|  | /* | 
|  | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | 
|  | * policies) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Update the current task's runtime statistics. Skip current tasks that | 
|  | * are not in our scheduling class. | 
|  | */ | 
|  | static void update_curr_rt(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | u64 delta_exec; | 
|  |  | 
|  | if (!task_has_rt_policy(curr)) | 
|  | return; | 
|  |  | 
|  | delta_exec = rq->clock - curr->se.exec_start; | 
|  | if (unlikely((s64)delta_exec < 0)) | 
|  | delta_exec = 0; | 
|  |  | 
|  | schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); | 
|  |  | 
|  | curr->se.sum_exec_runtime += delta_exec; | 
|  | curr->se.exec_start = rq->clock; | 
|  | } | 
|  |  | 
|  | static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | 
|  | { | 
|  | struct rt_prio_array *array = &rq->rt.active; | 
|  |  | 
|  | list_add_tail(&p->run_list, array->queue + p->prio); | 
|  | __set_bit(p->prio, array->bitmap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adding/removing a task to/from a priority array: | 
|  | */ | 
|  | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | 
|  | { | 
|  | struct rt_prio_array *array = &rq->rt.active; | 
|  |  | 
|  | update_curr_rt(rq); | 
|  |  | 
|  | list_del(&p->run_list); | 
|  | if (list_empty(array->queue + p->prio)) | 
|  | __clear_bit(p->prio, array->bitmap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put task to the end of the run list without the overhead of dequeue | 
|  | * followed by enqueue. | 
|  | */ | 
|  | static void requeue_task_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct rt_prio_array *array = &rq->rt.active; | 
|  |  | 
|  | list_move_tail(&p->run_list, array->queue + p->prio); | 
|  | } | 
|  |  | 
|  | static void | 
|  | yield_task_rt(struct rq *rq) | 
|  | { | 
|  | requeue_task_rt(rq, rq->curr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | if (p->prio < rq->curr->prio) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  |  | 
|  | static struct task_struct *pick_next_task_rt(struct rq *rq) | 
|  | { | 
|  | struct rt_prio_array *array = &rq->rt.active; | 
|  | struct task_struct *next; | 
|  | struct list_head *queue; | 
|  | int idx; | 
|  |  | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | if (idx >= MAX_RT_PRIO) | 
|  | return NULL; | 
|  |  | 
|  | queue = array->queue + idx; | 
|  | next = list_entry(queue->next, struct task_struct, run_list); | 
|  |  | 
|  | next->se.exec_start = rq->clock; | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | update_curr_rt(rq); | 
|  | p->se.exec_start = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load-balancing iterator. Note: while the runqueue stays locked | 
|  | * during the whole iteration, the current task might be | 
|  | * dequeued so the iterator has to be dequeue-safe. Here we | 
|  | * achieve that by always pre-iterating before returning | 
|  | * the current task: | 
|  | */ | 
|  | static struct task_struct *load_balance_start_rt(void *arg) | 
|  | { | 
|  | struct rq *rq = arg; | 
|  | struct rt_prio_array *array = &rq->rt.active; | 
|  | struct list_head *head, *curr; | 
|  | struct task_struct *p; | 
|  | int idx; | 
|  |  | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | if (idx >= MAX_RT_PRIO) | 
|  | return NULL; | 
|  |  | 
|  | head = array->queue + idx; | 
|  | curr = head->prev; | 
|  |  | 
|  | p = list_entry(curr, struct task_struct, run_list); | 
|  |  | 
|  | curr = curr->prev; | 
|  |  | 
|  | rq->rt.rt_load_balance_idx = idx; | 
|  | rq->rt.rt_load_balance_head = head; | 
|  | rq->rt.rt_load_balance_curr = curr; | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct task_struct *load_balance_next_rt(void *arg) | 
|  | { | 
|  | struct rq *rq = arg; | 
|  | struct rt_prio_array *array = &rq->rt.active; | 
|  | struct list_head *head, *curr; | 
|  | struct task_struct *p; | 
|  | int idx; | 
|  |  | 
|  | idx = rq->rt.rt_load_balance_idx; | 
|  | head = rq->rt.rt_load_balance_head; | 
|  | curr = rq->rt.rt_load_balance_curr; | 
|  |  | 
|  | /* | 
|  | * If we arrived back to the head again then | 
|  | * iterate to the next queue (if any): | 
|  | */ | 
|  | if (unlikely(head == curr)) { | 
|  | int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | 
|  |  | 
|  | if (next_idx >= MAX_RT_PRIO) | 
|  | return NULL; | 
|  |  | 
|  | idx = next_idx; | 
|  | head = array->queue + idx; | 
|  | curr = head->prev; | 
|  |  | 
|  | rq->rt.rt_load_balance_idx = idx; | 
|  | rq->rt.rt_load_balance_head = head; | 
|  | } | 
|  |  | 
|  | p = list_entry(curr, struct task_struct, run_list); | 
|  |  | 
|  | curr = curr->prev; | 
|  |  | 
|  | rq->rt.rt_load_balance_curr = curr; | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | unsigned long max_nr_move, unsigned long max_load_move, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | int *all_pinned, int *this_best_prio) | 
|  | { | 
|  | int nr_moved; | 
|  | struct rq_iterator rt_rq_iterator; | 
|  | unsigned long load_moved; | 
|  |  | 
|  | rt_rq_iterator.start = load_balance_start_rt; | 
|  | rt_rq_iterator.next = load_balance_next_rt; | 
|  | /* pass 'busiest' rq argument into | 
|  | * load_balance_[start|next]_rt iterators | 
|  | */ | 
|  | rt_rq_iterator.arg = busiest; | 
|  |  | 
|  | nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move, | 
|  | max_load_move, sd, idle, all_pinned, &load_moved, | 
|  | this_best_prio, &rt_rq_iterator); | 
|  |  | 
|  | return load_moved; | 
|  | } | 
|  |  | 
|  | static void task_tick_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * RR tasks need a special form of timeslice management. | 
|  | * FIFO tasks have no timeslices. | 
|  | */ | 
|  | if (p->policy != SCHED_RR) | 
|  | return; | 
|  |  | 
|  | if (--p->time_slice) | 
|  | return; | 
|  |  | 
|  | p->time_slice = DEF_TIMESLICE; | 
|  |  | 
|  | /* | 
|  | * Requeue to the end of queue if we are not the only element | 
|  | * on the queue: | 
|  | */ | 
|  | if (p->run_list.prev != p->run_list.next) { | 
|  | requeue_task_rt(rq, p); | 
|  | set_tsk_need_resched(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_curr_task_rt(struct rq *rq) | 
|  | { | 
|  | struct task_struct *p = rq->curr; | 
|  |  | 
|  | p->se.exec_start = rq->clock; | 
|  | } | 
|  |  | 
|  | const struct sched_class rt_sched_class = { | 
|  | .next			= &fair_sched_class, | 
|  | .enqueue_task		= enqueue_task_rt, | 
|  | .dequeue_task		= dequeue_task_rt, | 
|  | .yield_task		= yield_task_rt, | 
|  |  | 
|  | .check_preempt_curr	= check_preempt_curr_rt, | 
|  |  | 
|  | .pick_next_task		= pick_next_task_rt, | 
|  | .put_prev_task		= put_prev_task_rt, | 
|  |  | 
|  | .load_balance		= load_balance_rt, | 
|  |  | 
|  | .set_curr_task          = set_curr_task_rt, | 
|  | .task_tick		= task_tick_rt, | 
|  | }; |