| #ifndef _LINUX_MM_TYPES_H |
| #define _LINUX_MM_TYPES_H |
| |
| #include <linux/auxvec.h> |
| #include <linux/types.h> |
| #include <linux/threads.h> |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| #include <linux/prio_tree.h> |
| #include <linux/rbtree.h> |
| #include <linux/rwsem.h> |
| #include <linux/completion.h> |
| #include <linux/cpumask.h> |
| #include <asm/page.h> |
| #include <asm/mmu.h> |
| |
| #ifndef AT_VECTOR_SIZE_ARCH |
| #define AT_VECTOR_SIZE_ARCH 0 |
| #endif |
| #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) |
| |
| struct address_space; |
| |
| #define USE_SPLIT_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS) |
| |
| #if USE_SPLIT_PTLOCKS |
| typedef atomic_long_t mm_counter_t; |
| #else /* !USE_SPLIT_PTLOCKS */ |
| typedef unsigned long mm_counter_t; |
| #endif /* !USE_SPLIT_PTLOCKS */ |
| |
| /* |
| * Each physical page in the system has a struct page associated with |
| * it to keep track of whatever it is we are using the page for at the |
| * moment. Note that we have no way to track which tasks are using |
| * a page, though if it is a pagecache page, rmap structures can tell us |
| * who is mapping it. |
| */ |
| struct page { |
| unsigned long flags; /* Atomic flags, some possibly |
| * updated asynchronously */ |
| atomic_t _count; /* Usage count, see below. */ |
| union { |
| atomic_t _mapcount; /* Count of ptes mapped in mms, |
| * to show when page is mapped |
| * & limit reverse map searches. |
| */ |
| struct { /* SLUB */ |
| u16 inuse; |
| u16 objects; |
| }; |
| }; |
| union { |
| struct { |
| unsigned long private; /* Mapping-private opaque data: |
| * usually used for buffer_heads |
| * if PagePrivate set; used for |
| * swp_entry_t if PageSwapCache; |
| * indicates order in the buddy |
| * system if PG_buddy is set. |
| */ |
| struct address_space *mapping; /* If low bit clear, points to |
| * inode address_space, or NULL. |
| * If page mapped as anonymous |
| * memory, low bit is set, and |
| * it points to anon_vma object: |
| * see PAGE_MAPPING_ANON below. |
| */ |
| }; |
| #if USE_SPLIT_PTLOCKS |
| spinlock_t ptl; |
| #endif |
| struct kmem_cache *slab; /* SLUB: Pointer to slab */ |
| struct page *first_page; /* Compound tail pages */ |
| }; |
| union { |
| pgoff_t index; /* Our offset within mapping. */ |
| void *freelist; /* SLUB: freelist req. slab lock */ |
| }; |
| struct list_head lru; /* Pageout list, eg. active_list |
| * protected by zone->lru_lock ! |
| */ |
| /* |
| * On machines where all RAM is mapped into kernel address space, |
| * we can simply calculate the virtual address. On machines with |
| * highmem some memory is mapped into kernel virtual memory |
| * dynamically, so we need a place to store that address. |
| * Note that this field could be 16 bits on x86 ... ;) |
| * |
| * Architectures with slow multiplication can define |
| * WANT_PAGE_VIRTUAL in asm/page.h |
| */ |
| #if defined(WANT_PAGE_VIRTUAL) |
| void *virtual; /* Kernel virtual address (NULL if |
| not kmapped, ie. highmem) */ |
| #endif /* WANT_PAGE_VIRTUAL */ |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
| unsigned long page_cgroup; |
| #endif |
| }; |
| |
| /* |
| * This struct defines a memory VMM memory area. There is one of these |
| * per VM-area/task. A VM area is any part of the process virtual memory |
| * space that has a special rule for the page-fault handlers (ie a shared |
| * library, the executable area etc). |
| */ |
| struct vm_area_struct { |
| struct mm_struct * vm_mm; /* The address space we belong to. */ |
| unsigned long vm_start; /* Our start address within vm_mm. */ |
| unsigned long vm_end; /* The first byte after our end address |
| within vm_mm. */ |
| |
| /* linked list of VM areas per task, sorted by address */ |
| struct vm_area_struct *vm_next; |
| |
| pgprot_t vm_page_prot; /* Access permissions of this VMA. */ |
| unsigned long vm_flags; /* Flags, see mm.h. */ |
| |
| struct rb_node vm_rb; |
| |
| /* |
| * For areas with an address space and backing store, |
| * linkage into the address_space->i_mmap prio tree, or |
| * linkage to the list of like vmas hanging off its node, or |
| * linkage of vma in the address_space->i_mmap_nonlinear list. |
| */ |
| union { |
| struct { |
| struct list_head list; |
| void *parent; /* aligns with prio_tree_node parent */ |
| struct vm_area_struct *head; |
| } vm_set; |
| |
| struct raw_prio_tree_node prio_tree_node; |
| } shared; |
| |
| /* |
| * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma |
| * list, after a COW of one of the file pages. A MAP_SHARED vma |
| * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack |
| * or brk vma (with NULL file) can only be in an anon_vma list. |
| */ |
| struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ |
| struct anon_vma *anon_vma; /* Serialized by page_table_lock */ |
| |
| /* Function pointers to deal with this struct. */ |
| struct vm_operations_struct * vm_ops; |
| |
| /* Information about our backing store: */ |
| unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE |
| units, *not* PAGE_CACHE_SIZE */ |
| struct file * vm_file; /* File we map to (can be NULL). */ |
| void * vm_private_data; /* was vm_pte (shared mem) */ |
| unsigned long vm_truncate_count;/* truncate_count or restart_addr */ |
| |
| #ifndef CONFIG_MMU |
| atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ |
| #endif |
| #ifdef CONFIG_NUMA |
| struct mempolicy *vm_policy; /* NUMA policy for the VMA */ |
| #endif |
| }; |
| |
| struct core_thread { |
| struct task_struct *task; |
| struct core_thread *next; |
| }; |
| |
| struct core_state { |
| atomic_t nr_threads; |
| struct core_thread dumper; |
| struct completion startup; |
| }; |
| |
| struct mm_struct { |
| struct vm_area_struct * mmap; /* list of VMAs */ |
| struct rb_root mm_rb; |
| struct vm_area_struct * mmap_cache; /* last find_vma result */ |
| unsigned long (*get_unmapped_area) (struct file *filp, |
| unsigned long addr, unsigned long len, |
| unsigned long pgoff, unsigned long flags); |
| void (*unmap_area) (struct mm_struct *mm, unsigned long addr); |
| unsigned long mmap_base; /* base of mmap area */ |
| unsigned long task_size; /* size of task vm space */ |
| unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ |
| unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ |
| pgd_t * pgd; |
| atomic_t mm_users; /* How many users with user space? */ |
| atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ |
| int map_count; /* number of VMAs */ |
| struct rw_semaphore mmap_sem; |
| spinlock_t page_table_lock; /* Protects page tables and some counters */ |
| |
| struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung |
| * together off init_mm.mmlist, and are protected |
| * by mmlist_lock |
| */ |
| |
| /* Special counters, in some configurations protected by the |
| * page_table_lock, in other configurations by being atomic. |
| */ |
| mm_counter_t _file_rss; |
| mm_counter_t _anon_rss; |
| |
| unsigned long hiwater_rss; /* High-watermark of RSS usage */ |
| unsigned long hiwater_vm; /* High-water virtual memory usage */ |
| |
| unsigned long total_vm, locked_vm, shared_vm, exec_vm; |
| unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; |
| unsigned long start_code, end_code, start_data, end_data; |
| unsigned long start_brk, brk, start_stack; |
| unsigned long arg_start, arg_end, env_start, env_end; |
| |
| unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ |
| |
| cpumask_t cpu_vm_mask; |
| |
| /* Architecture-specific MM context */ |
| mm_context_t context; |
| |
| /* Swap token stuff */ |
| /* |
| * Last value of global fault stamp as seen by this process. |
| * In other words, this value gives an indication of how long |
| * it has been since this task got the token. |
| * Look at mm/thrash.c |
| */ |
| unsigned int faultstamp; |
| unsigned int token_priority; |
| unsigned int last_interval; |
| |
| unsigned long flags; /* Must use atomic bitops to access the bits */ |
| |
| struct core_state *core_state; /* coredumping support */ |
| |
| /* aio bits */ |
| rwlock_t ioctx_list_lock; /* aio lock */ |
| struct kioctx *ioctx_list; |
| #ifdef CONFIG_MM_OWNER |
| /* |
| * "owner" points to a task that is regarded as the canonical |
| * user/owner of this mm. All of the following must be true in |
| * order for it to be changed: |
| * |
| * current == mm->owner |
| * current->mm != mm |
| * new_owner->mm == mm |
| * new_owner->alloc_lock is held |
| */ |
| struct task_struct *owner; |
| #endif |
| |
| #ifdef CONFIG_PROC_FS |
| /* store ref to file /proc/<pid>/exe symlink points to */ |
| struct file *exe_file; |
| unsigned long num_exe_file_vmas; |
| #endif |
| #ifdef CONFIG_MMU_NOTIFIER |
| struct mmu_notifier_mm *mmu_notifier_mm; |
| #endif |
| }; |
| |
| #endif /* _LINUX_MM_TYPES_H */ |