| /* | 
 |  * zsmalloc memory allocator | 
 |  * | 
 |  * Copyright (C) 2011  Nitin Gupta | 
 |  * Copyright (C) 2012, 2013 Minchan Kim | 
 |  * | 
 |  * This code is released using a dual license strategy: BSD/GPL | 
 |  * You can choose the license that better fits your requirements. | 
 |  * | 
 |  * Released under the terms of 3-clause BSD License | 
 |  * Released under the terms of GNU General Public License Version 2.0 | 
 |  */ | 
 |  | 
 | /* | 
 |  * Following is how we use various fields and flags of underlying | 
 |  * struct page(s) to form a zspage. | 
 |  * | 
 |  * Usage of struct page fields: | 
 |  *	page->private: points to zspage | 
 |  *	page->freelist(index): links together all component pages of a zspage | 
 |  *		For the huge page, this is always 0, so we use this field | 
 |  *		to store handle. | 
 |  *	page->units: first object offset in a subpage of zspage | 
 |  * | 
 |  * Usage of struct page flags: | 
 |  *	PG_private: identifies the first component page | 
 |  *	PG_owner_priv_1: identifies the huge component page | 
 |  * | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/magic.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/string.h> | 
 | #include <linux/slab.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/pgtable.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/shrinker.h> | 
 | #include <linux/types.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/zsmalloc.h> | 
 | #include <linux/zpool.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/fs.h> | 
 |  | 
 | #define ZSPAGE_MAGIC	0x58 | 
 |  | 
 | /* | 
 |  * This must be power of 2 and greater than of equal to sizeof(link_free). | 
 |  * These two conditions ensure that any 'struct link_free' itself doesn't | 
 |  * span more than 1 page which avoids complex case of mapping 2 pages simply | 
 |  * to restore link_free pointer values. | 
 |  */ | 
 | #define ZS_ALIGN		8 | 
 |  | 
 | /* | 
 |  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) | 
 |  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. | 
 |  */ | 
 | #define ZS_MAX_ZSPAGE_ORDER 2 | 
 | #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) | 
 |  | 
 | #define ZS_HANDLE_SIZE (sizeof(unsigned long)) | 
 |  | 
 | /* | 
 |  * Object location (<PFN>, <obj_idx>) is encoded as | 
 |  * as single (unsigned long) handle value. | 
 |  * | 
 |  * Note that object index <obj_idx> starts from 0. | 
 |  * | 
 |  * This is made more complicated by various memory models and PAE. | 
 |  */ | 
 |  | 
 | #ifndef MAX_POSSIBLE_PHYSMEM_BITS | 
 | #ifdef MAX_PHYSMEM_BITS | 
 | #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS | 
 | #else | 
 | /* | 
 |  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just | 
 |  * be PAGE_SHIFT | 
 |  */ | 
 | #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG | 
 | #endif | 
 | #endif | 
 |  | 
 | #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) | 
 |  | 
 | /* | 
 |  * Memory for allocating for handle keeps object position by | 
 |  * encoding <page, obj_idx> and the encoded value has a room | 
 |  * in least bit(ie, look at obj_to_location). | 
 |  * We use the bit to synchronize between object access by | 
 |  * user and migration. | 
 |  */ | 
 | #define HANDLE_PIN_BIT	0 | 
 |  | 
 | /* | 
 |  * Head in allocated object should have OBJ_ALLOCATED_TAG | 
 |  * to identify the object was allocated or not. | 
 |  * It's okay to add the status bit in the least bit because | 
 |  * header keeps handle which is 4byte-aligned address so we | 
 |  * have room for two bit at least. | 
 |  */ | 
 | #define OBJ_ALLOCATED_TAG 1 | 
 | #define OBJ_TAG_BITS 1 | 
 | #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) | 
 | #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1) | 
 |  | 
 | #define FULLNESS_BITS	2 | 
 | #define CLASS_BITS	8 | 
 | #define ISOLATED_BITS	3 | 
 | #define MAGIC_VAL_BITS	8 | 
 |  | 
 | #define MAX(a, b) ((a) >= (b) ? (a) : (b)) | 
 | /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ | 
 | #define ZS_MIN_ALLOC_SIZE \ | 
 | 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) | 
 | /* each chunk includes extra space to keep handle */ | 
 | #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE | 
 |  | 
 | /* | 
 |  * On systems with 4K page size, this gives 255 size classes! There is a | 
 |  * trader-off here: | 
 |  *  - Large number of size classes is potentially wasteful as free page are | 
 |  *    spread across these classes | 
 |  *  - Small number of size classes causes large internal fragmentation | 
 |  *  - Probably its better to use specific size classes (empirically | 
 |  *    determined). NOTE: all those class sizes must be set as multiple of | 
 |  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages. | 
 |  * | 
 |  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN | 
 |  *  (reason above) | 
 |  */ | 
 | #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS) | 
 | #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ | 
 | 				      ZS_SIZE_CLASS_DELTA) + 1) | 
 |  | 
 | enum fullness_group { | 
 | 	ZS_EMPTY, | 
 | 	ZS_ALMOST_EMPTY, | 
 | 	ZS_ALMOST_FULL, | 
 | 	ZS_FULL, | 
 | 	NR_ZS_FULLNESS, | 
 | }; | 
 |  | 
 | enum zs_stat_type { | 
 | 	CLASS_EMPTY, | 
 | 	CLASS_ALMOST_EMPTY, | 
 | 	CLASS_ALMOST_FULL, | 
 | 	CLASS_FULL, | 
 | 	OBJ_ALLOCATED, | 
 | 	OBJ_USED, | 
 | 	NR_ZS_STAT_TYPE, | 
 | }; | 
 |  | 
 | struct zs_size_stat { | 
 | 	unsigned long objs[NR_ZS_STAT_TYPE]; | 
 | }; | 
 |  | 
 | #ifdef CONFIG_ZSMALLOC_STAT | 
 | static struct dentry *zs_stat_root; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | static struct vfsmount *zsmalloc_mnt; | 
 | #endif | 
 |  | 
 | /* | 
 |  * We assign a page to ZS_ALMOST_EMPTY fullness group when: | 
 |  *	n <= N / f, where | 
 |  * n = number of allocated objects | 
 |  * N = total number of objects zspage can store | 
 |  * f = fullness_threshold_frac | 
 |  * | 
 |  * Similarly, we assign zspage to: | 
 |  *	ZS_ALMOST_FULL	when n > N / f | 
 |  *	ZS_EMPTY	when n == 0 | 
 |  *	ZS_FULL		when n == N | 
 |  * | 
 |  * (see: fix_fullness_group()) | 
 |  */ | 
 | static const int fullness_threshold_frac = 4; | 
 | static size_t huge_class_size; | 
 |  | 
 | struct size_class { | 
 | 	spinlock_t lock; | 
 | 	struct list_head fullness_list[NR_ZS_FULLNESS]; | 
 | 	/* | 
 | 	 * Size of objects stored in this class. Must be multiple | 
 | 	 * of ZS_ALIGN. | 
 | 	 */ | 
 | 	int size; | 
 | 	int objs_per_zspage; | 
 | 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ | 
 | 	int pages_per_zspage; | 
 |  | 
 | 	unsigned int index; | 
 | 	struct zs_size_stat stats; | 
 | }; | 
 |  | 
 | /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ | 
 | static void SetPageHugeObject(struct page *page) | 
 | { | 
 | 	SetPageOwnerPriv1(page); | 
 | } | 
 |  | 
 | static void ClearPageHugeObject(struct page *page) | 
 | { | 
 | 	ClearPageOwnerPriv1(page); | 
 | } | 
 |  | 
 | static int PageHugeObject(struct page *page) | 
 | { | 
 | 	return PageOwnerPriv1(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Placed within free objects to form a singly linked list. | 
 |  * For every zspage, zspage->freeobj gives head of this list. | 
 |  * | 
 |  * This must be power of 2 and less than or equal to ZS_ALIGN | 
 |  */ | 
 | struct link_free { | 
 | 	union { | 
 | 		/* | 
 | 		 * Free object index; | 
 | 		 * It's valid for non-allocated object | 
 | 		 */ | 
 | 		unsigned long next; | 
 | 		/* | 
 | 		 * Handle of allocated object. | 
 | 		 */ | 
 | 		unsigned long handle; | 
 | 	}; | 
 | }; | 
 |  | 
 | struct zs_pool { | 
 | 	const char *name; | 
 |  | 
 | 	struct size_class *size_class[ZS_SIZE_CLASSES]; | 
 | 	struct kmem_cache *handle_cachep; | 
 | 	struct kmem_cache *zspage_cachep; | 
 |  | 
 | 	atomic_long_t pages_allocated; | 
 |  | 
 | 	struct zs_pool_stats stats; | 
 |  | 
 | 	/* Compact classes */ | 
 | 	struct shrinker shrinker; | 
 |  | 
 | #ifdef CONFIG_ZSMALLOC_STAT | 
 | 	struct dentry *stat_dentry; | 
 | #endif | 
 | #ifdef CONFIG_COMPACTION | 
 | 	struct inode *inode; | 
 | 	struct work_struct free_work; | 
 | #endif | 
 | }; | 
 |  | 
 | struct zspage { | 
 | 	struct { | 
 | 		unsigned int fullness:FULLNESS_BITS; | 
 | 		unsigned int class:CLASS_BITS + 1; | 
 | 		unsigned int isolated:ISOLATED_BITS; | 
 | 		unsigned int magic:MAGIC_VAL_BITS; | 
 | 	}; | 
 | 	unsigned int inuse; | 
 | 	unsigned int freeobj; | 
 | 	struct page *first_page; | 
 | 	struct list_head list; /* fullness list */ | 
 | #ifdef CONFIG_COMPACTION | 
 | 	rwlock_t lock; | 
 | #endif | 
 | }; | 
 |  | 
 | struct mapping_area { | 
 | #ifdef CONFIG_PGTABLE_MAPPING | 
 | 	struct vm_struct *vm; /* vm area for mapping object that span pages */ | 
 | #else | 
 | 	char *vm_buf; /* copy buffer for objects that span pages */ | 
 | #endif | 
 | 	char *vm_addr; /* address of kmap_atomic()'ed pages */ | 
 | 	enum zs_mapmode vm_mm; /* mapping mode */ | 
 | }; | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | static int zs_register_migration(struct zs_pool *pool); | 
 | static void zs_unregister_migration(struct zs_pool *pool); | 
 | static void migrate_lock_init(struct zspage *zspage); | 
 | static void migrate_read_lock(struct zspage *zspage); | 
 | static void migrate_read_unlock(struct zspage *zspage); | 
 | static void kick_deferred_free(struct zs_pool *pool); | 
 | static void init_deferred_free(struct zs_pool *pool); | 
 | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); | 
 | #else | 
 | static int zsmalloc_mount(void) { return 0; } | 
 | static void zsmalloc_unmount(void) {} | 
 | static int zs_register_migration(struct zs_pool *pool) { return 0; } | 
 | static void zs_unregister_migration(struct zs_pool *pool) {} | 
 | static void migrate_lock_init(struct zspage *zspage) {} | 
 | static void migrate_read_lock(struct zspage *zspage) {} | 
 | static void migrate_read_unlock(struct zspage *zspage) {} | 
 | static void kick_deferred_free(struct zs_pool *pool) {} | 
 | static void init_deferred_free(struct zs_pool *pool) {} | 
 | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} | 
 | #endif | 
 |  | 
 | static int create_cache(struct zs_pool *pool) | 
 | { | 
 | 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, | 
 | 					0, 0, NULL); | 
 | 	if (!pool->handle_cachep) | 
 | 		return 1; | 
 |  | 
 | 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), | 
 | 					0, 0, NULL); | 
 | 	if (!pool->zspage_cachep) { | 
 | 		kmem_cache_destroy(pool->handle_cachep); | 
 | 		pool->handle_cachep = NULL; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void destroy_cache(struct zs_pool *pool) | 
 | { | 
 | 	kmem_cache_destroy(pool->handle_cachep); | 
 | 	kmem_cache_destroy(pool->zspage_cachep); | 
 | } | 
 |  | 
 | static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) | 
 | { | 
 | 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep, | 
 | 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); | 
 | } | 
 |  | 
 | static void cache_free_handle(struct zs_pool *pool, unsigned long handle) | 
 | { | 
 | 	kmem_cache_free(pool->handle_cachep, (void *)handle); | 
 | } | 
 |  | 
 | static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) | 
 | { | 
 | 	return kmem_cache_alloc(pool->zspage_cachep, | 
 | 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); | 
 | } | 
 |  | 
 | static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) | 
 | { | 
 | 	kmem_cache_free(pool->zspage_cachep, zspage); | 
 | } | 
 |  | 
 | static void record_obj(unsigned long handle, unsigned long obj) | 
 | { | 
 | 	/* | 
 | 	 * lsb of @obj represents handle lock while other bits | 
 | 	 * represent object value the handle is pointing so | 
 | 	 * updating shouldn't do store tearing. | 
 | 	 */ | 
 | 	WRITE_ONCE(*(unsigned long *)handle, obj); | 
 | } | 
 |  | 
 | /* zpool driver */ | 
 |  | 
 | #ifdef CONFIG_ZPOOL | 
 |  | 
 | static void *zs_zpool_create(const char *name, gfp_t gfp, | 
 | 			     const struct zpool_ops *zpool_ops, | 
 | 			     struct zpool *zpool) | 
 | { | 
 | 	/* | 
 | 	 * Ignore global gfp flags: zs_malloc() may be invoked from | 
 | 	 * different contexts and its caller must provide a valid | 
 | 	 * gfp mask. | 
 | 	 */ | 
 | 	return zs_create_pool(name); | 
 | } | 
 |  | 
 | static void zs_zpool_destroy(void *pool) | 
 | { | 
 | 	zs_destroy_pool(pool); | 
 | } | 
 |  | 
 | static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, | 
 | 			unsigned long *handle) | 
 | { | 
 | 	*handle = zs_malloc(pool, size, gfp); | 
 | 	return *handle ? 0 : -1; | 
 | } | 
 | static void zs_zpool_free(void *pool, unsigned long handle) | 
 | { | 
 | 	zs_free(pool, handle); | 
 | } | 
 |  | 
 | static void *zs_zpool_map(void *pool, unsigned long handle, | 
 | 			enum zpool_mapmode mm) | 
 | { | 
 | 	enum zs_mapmode zs_mm; | 
 |  | 
 | 	switch (mm) { | 
 | 	case ZPOOL_MM_RO: | 
 | 		zs_mm = ZS_MM_RO; | 
 | 		break; | 
 | 	case ZPOOL_MM_WO: | 
 | 		zs_mm = ZS_MM_WO; | 
 | 		break; | 
 | 	case ZPOOL_MM_RW: /* fallthru */ | 
 | 	default: | 
 | 		zs_mm = ZS_MM_RW; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return zs_map_object(pool, handle, zs_mm); | 
 | } | 
 | static void zs_zpool_unmap(void *pool, unsigned long handle) | 
 | { | 
 | 	zs_unmap_object(pool, handle); | 
 | } | 
 |  | 
 | static u64 zs_zpool_total_size(void *pool) | 
 | { | 
 | 	return zs_get_total_pages(pool) << PAGE_SHIFT; | 
 | } | 
 |  | 
 | static struct zpool_driver zs_zpool_driver = { | 
 | 	.type =		"zsmalloc", | 
 | 	.owner =	THIS_MODULE, | 
 | 	.create =	zs_zpool_create, | 
 | 	.destroy =	zs_zpool_destroy, | 
 | 	.malloc =	zs_zpool_malloc, | 
 | 	.free =		zs_zpool_free, | 
 | 	.map =		zs_zpool_map, | 
 | 	.unmap =	zs_zpool_unmap, | 
 | 	.total_size =	zs_zpool_total_size, | 
 | }; | 
 |  | 
 | MODULE_ALIAS("zpool-zsmalloc"); | 
 | #endif /* CONFIG_ZPOOL */ | 
 |  | 
 | /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ | 
 | static DEFINE_PER_CPU(struct mapping_area, zs_map_area); | 
 |  | 
 | static bool is_zspage_isolated(struct zspage *zspage) | 
 | { | 
 | 	return zspage->isolated; | 
 | } | 
 |  | 
 | static __maybe_unused int is_first_page(struct page *page) | 
 | { | 
 | 	return PagePrivate(page); | 
 | } | 
 |  | 
 | /* Protected by class->lock */ | 
 | static inline int get_zspage_inuse(struct zspage *zspage) | 
 | { | 
 | 	return zspage->inuse; | 
 | } | 
 |  | 
 | static inline void set_zspage_inuse(struct zspage *zspage, int val) | 
 | { | 
 | 	zspage->inuse = val; | 
 | } | 
 |  | 
 | static inline void mod_zspage_inuse(struct zspage *zspage, int val) | 
 | { | 
 | 	zspage->inuse += val; | 
 | } | 
 |  | 
 | static inline struct page *get_first_page(struct zspage *zspage) | 
 | { | 
 | 	struct page *first_page = zspage->first_page; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
 | 	return first_page; | 
 | } | 
 |  | 
 | static inline int get_first_obj_offset(struct page *page) | 
 | { | 
 | 	return page->units; | 
 | } | 
 |  | 
 | static inline void set_first_obj_offset(struct page *page, int offset) | 
 | { | 
 | 	page->units = offset; | 
 | } | 
 |  | 
 | static inline unsigned int get_freeobj(struct zspage *zspage) | 
 | { | 
 | 	return zspage->freeobj; | 
 | } | 
 |  | 
 | static inline void set_freeobj(struct zspage *zspage, unsigned int obj) | 
 | { | 
 | 	zspage->freeobj = obj; | 
 | } | 
 |  | 
 | static void get_zspage_mapping(struct zspage *zspage, | 
 | 				unsigned int *class_idx, | 
 | 				enum fullness_group *fullness) | 
 | { | 
 | 	BUG_ON(zspage->magic != ZSPAGE_MAGIC); | 
 |  | 
 | 	*fullness = zspage->fullness; | 
 | 	*class_idx = zspage->class; | 
 | } | 
 |  | 
 | static void set_zspage_mapping(struct zspage *zspage, | 
 | 				unsigned int class_idx, | 
 | 				enum fullness_group fullness) | 
 | { | 
 | 	zspage->class = class_idx; | 
 | 	zspage->fullness = fullness; | 
 | } | 
 |  | 
 | /* | 
 |  * zsmalloc divides the pool into various size classes where each | 
 |  * class maintains a list of zspages where each zspage is divided | 
 |  * into equal sized chunks. Each allocation falls into one of these | 
 |  * classes depending on its size. This function returns index of the | 
 |  * size class which has chunk size big enough to hold the give size. | 
 |  */ | 
 | static int get_size_class_index(int size) | 
 | { | 
 | 	int idx = 0; | 
 |  | 
 | 	if (likely(size > ZS_MIN_ALLOC_SIZE)) | 
 | 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, | 
 | 				ZS_SIZE_CLASS_DELTA); | 
 |  | 
 | 	return min_t(int, ZS_SIZE_CLASSES - 1, idx); | 
 | } | 
 |  | 
 | /* type can be of enum type zs_stat_type or fullness_group */ | 
 | static inline void zs_stat_inc(struct size_class *class, | 
 | 				int type, unsigned long cnt) | 
 | { | 
 | 	class->stats.objs[type] += cnt; | 
 | } | 
 |  | 
 | /* type can be of enum type zs_stat_type or fullness_group */ | 
 | static inline void zs_stat_dec(struct size_class *class, | 
 | 				int type, unsigned long cnt) | 
 | { | 
 | 	class->stats.objs[type] -= cnt; | 
 | } | 
 |  | 
 | /* type can be of enum type zs_stat_type or fullness_group */ | 
 | static inline unsigned long zs_stat_get(struct size_class *class, | 
 | 				int type) | 
 | { | 
 | 	return class->stats.objs[type]; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ZSMALLOC_STAT | 
 |  | 
 | static void __init zs_stat_init(void) | 
 | { | 
 | 	if (!debugfs_initialized()) { | 
 | 		pr_warn("debugfs not available, stat dir not created\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL); | 
 | 	if (!zs_stat_root) | 
 | 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); | 
 | } | 
 |  | 
 | static void __exit zs_stat_exit(void) | 
 | { | 
 | 	debugfs_remove_recursive(zs_stat_root); | 
 | } | 
 |  | 
 | static unsigned long zs_can_compact(struct size_class *class); | 
 |  | 
 | static int zs_stats_size_show(struct seq_file *s, void *v) | 
 | { | 
 | 	int i; | 
 | 	struct zs_pool *pool = s->private; | 
 | 	struct size_class *class; | 
 | 	int objs_per_zspage; | 
 | 	unsigned long class_almost_full, class_almost_empty; | 
 | 	unsigned long obj_allocated, obj_used, pages_used, freeable; | 
 | 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; | 
 | 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; | 
 | 	unsigned long total_freeable = 0; | 
 |  | 
 | 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", | 
 | 			"class", "size", "almost_full", "almost_empty", | 
 | 			"obj_allocated", "obj_used", "pages_used", | 
 | 			"pages_per_zspage", "freeable"); | 
 |  | 
 | 	for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
 | 		class = pool->size_class[i]; | 
 |  | 
 | 		if (class->index != i) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&class->lock); | 
 | 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); | 
 | 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); | 
 | 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); | 
 | 		obj_used = zs_stat_get(class, OBJ_USED); | 
 | 		freeable = zs_can_compact(class); | 
 | 		spin_unlock(&class->lock); | 
 |  | 
 | 		objs_per_zspage = class->objs_per_zspage; | 
 | 		pages_used = obj_allocated / objs_per_zspage * | 
 | 				class->pages_per_zspage; | 
 |  | 
 | 		seq_printf(s, " %5u %5u %11lu %12lu %13lu" | 
 | 				" %10lu %10lu %16d %8lu\n", | 
 | 			i, class->size, class_almost_full, class_almost_empty, | 
 | 			obj_allocated, obj_used, pages_used, | 
 | 			class->pages_per_zspage, freeable); | 
 |  | 
 | 		total_class_almost_full += class_almost_full; | 
 | 		total_class_almost_empty += class_almost_empty; | 
 | 		total_objs += obj_allocated; | 
 | 		total_used_objs += obj_used; | 
 | 		total_pages += pages_used; | 
 | 		total_freeable += freeable; | 
 | 	} | 
 |  | 
 | 	seq_puts(s, "\n"); | 
 | 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", | 
 | 			"Total", "", total_class_almost_full, | 
 | 			total_class_almost_empty, total_objs, | 
 | 			total_used_objs, total_pages, "", total_freeable); | 
 |  | 
 | 	return 0; | 
 | } | 
 | DEFINE_SHOW_ATTRIBUTE(zs_stats_size); | 
 |  | 
 | static void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
 | { | 
 | 	struct dentry *entry; | 
 |  | 
 | 	if (!zs_stat_root) { | 
 | 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	entry = debugfs_create_dir(name, zs_stat_root); | 
 | 	if (!entry) { | 
 | 		pr_warn("debugfs dir <%s> creation failed\n", name); | 
 | 		return; | 
 | 	} | 
 | 	pool->stat_dentry = entry; | 
 |  | 
 | 	entry = debugfs_create_file("classes", S_IFREG | 0444, | 
 | 				    pool->stat_dentry, pool, | 
 | 				    &zs_stats_size_fops); | 
 | 	if (!entry) { | 
 | 		pr_warn("%s: debugfs file entry <%s> creation failed\n", | 
 | 				name, "classes"); | 
 | 		debugfs_remove_recursive(pool->stat_dentry); | 
 | 		pool->stat_dentry = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void zs_pool_stat_destroy(struct zs_pool *pool) | 
 | { | 
 | 	debugfs_remove_recursive(pool->stat_dentry); | 
 | } | 
 |  | 
 | #else /* CONFIG_ZSMALLOC_STAT */ | 
 | static void __init zs_stat_init(void) | 
 | { | 
 | } | 
 |  | 
 | static void __exit zs_stat_exit(void) | 
 | { | 
 | } | 
 |  | 
 | static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
 | { | 
 | } | 
 |  | 
 | static inline void zs_pool_stat_destroy(struct zs_pool *pool) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 |  * For each size class, zspages are divided into different groups | 
 |  * depending on how "full" they are. This was done so that we could | 
 |  * easily find empty or nearly empty zspages when we try to shrink | 
 |  * the pool (not yet implemented). This function returns fullness | 
 |  * status of the given page. | 
 |  */ | 
 | static enum fullness_group get_fullness_group(struct size_class *class, | 
 | 						struct zspage *zspage) | 
 | { | 
 | 	int inuse, objs_per_zspage; | 
 | 	enum fullness_group fg; | 
 |  | 
 | 	inuse = get_zspage_inuse(zspage); | 
 | 	objs_per_zspage = class->objs_per_zspage; | 
 |  | 
 | 	if (inuse == 0) | 
 | 		fg = ZS_EMPTY; | 
 | 	else if (inuse == objs_per_zspage) | 
 | 		fg = ZS_FULL; | 
 | 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) | 
 | 		fg = ZS_ALMOST_EMPTY; | 
 | 	else | 
 | 		fg = ZS_ALMOST_FULL; | 
 |  | 
 | 	return fg; | 
 | } | 
 |  | 
 | /* | 
 |  * Each size class maintains various freelists and zspages are assigned | 
 |  * to one of these freelists based on the number of live objects they | 
 |  * have. This functions inserts the given zspage into the freelist | 
 |  * identified by <class, fullness_group>. | 
 |  */ | 
 | static void insert_zspage(struct size_class *class, | 
 | 				struct zspage *zspage, | 
 | 				enum fullness_group fullness) | 
 | { | 
 | 	struct zspage *head; | 
 |  | 
 | 	zs_stat_inc(class, fullness, 1); | 
 | 	head = list_first_entry_or_null(&class->fullness_list[fullness], | 
 | 					struct zspage, list); | 
 | 	/* | 
 | 	 * We want to see more ZS_FULL pages and less almost empty/full. | 
 | 	 * Put pages with higher ->inuse first. | 
 | 	 */ | 
 | 	if (head) { | 
 | 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { | 
 | 			list_add(&zspage->list, &head->list); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	list_add(&zspage->list, &class->fullness_list[fullness]); | 
 | } | 
 |  | 
 | /* | 
 |  * This function removes the given zspage from the freelist identified | 
 |  * by <class, fullness_group>. | 
 |  */ | 
 | static void remove_zspage(struct size_class *class, | 
 | 				struct zspage *zspage, | 
 | 				enum fullness_group fullness) | 
 | { | 
 | 	VM_BUG_ON(list_empty(&class->fullness_list[fullness])); | 
 | 	VM_BUG_ON(is_zspage_isolated(zspage)); | 
 |  | 
 | 	list_del_init(&zspage->list); | 
 | 	zs_stat_dec(class, fullness, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Each size class maintains zspages in different fullness groups depending | 
 |  * on the number of live objects they contain. When allocating or freeing | 
 |  * objects, the fullness status of the page can change, say, from ALMOST_FULL | 
 |  * to ALMOST_EMPTY when freeing an object. This function checks if such | 
 |  * a status change has occurred for the given page and accordingly moves the | 
 |  * page from the freelist of the old fullness group to that of the new | 
 |  * fullness group. | 
 |  */ | 
 | static enum fullness_group fix_fullness_group(struct size_class *class, | 
 | 						struct zspage *zspage) | 
 | { | 
 | 	int class_idx; | 
 | 	enum fullness_group currfg, newfg; | 
 |  | 
 | 	get_zspage_mapping(zspage, &class_idx, &currfg); | 
 | 	newfg = get_fullness_group(class, zspage); | 
 | 	if (newfg == currfg) | 
 | 		goto out; | 
 |  | 
 | 	if (!is_zspage_isolated(zspage)) { | 
 | 		remove_zspage(class, zspage, currfg); | 
 | 		insert_zspage(class, zspage, newfg); | 
 | 	} | 
 |  | 
 | 	set_zspage_mapping(zspage, class_idx, newfg); | 
 |  | 
 | out: | 
 | 	return newfg; | 
 | } | 
 |  | 
 | /* | 
 |  * We have to decide on how many pages to link together | 
 |  * to form a zspage for each size class. This is important | 
 |  * to reduce wastage due to unusable space left at end of | 
 |  * each zspage which is given as: | 
 |  *     wastage = Zp % class_size | 
 |  *     usage = Zp - wastage | 
 |  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... | 
 |  * | 
 |  * For example, for size class of 3/8 * PAGE_SIZE, we should | 
 |  * link together 3 PAGE_SIZE sized pages to form a zspage | 
 |  * since then we can perfectly fit in 8 such objects. | 
 |  */ | 
 | static int get_pages_per_zspage(int class_size) | 
 | { | 
 | 	int i, max_usedpc = 0; | 
 | 	/* zspage order which gives maximum used size per KB */ | 
 | 	int max_usedpc_order = 1; | 
 |  | 
 | 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { | 
 | 		int zspage_size; | 
 | 		int waste, usedpc; | 
 |  | 
 | 		zspage_size = i * PAGE_SIZE; | 
 | 		waste = zspage_size % class_size; | 
 | 		usedpc = (zspage_size - waste) * 100 / zspage_size; | 
 |  | 
 | 		if (usedpc > max_usedpc) { | 
 | 			max_usedpc = usedpc; | 
 | 			max_usedpc_order = i; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return max_usedpc_order; | 
 | } | 
 |  | 
 | static struct zspage *get_zspage(struct page *page) | 
 | { | 
 | 	struct zspage *zspage = (struct zspage *)page->private; | 
 |  | 
 | 	BUG_ON(zspage->magic != ZSPAGE_MAGIC); | 
 | 	return zspage; | 
 | } | 
 |  | 
 | static struct page *get_next_page(struct page *page) | 
 | { | 
 | 	if (unlikely(PageHugeObject(page))) | 
 | 		return NULL; | 
 |  | 
 | 	return page->freelist; | 
 | } | 
 |  | 
 | /** | 
 |  * obj_to_location - get (<page>, <obj_idx>) from encoded object value | 
 |  * @obj: the encoded object value | 
 |  * @page: page object resides in zspage | 
 |  * @obj_idx: object index | 
 |  */ | 
 | static void obj_to_location(unsigned long obj, struct page **page, | 
 | 				unsigned int *obj_idx) | 
 | { | 
 | 	obj >>= OBJ_TAG_BITS; | 
 | 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS); | 
 | 	*obj_idx = (obj & OBJ_INDEX_MASK); | 
 | } | 
 |  | 
 | /** | 
 |  * location_to_obj - get obj value encoded from (<page>, <obj_idx>) | 
 |  * @page: page object resides in zspage | 
 |  * @obj_idx: object index | 
 |  */ | 
 | static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) | 
 | { | 
 | 	unsigned long obj; | 
 |  | 
 | 	obj = page_to_pfn(page) << OBJ_INDEX_BITS; | 
 | 	obj |= obj_idx & OBJ_INDEX_MASK; | 
 | 	obj <<= OBJ_TAG_BITS; | 
 |  | 
 | 	return obj; | 
 | } | 
 |  | 
 | static unsigned long handle_to_obj(unsigned long handle) | 
 | { | 
 | 	return *(unsigned long *)handle; | 
 | } | 
 |  | 
 | static unsigned long obj_to_head(struct page *page, void *obj) | 
 | { | 
 | 	if (unlikely(PageHugeObject(page))) { | 
 | 		VM_BUG_ON_PAGE(!is_first_page(page), page); | 
 | 		return page->index; | 
 | 	} else | 
 | 		return *(unsigned long *)obj; | 
 | } | 
 |  | 
 | static inline int testpin_tag(unsigned long handle) | 
 | { | 
 | 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); | 
 | } | 
 |  | 
 | static inline int trypin_tag(unsigned long handle) | 
 | { | 
 | 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
 | } | 
 |  | 
 | static void pin_tag(unsigned long handle) | 
 | { | 
 | 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
 | } | 
 |  | 
 | static void unpin_tag(unsigned long handle) | 
 | { | 
 | 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); | 
 | } | 
 |  | 
 | static void reset_page(struct page *page) | 
 | { | 
 | 	__ClearPageMovable(page); | 
 | 	ClearPagePrivate(page); | 
 | 	set_page_private(page, 0); | 
 | 	page_mapcount_reset(page); | 
 | 	ClearPageHugeObject(page); | 
 | 	page->freelist = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * To prevent zspage destroy during migration, zspage freeing should | 
 |  * hold locks of all pages in the zspage. | 
 |  */ | 
 | void lock_zspage(struct zspage *zspage) | 
 | { | 
 | 	struct page *page = get_first_page(zspage); | 
 |  | 
 | 	do { | 
 | 		lock_page(page); | 
 | 	} while ((page = get_next_page(page)) != NULL); | 
 | } | 
 |  | 
 | int trylock_zspage(struct zspage *zspage) | 
 | { | 
 | 	struct page *cursor, *fail; | 
 |  | 
 | 	for (cursor = get_first_page(zspage); cursor != NULL; cursor = | 
 | 					get_next_page(cursor)) { | 
 | 		if (!trylock_page(cursor)) { | 
 | 			fail = cursor; | 
 | 			goto unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | unlock: | 
 | 	for (cursor = get_first_page(zspage); cursor != fail; cursor = | 
 | 					get_next_page(cursor)) | 
 | 		unlock_page(cursor); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __free_zspage(struct zs_pool *pool, struct size_class *class, | 
 | 				struct zspage *zspage) | 
 | { | 
 | 	struct page *page, *next; | 
 | 	enum fullness_group fg; | 
 | 	unsigned int class_idx; | 
 |  | 
 | 	get_zspage_mapping(zspage, &class_idx, &fg); | 
 |  | 
 | 	assert_spin_locked(&class->lock); | 
 |  | 
 | 	VM_BUG_ON(get_zspage_inuse(zspage)); | 
 | 	VM_BUG_ON(fg != ZS_EMPTY); | 
 |  | 
 | 	next = page = get_first_page(zspage); | 
 | 	do { | 
 | 		VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 		next = get_next_page(page); | 
 | 		reset_page(page); | 
 | 		unlock_page(page); | 
 | 		dec_zone_page_state(page, NR_ZSPAGES); | 
 | 		put_page(page); | 
 | 		page = next; | 
 | 	} while (page != NULL); | 
 |  | 
 | 	cache_free_zspage(pool, zspage); | 
 |  | 
 | 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); | 
 | 	atomic_long_sub(class->pages_per_zspage, | 
 | 					&pool->pages_allocated); | 
 | } | 
 |  | 
 | static void free_zspage(struct zs_pool *pool, struct size_class *class, | 
 | 				struct zspage *zspage) | 
 | { | 
 | 	VM_BUG_ON(get_zspage_inuse(zspage)); | 
 | 	VM_BUG_ON(list_empty(&zspage->list)); | 
 |  | 
 | 	if (!trylock_zspage(zspage)) { | 
 | 		kick_deferred_free(pool); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	remove_zspage(class, zspage, ZS_EMPTY); | 
 | 	__free_zspage(pool, class, zspage); | 
 | } | 
 |  | 
 | /* Initialize a newly allocated zspage */ | 
 | static void init_zspage(struct size_class *class, struct zspage *zspage) | 
 | { | 
 | 	unsigned int freeobj = 1; | 
 | 	unsigned long off = 0; | 
 | 	struct page *page = get_first_page(zspage); | 
 |  | 
 | 	while (page) { | 
 | 		struct page *next_page; | 
 | 		struct link_free *link; | 
 | 		void *vaddr; | 
 |  | 
 | 		set_first_obj_offset(page, off); | 
 |  | 
 | 		vaddr = kmap_atomic(page); | 
 | 		link = (struct link_free *)vaddr + off / sizeof(*link); | 
 |  | 
 | 		while ((off += class->size) < PAGE_SIZE) { | 
 | 			link->next = freeobj++ << OBJ_TAG_BITS; | 
 | 			link += class->size / sizeof(*link); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We now come to the last (full or partial) object on this | 
 | 		 * page, which must point to the first object on the next | 
 | 		 * page (if present) | 
 | 		 */ | 
 | 		next_page = get_next_page(page); | 
 | 		if (next_page) { | 
 | 			link->next = freeobj++ << OBJ_TAG_BITS; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Reset OBJ_TAG_BITS bit to last link to tell | 
 | 			 * whether it's allocated object or not. | 
 | 			 */ | 
 | 			link->next = -1UL << OBJ_TAG_BITS; | 
 | 		} | 
 | 		kunmap_atomic(vaddr); | 
 | 		page = next_page; | 
 | 		off %= PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	set_freeobj(zspage, 0); | 
 | } | 
 |  | 
 | static void create_page_chain(struct size_class *class, struct zspage *zspage, | 
 | 				struct page *pages[]) | 
 | { | 
 | 	int i; | 
 | 	struct page *page; | 
 | 	struct page *prev_page = NULL; | 
 | 	int nr_pages = class->pages_per_zspage; | 
 |  | 
 | 	/* | 
 | 	 * Allocate individual pages and link them together as: | 
 | 	 * 1. all pages are linked together using page->freelist | 
 | 	 * 2. each sub-page point to zspage using page->private | 
 | 	 * | 
 | 	 * we set PG_private to identify the first page (i.e. no other sub-page | 
 | 	 * has this flag set). | 
 | 	 */ | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		page = pages[i]; | 
 | 		set_page_private(page, (unsigned long)zspage); | 
 | 		page->freelist = NULL; | 
 | 		if (i == 0) { | 
 | 			zspage->first_page = page; | 
 | 			SetPagePrivate(page); | 
 | 			if (unlikely(class->objs_per_zspage == 1 && | 
 | 					class->pages_per_zspage == 1)) | 
 | 				SetPageHugeObject(page); | 
 | 		} else { | 
 | 			prev_page->freelist = page; | 
 | 		} | 
 | 		prev_page = page; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a zspage for the given size class | 
 |  */ | 
 | static struct zspage *alloc_zspage(struct zs_pool *pool, | 
 | 					struct size_class *class, | 
 | 					gfp_t gfp) | 
 | { | 
 | 	int i; | 
 | 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; | 
 | 	struct zspage *zspage = cache_alloc_zspage(pool, gfp); | 
 |  | 
 | 	if (!zspage) | 
 | 		return NULL; | 
 |  | 
 | 	memset(zspage, 0, sizeof(struct zspage)); | 
 | 	zspage->magic = ZSPAGE_MAGIC; | 
 | 	migrate_lock_init(zspage); | 
 |  | 
 | 	for (i = 0; i < class->pages_per_zspage; i++) { | 
 | 		struct page *page; | 
 |  | 
 | 		page = alloc_page(gfp); | 
 | 		if (!page) { | 
 | 			while (--i >= 0) { | 
 | 				dec_zone_page_state(pages[i], NR_ZSPAGES); | 
 | 				__free_page(pages[i]); | 
 | 			} | 
 | 			cache_free_zspage(pool, zspage); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		inc_zone_page_state(page, NR_ZSPAGES); | 
 | 		pages[i] = page; | 
 | 	} | 
 |  | 
 | 	create_page_chain(class, zspage, pages); | 
 | 	init_zspage(class, zspage); | 
 |  | 
 | 	return zspage; | 
 | } | 
 |  | 
 | static struct zspage *find_get_zspage(struct size_class *class) | 
 | { | 
 | 	int i; | 
 | 	struct zspage *zspage; | 
 |  | 
 | 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { | 
 | 		zspage = list_first_entry_or_null(&class->fullness_list[i], | 
 | 				struct zspage, list); | 
 | 		if (zspage) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return zspage; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PGTABLE_MAPPING | 
 | static inline int __zs_cpu_up(struct mapping_area *area) | 
 | { | 
 | 	/* | 
 | 	 * Make sure we don't leak memory if a cpu UP notification | 
 | 	 * and zs_init() race and both call zs_cpu_up() on the same cpu | 
 | 	 */ | 
 | 	if (area->vm) | 
 | 		return 0; | 
 | 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); | 
 | 	if (!area->vm) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void __zs_cpu_down(struct mapping_area *area) | 
 | { | 
 | 	if (area->vm) | 
 | 		free_vm_area(area->vm); | 
 | 	area->vm = NULL; | 
 | } | 
 |  | 
 | static inline void *__zs_map_object(struct mapping_area *area, | 
 | 				struct page *pages[2], int off, int size) | 
 | { | 
 | 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); | 
 | 	area->vm_addr = area->vm->addr; | 
 | 	return area->vm_addr + off; | 
 | } | 
 |  | 
 | static inline void __zs_unmap_object(struct mapping_area *area, | 
 | 				struct page *pages[2], int off, int size) | 
 | { | 
 | 	unsigned long addr = (unsigned long)area->vm_addr; | 
 |  | 
 | 	unmap_kernel_range(addr, PAGE_SIZE * 2); | 
 | } | 
 |  | 
 | #else /* CONFIG_PGTABLE_MAPPING */ | 
 |  | 
 | static inline int __zs_cpu_up(struct mapping_area *area) | 
 | { | 
 | 	/* | 
 | 	 * Make sure we don't leak memory if a cpu UP notification | 
 | 	 * and zs_init() race and both call zs_cpu_up() on the same cpu | 
 | 	 */ | 
 | 	if (area->vm_buf) | 
 | 		return 0; | 
 | 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); | 
 | 	if (!area->vm_buf) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void __zs_cpu_down(struct mapping_area *area) | 
 | { | 
 | 	kfree(area->vm_buf); | 
 | 	area->vm_buf = NULL; | 
 | } | 
 |  | 
 | static void *__zs_map_object(struct mapping_area *area, | 
 | 			struct page *pages[2], int off, int size) | 
 | { | 
 | 	int sizes[2]; | 
 | 	void *addr; | 
 | 	char *buf = area->vm_buf; | 
 |  | 
 | 	/* disable page faults to match kmap_atomic() return conditions */ | 
 | 	pagefault_disable(); | 
 |  | 
 | 	/* no read fastpath */ | 
 | 	if (area->vm_mm == ZS_MM_WO) | 
 | 		goto out; | 
 |  | 
 | 	sizes[0] = PAGE_SIZE - off; | 
 | 	sizes[1] = size - sizes[0]; | 
 |  | 
 | 	/* copy object to per-cpu buffer */ | 
 | 	addr = kmap_atomic(pages[0]); | 
 | 	memcpy(buf, addr + off, sizes[0]); | 
 | 	kunmap_atomic(addr); | 
 | 	addr = kmap_atomic(pages[1]); | 
 | 	memcpy(buf + sizes[0], addr, sizes[1]); | 
 | 	kunmap_atomic(addr); | 
 | out: | 
 | 	return area->vm_buf; | 
 | } | 
 |  | 
 | static void __zs_unmap_object(struct mapping_area *area, | 
 | 			struct page *pages[2], int off, int size) | 
 | { | 
 | 	int sizes[2]; | 
 | 	void *addr; | 
 | 	char *buf; | 
 |  | 
 | 	/* no write fastpath */ | 
 | 	if (area->vm_mm == ZS_MM_RO) | 
 | 		goto out; | 
 |  | 
 | 	buf = area->vm_buf; | 
 | 	buf = buf + ZS_HANDLE_SIZE; | 
 | 	size -= ZS_HANDLE_SIZE; | 
 | 	off += ZS_HANDLE_SIZE; | 
 |  | 
 | 	sizes[0] = PAGE_SIZE - off; | 
 | 	sizes[1] = size - sizes[0]; | 
 |  | 
 | 	/* copy per-cpu buffer to object */ | 
 | 	addr = kmap_atomic(pages[0]); | 
 | 	memcpy(addr + off, buf, sizes[0]); | 
 | 	kunmap_atomic(addr); | 
 | 	addr = kmap_atomic(pages[1]); | 
 | 	memcpy(addr, buf + sizes[0], sizes[1]); | 
 | 	kunmap_atomic(addr); | 
 |  | 
 | out: | 
 | 	/* enable page faults to match kunmap_atomic() return conditions */ | 
 | 	pagefault_enable(); | 
 | } | 
 |  | 
 | #endif /* CONFIG_PGTABLE_MAPPING */ | 
 |  | 
 | static int zs_cpu_prepare(unsigned int cpu) | 
 | { | 
 | 	struct mapping_area *area; | 
 |  | 
 | 	area = &per_cpu(zs_map_area, cpu); | 
 | 	return __zs_cpu_up(area); | 
 | } | 
 |  | 
 | static int zs_cpu_dead(unsigned int cpu) | 
 | { | 
 | 	struct mapping_area *area; | 
 |  | 
 | 	area = &per_cpu(zs_map_area, cpu); | 
 | 	__zs_cpu_down(area); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool can_merge(struct size_class *prev, int pages_per_zspage, | 
 | 					int objs_per_zspage) | 
 | { | 
 | 	if (prev->pages_per_zspage == pages_per_zspage && | 
 | 		prev->objs_per_zspage == objs_per_zspage) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool zspage_full(struct size_class *class, struct zspage *zspage) | 
 | { | 
 | 	return get_zspage_inuse(zspage) == class->objs_per_zspage; | 
 | } | 
 |  | 
 | unsigned long zs_get_total_pages(struct zs_pool *pool) | 
 | { | 
 | 	return atomic_long_read(&pool->pages_allocated); | 
 | } | 
 | EXPORT_SYMBOL_GPL(zs_get_total_pages); | 
 |  | 
 | /** | 
 |  * zs_map_object - get address of allocated object from handle. | 
 |  * @pool: pool from which the object was allocated | 
 |  * @handle: handle returned from zs_malloc | 
 |  * @mm: maping mode to use | 
 |  * | 
 |  * Before using an object allocated from zs_malloc, it must be mapped using | 
 |  * this function. When done with the object, it must be unmapped using | 
 |  * zs_unmap_object. | 
 |  * | 
 |  * Only one object can be mapped per cpu at a time. There is no protection | 
 |  * against nested mappings. | 
 |  * | 
 |  * This function returns with preemption and page faults disabled. | 
 |  */ | 
 | void *zs_map_object(struct zs_pool *pool, unsigned long handle, | 
 | 			enum zs_mapmode mm) | 
 | { | 
 | 	struct zspage *zspage; | 
 | 	struct page *page; | 
 | 	unsigned long obj, off; | 
 | 	unsigned int obj_idx; | 
 |  | 
 | 	unsigned int class_idx; | 
 | 	enum fullness_group fg; | 
 | 	struct size_class *class; | 
 | 	struct mapping_area *area; | 
 | 	struct page *pages[2]; | 
 | 	void *ret; | 
 |  | 
 | 	/* | 
 | 	 * Because we use per-cpu mapping areas shared among the | 
 | 	 * pools/users, we can't allow mapping in interrupt context | 
 | 	 * because it can corrupt another users mappings. | 
 | 	 */ | 
 | 	BUG_ON(in_interrupt()); | 
 |  | 
 | 	/* From now on, migration cannot move the object */ | 
 | 	pin_tag(handle); | 
 |  | 
 | 	obj = handle_to_obj(handle); | 
 | 	obj_to_location(obj, &page, &obj_idx); | 
 | 	zspage = get_zspage(page); | 
 |  | 
 | 	/* migration cannot move any subpage in this zspage */ | 
 | 	migrate_read_lock(zspage); | 
 |  | 
 | 	get_zspage_mapping(zspage, &class_idx, &fg); | 
 | 	class = pool->size_class[class_idx]; | 
 | 	off = (class->size * obj_idx) & ~PAGE_MASK; | 
 |  | 
 | 	area = &get_cpu_var(zs_map_area); | 
 | 	area->vm_mm = mm; | 
 | 	if (off + class->size <= PAGE_SIZE) { | 
 | 		/* this object is contained entirely within a page */ | 
 | 		area->vm_addr = kmap_atomic(page); | 
 | 		ret = area->vm_addr + off; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* this object spans two pages */ | 
 | 	pages[0] = page; | 
 | 	pages[1] = get_next_page(page); | 
 | 	BUG_ON(!pages[1]); | 
 |  | 
 | 	ret = __zs_map_object(area, pages, off, class->size); | 
 | out: | 
 | 	if (likely(!PageHugeObject(page))) | 
 | 		ret += ZS_HANDLE_SIZE; | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(zs_map_object); | 
 |  | 
 | void zs_unmap_object(struct zs_pool *pool, unsigned long handle) | 
 | { | 
 | 	struct zspage *zspage; | 
 | 	struct page *page; | 
 | 	unsigned long obj, off; | 
 | 	unsigned int obj_idx; | 
 |  | 
 | 	unsigned int class_idx; | 
 | 	enum fullness_group fg; | 
 | 	struct size_class *class; | 
 | 	struct mapping_area *area; | 
 |  | 
 | 	obj = handle_to_obj(handle); | 
 | 	obj_to_location(obj, &page, &obj_idx); | 
 | 	zspage = get_zspage(page); | 
 | 	get_zspage_mapping(zspage, &class_idx, &fg); | 
 | 	class = pool->size_class[class_idx]; | 
 | 	off = (class->size * obj_idx) & ~PAGE_MASK; | 
 |  | 
 | 	area = this_cpu_ptr(&zs_map_area); | 
 | 	if (off + class->size <= PAGE_SIZE) | 
 | 		kunmap_atomic(area->vm_addr); | 
 | 	else { | 
 | 		struct page *pages[2]; | 
 |  | 
 | 		pages[0] = page; | 
 | 		pages[1] = get_next_page(page); | 
 | 		BUG_ON(!pages[1]); | 
 |  | 
 | 		__zs_unmap_object(area, pages, off, class->size); | 
 | 	} | 
 | 	put_cpu_var(zs_map_area); | 
 |  | 
 | 	migrate_read_unlock(zspage); | 
 | 	unpin_tag(handle); | 
 | } | 
 | EXPORT_SYMBOL_GPL(zs_unmap_object); | 
 |  | 
 | /** | 
 |  * zs_huge_class_size() - Returns the size (in bytes) of the first huge | 
 |  *                        zsmalloc &size_class. | 
 |  * @pool: zsmalloc pool to use | 
 |  * | 
 |  * The function returns the size of the first huge class - any object of equal | 
 |  * or bigger size will be stored in zspage consisting of a single physical | 
 |  * page. | 
 |  * | 
 |  * Context: Any context. | 
 |  * | 
 |  * Return: the size (in bytes) of the first huge zsmalloc &size_class. | 
 |  */ | 
 | size_t zs_huge_class_size(struct zs_pool *pool) | 
 | { | 
 | 	return huge_class_size; | 
 | } | 
 | EXPORT_SYMBOL_GPL(zs_huge_class_size); | 
 |  | 
 | static unsigned long obj_malloc(struct size_class *class, | 
 | 				struct zspage *zspage, unsigned long handle) | 
 | { | 
 | 	int i, nr_page, offset; | 
 | 	unsigned long obj; | 
 | 	struct link_free *link; | 
 |  | 
 | 	struct page *m_page; | 
 | 	unsigned long m_offset; | 
 | 	void *vaddr; | 
 |  | 
 | 	handle |= OBJ_ALLOCATED_TAG; | 
 | 	obj = get_freeobj(zspage); | 
 |  | 
 | 	offset = obj * class->size; | 
 | 	nr_page = offset >> PAGE_SHIFT; | 
 | 	m_offset = offset & ~PAGE_MASK; | 
 | 	m_page = get_first_page(zspage); | 
 |  | 
 | 	for (i = 0; i < nr_page; i++) | 
 | 		m_page = get_next_page(m_page); | 
 |  | 
 | 	vaddr = kmap_atomic(m_page); | 
 | 	link = (struct link_free *)vaddr + m_offset / sizeof(*link); | 
 | 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS); | 
 | 	if (likely(!PageHugeObject(m_page))) | 
 | 		/* record handle in the header of allocated chunk */ | 
 | 		link->handle = handle; | 
 | 	else | 
 | 		/* record handle to page->index */ | 
 | 		zspage->first_page->index = handle; | 
 |  | 
 | 	kunmap_atomic(vaddr); | 
 | 	mod_zspage_inuse(zspage, 1); | 
 | 	zs_stat_inc(class, OBJ_USED, 1); | 
 |  | 
 | 	obj = location_to_obj(m_page, obj); | 
 |  | 
 | 	return obj; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * zs_malloc - Allocate block of given size from pool. | 
 |  * @pool: pool to allocate from | 
 |  * @size: size of block to allocate | 
 |  * @gfp: gfp flags when allocating object | 
 |  * | 
 |  * On success, handle to the allocated object is returned, | 
 |  * otherwise 0. | 
 |  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. | 
 |  */ | 
 | unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) | 
 | { | 
 | 	unsigned long handle, obj; | 
 | 	struct size_class *class; | 
 | 	enum fullness_group newfg; | 
 | 	struct zspage *zspage; | 
 |  | 
 | 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) | 
 | 		return 0; | 
 |  | 
 | 	handle = cache_alloc_handle(pool, gfp); | 
 | 	if (!handle) | 
 | 		return 0; | 
 |  | 
 | 	/* extra space in chunk to keep the handle */ | 
 | 	size += ZS_HANDLE_SIZE; | 
 | 	class = pool->size_class[get_size_class_index(size)]; | 
 |  | 
 | 	spin_lock(&class->lock); | 
 | 	zspage = find_get_zspage(class); | 
 | 	if (likely(zspage)) { | 
 | 		obj = obj_malloc(class, zspage, handle); | 
 | 		/* Now move the zspage to another fullness group, if required */ | 
 | 		fix_fullness_group(class, zspage); | 
 | 		record_obj(handle, obj); | 
 | 		spin_unlock(&class->lock); | 
 |  | 
 | 		return handle; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&class->lock); | 
 |  | 
 | 	zspage = alloc_zspage(pool, class, gfp); | 
 | 	if (!zspage) { | 
 | 		cache_free_handle(pool, handle); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_lock(&class->lock); | 
 | 	obj = obj_malloc(class, zspage, handle); | 
 | 	newfg = get_fullness_group(class, zspage); | 
 | 	insert_zspage(class, zspage, newfg); | 
 | 	set_zspage_mapping(zspage, class->index, newfg); | 
 | 	record_obj(handle, obj); | 
 | 	atomic_long_add(class->pages_per_zspage, | 
 | 				&pool->pages_allocated); | 
 | 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); | 
 |  | 
 | 	/* We completely set up zspage so mark them as movable */ | 
 | 	SetZsPageMovable(pool, zspage); | 
 | 	spin_unlock(&class->lock); | 
 |  | 
 | 	return handle; | 
 | } | 
 | EXPORT_SYMBOL_GPL(zs_malloc); | 
 |  | 
 | static void obj_free(struct size_class *class, unsigned long obj) | 
 | { | 
 | 	struct link_free *link; | 
 | 	struct zspage *zspage; | 
 | 	struct page *f_page; | 
 | 	unsigned long f_offset; | 
 | 	unsigned int f_objidx; | 
 | 	void *vaddr; | 
 |  | 
 | 	obj &= ~OBJ_ALLOCATED_TAG; | 
 | 	obj_to_location(obj, &f_page, &f_objidx); | 
 | 	f_offset = (class->size * f_objidx) & ~PAGE_MASK; | 
 | 	zspage = get_zspage(f_page); | 
 |  | 
 | 	vaddr = kmap_atomic(f_page); | 
 |  | 
 | 	/* Insert this object in containing zspage's freelist */ | 
 | 	link = (struct link_free *)(vaddr + f_offset); | 
 | 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS; | 
 | 	kunmap_atomic(vaddr); | 
 | 	set_freeobj(zspage, f_objidx); | 
 | 	mod_zspage_inuse(zspage, -1); | 
 | 	zs_stat_dec(class, OBJ_USED, 1); | 
 | } | 
 |  | 
 | void zs_free(struct zs_pool *pool, unsigned long handle) | 
 | { | 
 | 	struct zspage *zspage; | 
 | 	struct page *f_page; | 
 | 	unsigned long obj; | 
 | 	unsigned int f_objidx; | 
 | 	int class_idx; | 
 | 	struct size_class *class; | 
 | 	enum fullness_group fullness; | 
 | 	bool isolated; | 
 |  | 
 | 	if (unlikely(!handle)) | 
 | 		return; | 
 |  | 
 | 	pin_tag(handle); | 
 | 	obj = handle_to_obj(handle); | 
 | 	obj_to_location(obj, &f_page, &f_objidx); | 
 | 	zspage = get_zspage(f_page); | 
 |  | 
 | 	migrate_read_lock(zspage); | 
 |  | 
 | 	get_zspage_mapping(zspage, &class_idx, &fullness); | 
 | 	class = pool->size_class[class_idx]; | 
 |  | 
 | 	spin_lock(&class->lock); | 
 | 	obj_free(class, obj); | 
 | 	fullness = fix_fullness_group(class, zspage); | 
 | 	if (fullness != ZS_EMPTY) { | 
 | 		migrate_read_unlock(zspage); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	isolated = is_zspage_isolated(zspage); | 
 | 	migrate_read_unlock(zspage); | 
 | 	/* If zspage is isolated, zs_page_putback will free the zspage */ | 
 | 	if (likely(!isolated)) | 
 | 		free_zspage(pool, class, zspage); | 
 | out: | 
 |  | 
 | 	spin_unlock(&class->lock); | 
 | 	unpin_tag(handle); | 
 | 	cache_free_handle(pool, handle); | 
 | } | 
 | EXPORT_SYMBOL_GPL(zs_free); | 
 |  | 
 | static void zs_object_copy(struct size_class *class, unsigned long dst, | 
 | 				unsigned long src) | 
 | { | 
 | 	struct page *s_page, *d_page; | 
 | 	unsigned int s_objidx, d_objidx; | 
 | 	unsigned long s_off, d_off; | 
 | 	void *s_addr, *d_addr; | 
 | 	int s_size, d_size, size; | 
 | 	int written = 0; | 
 |  | 
 | 	s_size = d_size = class->size; | 
 |  | 
 | 	obj_to_location(src, &s_page, &s_objidx); | 
 | 	obj_to_location(dst, &d_page, &d_objidx); | 
 |  | 
 | 	s_off = (class->size * s_objidx) & ~PAGE_MASK; | 
 | 	d_off = (class->size * d_objidx) & ~PAGE_MASK; | 
 |  | 
 | 	if (s_off + class->size > PAGE_SIZE) | 
 | 		s_size = PAGE_SIZE - s_off; | 
 |  | 
 | 	if (d_off + class->size > PAGE_SIZE) | 
 | 		d_size = PAGE_SIZE - d_off; | 
 |  | 
 | 	s_addr = kmap_atomic(s_page); | 
 | 	d_addr = kmap_atomic(d_page); | 
 |  | 
 | 	while (1) { | 
 | 		size = min(s_size, d_size); | 
 | 		memcpy(d_addr + d_off, s_addr + s_off, size); | 
 | 		written += size; | 
 |  | 
 | 		if (written == class->size) | 
 | 			break; | 
 |  | 
 | 		s_off += size; | 
 | 		s_size -= size; | 
 | 		d_off += size; | 
 | 		d_size -= size; | 
 |  | 
 | 		if (s_off >= PAGE_SIZE) { | 
 | 			kunmap_atomic(d_addr); | 
 | 			kunmap_atomic(s_addr); | 
 | 			s_page = get_next_page(s_page); | 
 | 			s_addr = kmap_atomic(s_page); | 
 | 			d_addr = kmap_atomic(d_page); | 
 | 			s_size = class->size - written; | 
 | 			s_off = 0; | 
 | 		} | 
 |  | 
 | 		if (d_off >= PAGE_SIZE) { | 
 | 			kunmap_atomic(d_addr); | 
 | 			d_page = get_next_page(d_page); | 
 | 			d_addr = kmap_atomic(d_page); | 
 | 			d_size = class->size - written; | 
 | 			d_off = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kunmap_atomic(d_addr); | 
 | 	kunmap_atomic(s_addr); | 
 | } | 
 |  | 
 | /* | 
 |  * Find alloced object in zspage from index object and | 
 |  * return handle. | 
 |  */ | 
 | static unsigned long find_alloced_obj(struct size_class *class, | 
 | 					struct page *page, int *obj_idx) | 
 | { | 
 | 	unsigned long head; | 
 | 	int offset = 0; | 
 | 	int index = *obj_idx; | 
 | 	unsigned long handle = 0; | 
 | 	void *addr = kmap_atomic(page); | 
 |  | 
 | 	offset = get_first_obj_offset(page); | 
 | 	offset += class->size * index; | 
 |  | 
 | 	while (offset < PAGE_SIZE) { | 
 | 		head = obj_to_head(page, addr + offset); | 
 | 		if (head & OBJ_ALLOCATED_TAG) { | 
 | 			handle = head & ~OBJ_ALLOCATED_TAG; | 
 | 			if (trypin_tag(handle)) | 
 | 				break; | 
 | 			handle = 0; | 
 | 		} | 
 |  | 
 | 		offset += class->size; | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	kunmap_atomic(addr); | 
 |  | 
 | 	*obj_idx = index; | 
 |  | 
 | 	return handle; | 
 | } | 
 |  | 
 | struct zs_compact_control { | 
 | 	/* Source spage for migration which could be a subpage of zspage */ | 
 | 	struct page *s_page; | 
 | 	/* Destination page for migration which should be a first page | 
 | 	 * of zspage. */ | 
 | 	struct page *d_page; | 
 | 	 /* Starting object index within @s_page which used for live object | 
 | 	  * in the subpage. */ | 
 | 	int obj_idx; | 
 | }; | 
 |  | 
 | static int migrate_zspage(struct zs_pool *pool, struct size_class *class, | 
 | 				struct zs_compact_control *cc) | 
 | { | 
 | 	unsigned long used_obj, free_obj; | 
 | 	unsigned long handle; | 
 | 	struct page *s_page = cc->s_page; | 
 | 	struct page *d_page = cc->d_page; | 
 | 	int obj_idx = cc->obj_idx; | 
 | 	int ret = 0; | 
 |  | 
 | 	while (1) { | 
 | 		handle = find_alloced_obj(class, s_page, &obj_idx); | 
 | 		if (!handle) { | 
 | 			s_page = get_next_page(s_page); | 
 | 			if (!s_page) | 
 | 				break; | 
 | 			obj_idx = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Stop if there is no more space */ | 
 | 		if (zspage_full(class, get_zspage(d_page))) { | 
 | 			unpin_tag(handle); | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		used_obj = handle_to_obj(handle); | 
 | 		free_obj = obj_malloc(class, get_zspage(d_page), handle); | 
 | 		zs_object_copy(class, free_obj, used_obj); | 
 | 		obj_idx++; | 
 | 		/* | 
 | 		 * record_obj updates handle's value to free_obj and it will | 
 | 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which | 
 | 		 * breaks synchronization using pin_tag(e,g, zs_free) so | 
 | 		 * let's keep the lock bit. | 
 | 		 */ | 
 | 		free_obj |= BIT(HANDLE_PIN_BIT); | 
 | 		record_obj(handle, free_obj); | 
 | 		unpin_tag(handle); | 
 | 		obj_free(class, used_obj); | 
 | 	} | 
 |  | 
 | 	/* Remember last position in this iteration */ | 
 | 	cc->s_page = s_page; | 
 | 	cc->obj_idx = obj_idx; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct zspage *isolate_zspage(struct size_class *class, bool source) | 
 | { | 
 | 	int i; | 
 | 	struct zspage *zspage; | 
 | 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; | 
 |  | 
 | 	if (!source) { | 
 | 		fg[0] = ZS_ALMOST_FULL; | 
 | 		fg[1] = ZS_ALMOST_EMPTY; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], | 
 | 							struct zspage, list); | 
 | 		if (zspage) { | 
 | 			VM_BUG_ON(is_zspage_isolated(zspage)); | 
 | 			remove_zspage(class, zspage, fg[i]); | 
 | 			return zspage; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return zspage; | 
 | } | 
 |  | 
 | /* | 
 |  * putback_zspage - add @zspage into right class's fullness list | 
 |  * @class: destination class | 
 |  * @zspage: target page | 
 |  * | 
 |  * Return @zspage's fullness_group | 
 |  */ | 
 | static enum fullness_group putback_zspage(struct size_class *class, | 
 | 			struct zspage *zspage) | 
 | { | 
 | 	enum fullness_group fullness; | 
 |  | 
 | 	VM_BUG_ON(is_zspage_isolated(zspage)); | 
 |  | 
 | 	fullness = get_fullness_group(class, zspage); | 
 | 	insert_zspage(class, zspage, fullness); | 
 | 	set_zspage_mapping(zspage, class->index, fullness); | 
 |  | 
 | 	return fullness; | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | static struct dentry *zs_mount(struct file_system_type *fs_type, | 
 | 				int flags, const char *dev_name, void *data) | 
 | { | 
 | 	static const struct dentry_operations ops = { | 
 | 		.d_dname = simple_dname, | 
 | 	}; | 
 |  | 
 | 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); | 
 | } | 
 |  | 
 | static struct file_system_type zsmalloc_fs = { | 
 | 	.name		= "zsmalloc", | 
 | 	.mount		= zs_mount, | 
 | 	.kill_sb	= kill_anon_super, | 
 | }; | 
 |  | 
 | static int zsmalloc_mount(void) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	zsmalloc_mnt = kern_mount(&zsmalloc_fs); | 
 | 	if (IS_ERR(zsmalloc_mnt)) | 
 | 		ret = PTR_ERR(zsmalloc_mnt); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void zsmalloc_unmount(void) | 
 | { | 
 | 	kern_unmount(zsmalloc_mnt); | 
 | } | 
 |  | 
 | static void migrate_lock_init(struct zspage *zspage) | 
 | { | 
 | 	rwlock_init(&zspage->lock); | 
 | } | 
 |  | 
 | static void migrate_read_lock(struct zspage *zspage) | 
 | { | 
 | 	read_lock(&zspage->lock); | 
 | } | 
 |  | 
 | static void migrate_read_unlock(struct zspage *zspage) | 
 | { | 
 | 	read_unlock(&zspage->lock); | 
 | } | 
 |  | 
 | static void migrate_write_lock(struct zspage *zspage) | 
 | { | 
 | 	write_lock(&zspage->lock); | 
 | } | 
 |  | 
 | static void migrate_write_unlock(struct zspage *zspage) | 
 | { | 
 | 	write_unlock(&zspage->lock); | 
 | } | 
 |  | 
 | /* Number of isolated subpage for *page migration* in this zspage */ | 
 | static void inc_zspage_isolation(struct zspage *zspage) | 
 | { | 
 | 	zspage->isolated++; | 
 | } | 
 |  | 
 | static void dec_zspage_isolation(struct zspage *zspage) | 
 | { | 
 | 	zspage->isolated--; | 
 | } | 
 |  | 
 | static void replace_sub_page(struct size_class *class, struct zspage *zspage, | 
 | 				struct page *newpage, struct page *oldpage) | 
 | { | 
 | 	struct page *page; | 
 | 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; | 
 | 	int idx = 0; | 
 |  | 
 | 	page = get_first_page(zspage); | 
 | 	do { | 
 | 		if (page == oldpage) | 
 | 			pages[idx] = newpage; | 
 | 		else | 
 | 			pages[idx] = page; | 
 | 		idx++; | 
 | 	} while ((page = get_next_page(page)) != NULL); | 
 |  | 
 | 	create_page_chain(class, zspage, pages); | 
 | 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); | 
 | 	if (unlikely(PageHugeObject(oldpage))) | 
 | 		newpage->index = oldpage->index; | 
 | 	__SetPageMovable(newpage, page_mapping(oldpage)); | 
 | } | 
 |  | 
 | bool zs_page_isolate(struct page *page, isolate_mode_t mode) | 
 | { | 
 | 	struct zs_pool *pool; | 
 | 	struct size_class *class; | 
 | 	int class_idx; | 
 | 	enum fullness_group fullness; | 
 | 	struct zspage *zspage; | 
 | 	struct address_space *mapping; | 
 |  | 
 | 	/* | 
 | 	 * Page is locked so zspage couldn't be destroyed. For detail, look at | 
 | 	 * lock_zspage in free_zspage. | 
 | 	 */ | 
 | 	VM_BUG_ON_PAGE(!PageMovable(page), page); | 
 | 	VM_BUG_ON_PAGE(PageIsolated(page), page); | 
 |  | 
 | 	zspage = get_zspage(page); | 
 |  | 
 | 	/* | 
 | 	 * Without class lock, fullness could be stale while class_idx is okay | 
 | 	 * because class_idx is constant unless page is freed so we should get | 
 | 	 * fullness again under class lock. | 
 | 	 */ | 
 | 	get_zspage_mapping(zspage, &class_idx, &fullness); | 
 | 	mapping = page_mapping(page); | 
 | 	pool = mapping->private_data; | 
 | 	class = pool->size_class[class_idx]; | 
 |  | 
 | 	spin_lock(&class->lock); | 
 | 	if (get_zspage_inuse(zspage) == 0) { | 
 | 		spin_unlock(&class->lock); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* zspage is isolated for object migration */ | 
 | 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { | 
 | 		spin_unlock(&class->lock); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is first time isolation for the zspage, isolate zspage from | 
 | 	 * size_class to prevent further object allocation from the zspage. | 
 | 	 */ | 
 | 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { | 
 | 		get_zspage_mapping(zspage, &class_idx, &fullness); | 
 | 		remove_zspage(class, zspage, fullness); | 
 | 	} | 
 |  | 
 | 	inc_zspage_isolation(zspage); | 
 | 	spin_unlock(&class->lock); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | int zs_page_migrate(struct address_space *mapping, struct page *newpage, | 
 | 		struct page *page, enum migrate_mode mode) | 
 | { | 
 | 	struct zs_pool *pool; | 
 | 	struct size_class *class; | 
 | 	int class_idx; | 
 | 	enum fullness_group fullness; | 
 | 	struct zspage *zspage; | 
 | 	struct page *dummy; | 
 | 	void *s_addr, *d_addr, *addr; | 
 | 	int offset, pos; | 
 | 	unsigned long handle, head; | 
 | 	unsigned long old_obj, new_obj; | 
 | 	unsigned int obj_idx; | 
 | 	int ret = -EAGAIN; | 
 |  | 
 | 	/* | 
 | 	 * We cannot support the _NO_COPY case here, because copy needs to | 
 | 	 * happen under the zs lock, which does not work with | 
 | 	 * MIGRATE_SYNC_NO_COPY workflow. | 
 | 	 */ | 
 | 	if (mode == MIGRATE_SYNC_NO_COPY) | 
 | 		return -EINVAL; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageMovable(page), page); | 
 | 	VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
 |  | 
 | 	zspage = get_zspage(page); | 
 |  | 
 | 	/* Concurrent compactor cannot migrate any subpage in zspage */ | 
 | 	migrate_write_lock(zspage); | 
 | 	get_zspage_mapping(zspage, &class_idx, &fullness); | 
 | 	pool = mapping->private_data; | 
 | 	class = pool->size_class[class_idx]; | 
 | 	offset = get_first_obj_offset(page); | 
 |  | 
 | 	spin_lock(&class->lock); | 
 | 	if (!get_zspage_inuse(zspage)) { | 
 | 		/* | 
 | 		 * Set "offset" to end of the page so that every loops | 
 | 		 * skips unnecessary object scanning. | 
 | 		 */ | 
 | 		offset = PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	pos = offset; | 
 | 	s_addr = kmap_atomic(page); | 
 | 	while (pos < PAGE_SIZE) { | 
 | 		head = obj_to_head(page, s_addr + pos); | 
 | 		if (head & OBJ_ALLOCATED_TAG) { | 
 | 			handle = head & ~OBJ_ALLOCATED_TAG; | 
 | 			if (!trypin_tag(handle)) | 
 | 				goto unpin_objects; | 
 | 		} | 
 | 		pos += class->size; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Here, any user cannot access all objects in the zspage so let's move. | 
 | 	 */ | 
 | 	d_addr = kmap_atomic(newpage); | 
 | 	memcpy(d_addr, s_addr, PAGE_SIZE); | 
 | 	kunmap_atomic(d_addr); | 
 |  | 
 | 	for (addr = s_addr + offset; addr < s_addr + pos; | 
 | 					addr += class->size) { | 
 | 		head = obj_to_head(page, addr); | 
 | 		if (head & OBJ_ALLOCATED_TAG) { | 
 | 			handle = head & ~OBJ_ALLOCATED_TAG; | 
 | 			if (!testpin_tag(handle)) | 
 | 				BUG(); | 
 |  | 
 | 			old_obj = handle_to_obj(handle); | 
 | 			obj_to_location(old_obj, &dummy, &obj_idx); | 
 | 			new_obj = (unsigned long)location_to_obj(newpage, | 
 | 								obj_idx); | 
 | 			new_obj |= BIT(HANDLE_PIN_BIT); | 
 | 			record_obj(handle, new_obj); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	replace_sub_page(class, zspage, newpage, page); | 
 | 	get_page(newpage); | 
 |  | 
 | 	dec_zspage_isolation(zspage); | 
 |  | 
 | 	/* | 
 | 	 * Page migration is done so let's putback isolated zspage to | 
 | 	 * the list if @page is final isolated subpage in the zspage. | 
 | 	 */ | 
 | 	if (!is_zspage_isolated(zspage)) | 
 | 		putback_zspage(class, zspage); | 
 |  | 
 | 	reset_page(page); | 
 | 	put_page(page); | 
 | 	page = newpage; | 
 |  | 
 | 	ret = MIGRATEPAGE_SUCCESS; | 
 | unpin_objects: | 
 | 	for (addr = s_addr + offset; addr < s_addr + pos; | 
 | 						addr += class->size) { | 
 | 		head = obj_to_head(page, addr); | 
 | 		if (head & OBJ_ALLOCATED_TAG) { | 
 | 			handle = head & ~OBJ_ALLOCATED_TAG; | 
 | 			if (!testpin_tag(handle)) | 
 | 				BUG(); | 
 | 			unpin_tag(handle); | 
 | 		} | 
 | 	} | 
 | 	kunmap_atomic(s_addr); | 
 | 	spin_unlock(&class->lock); | 
 | 	migrate_write_unlock(zspage); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void zs_page_putback(struct page *page) | 
 | { | 
 | 	struct zs_pool *pool; | 
 | 	struct size_class *class; | 
 | 	int class_idx; | 
 | 	enum fullness_group fg; | 
 | 	struct address_space *mapping; | 
 | 	struct zspage *zspage; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageMovable(page), page); | 
 | 	VM_BUG_ON_PAGE(!PageIsolated(page), page); | 
 |  | 
 | 	zspage = get_zspage(page); | 
 | 	get_zspage_mapping(zspage, &class_idx, &fg); | 
 | 	mapping = page_mapping(page); | 
 | 	pool = mapping->private_data; | 
 | 	class = pool->size_class[class_idx]; | 
 |  | 
 | 	spin_lock(&class->lock); | 
 | 	dec_zspage_isolation(zspage); | 
 | 	if (!is_zspage_isolated(zspage)) { | 
 | 		fg = putback_zspage(class, zspage); | 
 | 		/* | 
 | 		 * Due to page_lock, we cannot free zspage immediately | 
 | 		 * so let's defer. | 
 | 		 */ | 
 | 		if (fg == ZS_EMPTY) | 
 | 			schedule_work(&pool->free_work); | 
 | 	} | 
 | 	spin_unlock(&class->lock); | 
 | } | 
 |  | 
 | const struct address_space_operations zsmalloc_aops = { | 
 | 	.isolate_page = zs_page_isolate, | 
 | 	.migratepage = zs_page_migrate, | 
 | 	.putback_page = zs_page_putback, | 
 | }; | 
 |  | 
 | static int zs_register_migration(struct zs_pool *pool) | 
 | { | 
 | 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); | 
 | 	if (IS_ERR(pool->inode)) { | 
 | 		pool->inode = NULL; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	pool->inode->i_mapping->private_data = pool; | 
 | 	pool->inode->i_mapping->a_ops = &zsmalloc_aops; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void zs_unregister_migration(struct zs_pool *pool) | 
 | { | 
 | 	flush_work(&pool->free_work); | 
 | 	iput(pool->inode); | 
 | } | 
 |  | 
 | /* | 
 |  * Caller should hold page_lock of all pages in the zspage | 
 |  * In here, we cannot use zspage meta data. | 
 |  */ | 
 | static void async_free_zspage(struct work_struct *work) | 
 | { | 
 | 	int i; | 
 | 	struct size_class *class; | 
 | 	unsigned int class_idx; | 
 | 	enum fullness_group fullness; | 
 | 	struct zspage *zspage, *tmp; | 
 | 	LIST_HEAD(free_pages); | 
 | 	struct zs_pool *pool = container_of(work, struct zs_pool, | 
 | 					free_work); | 
 |  | 
 | 	for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
 | 		class = pool->size_class[i]; | 
 | 		if (class->index != i) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&class->lock); | 
 | 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); | 
 | 		spin_unlock(&class->lock); | 
 | 	} | 
 |  | 
 |  | 
 | 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) { | 
 | 		list_del(&zspage->list); | 
 | 		lock_zspage(zspage); | 
 |  | 
 | 		get_zspage_mapping(zspage, &class_idx, &fullness); | 
 | 		VM_BUG_ON(fullness != ZS_EMPTY); | 
 | 		class = pool->size_class[class_idx]; | 
 | 		spin_lock(&class->lock); | 
 | 		__free_zspage(pool, pool->size_class[class_idx], zspage); | 
 | 		spin_unlock(&class->lock); | 
 | 	} | 
 | }; | 
 |  | 
 | static void kick_deferred_free(struct zs_pool *pool) | 
 | { | 
 | 	schedule_work(&pool->free_work); | 
 | } | 
 |  | 
 | static void init_deferred_free(struct zs_pool *pool) | 
 | { | 
 | 	INIT_WORK(&pool->free_work, async_free_zspage); | 
 | } | 
 |  | 
 | static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) | 
 | { | 
 | 	struct page *page = get_first_page(zspage); | 
 |  | 
 | 	do { | 
 | 		WARN_ON(!trylock_page(page)); | 
 | 		__SetPageMovable(page, pool->inode->i_mapping); | 
 | 		unlock_page(page); | 
 | 	} while ((page = get_next_page(page)) != NULL); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * | 
 |  * Based on the number of unused allocated objects calculate | 
 |  * and return the number of pages that we can free. | 
 |  */ | 
 | static unsigned long zs_can_compact(struct size_class *class) | 
 | { | 
 | 	unsigned long obj_wasted; | 
 | 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); | 
 | 	unsigned long obj_used = zs_stat_get(class, OBJ_USED); | 
 |  | 
 | 	if (obj_allocated <= obj_used) | 
 | 		return 0; | 
 |  | 
 | 	obj_wasted = obj_allocated - obj_used; | 
 | 	obj_wasted /= class->objs_per_zspage; | 
 |  | 
 | 	return obj_wasted * class->pages_per_zspage; | 
 | } | 
 |  | 
 | static void __zs_compact(struct zs_pool *pool, struct size_class *class) | 
 | { | 
 | 	struct zs_compact_control cc; | 
 | 	struct zspage *src_zspage; | 
 | 	struct zspage *dst_zspage = NULL; | 
 |  | 
 | 	spin_lock(&class->lock); | 
 | 	while ((src_zspage = isolate_zspage(class, true))) { | 
 |  | 
 | 		if (!zs_can_compact(class)) | 
 | 			break; | 
 |  | 
 | 		cc.obj_idx = 0; | 
 | 		cc.s_page = get_first_page(src_zspage); | 
 |  | 
 | 		while ((dst_zspage = isolate_zspage(class, false))) { | 
 | 			cc.d_page = get_first_page(dst_zspage); | 
 | 			/* | 
 | 			 * If there is no more space in dst_page, resched | 
 | 			 * and see if anyone had allocated another zspage. | 
 | 			 */ | 
 | 			if (!migrate_zspage(pool, class, &cc)) | 
 | 				break; | 
 |  | 
 | 			putback_zspage(class, dst_zspage); | 
 | 		} | 
 |  | 
 | 		/* Stop if we couldn't find slot */ | 
 | 		if (dst_zspage == NULL) | 
 | 			break; | 
 |  | 
 | 		putback_zspage(class, dst_zspage); | 
 | 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) { | 
 | 			free_zspage(pool, class, src_zspage); | 
 | 			pool->stats.pages_compacted += class->pages_per_zspage; | 
 | 		} | 
 | 		spin_unlock(&class->lock); | 
 | 		cond_resched(); | 
 | 		spin_lock(&class->lock); | 
 | 	} | 
 |  | 
 | 	if (src_zspage) | 
 | 		putback_zspage(class, src_zspage); | 
 |  | 
 | 	spin_unlock(&class->lock); | 
 | } | 
 |  | 
 | unsigned long zs_compact(struct zs_pool *pool) | 
 | { | 
 | 	int i; | 
 | 	struct size_class *class; | 
 |  | 
 | 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
 | 		class = pool->size_class[i]; | 
 | 		if (!class) | 
 | 			continue; | 
 | 		if (class->index != i) | 
 | 			continue; | 
 | 		__zs_compact(pool, class); | 
 | 	} | 
 |  | 
 | 	return pool->stats.pages_compacted; | 
 | } | 
 | EXPORT_SYMBOL_GPL(zs_compact); | 
 |  | 
 | void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) | 
 | { | 
 | 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(zs_pool_stats); | 
 |  | 
 | static unsigned long zs_shrinker_scan(struct shrinker *shrinker, | 
 | 		struct shrink_control *sc) | 
 | { | 
 | 	unsigned long pages_freed; | 
 | 	struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
 | 			shrinker); | 
 |  | 
 | 	pages_freed = pool->stats.pages_compacted; | 
 | 	/* | 
 | 	 * Compact classes and calculate compaction delta. | 
 | 	 * Can run concurrently with a manually triggered | 
 | 	 * (by user) compaction. | 
 | 	 */ | 
 | 	pages_freed = zs_compact(pool) - pages_freed; | 
 |  | 
 | 	return pages_freed ? pages_freed : SHRINK_STOP; | 
 | } | 
 |  | 
 | static unsigned long zs_shrinker_count(struct shrinker *shrinker, | 
 | 		struct shrink_control *sc) | 
 | { | 
 | 	int i; | 
 | 	struct size_class *class; | 
 | 	unsigned long pages_to_free = 0; | 
 | 	struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
 | 			shrinker); | 
 |  | 
 | 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
 | 		class = pool->size_class[i]; | 
 | 		if (!class) | 
 | 			continue; | 
 | 		if (class->index != i) | 
 | 			continue; | 
 |  | 
 | 		pages_to_free += zs_can_compact(class); | 
 | 	} | 
 |  | 
 | 	return pages_to_free; | 
 | } | 
 |  | 
 | static void zs_unregister_shrinker(struct zs_pool *pool) | 
 | { | 
 | 	unregister_shrinker(&pool->shrinker); | 
 | } | 
 |  | 
 | static int zs_register_shrinker(struct zs_pool *pool) | 
 | { | 
 | 	pool->shrinker.scan_objects = zs_shrinker_scan; | 
 | 	pool->shrinker.count_objects = zs_shrinker_count; | 
 | 	pool->shrinker.batch = 0; | 
 | 	pool->shrinker.seeks = DEFAULT_SEEKS; | 
 |  | 
 | 	return register_shrinker(&pool->shrinker); | 
 | } | 
 |  | 
 | /** | 
 |  * zs_create_pool - Creates an allocation pool to work from. | 
 |  * @name: pool name to be created | 
 |  * | 
 |  * This function must be called before anything when using | 
 |  * the zsmalloc allocator. | 
 |  * | 
 |  * On success, a pointer to the newly created pool is returned, | 
 |  * otherwise NULL. | 
 |  */ | 
 | struct zs_pool *zs_create_pool(const char *name) | 
 | { | 
 | 	int i; | 
 | 	struct zs_pool *pool; | 
 | 	struct size_class *prev_class = NULL; | 
 |  | 
 | 	pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
 | 	if (!pool) | 
 | 		return NULL; | 
 |  | 
 | 	init_deferred_free(pool); | 
 |  | 
 | 	pool->name = kstrdup(name, GFP_KERNEL); | 
 | 	if (!pool->name) | 
 | 		goto err; | 
 |  | 
 | 	if (create_cache(pool)) | 
 | 		goto err; | 
 |  | 
 | 	/* | 
 | 	 * Iterate reversely, because, size of size_class that we want to use | 
 | 	 * for merging should be larger or equal to current size. | 
 | 	 */ | 
 | 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { | 
 | 		int size; | 
 | 		int pages_per_zspage; | 
 | 		int objs_per_zspage; | 
 | 		struct size_class *class; | 
 | 		int fullness = 0; | 
 |  | 
 | 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; | 
 | 		if (size > ZS_MAX_ALLOC_SIZE) | 
 | 			size = ZS_MAX_ALLOC_SIZE; | 
 | 		pages_per_zspage = get_pages_per_zspage(size); | 
 | 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; | 
 |  | 
 | 		/* | 
 | 		 * We iterate from biggest down to smallest classes, | 
 | 		 * so huge_class_size holds the size of the first huge | 
 | 		 * class. Any object bigger than or equal to that will | 
 | 		 * endup in the huge class. | 
 | 		 */ | 
 | 		if (pages_per_zspage != 1 && objs_per_zspage != 1 && | 
 | 				!huge_class_size) { | 
 | 			huge_class_size = size; | 
 | 			/* | 
 | 			 * The object uses ZS_HANDLE_SIZE bytes to store the | 
 | 			 * handle. We need to subtract it, because zs_malloc() | 
 | 			 * unconditionally adds handle size before it performs | 
 | 			 * size class search - so object may be smaller than | 
 | 			 * huge class size, yet it still can end up in the huge | 
 | 			 * class because it grows by ZS_HANDLE_SIZE extra bytes | 
 | 			 * right before class lookup. | 
 | 			 */ | 
 | 			huge_class_size -= (ZS_HANDLE_SIZE - 1); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * size_class is used for normal zsmalloc operation such | 
 | 		 * as alloc/free for that size. Although it is natural that we | 
 | 		 * have one size_class for each size, there is a chance that we | 
 | 		 * can get more memory utilization if we use one size_class for | 
 | 		 * many different sizes whose size_class have same | 
 | 		 * characteristics. So, we makes size_class point to | 
 | 		 * previous size_class if possible. | 
 | 		 */ | 
 | 		if (prev_class) { | 
 | 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { | 
 | 				pool->size_class[i] = prev_class; | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL); | 
 | 		if (!class) | 
 | 			goto err; | 
 |  | 
 | 		class->size = size; | 
 | 		class->index = i; | 
 | 		class->pages_per_zspage = pages_per_zspage; | 
 | 		class->objs_per_zspage = objs_per_zspage; | 
 | 		spin_lock_init(&class->lock); | 
 | 		pool->size_class[i] = class; | 
 | 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; | 
 | 							fullness++) | 
 | 			INIT_LIST_HEAD(&class->fullness_list[fullness]); | 
 |  | 
 | 		prev_class = class; | 
 | 	} | 
 |  | 
 | 	/* debug only, don't abort if it fails */ | 
 | 	zs_pool_stat_create(pool, name); | 
 |  | 
 | 	if (zs_register_migration(pool)) | 
 | 		goto err; | 
 |  | 
 | 	/* | 
 | 	 * Not critical since shrinker is only used to trigger internal | 
 | 	 * defragmentation of the pool which is pretty optional thing.  If | 
 | 	 * registration fails we still can use the pool normally and user can | 
 | 	 * trigger compaction manually. Thus, ignore return code. | 
 | 	 */ | 
 | 	zs_register_shrinker(pool); | 
 |  | 
 | 	return pool; | 
 |  | 
 | err: | 
 | 	zs_destroy_pool(pool); | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(zs_create_pool); | 
 |  | 
 | void zs_destroy_pool(struct zs_pool *pool) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	zs_unregister_shrinker(pool); | 
 | 	zs_unregister_migration(pool); | 
 | 	zs_pool_stat_destroy(pool); | 
 |  | 
 | 	for (i = 0; i < ZS_SIZE_CLASSES; i++) { | 
 | 		int fg; | 
 | 		struct size_class *class = pool->size_class[i]; | 
 |  | 
 | 		if (!class) | 
 | 			continue; | 
 |  | 
 | 		if (class->index != i) | 
 | 			continue; | 
 |  | 
 | 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { | 
 | 			if (!list_empty(&class->fullness_list[fg])) { | 
 | 				pr_info("Freeing non-empty class with size %db, fullness group %d\n", | 
 | 					class->size, fg); | 
 | 			} | 
 | 		} | 
 | 		kfree(class); | 
 | 	} | 
 |  | 
 | 	destroy_cache(pool); | 
 | 	kfree(pool->name); | 
 | 	kfree(pool); | 
 | } | 
 | EXPORT_SYMBOL_GPL(zs_destroy_pool); | 
 |  | 
 | static int __init zs_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = zsmalloc_mount(); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", | 
 | 				zs_cpu_prepare, zs_cpu_dead); | 
 | 	if (ret) | 
 | 		goto hp_setup_fail; | 
 |  | 
 | #ifdef CONFIG_ZPOOL | 
 | 	zpool_register_driver(&zs_zpool_driver); | 
 | #endif | 
 |  | 
 | 	zs_stat_init(); | 
 |  | 
 | 	return 0; | 
 |  | 
 | hp_setup_fail: | 
 | 	zsmalloc_unmount(); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __exit zs_exit(void) | 
 | { | 
 | #ifdef CONFIG_ZPOOL | 
 | 	zpool_unregister_driver(&zs_zpool_driver); | 
 | #endif | 
 | 	zsmalloc_unmount(); | 
 | 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); | 
 |  | 
 | 	zs_stat_exit(); | 
 | } | 
 |  | 
 | module_init(zs_init); | 
 | module_exit(zs_exit); | 
 |  | 
 | MODULE_LICENSE("Dual BSD/GPL"); | 
 | MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |