  | ctx->attr = a; | 
|  | /* | 
|  | * If no @val specified or @val specified and it matches, we | 
|  | * have found it! | 
|  | */ | 
|  | if (!val || (!a->non_resident && le32_to_cpu( | 
|  | a->data.resident.value_length) == val_len && | 
|  | !memcmp((u8*)a + | 
|  | le16_to_cpu(a->data.resident.value_offset), | 
|  | val, val_len))) { | 
|  | ntfs_debug("Done, found."); | 
|  | return 0; | 
|  | } | 
|  | do_next_attr: | 
|  | /* Proceed to the next attribute in the current mft record. */ | 
|  | a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length)); | 
|  | goto do_next_attr_loop; | 
|  | } | 
|  | if (!err) { | 
|  | ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt " | 
|  | "attribute list attribute.%s", base_ni->mft_no, | 
|  | es); | 
|  | err = -EIO; | 
|  | } | 
|  | if (ni != base_ni) { | 
|  | if (ni) | 
|  | unmap_extent_mft_record(ni); | 
|  | ctx->ntfs_ino = base_ni; | 
|  | ctx->mrec = ctx->base_mrec; | 
|  | ctx->attr = ctx->base_attr; | 
|  | } | 
|  | if (err != -ENOMEM) | 
|  | NVolSetErrors(vol); | 
|  | return err; | 
|  | not_found: | 
|  | /* | 
|  | * If we were looking for AT_END, we reset the search context @ctx and | 
|  | * use ntfs_attr_find() to seek to the end of the base mft record. | 
|  | */ | 
|  | if (type == AT_END) { | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len, | 
|  | ctx); | 
|  | } | 
|  | /* | 
|  | * The attribute was not found.  Before we return, we want to ensure | 
|  | * @ctx->mrec and @ctx->attr indicate the position at which the | 
|  | * attribute should be inserted in the base mft record.  Since we also | 
|  | * want to preserve @ctx->al_entry we cannot reinitialize the search | 
|  | * context using ntfs_attr_reinit_search_ctx() as this would set | 
|  | * @ctx->al_entry to NULL.  Thus we do the necessary bits manually (see | 
|  | * ntfs_attr_init_search_ctx() below).  Note, we _only_ preserve | 
|  | * @ctx->al_entry as the remaining fields (base_*) are identical to | 
|  | * their non base_ counterparts and we cannot set @ctx->base_attr | 
|  | * correctly yet as we do not know what @ctx->attr will be set to by | 
|  | * the call to ntfs_attr_find() below. | 
|  | */ | 
|  | if (ni != base_ni) | 
|  | unmap_extent_mft_record(ni); | 
|  | ctx->mrec = ctx->base_mrec; | 
|  | ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + | 
|  | le16_to_cpu(ctx->mrec->attrs_offset)); | 
|  | ctx->is_first = true; | 
|  | ctx->ntfs_ino = base_ni; | 
|  | ctx->base_ntfs_ino = NULL; | 
|  | ctx->base_mrec = NULL; | 
|  | ctx->base_attr = NULL; | 
|  | /* | 
|  | * In case there are multiple matches in the base mft record, need to | 
|  | * keep enumerating until we get an attribute not found response (or | 
|  | * another error), otherwise we would keep returning the same attribute | 
|  | * over and over again and all programs using us for enumeration would | 
|  | * lock up in a tight loop. | 
|  | */ | 
|  | do { | 
|  | err = ntfs_attr_find(type, name, name_len, ic, val, val_len, | 
|  | ctx); | 
|  | } while (!err); | 
|  | ntfs_debug("Done, not found."); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_lookup - find an attribute in an ntfs inode | 
|  | * @type:	attribute type to find | 
|  | * @name:	attribute name to find (optional, i.e. NULL means don't care) | 
|  | * @name_len:	attribute name length (only needed if @name present) | 
|  | * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) | 
|  | * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only) | 
|  | * @val:	attribute value to find (optional, resident attributes only) | 
|  | * @val_len:	attribute value length | 
|  | * @ctx:	search context with mft record and attribute to search from | 
|  | * | 
|  | * Find an attribute in an ntfs inode.  On first search @ctx->ntfs_ino must | 
|  | * be the base mft record and @ctx must have been obtained from a call to | 
|  | * ntfs_attr_get_search_ctx(). | 
|  | * | 
|  | * This function transparently handles attribute lists and @ctx is used to | 
|  | * continue searches where they were left off at. | 
|  | * | 
|  | * After finishing with the attribute/mft record you need to call | 
|  | * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any | 
|  | * mapped inodes, etc). | 
|  | * | 
|  | * Return 0 if the search was successful and -errno if not. | 
|  | * | 
|  | * When 0, @ctx->attr is the found attribute and it is in mft record | 
|  | * @ctx->mrec.  If an attribute list attribute is present, @ctx->al_entry is | 
|  | * the attribute list entry of the found attribute. | 
|  | * | 
|  | * When -ENOENT, @ctx->attr is the attribute which collates just after the | 
|  | * attribute being searched for, i.e. if one wants to add the attribute to the | 
|  | * mft record this is the correct place to insert it into.  If an attribute | 
|  | * list attribute is present, @ctx->al_entry is the attribute list entry which | 
|  | * collates just after the attribute list entry of the attribute being searched | 
|  | * for, i.e. if one wants to add the attribute to the mft record this is the | 
|  | * correct place to insert its attribute list entry into. | 
|  | * | 
|  | * When -errno != -ENOENT, an error occurred during the lookup.  @ctx->attr is | 
|  | * then undefined and in particular you should not rely on it not changing. | 
|  | */ | 
|  | int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, | 
|  | const u32 name_len, const IGNORE_CASE_BOOL ic, | 
|  | const VCN lowest_vcn, const u8 *val, const u32 val_len, | 
|  | ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | ntfs_inode *base_ni; | 
|  |  | 
|  | ntfs_debug("Entering."); | 
|  | BUG_ON(IS_ERR(ctx->mrec)); | 
|  | if (ctx->base_ntfs_ino) | 
|  | base_ni = ctx->base_ntfs_ino; | 
|  | else | 
|  | base_ni = ctx->ntfs_ino; | 
|  | /* Sanity check, just for debugging really. */ | 
|  | BUG_ON(!base_ni); | 
|  | if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST) | 
|  | return ntfs_attr_find(type, name, name_len, ic, val, val_len, | 
|  | ctx); | 
|  | return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn, | 
|  | val, val_len, ctx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_init_search_ctx - initialize an attribute search context | 
|  | * @ctx:	attribute search context to initialize | 
|  | * @ni:		ntfs inode with which to initialize the search context | 
|  | * @mrec:	mft record with which to initialize the search context | 
|  | * | 
|  | * Initialize the attribute search context @ctx with @ni and @mrec. | 
|  | */ | 
|  | static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx, | 
|  | ntfs_inode *ni, MFT_RECORD *mrec) | 
|  | { | 
|  | *ctx = (ntfs_attr_search_ctx) { | 
|  | .mrec = mrec, | 
|  | /* Sanity checks are performed elsewhere. */ | 
|  | .attr = (ATTR_RECORD*)((u8*)mrec + | 
|  | le16_to_cpu(mrec->attrs_offset)), | 
|  | .is_first = true, | 
|  | .ntfs_ino = ni, | 
|  | }; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context | 
|  | * @ctx:	attribute search context to reinitialize | 
|  | * | 
|  | * Reinitialize the attribute search context @ctx, unmapping an associated | 
|  | * extent mft record if present, and initialize the search context again. | 
|  | * | 
|  | * This is used when a search for a new attribute is being started to reset | 
|  | * the search context to the beginning. | 
|  | */ | 
|  | void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | if (likely(!ctx->base_ntfs_ino)) { | 
|  | /* No attribute list. */ | 
|  | ctx->is_first = true; | 
|  | /* Sanity checks are performed elsewhere. */ | 
|  | ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + | 
|  | le16_to_cpu(ctx->mrec->attrs_offset)); | 
|  | /* | 
|  | * This needs resetting due to ntfs_external_attr_find() which | 
|  | * can leave it set despite having zeroed ctx->base_ntfs_ino. | 
|  | */ | 
|  | ctx->al_entry = NULL; | 
|  | return; | 
|  | } /* Attribute list. */ | 
|  | if (ctx->ntfs_ino != ctx->base_ntfs_ino) | 
|  | unmap_extent_mft_record(ctx->ntfs_ino); | 
|  | ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context | 
|  | * @ni:		ntfs inode with which to initialize the search context | 
|  | * @mrec:	mft record with which to initialize the search context | 
|  | * | 
|  | * Allocate a new attribute search context, initialize it with @ni and @mrec, | 
|  | * and return it. Return NULL if allocation failed. | 
|  | */ | 
|  | ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec) | 
|  | { | 
|  | ntfs_attr_search_ctx *ctx; | 
|  |  | 
|  | ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS); | 
|  | if (ctx) | 
|  | ntfs_attr_init_search_ctx(ctx, ni, mrec); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_put_search_ctx - release an attribute search context | 
|  | * @ctx:	attribute search context to free | 
|  | * | 
|  | * Release the attribute search context @ctx, unmapping an associated extent | 
|  | * mft record if present. | 
|  | */ | 
|  | void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino) | 
|  | unmap_extent_mft_record(ctx->ntfs_ino); | 
|  | kmem_cache_free(ntfs_attr_ctx_cache, ctx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef NTFS_RW | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file | 
|  | * @vol:	ntfs volume to which the attribute belongs | 
|  | * @type:	attribute type which to find | 
|  | * | 
|  | * Search for the attribute definition record corresponding to the attribute | 
|  | * @type in the $AttrDef system file. | 
|  | * | 
|  | * Return the attribute type definition record if found and NULL if not found. | 
|  | */ | 
|  | static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol, | 
|  | const ATTR_TYPE type) | 
|  | { | 
|  | ATTR_DEF *ad; | 
|  |  | 
|  | BUG_ON(!vol->attrdef); | 
|  | BUG_ON(!type); | 
|  | for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef < | 
|  | vol->attrdef_size && ad->type; ++ad) { | 
|  | /* We have not found it yet, carry on searching. */ | 
|  | if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type))) | 
|  | continue; | 
|  | /* We found the attribute; return it. */ | 
|  | if (likely(ad->type == type)) | 
|  | return ad; | 
|  | /* We have gone too far already.  No point in continuing. */ | 
|  | break; | 
|  | } | 
|  | /* Attribute not found. */ | 
|  | ntfs_debug("Attribute type 0x%x not found in $AttrDef.", | 
|  | le32_to_cpu(type)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_size_bounds_check - check a size of an attribute type for validity | 
|  | * @vol:	ntfs volume to which the attribute belongs | 
|  | * @type:	attribute type which to check | 
|  | * @size:	size which to check | 
|  | * | 
|  | * Check whether the @size in bytes is valid for an attribute of @type on the | 
|  | * ntfs volume @vol.  This information is obtained from $AttrDef system file. | 
|  | * | 
|  | * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not | 
|  | * listed in $AttrDef. | 
|  | */ | 
|  | int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type, | 
|  | const s64 size) | 
|  | { | 
|  | ATTR_DEF *ad; | 
|  |  | 
|  | BUG_ON(size < 0); | 
|  | /* | 
|  | * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not | 
|  | * listed in $AttrDef. | 
|  | */ | 
|  | if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024)) | 
|  | return -ERANGE; | 
|  | /* Get the $AttrDef entry for the attribute @type. */ | 
|  | ad = ntfs_attr_find_in_attrdef(vol, type); | 
|  | if (unlikely(!ad)) | 
|  | return -ENOENT; | 
|  | /* Do the bounds check. */ | 
|  | if (((sle64_to_cpu(ad->min_size) > 0) && | 
|  | size < sle64_to_cpu(ad->min_size)) || | 
|  | ((sle64_to_cpu(ad->max_size) > 0) && size > | 
|  | sle64_to_cpu(ad->max_size))) | 
|  | return -ERANGE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident | 
|  | * @vol:	ntfs volume to which the attribute belongs | 
|  | * @type:	attribute type which to check | 
|  | * | 
|  | * Check whether the attribute of @type on the ntfs volume @vol is allowed to | 
|  | * be non-resident.  This information is obtained from $AttrDef system file. | 
|  | * | 
|  | * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and | 
|  | * -ENOENT if the attribute is not listed in $AttrDef. | 
|  | */ | 
|  | int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type) | 
|  | { | 
|  | ATTR_DEF *ad; | 
|  |  | 
|  | /* Find the attribute definition record in $AttrDef. */ | 
|  | ad = ntfs_attr_find_in_attrdef(vol, type); | 
|  | if (unlikely(!ad)) | 
|  | return -ENOENT; | 
|  | /* Check the flags and return the result. */ | 
|  | if (ad->flags & ATTR_DEF_RESIDENT) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_can_be_resident - check if an attribute can be resident | 
|  | * @vol:	ntfs volume to which the attribute belongs | 
|  | * @type:	attribute type which to check | 
|  | * | 
|  | * Check whether the attribute of @type on the ntfs volume @vol is allowed to | 
|  | * be resident.  This information is derived from our ntfs knowledge and may | 
|  | * not be completely accurate, especially when user defined attributes are | 
|  | * present.  Basically we allow everything to be resident except for index | 
|  | * allocation and $EA attributes. | 
|  | * | 
|  | * Return 0 if the attribute is allowed to be non-resident and -EPERM if not. | 
|  | * | 
|  | * Warning: In the system file $MFT the attribute $Bitmap must be non-resident | 
|  | *	    otherwise windows will not boot (blue screen of death)!  We cannot | 
|  | *	    check for this here as we do not know which inode's $Bitmap is | 
|  | *	    being asked about so the caller needs to special case this. | 
|  | */ | 
|  | int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type) | 
|  | { | 
|  | if (type == AT_INDEX_ALLOCATION) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_record_resize - resize an attribute record | 
|  | * @m:		mft record containing attribute record | 
|  | * @a:		attribute record to resize | 
|  | * @new_size:	new size in bytes to which to resize the attribute record @a | 
|  | * | 
|  | * Resize the attribute record @a, i.e. the resident part of the attribute, in | 
|  | * the mft record @m to @new_size bytes. | 
|  | * | 
|  | * Return 0 on success and -errno on error.  The following error codes are | 
|  | * defined: | 
|  | *	-ENOSPC	- Not enough space in the mft record @m to perform the resize. | 
|  | * | 
|  | * Note: On error, no modifications have been performed whatsoever. | 
|  | * | 
|  | * Warning: If you make a record smaller without having copied all the data you | 
|  | *	    are interested in the data may be overwritten. | 
|  | */ | 
|  | int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size) | 
|  | { | 
|  | ntfs_debug("Entering for new_size %u.", new_size); | 
|  | /* Align to 8 bytes if it is not already done. */ | 
|  | if (new_size & 7) | 
|  | new_size = (new_size + 7) & ~7; | 
|  | /* If the actual attribute length has changed, move things around. */ | 
|  | if (new_size != le32_to_cpu(a->length)) { | 
|  | u32 new_muse = le32_to_cpu(m->bytes_in_use) - | 
|  | le32_to_cpu(a->length) + new_size; | 
|  | /* Not enough space in this mft record. */ | 
|  | if (new_muse > le32_to_cpu(m->bytes_allocated)) | 
|  | return -ENOSPC; | 
|  | /* Move attributes following @a to their new location. */ | 
|  | memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length), | 
|  | le32_to_cpu(m->bytes_in_use) - ((u8*)a - | 
|  | (u8*)m) - le32_to_cpu(a->length)); | 
|  | /* Adjust @m to reflect the change in used space. */ | 
|  | m->bytes_in_use = cpu_to_le32(new_muse); | 
|  | /* Adjust @a to reflect the new size. */ | 
|  | if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length)) | 
|  | a->length = cpu_to_le32(new_size); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_resident_attr_value_resize - resize the value of a resident attribute | 
|  | * @m:		mft record containing attribute record | 
|  | * @a:		attribute record whose value to resize | 
|  | * @new_size:	new size in bytes to which to resize the attribute value of @a | 
|  | * | 
|  | * Resize the value of the attribute @a in the mft record @m to @new_size bytes. | 
|  | * If the value is made bigger, the newly allocated space is cleared. | 
|  | * | 
|  | * Return 0 on success and -errno on error.  The following error codes are | 
|  | * defined: | 
|  | *	-ENOSPC	- Not enough space in the mft record @m to perform the resize. | 
|  | * | 
|  | * Note: On error, no modifications have been performed whatsoever. | 
|  | * | 
|  | * Warning: If you make a record smaller without having copied all the data you | 
|  | *	    are interested in the data may be overwritten. | 
|  | */ | 
|  | int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a, | 
|  | const u32 new_size) | 
|  | { | 
|  | u32 old_size; | 
|  |  | 
|  | /* Resize the resident part of the attribute record. */ | 
|  | if (ntfs_attr_record_resize(m, a, | 
|  | le16_to_cpu(a->data.resident.value_offset) + new_size)) | 
|  | return -ENOSPC; | 
|  | /* | 
|  | * The resize succeeded!  If we made the attribute value bigger, clear | 
|  | * the area between the old size and @new_size. | 
|  | */ | 
|  | old_size = le32_to_cpu(a->data.resident.value_length); | 
|  | if (new_size > old_size) | 
|  | memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) + | 
|  | old_size, 0, new_size - old_size); | 
|  | /* Finally update the length of the attribute value. */ | 
|  | a->data.resident.value_length = cpu_to_le32(new_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute | 
|  | * @ni:		ntfs inode describing the attribute to convert | 
|  | * @data_size:	size of the resident data to copy to the non-resident attribute | 
|  | * | 
|  | * Convert the resident ntfs attribute described by the ntfs inode @ni to a | 
|  | * non-resident one. | 
|  | * | 
|  | * @data_size must be equal to the attribute value size.  This is needed since | 
|  | * we need to know the size before we can map the mft record and our callers | 
|  | * always know it.  The reason we cannot simply read the size from the vfs | 
|  | * inode i_size is that this is not necessarily uptodate.  This happens when | 
|  | * ntfs_attr_make_non_resident() is called in the ->truncate call path(s). | 
|  | * | 
|  | * Return 0 on success and -errno on error.  The following error return codes | 
|  | * are defined: | 
|  | *	-EPERM	- The attribute is not allowed to be non-resident. | 
|  | *	-ENOMEM	- Not enough memory. | 
|  | *	-ENOSPC	- Not enough disk space. | 
|  | *	-EINVAL	- Attribute not defined on the volume. | 
|  | *	-EIO	- I/o error or other error. | 
|  | * Note that -ENOSPC is also returned in the case that there is not enough | 
|  | * space in the mft record to do the conversion.  This can happen when the mft | 
|  | * record is already very full.  The caller is responsible for trying to make | 
|  | * space in the mft record and trying again.  FIXME: Do we need a separate | 
|  | * error return code for this kind of -ENOSPC or is it always worth trying | 
|  | * again in case the attribute may then fit in a resident state so no need to | 
|  | * make it non-resident at all?  Ho-hum...  (AIA) | 
|  | * | 
|  | * NOTE to self: No changes in the attribute list are required to move from | 
|  | *		 a resident to a non-resident attribute. | 
|  | * | 
|  | * Locking: - The caller must hold i_mutex on the inode. | 
|  | */ | 
|  | int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size) | 
|  | { | 
|  | s64 new_size; | 
|  | struct inode *vi = VFS_I(ni); | 
|  | ntfs_volume *vol = ni->vol; | 
|  | ntfs_inode *base_ni; | 
|  | MFT_RECORD *m; | 
|  | ATTR_RECORD *a; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | struct page *page; | 
|  | runlist_element *rl; | 
|  | u8 *kaddr; | 
|  | unsigned long flags; | 
|  | int mp_size, mp_ofs, name_ofs, arec_size, err, err2; | 
|  | u32 attr_size; | 
|  | u8 old_res_attr_flags; | 
|  |  | 
|  | /* Check that the attribute is allowed to be non-resident. */ | 
|  | err = ntfs_attr_can_be_non_resident(vol, ni->type); | 
|  | if (unlikely(err)) { | 
|  | if (err == -EPERM) | 
|  | ntfs_debug("Attribute is not allowed to be " | 
|  | "non-resident."); | 
|  | else | 
|  | ntfs_debug("Attribute not defined on the NTFS " | 
|  | "volume!"); | 
|  | return err; | 
|  | } | 
|  | /* | 
|  | * FIXME: Compressed and encrypted attributes are not supported when | 
|  | * writing and we should never have gotten here for them. | 
|  | */ | 
|  | BUG_ON(NInoCompressed(ni)); | 
|  | BUG_ON(NInoEncrypted(ni)); | 
|  | /* | 
|  | * The size needs to be aligned to a cluster boundary for allocation | 
|  | * purposes. | 
|  | */ | 
|  | new_size = (data_size + vol->cluster_size - 1) & | 
|  | ~(vol->cluster_size - 1); | 
|  | if (new_size > 0) { | 
|  | /* | 
|  | * Will need the page later and since the page lock nests | 
|  | * outside all ntfs locks, we need to get the page now. | 
|  | */ | 
|  | page = find_or_create_page(vi->i_mapping, 0, | 
|  | mapping_gfp_mask(vi->i_mapping)); | 
|  | if (unlikely(!page)) | 
|  | return -ENOMEM; | 
|  | /* Start by allocating clusters to hold the attribute value. */ | 
|  | rl = ntfs_cluster_alloc(vol, 0, new_size >> | 
|  | vol->cluster_size_bits, -1, DATA_ZONE, true); | 
|  | if (IS_ERR(rl)) { | 
|  | err = PTR_ERR(rl); | 
|  | ntfs_debug("Failed to allocate cluster%s, error code " | 
|  | "%i.", (new_size >> | 
|  | vol->cluster_size_bits) > 1 ? "s" : "", | 
|  | err); | 
|  | goto page_err_out; | 
|  | } | 
|  | } else { | 
|  | rl = NULL; | 
|  | page = NULL; | 
|  | } | 
|  | /* Determine the size of the mapping pairs array. */ | 
|  | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1); | 
|  | if (unlikely(mp_size < 0)) { | 
|  | err = mp_size; | 
|  | ntfs_debug("Failed to get size for mapping pairs array, error " | 
|  | "code %i.", err); | 
|  | goto rl_err_out; | 
|  | } | 
|  | down_write(&ni->runlist.lock); | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | m = NULL; | 
|  | ctx = NULL; | 
|  | goto err_out; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  | m = ctx->mrec; | 
|  | a = ctx->attr; | 
|  | BUG_ON(NInoNonResident(ni)); | 
|  | BUG_ON(a->non_resident); | 
|  | /* | 
|  | * Calculate new offsets for the name and the mapping pairs array. | 
|  | */ | 
|  | if (NInoSparse(ni) || NInoCompressed(ni)) | 
|  | name_ofs = (offsetof(ATTR_REC, | 
|  | data.non_resident.compressed_size) + | 
|  | sizeof(a->data.non_resident.compressed_size) + | 
|  | 7) & ~7; | 
|  | else | 
|  | name_ofs = (offsetof(ATTR_REC, | 
|  | data.non_resident.compressed_size) + 7) & ~7; | 
|  | mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; | 
|  | /* | 
|  | * Determine the size of the resident part of the now non-resident | 
|  | * attribute record. | 
|  | */ | 
|  | arec_size = (mp_ofs + mp_size + 7) & ~7; | 
|  | /* | 
|  | * If the page is not uptodate bring it uptodate by copying from the | 
|  | * attribute value. | 
|  | */ | 
|  | attr_size = le32_to_cpu(a->data.resident.value_length); | 
|  | BUG_ON(attr_size != data_size); | 
|  | if (page && !PageUptodate(page)) { | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memcpy(kaddr, (u8*)a + | 
|  | le16_to_cpu(a->data.resident.value_offset), | 
|  | attr_size); | 
|  | memset(kaddr + attr_size, 0, PAGE_CACHE_SIZE - attr_size); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | flush_dcache_page(page); | 
|  | SetPageUptodate(page); | 
|  | } | 
|  | /* Backup the attribute flag. */ | 
|  | old_res_attr_flags = a->data.resident.flags; | 
|  | /* Resize the resident part of the attribute record. */ | 
|  | err = ntfs_attr_record_resize(m, a, arec_size); | 
|  | if (unlikely(err)) | 
|  | goto err_out; | 
|  | /* | 
|  | * Convert the resident part of the attribute record to describe a | 
|  | * non-resident attribute. | 
|  | */ | 
|  | a->non_resident = 1; | 
|  | /* Move the attribute name if it exists and update the offset. */ | 
|  | if (a->name_length) | 
|  | memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), | 
|  | a->name_length * sizeof(ntfschar)); | 
|  | a->name_offset = cpu_to_le16(name_ofs); | 
|  | /* Setup the fields specific to non-resident attributes. */ | 
|  | a->data.non_resident.lowest_vcn = 0; | 
|  | a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >> | 
|  | vol->cluster_size_bits); | 
|  | a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs); | 
|  | memset(&a->data.non_resident.reserved, 0, | 
|  | sizeof(a->data.non_resident.reserved)); | 
|  | a->data.non_resident.allocated_size = cpu_to_sle64(new_size); | 
|  | a->data.non_resident.data_size = | 
|  | a->data.non_resident.initialized_size = | 
|  | cpu_to_sle64(attr_size); | 
|  | if (NInoSparse(ni) || NInoCompressed(ni)) { | 
|  | a->data.non_resident.compression_unit = 0; | 
|  | if (NInoCompressed(ni) || vol->major_ver < 3) | 
|  | a->data.non_resident.compression_unit = 4; | 
|  | a->data.non_resident.compressed_size = | 
|  | a->data.non_resident.allocated_size; | 
|  | } else | 
|  | a->data.non_resident.compression_unit = 0; | 
|  | /* Generate the mapping pairs array into the attribute record. */ | 
|  | err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs, | 
|  | arec_size - mp_ofs, rl, 0, -1, NULL); | 
|  | if (unlikely(err)) { | 
|  | ntfs_debug("Failed to build mapping pairs, error code %i.", | 
|  | err); | 
|  | goto undo_err_out; | 
|  | } | 
|  | /* Setup the in-memory attribute structure to be non-resident. */ | 
|  | ni->runlist.rl = rl; | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->allocated_size = new_size; | 
|  | if (NInoSparse(ni) || NInoCompressed(ni)) { | 
|  | ni->itype.compressed.size = ni->allocated_size; | 
|  | if (a->data.non_resident.compression_unit) { | 
|  | ni->itype.compressed.block_size = 1U << (a->data. | 
|  | non_resident.compression_unit + | 
|  | vol->cluster_size_bits); | 
|  | ni->itype.compressed.block_size_bits = | 
|  | ffs(ni->itype.compressed.block_size) - | 
|  | 1; | 
|  | ni->itype.compressed.block_clusters = 1U << | 
|  | a->data.non_resident.compression_unit; | 
|  | } else { | 
|  | ni->itype.compressed.block_size = 0; | 
|  | ni->itype.compressed.block_size_bits = 0; | 
|  | ni->itype.compressed.block_clusters = 0; | 
|  | } | 
|  | vi->i_blocks = ni->itype.compressed.size >> 9; | 
|  | } else | 
|  | vi->i_blocks = ni->allocated_size >> 9; | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | /* | 
|  | * This needs to be last since the address space operations ->readpage | 
|  | * and ->writepage can run concurrently with us as they are not | 
|  | * serialized on i_mutex.  Note, we are not allowed to fail once we flip | 
|  | * this switch, which is another reason to do this last. | 
|  | */ | 
|  | NInoSetNonResident(ni); | 
|  | /* Mark the mft record dirty, so it gets written back. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | up_write(&ni->runlist.lock); | 
|  | if (page) { | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | mark_page_accessed(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | undo_err_out: | 
|  | /* Convert the attribute back into a resident attribute. */ | 
|  | a->non_resident = 0; | 
|  | /* Move the attribute name if it exists and update the offset. */ | 
|  | name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) + | 
|  | sizeof(a->data.resident.reserved) + 7) & ~7; | 
|  | if (a->name_length) | 
|  | memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), | 
|  | a->name_length * sizeof(ntfschar)); | 
|  | mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; | 
|  | a->name_offset = cpu_to_le16(name_ofs); | 
|  | arec_size = (mp_ofs + attr_size + 7) & ~7; | 
|  | /* Resize the resident part of the attribute record. */ | 
|  | err2 = ntfs_attr_record_resize(m, a, arec_size); | 
|  | if (unlikely(err2)) { | 
|  | /* | 
|  | * This cannot happen (well if memory corruption is at work it | 
|  | * could happen in theory), but deal with it as well as we can. | 
|  | * If the old size is too small, truncate the attribute, | 
|  | * otherwise simply give it a larger allocated size. | 
|  | * FIXME: Should check whether chkdsk complains when the | 
|  | * allocated size is much bigger than the resident value size. | 
|  | */ | 
|  | arec_size = le32_to_cpu(a->length); | 
|  | if ((mp_ofs + attr_size) > arec_size) { | 
|  | err2 = attr_size; | 
|  | attr_size = arec_size - mp_ofs; | 
|  | ntfs_error(vol->sb, "Failed to undo partial resident " | 
|  | "to non-resident attribute " | 
|  | "conversion.  Truncating inode 0x%lx, " | 
|  | "attribute type 0x%x from %i bytes to " | 
|  | "%i bytes to maintain metadata " | 
|  | "consistency.  THIS MEANS YOU ARE " | 
|  | "LOSING %i BYTES DATA FROM THIS %s.", | 
|  | vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), | 
|  | err2, attr_size, err2 - attr_size, | 
|  | ((ni->type == AT_DATA) && | 
|  | !ni->name_len) ? "FILE": "ATTRIBUTE"); | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->initialized_size = attr_size; | 
|  | i_size_write(vi, attr_size); | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | } | 
|  | } | 
|  | /* Setup the fields specific to resident attributes. */ | 
|  | a->data.resident.value_length = cpu_to_le32(attr_size); | 
|  | a->data.resident.value_offset = cpu_to_le16(mp_ofs); | 
|  | a->data.resident.flags = old_res_attr_flags; | 
|  | memset(&a->data.resident.reserved, 0, | 
|  | sizeof(a->data.resident.reserved)); | 
|  | /* Copy the data from the page back to the attribute value. */ | 
|  | if (page) { | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memcpy((u8*)a + mp_ofs, kaddr, attr_size); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | } | 
|  | /* Setup the allocated size in the ntfs inode in case it changed. */ | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->allocated_size = arec_size - mp_ofs; | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | /* Mark the mft record dirty, so it gets written back. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | err_out: | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (m) | 
|  | unmap_mft_record(base_ni); | 
|  | ni->runlist.rl = NULL; | 
|  | up_write(&ni->runlist.lock); | 
|  | rl_err_out: | 
|  | if (rl) { | 
|  | if (ntfs_cluster_free_from_rl(vol, rl) < 0) { | 
|  | ntfs_error(vol->sb, "Failed to release allocated " | 
|  | "cluster(s) in error code path.  Run " | 
|  | "chkdsk to recover the lost " | 
|  | "cluster(s)."); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | ntfs_free(rl); | 
|  | page_err_out: | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | if (err == -EINVAL) | 
|  | err = -EIO; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_extend_allocation - extend the allocated space of an attribute | 
|  | * @ni:			ntfs inode of the attribute whose allocation to extend | 
|  | * @new_alloc_size:	new size in bytes to which to extend the allocation to | 
|  | * @new_data_size:	new size in bytes to which to extend the data to | 
|  | * @data_start:		beginning of region which is required to be non-sparse | 
|  | * | 
|  | * Extend the allocated space of an attribute described by the ntfs inode @ni | 
|  | * to @new_alloc_size bytes.  If @data_start is -1, the whole extension may be | 
|  | * implemented as a hole in the file (as long as both the volume and the ntfs | 
|  | * inode @ni have sparse support enabled).  If @data_start is >= 0, then the | 
|  | * region between the old allocated size and @data_start - 1 may be made sparse | 
|  | * but the regions between @data_start and @new_alloc_size must be backed by | 
|  | * actual clusters. | 
|  | * | 
|  | * If @new_data_size is -1, it is ignored.  If it is >= 0, then the data size | 
|  | * of the attribute is extended to @new_data_size.  Note that the i_size of the | 
|  | * vfs inode is not updated.  Only the data size in the base attribute record | 
|  | * is updated.  The caller has to update i_size separately if this is required. | 
|  | * WARNING: It is a BUG() for @new_data_size to be smaller than the old data | 
|  | * size as well as for @new_data_size to be greater than @new_alloc_size. | 
|  | * | 
|  | * For resident attributes this involves resizing the attribute record and if | 
|  | * necessary moving it and/or other attributes into extent mft records and/or | 
|  | * converting the attribute to a non-resident attribute which in turn involves | 
|  | * extending the allocation of a non-resident attribute as described below. | 
|  | * | 
|  | * For non-resident attributes this involves allocating clusters in the data | 
|  | * zone on the volume (except for regions that are being made sparse) and | 
|  | * extending the run list to describe the allocated clusters as well as | 
|  | * updating the mapping pairs array of the attribute.  This in turn involves | 
|  | * resizing the attribute record and if necessary moving it and/or other | 
|  | * attributes into extent mft records and/or splitting the attribute record | 
|  | * into multiple extent attribute records. | 
|  | * | 
|  | * Also, the attribute list attribute is updated if present and in some of the | 
|  | * above cases (the ones where extent mft records/attributes come into play), | 
|  | * an attribute list attribute is created if not already present. | 
|  | * | 
|  | * Return the new allocated size on success and -errno on error.  In the case | 
|  | * that an error is encountered but a partial extension at least up to | 
|  | * @data_start (if present) is possible, the allocation is partially extended | 
|  | * and this is returned.  This means the caller must check the returned size to | 
|  | * determine if the extension was partial.  If @data_start is -1 then partial | 
|  | * allocations are not performed. | 
|  | * | 
|  | * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA. | 
|  | * | 
|  | * Locking: This function takes the runlist lock of @ni for writing as well as | 
|  | * locking the mft record of the base ntfs inode.  These locks are maintained | 
|  | * throughout execution of the function.  These locks are required so that the | 
|  | * attribute can be resized safely and so that it can for example be converted | 
|  | * from resident to non-resident safely. | 
|  | * | 
|  | * TODO: At present attribute list attribute handling is not implemented. | 
|  | * | 
|  | * TODO: At present it is not safe to call this function for anything other | 
|  | * than the $DATA attribute(s) of an uncompressed and unencrypted file. | 
|  | */ | 
|  | s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size, | 
|  | const s64 new_data_size, const s64 data_start) | 
|  | { | 
|  | VCN vcn; | 
|  | s64 ll, allocated_size, start = data_start; | 
|  | struct inode *vi = VFS_I(ni); | 
|  | ntfs_volume *vol = ni->vol; | 
|  | ntfs_inode *base_ni; | 
|  | MFT_RECORD *m; | 
|  | ATTR_RECORD *a; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | runlist_element *rl, *rl2; | 
|  | unsigned long flags; | 
|  | int err, mp_size; | 
|  | u32 attr_len = 0; /* Silence stupid gcc warning. */ | 
|  | bool mp_rebuilt; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | allocated_size = ni->allocated_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | 
|  | "old_allocated_size 0x%llx, " | 
|  | "new_allocated_size 0x%llx, new_data_size 0x%llx, " | 
|  | "data_start 0x%llx.", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), | 
|  | (unsigned long long)allocated_size, | 
|  | (unsigned long long)new_alloc_size, | 
|  | (unsigned long long)new_data_size, | 
|  | (unsigned long long)start); | 
|  | #endif | 
|  | retry_extend: | 
|  | /* | 
|  | * For non-resident attributes, @start and @new_size need to be aligned | 
|  | * to cluster boundaries for allocation purposes. | 
|  | */ | 
|  | if (NInoNonResident(ni)) { | 
|  | if (start > 0) | 
|  | start &= ~(s64)vol->cluster_size_mask; | 
|  | new_alloc_size = (new_alloc_size + vol->cluster_size - 1) & | 
|  | ~(s64)vol->cluster_size_mask; | 
|  | } | 
|  | BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size); | 
|  | /* Check if new size is allowed in $AttrDef. */ | 
|  | err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size); | 
|  | if (unlikely(err)) { | 
|  | /* Only emit errors when the write will fail completely. */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | allocated_size = ni->allocated_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (start < 0 || start >= allocated_size) { | 
|  | if (err == -ERANGE) { | 
|  | ntfs_error(vol->sb, "Cannot extend allocation " | 
|  | "of inode 0x%lx, attribute " | 
|  | "type 0x%x, because the new " | 
|  | "allocation would exceed the " | 
|  | "maximum allowed size for " | 
|  | "this attribute type.", | 
|  | vi->i_ino, (unsigned) | 
|  | le32_to_cpu(ni->type)); | 
|  | } else { | 
|  | ntfs_error(vol->sb, "Cannot extend allocation " | 
|  | "of inode 0x%lx, attribute " | 
|  | "type 0x%x, because this " | 
|  | "attribute type is not " | 
|  | "defined on the NTFS volume.  " | 
|  | "Possible corruption!  You " | 
|  | "should run chkdsk!", | 
|  | vi->i_ino, (unsigned) | 
|  | le32_to_cpu(ni->type)); | 
|  | } | 
|  | } | 
|  | /* Translate error code to be POSIX conformant for write(2). */ | 
|  | if (err == -ERANGE) | 
|  | err = -EFBIG; | 
|  | else | 
|  | err = -EIO; | 
|  | return err; | 
|  | } | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | /* | 
|  | * We will be modifying both the runlist (if non-resident) and the mft | 
|  | * record so lock them both down. | 
|  | */ | 
|  | down_write(&ni->runlist.lock); | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | m = NULL; | 
|  | ctx = NULL; | 
|  | goto err_out; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | allocated_size = ni->allocated_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | /* | 
|  | * If non-resident, seek to the last extent.  If resident, there is | 
|  | * only one extent, so seek to that. | 
|  | */ | 
|  | vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits : | 
|  | 0; | 
|  | /* | 
|  | * Abort if someone did the work whilst we waited for the locks.  If we | 
|  | * just converted the attribute from resident to non-resident it is | 
|  | * likely that exactly this has happened already.  We cannot quite | 
|  | * abort if we need to update the data size. | 
|  | */ | 
|  | if (unlikely(new_alloc_size <= allocated_size)) { | 
|  | ntfs_debug("Allocated size already exceeds requested size."); | 
|  | new_alloc_size = allocated_size; | 
|  | if (new_data_size < 0) | 
|  | goto done; | 
|  | /* | 
|  | * We want the first attribute extent so that we can update the | 
|  | * data size. | 
|  | */ | 
|  | vcn = 0; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, vcn, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  | m = ctx->mrec; | 
|  | a = ctx->attr; | 
|  | /* Use goto to reduce indentation. */ | 
|  | if (a->non_resident) | 
|  | goto do_non_resident_extend; | 
|  | BUG_ON(NInoNonResident(ni)); | 
|  | /* The total length of the attribute value. */ | 
|  | attr_len = le32_to_cpu(a->data.resident.value_length); | 
|  | /* | 
|  | * Extend the attribute record to be able to store the new attribute | 
|  | * size.  ntfs_attr_record_resize() will not do anything if the size is | 
|  | * not changing. | 
|  | */ | 
|  | if (new_alloc_size < vol->mft_record_size && | 
|  | !ntfs_attr_record_resize(m, a, | 
|  | le16_to_cpu(a->data.resident.value_offset) + | 
|  | new_alloc_size)) { | 
|  | /* The resize succeeded! */ | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->allocated_size = le32_to_cpu(a->length) - | 
|  | le16_to_cpu(a->data.resident.value_offset); | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (new_data_size >= 0) { | 
|  | BUG_ON(new_data_size < attr_len); | 
|  | a->data.resident.value_length = | 
|  | cpu_to_le32((u32)new_data_size); | 
|  | } | 
|  | goto flush_done; | 
|  | } | 
|  | /* | 
|  | * We have to drop all the locks so we can call | 
|  | * ntfs_attr_make_non_resident().  This could be optimised by try- | 
|  | * locking the first page cache page and only if that fails dropping | 
|  | * the locks, locking the page, and redoing all the locking and | 
|  | * lookups.  While this would be a huge optimisation, it is not worth | 
|  | * it as this is definitely a slow code path. | 
|  | */ | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | up_write(&ni->runlist.lock); | 
|  | /* | 
|  | * Not enough space in the mft record, try to make the attribute | 
|  | * non-resident and if successful restart the extension process. | 
|  | */ | 
|  | err = ntfs_attr_make_non_resident(ni, attr_len); | 
|  | if (likely(!err)) | 
|  | goto retry_extend; | 
|  | /* | 
|  | * Could not make non-resident.  If this is due to this not being | 
|  | * permitted for this attribute type or there not being enough space, | 
|  | * try to make other attributes non-resident.  Otherwise fail. | 
|  | */ | 
|  | if (unlikely(err != -EPERM && err != -ENOSPC)) { | 
|  | /* Only emit errors when the write will fail completely. */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | allocated_size = ni->allocated_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (start < 0 || start >= allocated_size) | 
|  | ntfs_error(vol->sb, "Cannot extend allocation of " | 
|  | "inode 0x%lx, attribute type 0x%x, " | 
|  | "because the conversion from resident " | 
|  | "to non-resident attribute failed " | 
|  | "with error code %i.", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), err); | 
|  | if (err != -ENOMEM) | 
|  | err = -EIO; | 
|  | goto conv_err_out; | 
|  | } | 
|  | /* TODO: Not implemented from here, abort. */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | allocated_size = ni->allocated_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (start < 0 || start >= allocated_size) { | 
|  | if (err == -ENOSPC) | 
|  | ntfs_error(vol->sb, "Not enough space in the mft " | 
|  | "record/on disk for the non-resident " | 
|  | "attribute value.  This case is not " | 
|  | "implemented yet."); | 
|  | else /* if (err == -EPERM) */ | 
|  | ntfs_error(vol->sb, "This attribute type may not be " | 
|  | "non-resident.  This case is not " | 
|  | "implemented yet."); | 
|  | } | 
|  | err = -EOPNOTSUPP; | 
|  | goto conv_err_out; | 
|  | #if 0 | 
|  | // TODO: Attempt to make other attributes non-resident. | 
|  | if (!err) | 
|  | goto do_resident_extend; | 
|  | /* | 
|  | * Both the attribute list attribute and the standard information | 
|  | * attribute must remain in the base inode.  Thus, if this is one of | 
|  | * these attributes, we have to try to move other attributes out into | 
|  | * extent mft records instead. | 
|  | */ | 
|  | if (ni->type == AT_ATTRIBUTE_LIST || | 
|  | ni->type == AT_STANDARD_INFORMATION) { | 
|  | // TODO: Attempt to move other attributes into extent mft | 
|  | // records. | 
|  | err = -EOPNOTSUPP; | 
|  | if (!err) | 
|  | goto do_resident_extend; | 
|  | goto err_out; | 
|  | } | 
|  | // TODO: Attempt to move this attribute to an extent mft record, but | 
|  | // only if it is not already the only attribute in an mft record in | 
|  | // which case there would be nothing to gain. | 
|  | err = -EOPNOTSUPP; | 
|  | if (!err) | 
|  | goto do_resident_extend; | 
|  | /* There is nothing we can do to make enough space. )-: */ | 
|  | goto err_out; | 
|  | #endif | 
|  | do_non_resident_extend: | 
|  | BUG_ON(!NInoNonResident(ni)); | 
|  | if (new_alloc_size == allocated_size) { | 
|  | BUG_ON(vcn); | 
|  | goto alloc_done; | 
|  | } | 
|  | /* | 
|  | * If the data starts after the end of the old allocation, this is a | 
|  | * $DATA attribute and sparse attributes are enabled on the volume and | 
|  | * for this inode, then create a sparse region between the old | 
|  | * allocated size and the start of the data.  Otherwise simply proceed | 
|  | * with filling the whole space between the old allocated size and the | 
|  | * new allocated size with clusters. | 
|  | */ | 
|  | if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA || | 
|  | !NVolSparseEnabled(vol) || NInoSparseDisabled(ni)) | 
|  | goto skip_sparse; | 
|  | // TODO: This is not implemented yet.  We just fill in with real | 
|  | // clusters for now... | 
|  | ntfs_debug("Inserting holes is not-implemented yet.  Falling back to " | 
|  | "allocating real clusters instead."); | 
|  | skip_sparse: | 
|  | rl = ni->runlist.rl; | 
|  | if (likely(rl)) { | 
|  | /* Seek to the end of the runlist. */ | 
|  | while (rl->length) | 
|  | rl++; | 
|  | } | 
|  | /* If this attribute extent is not mapped, map it now. */ | 
|  | if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED || | 
|  | (rl->lcn == LCN_ENOENT && rl > ni->runlist.rl && | 
|  | (rl-1)->lcn == LCN_RL_NOT_MAPPED))) { | 
|  | if (!rl && !allocated_size) | 
|  | goto first_alloc; | 
|  | rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); | 
|  | if (IS_ERR(rl)) { | 
|  | err = PTR_ERR(rl); | 
|  | if (start < 0 || start >= allocated_size) | 
|  | ntfs_error(vol->sb, "Cannot extend allocation " | 
|  | "of inode 0x%lx, attribute " | 
|  | "type 0x%x, because the " | 
|  | "mapping of a runlist " | 
|  | "fragment failed with error " | 
|  | "code %i.", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), | 
|  | err); | 
|  | if (err != -ENOMEM) | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  | ni->runlist.rl = rl; | 
|  | /* Seek to the end of the runlist. */ | 
|  | while (rl->length) | 
|  | rl++; | 
|  | } | 
|  | /* | 
|  | * We now know the runlist of the last extent is mapped and @rl is at | 
|  | * the end of the runlist.  We want to begin allocating clusters | 
|  | * starting at the last allocated cluster to reduce fragmentation.  If | 
|  | * there are no valid LCNs in the attribute we let the cluster | 
|  | * allocator choose the starting cluster. | 
|  | */ | 
|  | /* If the last LCN is a hole or simillar seek back to last real LCN. */ | 
|  | while (rl->lcn < 0 && rl > ni->runlist.rl) | 
|  | rl--; | 
|  | first_alloc: | 
|  | // FIXME: Need to implement partial allocations so at least part of the | 
|  | // write can be performed when start >= 0.  (Needed for POSIX write(2) | 
|  | // conformance.) | 
|  | rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits, | 
|  | (new_alloc_size - allocated_size) >> | 
|  | vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ? | 
|  | rl->lcn + rl->length : -1, DATA_ZONE, true); | 
|  | if (IS_ERR(rl2)) { | 
|  | err = PTR_ERR(rl2); | 
|  | if (start < 0 || start >= allocated_size) | 
|  | ntfs_error(vol->sb, "Cannot extend allocation of " | 
|  | "inode 0x%lx, attribute type 0x%x, " | 
|  | "because the allocation of clusters " | 
|  | "failed with error code %i.", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), err); | 
|  | if (err != -ENOMEM && err != -ENOSPC) | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  | rl = ntfs_runlists_merge(ni->runlist.rl, rl2); | 
|  | if (IS_ERR(rl)) { | 
|  | err = PTR_ERR(rl); | 
|  | if (start < 0 || start >= allocated_size) | 
|  | ntfs_error(vol->sb, "Cannot extend allocation of " | 
|  | "inode 0x%lx, attribute type 0x%x, " | 
|  | "because the runlist merge failed " | 
|  | "with error code %i.", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), err); | 
|  | if (err != -ENOMEM) | 
|  | err = -EIO; | 
|  | if (ntfs_cluster_free_from_rl(vol, rl2)) { | 
|  | ntfs_error(vol->sb, "Failed to release allocated " | 
|  | "cluster(s) in error code path.  Run " | 
|  | "chkdsk to recover the lost " | 
|  | "cluster(s)."); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | ntfs_free(rl2); | 
|  | goto err_out; | 
|  | } | 
|  | ni->runlist.rl = rl; | 
|  | ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size - | 
|  | allocated_size) >> vol->cluster_size_bits); | 
|  | /* Find the runlist element with which the attribute extent starts. */ | 
|  | ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); | 
|  | rl2 = ntfs_rl_find_vcn_nolock(rl, ll); | 
|  | BUG_ON(!rl2); | 
|  | BUG_ON(!rl2->length); | 
|  | BUG_ON(rl2->lcn < LCN_HOLE); | 
|  | mp_rebuilt = false; | 
|  | /* Get the size for the new mapping pairs array for this extent. */ | 
|  | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); | 
|  | if (unlikely(mp_size <= 0)) { | 
|  | err = mp_size; | 
|  | if (start < 0 || start >= allocated_size) | 
|  | ntfs_error(vol->sb, "Cannot extend allocation of " | 
|  | "inode 0x%lx, attribute type 0x%x, " | 
|  | "because determining the size for the " | 
|  | "mapping pairs failed with error code " | 
|  | "%i.", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), err); | 
|  | err = -EIO; | 
|  | goto undo_alloc; | 
|  | } | 
|  | /* Extend the attribute record to fit the bigger mapping pairs array. */ | 
|  | attr_len = le32_to_cpu(a->length); | 
|  | err = ntfs_attr_record_resize(m, a, mp_size + | 
|  | le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); | 
|  | if (unlikely(err)) { | 
|  | BUG_ON(err != -ENOSPC); | 
|  | // TODO: Deal with this by moving this extent to a new mft | 
|  | // record or by starting a new extent in a new mft record, | 
|  | // possibly by extending this extent partially and filling it | 
|  | // and creating a new extent for the remainder, or by making | 
|  | // other attributes non-resident and/or by moving other | 
|  | // attributes out of this mft record. | 
|  | if (start < 0 || start >= allocated_size) | 
|  | ntfs_error(vol->sb, "Not enough space in the mft " | 
|  | "record for the extended attribute " | 
|  | "record.  This case is not " | 
|  | "implemented yet."); | 
|  | err = -EOPNOTSUPP; | 
|  | goto undo_alloc; | 
|  | } | 
|  | mp_rebuilt = true; | 
|  | /* Generate the mapping pairs array directly into the attr record. */ | 
|  | err = ntfs_mapping_pairs_build(vol, (u8*)a + | 
|  | le16_to_cpu(a->data.non_resident.mapping_pairs_offset), | 
|  | mp_size, rl2, ll, -1, NULL); | 
|  | if (unlikely(err)) { | 
|  | if (start < 0 || start >= allocated_size) | 
|  | ntfs_error(vol->sb, "Cannot extend allocation of " | 
|  | "inode 0x%lx, attribute type 0x%x, " | 
|  | "because building the mapping pairs " | 
|  | "failed with error code %i.", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), err); | 
|  | err = -EIO; | 
|  | goto undo_alloc; | 
|  | } | 
|  | /* Update the highest_vcn. */ | 
|  | a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> | 
|  | vol->cluster_size_bits) - 1); | 
|  | /* | 
|  | * We now have extended the allocated size of the attribute.  Reflect | 
|  | * this in the ntfs_inode structure and the attribute record. | 
|  | */ | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | /* | 
|  | * We are not in the first attribute extent, switch to it, but | 
|  | * first ensure the changes will make it to disk later. | 
|  | */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) | 
|  | goto restore_undo_alloc; | 
|  | /* @m is not used any more so no need to set it. */ | 
|  | a = ctx->attr; | 
|  | } | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->allocated_size = new_alloc_size; | 
|  | a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); | 
|  | /* | 
|  | * FIXME: This would fail if @ni is a directory, $MFT, or an index, | 
|  | * since those can have sparse/compressed set.  For example can be | 
|  | * set compressed even though it is not compressed itself and in that | 
|  | * case the bit means that files are to be created compressed in the | 
|  | * directory...  At present this is ok as this code is only called for | 
|  | * regular files, and only for their $DATA attribute(s). | 
|  | * FIXME: The calculation is wrong if we created a hole above.  For now | 
|  | * it does not matter as we never create holes. | 
|  | */ | 
|  | if (NInoSparse(ni) || NInoCompressed(ni)) { | 
|  | ni->itype.compressed.size += new_alloc_size - allocated_size; | 
|  | a->data.non_resident.compressed_size = | 
|  | cpu_to_sle64(ni->itype.compressed.size); | 
|  | vi->i_blocks = ni->itype.compressed.size >> 9; | 
|  | } else | 
|  | vi->i_blocks = new_alloc_size >> 9; | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | alloc_done: | 
|  | if (new_data_size >= 0) { | 
|  | BUG_ON(new_data_size < | 
|  | sle64_to_cpu(a->data.non_resident.data_size)); | 
|  | a->data.non_resident.data_size = cpu_to_sle64(new_data_size); | 
|  | } | 
|  | flush_done: | 
|  | /* Ensure the changes make it to disk. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | done: | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | up_write(&ni->runlist.lock); | 
|  | ntfs_debug("Done, new_allocated_size 0x%llx.", | 
|  | (unsigned long long)new_alloc_size); | 
|  | return new_alloc_size; | 
|  | restore_undo_alloc: | 
|  | if (start < 0 || start >= allocated_size) | 
|  | ntfs_error(vol->sb, "Cannot complete extension of allocation " | 
|  | "of inode 0x%lx, attribute type 0x%x, because " | 
|  | "lookup of first attribute extent failed with " | 
|  | "error code %i.", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), err); | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, | 
|  | allocated_size >> vol->cluster_size_bits, NULL, 0, | 
|  | ctx)) { | 
|  | ntfs_error(vol->sb, "Failed to find last attribute extent of " | 
|  | "attribute in error code path.  Run chkdsk to " | 
|  | "recover."); | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->allocated_size = new_alloc_size; | 
|  | /* | 
|  | * FIXME: This would fail if @ni is a directory...  See above. | 
|  | * FIXME: The calculation is wrong if we created a hole above. | 
|  | * For now it does not matter as we never create holes. | 
|  | */ | 
|  | if (NInoSparse(ni) || NInoCompressed(ni)) { | 
|  | ni->itype.compressed.size += new_alloc_size - | 
|  | allocated_size; | 
|  | vi->i_blocks = ni->itype.compressed.size >> 9; | 
|  | } else | 
|  | vi->i_blocks = new_alloc_size >> 9; | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | up_write(&ni->runlist.lock); | 
|  | /* | 
|  | * The only thing that is now wrong is the allocated size of the | 
|  | * base attribute extent which chkdsk should be able to fix. | 
|  | */ | 
|  | NVolSetErrors(vol); | 
|  | return err; | 
|  | } | 
|  | ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64( | 
|  | (allocated_size >> vol->cluster_size_bits) - 1); | 
|  | undo_alloc: | 
|  | ll = allocated_size >> vol->cluster_size_bits; | 
|  | if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) { | 
|  | ntfs_error(vol->sb, "Failed to release allocated cluster(s) " | 
|  | "in error code path.  Run chkdsk to recover " | 
|  | "the lost cluster(s)."); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | m = ctx->mrec; | 
|  | a = ctx->attr; | 
|  | /* | 
|  | * If the runlist truncation fails and/or the search context is no | 
|  | * longer valid, we cannot resize the attribute record or build the | 
|  | * mapping pairs array thus we mark the inode bad so that no access to | 
|  | * the freed clusters can happen. | 
|  | */ | 
|  | if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) { | 
|  | ntfs_error(vol->sb, "Failed to %s in error code path.  Run " | 
|  | "chkdsk to recover.", IS_ERR(m) ? | 
|  | "restore attribute search context" : | 
|  | "truncate attribute runlist"); | 
|  | NVolSetErrors(vol); | 
|  | } else if (mp_rebuilt) { | 
|  | if (ntfs_attr_record_resize(m, a, attr_len)) { | 
|  | ntfs_error(vol->sb, "Failed to restore attribute " | 
|  | "record in error code path.  Run " | 
|  | "chkdsk to recover."); | 
|  | NVolSetErrors(vol); | 
|  | } else /* if (success) */ { | 
|  | if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | 
|  | a->data.non_resident. | 
|  | mapping_pairs_offset), attr_len - | 
|  | le16_to_cpu(a->data.non_resident. | 
|  | mapping_pairs_offset), rl2, ll, -1, | 
|  | NULL)) { | 
|  | ntfs_error(vol->sb, "Failed to restore " | 
|  | "mapping pairs array in error " | 
|  | "code path.  Run chkdsk to " | 
|  | "recover."); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | } | 
|  | } | 
|  | err_out: | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (m) | 
|  | unmap_mft_record(base_ni); | 
|  | up_write(&ni->runlist.lock); | 
|  | conv_err_out: | 
|  | ntfs_debug("Failed.  Returning error code %i.", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_set - fill (a part of) an attribute with a byte | 
|  | * @ni:		ntfs inode describing the attribute to fill | 
|  | * @ofs:	offset inside the attribute at which to start to fill | 
|  | * @cnt:	number of bytes to fill | 
|  | * @val:	the unsigned 8-bit value with which to fill the attribute | 
|  | * | 
|  | * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at | 
|  | * byte offset @ofs inside the attribute with the constant byte @val. | 
|  | * | 
|  | * This function is effectively like memset() applied to an ntfs attribute. | 
|  | * Note thie function actually only operates on the page cache pages belonging | 
|  | * to the ntfs attribute and it marks them dirty after doing the memset(). | 
|  | * Thus it relies on the vm dirty page write code paths to cause the modified | 
|  | * pages to be written to the mft record/disk. | 
|  | * | 
|  | * Return 0 on success and -errno on error.  An error code of -ESPIPE means | 
|  | * that @ofs + @cnt were outside the end of the attribute and no write was | 
|  | * performed. | 
|  | */ | 
|  | int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val) | 
|  | { | 
|  | ntfs_volume *vol = ni->vol; | 
|  | struct address_space *mapping; | 
|  | struct page *page; | 
|  | u8 *kaddr; | 
|  | pgoff_t idx, end; | 
|  | unsigned start_ofs, end_ofs, size; | 
|  |  | 
|  | ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.", | 
|  | (long long)ofs, (long long)cnt, val); | 
|  | BUG_ON(ofs < 0); | 
|  | BUG_ON(cnt < 0); | 
|  | if (!cnt) | 
|  | goto done; | 
|  | /* | 
|  | * FIXME: Compressed and encrypted attributes are not supported when | 
|  | * writing and we should never have gotten here for them. | 
|  | */ | 
|  | BUG_ON(NInoCompressed(ni)); | 
|  | BUG_ON(NInoEncrypted(ni)); | 
|  | mapping = VFS_I(ni)->i_mapping; | 
|  | /* Work out the starting index and page offset. */ | 
|  | idx = ofs >> PAGE_CACHE_SHIFT; | 
|  | start_ofs = ofs & ~PAGE_CACHE_MASK; | 
|  | /* Work out the ending index and page offset. */ | 
|  | end = ofs + cnt; | 
|  | end_ofs = end & ~PAGE_CACHE_MASK; | 
|  | /* If the end is outside the inode size return -ESPIPE. */ | 
|  | if (unlikely(end > i_size_read(VFS_I(ni)))) { | 
|  | ntfs_error(vol->sb, "Request exceeds end of attribute."); | 
|  | return -ESPIPE; | 
|  | } | 
|  | end >>= PAGE_CACHE_SHIFT; | 
|  | /* If there is a first partial page, need to do it the slow way. */ | 
|  | if (start_ofs) { | 
|  | page = read_mapping_page(mapping, idx, NULL); | 
|  | if (IS_ERR(page)) { | 
|  | ntfs_error(vol->sb, "Failed to read first partial " | 
|  | "page (error, index 0x%lx).", idx); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  | /* | 
|  | * If the last page is the same as the first page, need to | 
|  | * limit the write to the end offset. | 
|  | */ | 
|  | size = PAGE_CACHE_SIZE; | 
|  | if (idx == end) | 
|  | size = end_ofs; | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memset(kaddr + start_ofs, val, size - start_ofs); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | set_page_dirty(page); | 
|  | page_cache_release(page); | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | cond_resched(); | 
|  | if (idx == end) | 
|  | goto done; | 
|  | idx++; | 
|  | } | 
|  | /* Do the whole pages the fast way. */ | 
|  | for (; idx < end; idx++) { | 
|  | /* Find or create the current page.  (The page is locked.) */ | 
|  | page = grab_cache_page(mapping, idx); | 
|  | if (unlikely(!page)) { | 
|  | ntfs_error(vol->sb, "Insufficient memory to grab " | 
|  | "page (index 0x%lx).", idx); | 
|  | return -ENOMEM; | 
|  | } | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memset(kaddr, val, PAGE_CACHE_SIZE); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | /* | 
|  | * If the page has buffers, mark them uptodate since buffer | 
|  | * state and not page state is definitive in 2.6 kernels. | 
|  | */ | 
|  | if (page_has_buffers(page)) { | 
|  | struct buffer_head *bh, *head; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | set_buffer_uptodate(bh); | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  | } | 
|  | /* Now that buffers are uptodate, set the page uptodate, too. */ | 
|  | SetPageUptodate(page); | 
|  | /* | 
|  | * Set the page and all its buffers dirty and mark the inode | 
|  | * dirty, too.  The VM will write the page later on. | 
|  | */ | 
|  | set_page_dirty(page); | 
|  | /* Finally unlock and release the page. */ | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | cond_resched(); | 
|  | } | 
|  | /* If there is a last partial page, need to do it the slow way. */ | 
|  | if (end_ofs) { | 
|  | page = read_mapping_page(mapping, idx, NULL); | 
|  | if (IS_ERR(page)) { | 
|  | ntfs_error(vol->sb, "Failed to read last partial page " | 
|  | "(error, index 0x%lx).", idx); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memset(kaddr, val, end_ofs); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | set_page_dirty(page); | 
|  | page_cache_release(page); | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | cond_resched(); | 
|  | } | 
|  | done: | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* NTFS_RW */ |