blob: 639f0698f961cdb9903cf90ab18bffc6cb9eea8e [file] [log] [blame]
/*
* Copyright 2011 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <drm/drmP.h>
#include "radeon.h"
#include "radeon_asic.h"
#include "radeon_audio.h"
#include <drm/radeon_drm.h>
#include "sid.h"
#include "atom.h"
#include "si_blit_shaders.h"
#include "clearstate_si.h"
#include "radeon_ucode.h"
MODULE_FIRMWARE("radeon/TAHITI_pfp.bin");
MODULE_FIRMWARE("radeon/TAHITI_me.bin");
MODULE_FIRMWARE("radeon/TAHITI_ce.bin");
MODULE_FIRMWARE("radeon/TAHITI_mc.bin");
MODULE_FIRMWARE("radeon/TAHITI_mc2.bin");
MODULE_FIRMWARE("radeon/TAHITI_rlc.bin");
MODULE_FIRMWARE("radeon/TAHITI_smc.bin");
MODULE_FIRMWARE("radeon/tahiti_pfp.bin");
MODULE_FIRMWARE("radeon/tahiti_me.bin");
MODULE_FIRMWARE("radeon/tahiti_ce.bin");
MODULE_FIRMWARE("radeon/tahiti_mc.bin");
MODULE_FIRMWARE("radeon/tahiti_rlc.bin");
MODULE_FIRMWARE("radeon/tahiti_smc.bin");
MODULE_FIRMWARE("radeon/PITCAIRN_pfp.bin");
MODULE_FIRMWARE("radeon/PITCAIRN_me.bin");
MODULE_FIRMWARE("radeon/PITCAIRN_ce.bin");
MODULE_FIRMWARE("radeon/PITCAIRN_mc.bin");
MODULE_FIRMWARE("radeon/PITCAIRN_mc2.bin");
MODULE_FIRMWARE("radeon/PITCAIRN_rlc.bin");
MODULE_FIRMWARE("radeon/PITCAIRN_smc.bin");
MODULE_FIRMWARE("radeon/pitcairn_pfp.bin");
MODULE_FIRMWARE("radeon/pitcairn_me.bin");
MODULE_FIRMWARE("radeon/pitcairn_ce.bin");
MODULE_FIRMWARE("radeon/pitcairn_mc.bin");
MODULE_FIRMWARE("radeon/pitcairn_rlc.bin");
MODULE_FIRMWARE("radeon/pitcairn_smc.bin");
MODULE_FIRMWARE("radeon/pitcairn_k_smc.bin");
MODULE_FIRMWARE("radeon/VERDE_pfp.bin");
MODULE_FIRMWARE("radeon/VERDE_me.bin");
MODULE_FIRMWARE("radeon/VERDE_ce.bin");
MODULE_FIRMWARE("radeon/VERDE_mc.bin");
MODULE_FIRMWARE("radeon/VERDE_mc2.bin");
MODULE_FIRMWARE("radeon/VERDE_rlc.bin");
MODULE_FIRMWARE("radeon/VERDE_smc.bin");
MODULE_FIRMWARE("radeon/verde_pfp.bin");
MODULE_FIRMWARE("radeon/verde_me.bin");
MODULE_FIRMWARE("radeon/verde_ce.bin");
MODULE_FIRMWARE("radeon/verde_mc.bin");
MODULE_FIRMWARE("radeon/verde_rlc.bin");
MODULE_FIRMWARE("radeon/verde_smc.bin");
MODULE_FIRMWARE("radeon/verde_k_smc.bin");
MODULE_FIRMWARE("radeon/OLAND_pfp.bin");
MODULE_FIRMWARE("radeon/OLAND_me.bin");
MODULE_FIRMWARE("radeon/OLAND_ce.bin");
MODULE_FIRMWARE("radeon/OLAND_mc.bin");
MODULE_FIRMWARE("radeon/OLAND_mc2.bin");
MODULE_FIRMWARE("radeon/OLAND_rlc.bin");
MODULE_FIRMWARE("radeon/OLAND_smc.bin");
MODULE_FIRMWARE("radeon/oland_pfp.bin");
MODULE_FIRMWARE("radeon/oland_me.bin");
MODULE_FIRMWARE("radeon/oland_ce.bin");
MODULE_FIRMWARE("radeon/oland_mc.bin");
MODULE_FIRMWARE("radeon/oland_rlc.bin");
MODULE_FIRMWARE("radeon/oland_smc.bin");
MODULE_FIRMWARE("radeon/oland_k_smc.bin");
MODULE_FIRMWARE("radeon/HAINAN_pfp.bin");
MODULE_FIRMWARE("radeon/HAINAN_me.bin");
MODULE_FIRMWARE("radeon/HAINAN_ce.bin");
MODULE_FIRMWARE("radeon/HAINAN_mc.bin");
MODULE_FIRMWARE("radeon/HAINAN_mc2.bin");
MODULE_FIRMWARE("radeon/HAINAN_rlc.bin");
MODULE_FIRMWARE("radeon/HAINAN_smc.bin");
MODULE_FIRMWARE("radeon/hainan_pfp.bin");
MODULE_FIRMWARE("radeon/hainan_me.bin");
MODULE_FIRMWARE("radeon/hainan_ce.bin");
MODULE_FIRMWARE("radeon/hainan_mc.bin");
MODULE_FIRMWARE("radeon/hainan_rlc.bin");
MODULE_FIRMWARE("radeon/hainan_smc.bin");
MODULE_FIRMWARE("radeon/hainan_k_smc.bin");
MODULE_FIRMWARE("radeon/banks_k_2_smc.bin");
MODULE_FIRMWARE("radeon/si58_mc.bin");
static u32 si_get_cu_active_bitmap(struct radeon_device *rdev, u32 se, u32 sh);
static void si_pcie_gen3_enable(struct radeon_device *rdev);
static void si_program_aspm(struct radeon_device *rdev);
extern void sumo_rlc_fini(struct radeon_device *rdev);
extern int sumo_rlc_init(struct radeon_device *rdev);
extern int r600_ih_ring_alloc(struct radeon_device *rdev);
extern void r600_ih_ring_fini(struct radeon_device *rdev);
extern void evergreen_fix_pci_max_read_req_size(struct radeon_device *rdev);
extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save);
extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save);
extern u32 evergreen_get_number_of_dram_channels(struct radeon_device *rdev);
extern void evergreen_print_gpu_status_regs(struct radeon_device *rdev);
extern bool evergreen_is_display_hung(struct radeon_device *rdev);
static void si_enable_gui_idle_interrupt(struct radeon_device *rdev,
bool enable);
static void si_init_pg(struct radeon_device *rdev);
static void si_init_cg(struct radeon_device *rdev);
static void si_fini_pg(struct radeon_device *rdev);
static void si_fini_cg(struct radeon_device *rdev);
static void si_rlc_stop(struct radeon_device *rdev);
static const u32 crtc_offsets[] =
{
EVERGREEN_CRTC0_REGISTER_OFFSET,
EVERGREEN_CRTC1_REGISTER_OFFSET,
EVERGREEN_CRTC2_REGISTER_OFFSET,
EVERGREEN_CRTC3_REGISTER_OFFSET,
EVERGREEN_CRTC4_REGISTER_OFFSET,
EVERGREEN_CRTC5_REGISTER_OFFSET
};
static const u32 si_disp_int_status[] =
{
DISP_INTERRUPT_STATUS,
DISP_INTERRUPT_STATUS_CONTINUE,
DISP_INTERRUPT_STATUS_CONTINUE2,
DISP_INTERRUPT_STATUS_CONTINUE3,
DISP_INTERRUPT_STATUS_CONTINUE4,
DISP_INTERRUPT_STATUS_CONTINUE5
};
#define DC_HPDx_CONTROL(x) (DC_HPD1_CONTROL + (x * 0xc))
#define DC_HPDx_INT_CONTROL(x) (DC_HPD1_INT_CONTROL + (x * 0xc))
#define DC_HPDx_INT_STATUS_REG(x) (DC_HPD1_INT_STATUS + (x * 0xc))
static const u32 verde_rlc_save_restore_register_list[] =
{
(0x8000 << 16) | (0x98f4 >> 2),
0x00000000,
(0x8040 << 16) | (0x98f4 >> 2),
0x00000000,
(0x8000 << 16) | (0xe80 >> 2),
0x00000000,
(0x8040 << 16) | (0xe80 >> 2),
0x00000000,
(0x8000 << 16) | (0x89bc >> 2),
0x00000000,
(0x8040 << 16) | (0x89bc >> 2),
0x00000000,
(0x8000 << 16) | (0x8c1c >> 2),
0x00000000,
(0x8040 << 16) | (0x8c1c >> 2),
0x00000000,
(0x9c00 << 16) | (0x98f0 >> 2),
0x00000000,
(0x9c00 << 16) | (0xe7c >> 2),
0x00000000,
(0x8000 << 16) | (0x9148 >> 2),
0x00000000,
(0x8040 << 16) | (0x9148 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9150 >> 2),
0x00000000,
(0x9c00 << 16) | (0x897c >> 2),
0x00000000,
(0x9c00 << 16) | (0x8d8c >> 2),
0x00000000,
(0x9c00 << 16) | (0xac54 >> 2),
0X00000000,
0x3,
(0x9c00 << 16) | (0x98f8 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9910 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9914 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9918 >> 2),
0x00000000,
(0x9c00 << 16) | (0x991c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9920 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9924 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9928 >> 2),
0x00000000,
(0x9c00 << 16) | (0x992c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9930 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9934 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9938 >> 2),
0x00000000,
(0x9c00 << 16) | (0x993c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9940 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9944 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9948 >> 2),
0x00000000,
(0x9c00 << 16) | (0x994c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9950 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9954 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9958 >> 2),
0x00000000,
(0x9c00 << 16) | (0x995c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9960 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9964 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9968 >> 2),
0x00000000,
(0x9c00 << 16) | (0x996c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9970 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9974 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9978 >> 2),
0x00000000,
(0x9c00 << 16) | (0x997c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9980 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9984 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9988 >> 2),
0x00000000,
(0x9c00 << 16) | (0x998c >> 2),
0x00000000,
(0x9c00 << 16) | (0x8c00 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8c14 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8c04 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8c08 >> 2),
0x00000000,
(0x8000 << 16) | (0x9b7c >> 2),
0x00000000,
(0x8040 << 16) | (0x9b7c >> 2),
0x00000000,
(0x8000 << 16) | (0xe84 >> 2),
0x00000000,
(0x8040 << 16) | (0xe84 >> 2),
0x00000000,
(0x8000 << 16) | (0x89c0 >> 2),
0x00000000,
(0x8040 << 16) | (0x89c0 >> 2),
0x00000000,
(0x8000 << 16) | (0x914c >> 2),
0x00000000,
(0x8040 << 16) | (0x914c >> 2),
0x00000000,
(0x8000 << 16) | (0x8c20 >> 2),
0x00000000,
(0x8040 << 16) | (0x8c20 >> 2),
0x00000000,
(0x8000 << 16) | (0x9354 >> 2),
0x00000000,
(0x8040 << 16) | (0x9354 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9060 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9364 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9100 >> 2),
0x00000000,
(0x9c00 << 16) | (0x913c >> 2),
0x00000000,
(0x8000 << 16) | (0x90e0 >> 2),
0x00000000,
(0x8000 << 16) | (0x90e4 >> 2),
0x00000000,
(0x8000 << 16) | (0x90e8 >> 2),
0x00000000,
(0x8040 << 16) | (0x90e0 >> 2),
0x00000000,
(0x8040 << 16) | (0x90e4 >> 2),
0x00000000,
(0x8040 << 16) | (0x90e8 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8bcc >> 2),
0x00000000,
(0x9c00 << 16) | (0x8b24 >> 2),
0x00000000,
(0x9c00 << 16) | (0x88c4 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8e50 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8c0c >> 2),
0x00000000,
(0x9c00 << 16) | (0x8e58 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8e5c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9508 >> 2),
0x00000000,
(0x9c00 << 16) | (0x950c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9494 >> 2),
0x00000000,
(0x9c00 << 16) | (0xac0c >> 2),
0x00000000,
(0x9c00 << 16) | (0xac10 >> 2),
0x00000000,
(0x9c00 << 16) | (0xac14 >> 2),
0x00000000,
(0x9c00 << 16) | (0xae00 >> 2),
0x00000000,
(0x9c00 << 16) | (0xac08 >> 2),
0x00000000,
(0x9c00 << 16) | (0x88d4 >> 2),
0x00000000,
(0x9c00 << 16) | (0x88c8 >> 2),
0x00000000,
(0x9c00 << 16) | (0x88cc >> 2),
0x00000000,
(0x9c00 << 16) | (0x89b0 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8b10 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8a14 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9830 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9834 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9838 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9a10 >> 2),
0x00000000,
(0x8000 << 16) | (0x9870 >> 2),
0x00000000,
(0x8000 << 16) | (0x9874 >> 2),
0x00000000,
(0x8001 << 16) | (0x9870 >> 2),
0x00000000,
(0x8001 << 16) | (0x9874 >> 2),
0x00000000,
(0x8040 << 16) | (0x9870 >> 2),
0x00000000,
(0x8040 << 16) | (0x9874 >> 2),
0x00000000,
(0x8041 << 16) | (0x9870 >> 2),
0x00000000,
(0x8041 << 16) | (0x9874 >> 2),
0x00000000,
0x00000000
};
static const u32 tahiti_golden_rlc_registers[] =
{
0xc424, 0xffffffff, 0x00601005,
0xc47c, 0xffffffff, 0x10104040,
0xc488, 0xffffffff, 0x0100000a,
0xc314, 0xffffffff, 0x00000800,
0xc30c, 0xffffffff, 0x800000f4,
0xf4a8, 0xffffffff, 0x00000000
};
static const u32 tahiti_golden_registers[] =
{
0x9a10, 0x00010000, 0x00018208,
0x9830, 0xffffffff, 0x00000000,
0x9834, 0xf00fffff, 0x00000400,
0x9838, 0x0002021c, 0x00020200,
0xc78, 0x00000080, 0x00000000,
0xd030, 0x000300c0, 0x00800040,
0xd830, 0x000300c0, 0x00800040,
0x5bb0, 0x000000f0, 0x00000070,
0x5bc0, 0x00200000, 0x50100000,
0x7030, 0x31000311, 0x00000011,
0x277c, 0x00000003, 0x000007ff,
0x240c, 0x000007ff, 0x00000000,
0x8a14, 0xf000001f, 0x00000007,
0x8b24, 0xffffffff, 0x00ffffff,
0x8b10, 0x0000ff0f, 0x00000000,
0x28a4c, 0x07ffffff, 0x4e000000,
0x28350, 0x3f3f3fff, 0x2a00126a,
0x30, 0x000000ff, 0x0040,
0x34, 0x00000040, 0x00004040,
0x9100, 0x07ffffff, 0x03000000,
0x8e88, 0x01ff1f3f, 0x00000000,
0x8e84, 0x01ff1f3f, 0x00000000,
0x9060, 0x0000007f, 0x00000020,
0x9508, 0x00010000, 0x00010000,
0xac14, 0x00000200, 0x000002fb,
0xac10, 0xffffffff, 0x0000543b,
0xac0c, 0xffffffff, 0xa9210876,
0x88d0, 0xffffffff, 0x000fff40,
0x88d4, 0x0000001f, 0x00000010,
0x1410, 0x20000000, 0x20fffed8,
0x15c0, 0x000c0fc0, 0x000c0400
};
static const u32 tahiti_golden_registers2[] =
{
0xc64, 0x00000001, 0x00000001
};
static const u32 pitcairn_golden_rlc_registers[] =
{
0xc424, 0xffffffff, 0x00601004,
0xc47c, 0xffffffff, 0x10102020,
0xc488, 0xffffffff, 0x01000020,
0xc314, 0xffffffff, 0x00000800,
0xc30c, 0xffffffff, 0x800000a4
};
static const u32 pitcairn_golden_registers[] =
{
0x9a10, 0x00010000, 0x00018208,
0x9830, 0xffffffff, 0x00000000,
0x9834, 0xf00fffff, 0x00000400,
0x9838, 0x0002021c, 0x00020200,
0xc78, 0x00000080, 0x00000000,
0xd030, 0x000300c0, 0x00800040,
0xd830, 0x000300c0, 0x00800040,
0x5bb0, 0x000000f0, 0x00000070,
0x5bc0, 0x00200000, 0x50100000,
0x7030, 0x31000311, 0x00000011,
0x2ae4, 0x00073ffe, 0x000022a2,
0x240c, 0x000007ff, 0x00000000,
0x8a14, 0xf000001f, 0x00000007,
0x8b24, 0xffffffff, 0x00ffffff,
0x8b10, 0x0000ff0f, 0x00000000,
0x28a4c, 0x07ffffff, 0x4e000000,
0x28350, 0x3f3f3fff, 0x2a00126a,
0x30, 0x000000ff, 0x0040,
0x34, 0x00000040, 0x00004040,
0x9100, 0x07ffffff, 0x03000000,
0x9060, 0x0000007f, 0x00000020,
0x9508, 0x00010000, 0x00010000,
0xac14, 0x000003ff, 0x000000f7,
0xac10, 0xffffffff, 0x00000000,
0xac0c, 0xffffffff, 0x32761054,
0x88d4, 0x0000001f, 0x00000010,
0x15c0, 0x000c0fc0, 0x000c0400
};
static const u32 verde_golden_rlc_registers[] =
{
0xc424, 0xffffffff, 0x033f1005,
0xc47c, 0xffffffff, 0x10808020,
0xc488, 0xffffffff, 0x00800008,
0xc314, 0xffffffff, 0x00001000,
0xc30c, 0xffffffff, 0x80010014
};
static const u32 verde_golden_registers[] =
{
0x9a10, 0x00010000, 0x00018208,
0x9830, 0xffffffff, 0x00000000,
0x9834, 0xf00fffff, 0x00000400,
0x9838, 0x0002021c, 0x00020200,
0xc78, 0x00000080, 0x00000000,
0xd030, 0x000300c0, 0x00800040,
0xd030, 0x000300c0, 0x00800040,
0xd830, 0x000300c0, 0x00800040,
0xd830, 0x000300c0, 0x00800040,
0x5bb0, 0x000000f0, 0x00000070,
0x5bc0, 0x00200000, 0x50100000,
0x7030, 0x31000311, 0x00000011,
0x2ae4, 0x00073ffe, 0x000022a2,
0x2ae4, 0x00073ffe, 0x000022a2,
0x2ae4, 0x00073ffe, 0x000022a2,
0x240c, 0x000007ff, 0x00000000,
0x240c, 0x000007ff, 0x00000000,
0x240c, 0x000007ff, 0x00000000,
0x8a14, 0xf000001f, 0x00000007,
0x8a14, 0xf000001f, 0x00000007,
0x8a14, 0xf000001f, 0x00000007,
0x8b24, 0xffffffff, 0x00ffffff,
0x8b10, 0x0000ff0f, 0x00000000,
0x28a4c, 0x07ffffff, 0x4e000000,
0x28350, 0x3f3f3fff, 0x0000124a,
0x28350, 0x3f3f3fff, 0x0000124a,
0x28350, 0x3f3f3fff, 0x0000124a,
0x30, 0x000000ff, 0x0040,
0x34, 0x00000040, 0x00004040,
0x9100, 0x07ffffff, 0x03000000,
0x9100, 0x07ffffff, 0x03000000,
0x8e88, 0x01ff1f3f, 0x00000000,
0x8e88, 0x01ff1f3f, 0x00000000,
0x8e88, 0x01ff1f3f, 0x00000000,
0x8e84, 0x01ff1f3f, 0x00000000,
0x8e84, 0x01ff1f3f, 0x00000000,
0x8e84, 0x01ff1f3f, 0x00000000,
0x9060, 0x0000007f, 0x00000020,
0x9508, 0x00010000, 0x00010000,
0xac14, 0x000003ff, 0x00000003,
0xac14, 0x000003ff, 0x00000003,
0xac14, 0x000003ff, 0x00000003,
0xac10, 0xffffffff, 0x00000000,
0xac10, 0xffffffff, 0x00000000,
0xac10, 0xffffffff, 0x00000000,
0xac0c, 0xffffffff, 0x00001032,
0xac0c, 0xffffffff, 0x00001032,
0xac0c, 0xffffffff, 0x00001032,
0x88d4, 0x0000001f, 0x00000010,
0x88d4, 0x0000001f, 0x00000010,
0x88d4, 0x0000001f, 0x00000010,
0x15c0, 0x000c0fc0, 0x000c0400
};
static const u32 oland_golden_rlc_registers[] =
{
0xc424, 0xffffffff, 0x00601005,
0xc47c, 0xffffffff, 0x10104040,
0xc488, 0xffffffff, 0x0100000a,
0xc314, 0xffffffff, 0x00000800,
0xc30c, 0xffffffff, 0x800000f4
};
static const u32 oland_golden_registers[] =
{
0x9a10, 0x00010000, 0x00018208,
0x9830, 0xffffffff, 0x00000000,
0x9834, 0xf00fffff, 0x00000400,
0x9838, 0x0002021c, 0x00020200,
0xc78, 0x00000080, 0x00000000,
0xd030, 0x000300c0, 0x00800040,
0xd830, 0x000300c0, 0x00800040,
0x5bb0, 0x000000f0, 0x00000070,
0x5bc0, 0x00200000, 0x50100000,
0x7030, 0x31000311, 0x00000011,
0x2ae4, 0x00073ffe, 0x000022a2,
0x240c, 0x000007ff, 0x00000000,
0x8a14, 0xf000001f, 0x00000007,
0x8b24, 0xffffffff, 0x00ffffff,
0x8b10, 0x0000ff0f, 0x00000000,
0x28a4c, 0x07ffffff, 0x4e000000,
0x28350, 0x3f3f3fff, 0x00000082,
0x30, 0x000000ff, 0x0040,
0x34, 0x00000040, 0x00004040,
0x9100, 0x07ffffff, 0x03000000,
0x9060, 0x0000007f, 0x00000020,
0x9508, 0x00010000, 0x00010000,
0xac14, 0x000003ff, 0x000000f3,
0xac10, 0xffffffff, 0x00000000,
0xac0c, 0xffffffff, 0x00003210,
0x88d4, 0x0000001f, 0x00000010,
0x15c0, 0x000c0fc0, 0x000c0400
};
static const u32 hainan_golden_registers[] =
{
0x9a10, 0x00010000, 0x00018208,
0x9830, 0xffffffff, 0x00000000,
0x9834, 0xf00fffff, 0x00000400,
0x9838, 0x0002021c, 0x00020200,
0xd0c0, 0xff000fff, 0x00000100,
0xd030, 0x000300c0, 0x00800040,
0xd8c0, 0xff000fff, 0x00000100,
0xd830, 0x000300c0, 0x00800040,
0x2ae4, 0x00073ffe, 0x000022a2,
0x240c, 0x000007ff, 0x00000000,
0x8a14, 0xf000001f, 0x00000007,
0x8b24, 0xffffffff, 0x00ffffff,
0x8b10, 0x0000ff0f, 0x00000000,
0x28a4c, 0x07ffffff, 0x4e000000,
0x28350, 0x3f3f3fff, 0x00000000,
0x30, 0x000000ff, 0x0040,
0x34, 0x00000040, 0x00004040,
0x9100, 0x03e00000, 0x03600000,
0x9060, 0x0000007f, 0x00000020,
0x9508, 0x00010000, 0x00010000,
0xac14, 0x000003ff, 0x000000f1,
0xac10, 0xffffffff, 0x00000000,
0xac0c, 0xffffffff, 0x00003210,
0x88d4, 0x0000001f, 0x00000010,
0x15c0, 0x000c0fc0, 0x000c0400
};
static const u32 hainan_golden_registers2[] =
{
0x98f8, 0xffffffff, 0x02010001
};
static const u32 tahiti_mgcg_cgcg_init[] =
{
0xc400, 0xffffffff, 0xfffffffc,
0x802c, 0xffffffff, 0xe0000000,
0x9a60, 0xffffffff, 0x00000100,
0x92a4, 0xffffffff, 0x00000100,
0xc164, 0xffffffff, 0x00000100,
0x9774, 0xffffffff, 0x00000100,
0x8984, 0xffffffff, 0x06000100,
0x8a18, 0xffffffff, 0x00000100,
0x92a0, 0xffffffff, 0x00000100,
0xc380, 0xffffffff, 0x00000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x8d88, 0xffffffff, 0x00000100,
0x8d8c, 0xffffffff, 0x00000100,
0x9030, 0xffffffff, 0x00000100,
0x9034, 0xffffffff, 0x00000100,
0x9038, 0xffffffff, 0x00000100,
0x903c, 0xffffffff, 0x00000100,
0xad80, 0xffffffff, 0x00000100,
0xac54, 0xffffffff, 0x00000100,
0x897c, 0xffffffff, 0x06000100,
0x9868, 0xffffffff, 0x00000100,
0x9510, 0xffffffff, 0x00000100,
0xaf04, 0xffffffff, 0x00000100,
0xae04, 0xffffffff, 0x00000100,
0x949c, 0xffffffff, 0x00000100,
0x802c, 0xffffffff, 0xe0000000,
0x9160, 0xffffffff, 0x00010000,
0x9164, 0xffffffff, 0x00030002,
0x9168, 0xffffffff, 0x00040007,
0x916c, 0xffffffff, 0x00060005,
0x9170, 0xffffffff, 0x00090008,
0x9174, 0xffffffff, 0x00020001,
0x9178, 0xffffffff, 0x00040003,
0x917c, 0xffffffff, 0x00000007,
0x9180, 0xffffffff, 0x00060005,
0x9184, 0xffffffff, 0x00090008,
0x9188, 0xffffffff, 0x00030002,
0x918c, 0xffffffff, 0x00050004,
0x9190, 0xffffffff, 0x00000008,
0x9194, 0xffffffff, 0x00070006,
0x9198, 0xffffffff, 0x000a0009,
0x919c, 0xffffffff, 0x00040003,
0x91a0, 0xffffffff, 0x00060005,
0x91a4, 0xffffffff, 0x00000009,
0x91a8, 0xffffffff, 0x00080007,
0x91ac, 0xffffffff, 0x000b000a,
0x91b0, 0xffffffff, 0x00050004,
0x91b4, 0xffffffff, 0x00070006,
0x91b8, 0xffffffff, 0x0008000b,
0x91bc, 0xffffffff, 0x000a0009,
0x91c0, 0xffffffff, 0x000d000c,
0x91c4, 0xffffffff, 0x00060005,
0x91c8, 0xffffffff, 0x00080007,
0x91cc, 0xffffffff, 0x0000000b,
0x91d0, 0xffffffff, 0x000a0009,
0x91d4, 0xffffffff, 0x000d000c,
0x91d8, 0xffffffff, 0x00070006,
0x91dc, 0xffffffff, 0x00090008,
0x91e0, 0xffffffff, 0x0000000c,
0x91e4, 0xffffffff, 0x000b000a,
0x91e8, 0xffffffff, 0x000e000d,
0x91ec, 0xffffffff, 0x00080007,
0x91f0, 0xffffffff, 0x000a0009,
0x91f4, 0xffffffff, 0x0000000d,
0x91f8, 0xffffffff, 0x000c000b,
0x91fc, 0xffffffff, 0x000f000e,
0x9200, 0xffffffff, 0x00090008,
0x9204, 0xffffffff, 0x000b000a,
0x9208, 0xffffffff, 0x000c000f,
0x920c, 0xffffffff, 0x000e000d,
0x9210, 0xffffffff, 0x00110010,
0x9214, 0xffffffff, 0x000a0009,
0x9218, 0xffffffff, 0x000c000b,
0x921c, 0xffffffff, 0x0000000f,
0x9220, 0xffffffff, 0x000e000d,
0x9224, 0xffffffff, 0x00110010,
0x9228, 0xffffffff, 0x000b000a,
0x922c, 0xffffffff, 0x000d000c,
0x9230, 0xffffffff, 0x00000010,
0x9234, 0xffffffff, 0x000f000e,
0x9238, 0xffffffff, 0x00120011,
0x923c, 0xffffffff, 0x000c000b,
0x9240, 0xffffffff, 0x000e000d,
0x9244, 0xffffffff, 0x00000011,
0x9248, 0xffffffff, 0x0010000f,
0x924c, 0xffffffff, 0x00130012,
0x9250, 0xffffffff, 0x000d000c,
0x9254, 0xffffffff, 0x000f000e,
0x9258, 0xffffffff, 0x00100013,
0x925c, 0xffffffff, 0x00120011,
0x9260, 0xffffffff, 0x00150014,
0x9264, 0xffffffff, 0x000e000d,
0x9268, 0xffffffff, 0x0010000f,
0x926c, 0xffffffff, 0x00000013,
0x9270, 0xffffffff, 0x00120011,
0x9274, 0xffffffff, 0x00150014,
0x9278, 0xffffffff, 0x000f000e,
0x927c, 0xffffffff, 0x00110010,
0x9280, 0xffffffff, 0x00000014,
0x9284, 0xffffffff, 0x00130012,
0x9288, 0xffffffff, 0x00160015,
0x928c, 0xffffffff, 0x0010000f,
0x9290, 0xffffffff, 0x00120011,
0x9294, 0xffffffff, 0x00000015,
0x9298, 0xffffffff, 0x00140013,
0x929c, 0xffffffff, 0x00170016,
0x9150, 0xffffffff, 0x96940200,
0x8708, 0xffffffff, 0x00900100,
0xc478, 0xffffffff, 0x00000080,
0xc404, 0xffffffff, 0x0020003f,
0x30, 0xffffffff, 0x0000001c,
0x34, 0x000f0000, 0x000f0000,
0x160c, 0xffffffff, 0x00000100,
0x1024, 0xffffffff, 0x00000100,
0x102c, 0x00000101, 0x00000000,
0x20a8, 0xffffffff, 0x00000104,
0x264c, 0x000c0000, 0x000c0000,
0x2648, 0x000c0000, 0x000c0000,
0x55e4, 0xff000fff, 0x00000100,
0x55e8, 0x00000001, 0x00000001,
0x2f50, 0x00000001, 0x00000001,
0x30cc, 0xc0000fff, 0x00000104,
0xc1e4, 0x00000001, 0x00000001,
0xd0c0, 0xfffffff0, 0x00000100,
0xd8c0, 0xfffffff0, 0x00000100
};
static const u32 pitcairn_mgcg_cgcg_init[] =
{
0xc400, 0xffffffff, 0xfffffffc,
0x802c, 0xffffffff, 0xe0000000,
0x9a60, 0xffffffff, 0x00000100,
0x92a4, 0xffffffff, 0x00000100,
0xc164, 0xffffffff, 0x00000100,
0x9774, 0xffffffff, 0x00000100,
0x8984, 0xffffffff, 0x06000100,
0x8a18, 0xffffffff, 0x00000100,
0x92a0, 0xffffffff, 0x00000100,
0xc380, 0xffffffff, 0x00000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x8d88, 0xffffffff, 0x00000100,
0x8d8c, 0xffffffff, 0x00000100,
0x9030, 0xffffffff, 0x00000100,
0x9034, 0xffffffff, 0x00000100,
0x9038, 0xffffffff, 0x00000100,
0x903c, 0xffffffff, 0x00000100,
0xad80, 0xffffffff, 0x00000100,
0xac54, 0xffffffff, 0x00000100,
0x897c, 0xffffffff, 0x06000100,
0x9868, 0xffffffff, 0x00000100,
0x9510, 0xffffffff, 0x00000100,
0xaf04, 0xffffffff, 0x00000100,
0xae04, 0xffffffff, 0x00000100,
0x949c, 0xffffffff, 0x00000100,
0x802c, 0xffffffff, 0xe0000000,
0x9160, 0xffffffff, 0x00010000,
0x9164, 0xffffffff, 0x00030002,
0x9168, 0xffffffff, 0x00040007,
0x916c, 0xffffffff, 0x00060005,
0x9170, 0xffffffff, 0x00090008,
0x9174, 0xffffffff, 0x00020001,
0x9178, 0xffffffff, 0x00040003,
0x917c, 0xffffffff, 0x00000007,
0x9180, 0xffffffff, 0x00060005,
0x9184, 0xffffffff, 0x00090008,
0x9188, 0xffffffff, 0x00030002,
0x918c, 0xffffffff, 0x00050004,
0x9190, 0xffffffff, 0x00000008,
0x9194, 0xffffffff, 0x00070006,
0x9198, 0xffffffff, 0x000a0009,
0x919c, 0xffffffff, 0x00040003,
0x91a0, 0xffffffff, 0x00060005,
0x91a4, 0xffffffff, 0x00000009,
0x91a8, 0xffffffff, 0x00080007,
0x91ac, 0xffffffff, 0x000b000a,
0x91b0, 0xffffffff, 0x00050004,
0x91b4, 0xffffffff, 0x00070006,
0x91b8, 0xffffffff, 0x0008000b,
0x91bc, 0xffffffff, 0x000a0009,
0x91c0, 0xffffffff, 0x000d000c,
0x9200, 0xffffffff, 0x00090008,
0x9204, 0xffffffff, 0x000b000a,
0x9208, 0xffffffff, 0x000c000f,
0x920c, 0xffffffff, 0x000e000d,
0x9210, 0xffffffff, 0x00110010,
0x9214, 0xffffffff, 0x000a0009,
0x9218, 0xffffffff, 0x000c000b,
0x921c, 0xffffffff, 0x0000000f,
0x9220, 0xffffffff, 0x000e000d,
0x9224, 0xffffffff, 0x00110010,
0x9228, 0xffffffff, 0x000b000a,
0x922c, 0xffffffff, 0x000d000c,
0x9230, 0xffffffff, 0x00000010,
0x9234, 0xffffffff, 0x000f000e,
0x9238, 0xffffffff, 0x00120011,
0x923c, 0xffffffff, 0x000c000b,
0x9240, 0xffffffff, 0x000e000d,
0x9244, 0xffffffff, 0x00000011,
0x9248, 0xffffffff, 0x0010000f,
0x924c, 0xffffffff, 0x00130012,
0x9250, 0xffffffff, 0x000d000c,
0x9254, 0xffffffff, 0x000f000e,
0x9258, 0xffffffff, 0x00100013,
0x925c, 0xffffffff, 0x00120011,
0x9260, 0xffffffff, 0x00150014,
0x9150, 0xffffffff, 0x96940200,
0x8708, 0xffffffff, 0x00900100,
0xc478, 0xffffffff, 0x00000080,
0xc404, 0xffffffff, 0x0020003f,
0x30, 0xffffffff, 0x0000001c,
0x34, 0x000f0000, 0x000f0000,
0x160c, 0xffffffff, 0x00000100,
0x1024, 0xffffffff, 0x00000100,
0x102c, 0x00000101, 0x00000000,
0x20a8, 0xffffffff, 0x00000104,
0x55e4, 0xff000fff, 0x00000100,
0x55e8, 0x00000001, 0x00000001,
0x2f50, 0x00000001, 0x00000001,
0x30cc, 0xc0000fff, 0x00000104,
0xc1e4, 0x00000001, 0x00000001,
0xd0c0, 0xfffffff0, 0x00000100,
0xd8c0, 0xfffffff0, 0x00000100
};
static const u32 verde_mgcg_cgcg_init[] =
{
0xc400, 0xffffffff, 0xfffffffc,
0x802c, 0xffffffff, 0xe0000000,
0x9a60, 0xffffffff, 0x00000100,
0x92a4, 0xffffffff, 0x00000100,
0xc164, 0xffffffff, 0x00000100,
0x9774, 0xffffffff, 0x00000100,
0x8984, 0xffffffff, 0x06000100,
0x8a18, 0xffffffff, 0x00000100,
0x92a0, 0xffffffff, 0x00000100,
0xc380, 0xffffffff, 0x00000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x8d88, 0xffffffff, 0x00000100,
0x8d8c, 0xffffffff, 0x00000100,
0x9030, 0xffffffff, 0x00000100,
0x9034, 0xffffffff, 0x00000100,
0x9038, 0xffffffff, 0x00000100,
0x903c, 0xffffffff, 0x00000100,
0xad80, 0xffffffff, 0x00000100,
0xac54, 0xffffffff, 0x00000100,
0x897c, 0xffffffff, 0x06000100,
0x9868, 0xffffffff, 0x00000100,
0x9510, 0xffffffff, 0x00000100,
0xaf04, 0xffffffff, 0x00000100,
0xae04, 0xffffffff, 0x00000100,
0x949c, 0xffffffff, 0x00000100,
0x802c, 0xffffffff, 0xe0000000,
0x9160, 0xffffffff, 0x00010000,
0x9164, 0xffffffff, 0x00030002,
0x9168, 0xffffffff, 0x00040007,
0x916c, 0xffffffff, 0x00060005,
0x9170, 0xffffffff, 0x00090008,
0x9174, 0xffffffff, 0x00020001,
0x9178, 0xffffffff, 0x00040003,
0x917c, 0xffffffff, 0x00000007,
0x9180, 0xffffffff, 0x00060005,
0x9184, 0xffffffff, 0x00090008,
0x9188, 0xffffffff, 0x00030002,
0x918c, 0xffffffff, 0x00050004,
0x9190, 0xffffffff, 0x00000008,
0x9194, 0xffffffff, 0x00070006,
0x9198, 0xffffffff, 0x000a0009,
0x919c, 0xffffffff, 0x00040003,
0x91a0, 0xffffffff, 0x00060005,
0x91a4, 0xffffffff, 0x00000009,
0x91a8, 0xffffffff, 0x00080007,
0x91ac, 0xffffffff, 0x000b000a,
0x91b0, 0xffffffff, 0x00050004,
0x91b4, 0xffffffff, 0x00070006,
0x91b8, 0xffffffff, 0x0008000b,
0x91bc, 0xffffffff, 0x000a0009,
0x91c0, 0xffffffff, 0x000d000c,
0x9200, 0xffffffff, 0x00090008,
0x9204, 0xffffffff, 0x000b000a,
0x9208, 0xffffffff, 0x000c000f,
0x920c, 0xffffffff, 0x000e000d,
0x9210, 0xffffffff, 0x00110010,
0x9214, 0xffffffff, 0x000a0009,
0x9218, 0xffffffff, 0x000c000b,
0x921c, 0xffffffff, 0x0000000f,
0x9220, 0xffffffff, 0x000e000d,
0x9224, 0xffffffff, 0x00110010,
0x9228, 0xffffffff, 0x000b000a,
0x922c, 0xffffffff, 0x000d000c,
0x9230, 0xffffffff, 0x00000010,
0x9234, 0xffffffff, 0x000f000e,
0x9238, 0xffffffff, 0x00120011,
0x923c, 0xffffffff, 0x000c000b,
0x9240, 0xffffffff, 0x000e000d,
0x9244, 0xffffffff, 0x00000011,
0x9248, 0xffffffff, 0x0010000f,
0x924c, 0xffffffff, 0x00130012,
0x9250, 0xffffffff, 0x000d000c,
0x9254, 0xffffffff, 0x000f000e,
0x9258, 0xffffffff, 0x00100013,
0x925c, 0xffffffff, 0x00120011,
0x9260, 0xffffffff, 0x00150014,
0x9150, 0xffffffff, 0x96940200,
0x8708, 0xffffffff, 0x00900100,
0xc478, 0xffffffff, 0x00000080,
0xc404, 0xffffffff, 0x0020003f,
0x30, 0xffffffff, 0x0000001c,
0x34, 0x000f0000, 0x000f0000,
0x160c, 0xffffffff, 0x00000100,
0x1024, 0xffffffff, 0x00000100,
0x102c, 0x00000101, 0x00000000,
0x20a8, 0xffffffff, 0x00000104,
0x264c, 0x000c0000, 0x000c0000,
0x2648, 0x000c0000, 0x000c0000,
0x55e4, 0xff000fff, 0x00000100,
0x55e8, 0x00000001, 0x00000001,
0x2f50, 0x00000001, 0x00000001,
0x30cc, 0xc0000fff, 0x00000104,
0xc1e4, 0x00000001, 0x00000001,
0xd0c0, 0xfffffff0, 0x00000100,
0xd8c0, 0xfffffff0, 0x00000100
};
static const u32 oland_mgcg_cgcg_init[] =
{
0xc400, 0xffffffff, 0xfffffffc,
0x802c, 0xffffffff, 0xe0000000,
0x9a60, 0xffffffff, 0x00000100,
0x92a4, 0xffffffff, 0x00000100,
0xc164, 0xffffffff, 0x00000100,
0x9774, 0xffffffff, 0x00000100,
0x8984, 0xffffffff, 0x06000100,
0x8a18, 0xffffffff, 0x00000100,
0x92a0, 0xffffffff, 0x00000100,
0xc380, 0xffffffff, 0x00000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x8d88, 0xffffffff, 0x00000100,
0x8d8c, 0xffffffff, 0x00000100,
0x9030, 0xffffffff, 0x00000100,
0x9034, 0xffffffff, 0x00000100,
0x9038, 0xffffffff, 0x00000100,
0x903c, 0xffffffff, 0x00000100,
0xad80, 0xffffffff, 0x00000100,
0xac54, 0xffffffff, 0x00000100,
0x897c, 0xffffffff, 0x06000100,
0x9868, 0xffffffff, 0x00000100,
0x9510, 0xffffffff, 0x00000100,
0xaf04, 0xffffffff, 0x00000100,
0xae04, 0xffffffff, 0x00000100,
0x949c, 0xffffffff, 0x00000100,
0x802c, 0xffffffff, 0xe0000000,
0x9160, 0xffffffff, 0x00010000,
0x9164, 0xffffffff, 0x00030002,
0x9168, 0xffffffff, 0x00040007,
0x916c, 0xffffffff, 0x00060005,
0x9170, 0xffffffff, 0x00090008,
0x9174, 0xffffffff, 0x00020001,
0x9178, 0xffffffff, 0x00040003,
0x917c, 0xffffffff, 0x00000007,
0x9180, 0xffffffff, 0x00060005,
0x9184, 0xffffffff, 0x00090008,
0x9188, 0xffffffff, 0x00030002,
0x918c, 0xffffffff, 0x00050004,
0x9190, 0xffffffff, 0x00000008,
0x9194, 0xffffffff, 0x00070006,
0x9198, 0xffffffff, 0x000a0009,
0x919c, 0xffffffff, 0x00040003,
0x91a0, 0xffffffff, 0x00060005,
0x91a4, 0xffffffff, 0x00000009,
0x91a8, 0xffffffff, 0x00080007,
0x91ac, 0xffffffff, 0x000b000a,
0x91b0, 0xffffffff, 0x00050004,
0x91b4, 0xffffffff, 0x00070006,
0x91b8, 0xffffffff, 0x0008000b,
0x91bc, 0xffffffff, 0x000a0009,
0x91c0, 0xffffffff, 0x000d000c,
0x91c4, 0xffffffff, 0x00060005,
0x91c8, 0xffffffff, 0x00080007,
0x91cc, 0xffffffff, 0x0000000b,
0x91d0, 0xffffffff, 0x000a0009,
0x91d4, 0xffffffff, 0x000d000c,
0x9150, 0xffffffff, 0x96940200,
0x8708, 0xffffffff, 0x00900100,
0xc478, 0xffffffff, 0x00000080,
0xc404, 0xffffffff, 0x0020003f,
0x30, 0xffffffff, 0x0000001c,
0x34, 0x000f0000, 0x000f0000,
0x160c, 0xffffffff, 0x00000100,
0x1024, 0xffffffff, 0x00000100,
0x102c, 0x00000101, 0x00000000,
0x20a8, 0xffffffff, 0x00000104,
0x264c, 0x000c0000, 0x000c0000,
0x2648, 0x000c0000, 0x000c0000,
0x55e4, 0xff000fff, 0x00000100,
0x55e8, 0x00000001, 0x00000001,
0x2f50, 0x00000001, 0x00000001,
0x30cc, 0xc0000fff, 0x00000104,
0xc1e4, 0x00000001, 0x00000001,
0xd0c0, 0xfffffff0, 0x00000100,
0xd8c0, 0xfffffff0, 0x00000100
};
static const u32 hainan_mgcg_cgcg_init[] =
{
0xc400, 0xffffffff, 0xfffffffc,
0x802c, 0xffffffff, 0xe0000000,
0x9a60, 0xffffffff, 0x00000100,
0x92a4, 0xffffffff, 0x00000100,
0xc164, 0xffffffff, 0x00000100,
0x9774, 0xffffffff, 0x00000100,
0x8984, 0xffffffff, 0x06000100,
0x8a18, 0xffffffff, 0x00000100,
0x92a0, 0xffffffff, 0x00000100,
0xc380, 0xffffffff, 0x00000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x8d88, 0xffffffff, 0x00000100,
0x8d8c, 0xffffffff, 0x00000100,
0x9030, 0xffffffff, 0x00000100,
0x9034, 0xffffffff, 0x00000100,
0x9038, 0xffffffff, 0x00000100,
0x903c, 0xffffffff, 0x00000100,
0xad80, 0xffffffff, 0x00000100,
0xac54, 0xffffffff, 0x00000100,
0x897c, 0xffffffff, 0x06000100,
0x9868, 0xffffffff, 0x00000100,
0x9510, 0xffffffff, 0x00000100,
0xaf04, 0xffffffff, 0x00000100,
0xae04, 0xffffffff, 0x00000100,
0x949c, 0xffffffff, 0x00000100,
0x802c, 0xffffffff, 0xe0000000,
0x9160, 0xffffffff, 0x00010000,
0x9164, 0xffffffff, 0x00030002,
0x9168, 0xffffffff, 0x00040007,
0x916c, 0xffffffff, 0x00060005,
0x9170, 0xffffffff, 0x00090008,
0x9174, 0xffffffff, 0x00020001,
0x9178, 0xffffffff, 0x00040003,
0x917c, 0xffffffff, 0x00000007,
0x9180, 0xffffffff, 0x00060005,
0x9184, 0xffffffff, 0x00090008,
0x9188, 0xffffffff, 0x00030002,
0x918c, 0xffffffff, 0x00050004,
0x9190, 0xffffffff, 0x00000008,
0x9194, 0xffffffff, 0x00070006,
0x9198, 0xffffffff, 0x000a0009,
0x919c, 0xffffffff, 0x00040003,
0x91a0, 0xffffffff, 0x00060005,
0x91a4, 0xffffffff, 0x00000009,
0x91a8, 0xffffffff, 0x00080007,
0x91ac, 0xffffffff, 0x000b000a,
0x91b0, 0xffffffff, 0x00050004,
0x91b4, 0xffffffff, 0x00070006,
0x91b8, 0xffffffff, 0x0008000b,
0x91bc, 0xffffffff, 0x000a0009,
0x91c0, 0xffffffff, 0x000d000c,
0x91c4, 0xffffffff, 0x00060005,
0x91c8, 0xffffffff, 0x00080007,
0x91cc, 0xffffffff, 0x0000000b,
0x91d0, 0xffffffff, 0x000a0009,
0x91d4, 0xffffffff, 0x000d000c,
0x9150, 0xffffffff, 0x96940200,
0x8708, 0xffffffff, 0x00900100,
0xc478, 0xffffffff, 0x00000080,
0xc404, 0xffffffff, 0x0020003f,
0x30, 0xffffffff, 0x0000001c,
0x34, 0x000f0000, 0x000f0000,
0x160c, 0xffffffff, 0x00000100,
0x1024, 0xffffffff, 0x00000100,
0x20a8, 0xffffffff, 0x00000104,
0x264c, 0x000c0000, 0x000c0000,
0x2648, 0x000c0000, 0x000c0000,
0x2f50, 0x00000001, 0x00000001,
0x30cc, 0xc0000fff, 0x00000104,
0xc1e4, 0x00000001, 0x00000001,
0xd0c0, 0xfffffff0, 0x00000100,
0xd8c0, 0xfffffff0, 0x00000100
};
static u32 verde_pg_init[] =
{
0x353c, 0xffffffff, 0x40000,
0x3538, 0xffffffff, 0x200010ff,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x7007,
0x3538, 0xffffffff, 0x300010ff,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x400000,
0x3538, 0xffffffff, 0x100010ff,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x120200,
0x3538, 0xffffffff, 0x500010ff,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x1e1e16,
0x3538, 0xffffffff, 0x600010ff,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x171f1e,
0x3538, 0xffffffff, 0x700010ff,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x353c, 0xffffffff, 0x0,
0x3538, 0xffffffff, 0x9ff,
0x3500, 0xffffffff, 0x0,
0x3504, 0xffffffff, 0x10000800,
0x3504, 0xffffffff, 0xf,
0x3504, 0xffffffff, 0xf,
0x3500, 0xffffffff, 0x4,
0x3504, 0xffffffff, 0x1000051e,
0x3504, 0xffffffff, 0xffff,
0x3504, 0xffffffff, 0xffff,
0x3500, 0xffffffff, 0x8,
0x3504, 0xffffffff, 0x80500,
0x3500, 0xffffffff, 0x12,
0x3504, 0xffffffff, 0x9050c,
0x3500, 0xffffffff, 0x1d,
0x3504, 0xffffffff, 0xb052c,
0x3500, 0xffffffff, 0x2a,
0x3504, 0xffffffff, 0x1053e,
0x3500, 0xffffffff, 0x2d,
0x3504, 0xffffffff, 0x10546,
0x3500, 0xffffffff, 0x30,
0x3504, 0xffffffff, 0xa054e,
0x3500, 0xffffffff, 0x3c,
0x3504, 0xffffffff, 0x1055f,
0x3500, 0xffffffff, 0x3f,
0x3504, 0xffffffff, 0x10567,
0x3500, 0xffffffff, 0x42,
0x3504, 0xffffffff, 0x1056f,
0x3500, 0xffffffff, 0x45,
0x3504, 0xffffffff, 0x10572,
0x3500, 0xffffffff, 0x48,
0x3504, 0xffffffff, 0x20575,
0x3500, 0xffffffff, 0x4c,
0x3504, 0xffffffff, 0x190801,
0x3500, 0xffffffff, 0x67,
0x3504, 0xffffffff, 0x1082a,
0x3500, 0xffffffff, 0x6a,
0x3504, 0xffffffff, 0x1b082d,
0x3500, 0xffffffff, 0x87,
0x3504, 0xffffffff, 0x310851,
0x3500, 0xffffffff, 0xba,
0x3504, 0xffffffff, 0x891,
0x3500, 0xffffffff, 0xbc,
0x3504, 0xffffffff, 0x893,
0x3500, 0xffffffff, 0xbe,
0x3504, 0xffffffff, 0x20895,
0x3500, 0xffffffff, 0xc2,
0x3504, 0xffffffff, 0x20899,
0x3500, 0xffffffff, 0xc6,
0x3504, 0xffffffff, 0x2089d,
0x3500, 0xffffffff, 0xca,
0x3504, 0xffffffff, 0x8a1,
0x3500, 0xffffffff, 0xcc,
0x3504, 0xffffffff, 0x8a3,
0x3500, 0xffffffff, 0xce,
0x3504, 0xffffffff, 0x308a5,
0x3500, 0xffffffff, 0xd3,
0x3504, 0xffffffff, 0x6d08cd,
0x3500, 0xffffffff, 0x142,
0x3504, 0xffffffff, 0x2000095a,
0x3504, 0xffffffff, 0x1,
0x3500, 0xffffffff, 0x144,
0x3504, 0xffffffff, 0x301f095b,
0x3500, 0xffffffff, 0x165,
0x3504, 0xffffffff, 0xc094d,
0x3500, 0xffffffff, 0x173,
0x3504, 0xffffffff, 0xf096d,
0x3500, 0xffffffff, 0x184,
0x3504, 0xffffffff, 0x15097f,
0x3500, 0xffffffff, 0x19b,
0x3504, 0xffffffff, 0xc0998,
0x3500, 0xffffffff, 0x1a9,
0x3504, 0xffffffff, 0x409a7,
0x3500, 0xffffffff, 0x1af,
0x3504, 0xffffffff, 0xcdc,
0x3500, 0xffffffff, 0x1b1,
0x3504, 0xffffffff, 0x800,
0x3508, 0xffffffff, 0x6c9b2000,
0x3510, 0xfc00, 0x2000,
0x3544, 0xffffffff, 0xfc0,
0x28d4, 0x00000100, 0x100
};
static void si_init_golden_registers(struct radeon_device *rdev)
{
switch (rdev->family) {
case CHIP_TAHITI:
radeon_program_register_sequence(rdev,
tahiti_golden_registers,
(const u32)ARRAY_SIZE(tahiti_golden_registers));
radeon_program_register_sequence(rdev,
tahiti_golden_rlc_registers,
(const u32)ARRAY_SIZE(tahiti_golden_rlc_registers));
radeon_program_register_sequence(rdev,
tahiti_mgcg_cgcg_init,
(const u32)ARRAY_SIZE(tahiti_mgcg_cgcg_init));
radeon_program_register_sequence(rdev,
tahiti_golden_registers2,
(const u32)ARRAY_SIZE(tahiti_golden_registers2));
break;
case CHIP_PITCAIRN:
radeon_program_register_sequence(rdev,
pitcairn_golden_registers,
(const u32)ARRAY_SIZE(pitcairn_golden_registers));
radeon_program_register_sequence(rdev,
pitcairn_golden_rlc_registers,
(const u32)ARRAY_SIZE(pitcairn_golden_rlc_registers));
radeon_program_register_sequence(rdev,
pitcairn_mgcg_cgcg_init,
(const u32)ARRAY_SIZE(pitcairn_mgcg_cgcg_init));
break;
case CHIP_VERDE:
radeon_program_register_sequence(rdev,
verde_golden_registers,
(const u32)ARRAY_SIZE(verde_golden_registers));
radeon_program_register_sequence(rdev,
verde_golden_rlc_registers,
(const u32)ARRAY_SIZE(verde_golden_rlc_registers));
radeon_program_register_sequence(rdev,
verde_mgcg_cgcg_init,
(const u32)ARRAY_SIZE(verde_mgcg_cgcg_init));
radeon_program_register_sequence(rdev,
verde_pg_init,
(const u32)ARRAY_SIZE(verde_pg_init));
break;
case CHIP_OLAND:
radeon_program_register_sequence(rdev,
oland_golden_registers,
(const u32)ARRAY_SIZE(oland_golden_registers));
radeon_program_register_sequence(rdev,
oland_golden_rlc_registers,
(const u32)ARRAY_SIZE(oland_golden_rlc_registers));
radeon_program_register_sequence(rdev,
oland_mgcg_cgcg_init,
(const u32)ARRAY_SIZE(oland_mgcg_cgcg_init));
break;
case CHIP_HAINAN:
radeon_program_register_sequence(rdev,
hainan_golden_registers,
(const u32)ARRAY_SIZE(hainan_golden_registers));
radeon_program_register_sequence(rdev,
hainan_golden_registers2,
(const u32)ARRAY_SIZE(hainan_golden_registers2));
radeon_program_register_sequence(rdev,
hainan_mgcg_cgcg_init,
(const u32)ARRAY_SIZE(hainan_mgcg_cgcg_init));
break;
default:
break;
}
}
/**
* si_get_allowed_info_register - fetch the register for the info ioctl
*
* @rdev: radeon_device pointer
* @reg: register offset in bytes
* @val: register value
*
* Returns 0 for success or -EINVAL for an invalid register
*
*/
int si_get_allowed_info_register(struct radeon_device *rdev,
u32 reg, u32 *val)
{
switch (reg) {
case GRBM_STATUS:
case GRBM_STATUS2:
case GRBM_STATUS_SE0:
case GRBM_STATUS_SE1:
case SRBM_STATUS:
case SRBM_STATUS2:
case (DMA_STATUS_REG + DMA0_REGISTER_OFFSET):
case (DMA_STATUS_REG + DMA1_REGISTER_OFFSET):
case UVD_STATUS:
*val = RREG32(reg);
return 0;
default:
return -EINVAL;
}
}
#define PCIE_BUS_CLK 10000
#define TCLK (PCIE_BUS_CLK / 10)
/**
* si_get_xclk - get the xclk
*
* @rdev: radeon_device pointer
*
* Returns the reference clock used by the gfx engine
* (SI).
*/
u32 si_get_xclk(struct radeon_device *rdev)
{
u32 reference_clock = rdev->clock.spll.reference_freq;
u32 tmp;
tmp = RREG32(CG_CLKPIN_CNTL_2);
if (tmp & MUX_TCLK_TO_XCLK)
return TCLK;
tmp = RREG32(CG_CLKPIN_CNTL);
if (tmp & XTALIN_DIVIDE)
return reference_clock / 4;
return reference_clock;
}
/* get temperature in millidegrees */
int si_get_temp(struct radeon_device *rdev)
{
u32 temp;
int actual_temp = 0;
temp = (RREG32(CG_MULT_THERMAL_STATUS) & CTF_TEMP_MASK) >>
CTF_TEMP_SHIFT;
if (temp & 0x200)
actual_temp = 255;
else
actual_temp = temp & 0x1ff;
actual_temp = (actual_temp * 1000);
return actual_temp;
}
#define TAHITI_IO_MC_REGS_SIZE 36
static const u32 tahiti_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = {
{0x0000006f, 0x03044000},
{0x00000070, 0x0480c018},
{0x00000071, 0x00000040},
{0x00000072, 0x01000000},
{0x00000074, 0x000000ff},
{0x00000075, 0x00143400},
{0x00000076, 0x08ec0800},
{0x00000077, 0x040000cc},
{0x00000079, 0x00000000},
{0x0000007a, 0x21000409},
{0x0000007c, 0x00000000},
{0x0000007d, 0xe8000000},
{0x0000007e, 0x044408a8},
{0x0000007f, 0x00000003},
{0x00000080, 0x00000000},
{0x00000081, 0x01000000},
{0x00000082, 0x02000000},
{0x00000083, 0x00000000},
{0x00000084, 0xe3f3e4f4},
{0x00000085, 0x00052024},
{0x00000087, 0x00000000},
{0x00000088, 0x66036603},
{0x00000089, 0x01000000},
{0x0000008b, 0x1c0a0000},
{0x0000008c, 0xff010000},
{0x0000008e, 0xffffefff},
{0x0000008f, 0xfff3efff},
{0x00000090, 0xfff3efbf},
{0x00000094, 0x00101101},
{0x00000095, 0x00000fff},
{0x00000096, 0x00116fff},
{0x00000097, 0x60010000},
{0x00000098, 0x10010000},
{0x00000099, 0x00006000},
{0x0000009a, 0x00001000},
{0x0000009f, 0x00a77400}
};
static const u32 pitcairn_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = {
{0x0000006f, 0x03044000},
{0x00000070, 0x0480c018},
{0x00000071, 0x00000040},
{0x00000072, 0x01000000},
{0x00000074, 0x000000ff},
{0x00000075, 0x00143400},
{0x00000076, 0x08ec0800},
{0x00000077, 0x040000cc},
{0x00000079, 0x00000000},
{0x0000007a, 0x21000409},
{0x0000007c, 0x00000000},
{0x0000007d, 0xe8000000},
{0x0000007e, 0x044408a8},
{0x0000007f, 0x00000003},
{0x00000080, 0x00000000},
{0x00000081, 0x01000000},
{0x00000082, 0x02000000},
{0x00000083, 0x00000000},
{0x00000084, 0xe3f3e4f4},
{0x00000085, 0x00052024},
{0x00000087, 0x00000000},
{0x00000088, 0x66036603},
{0x00000089, 0x01000000},
{0x0000008b, 0x1c0a0000},
{0x0000008c, 0xff010000},
{0x0000008e, 0xffffefff},
{0x0000008f, 0xfff3efff},
{0x00000090, 0xfff3efbf},
{0x00000094, 0x00101101},
{0x00000095, 0x00000fff},
{0x00000096, 0x00116fff},
{0x00000097, 0x60010000},
{0x00000098, 0x10010000},
{0x00000099, 0x00006000},
{0x0000009a, 0x00001000},
{0x0000009f, 0x00a47400}
};
static const u32 verde_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = {
{0x0000006f, 0x03044000},
{0x00000070, 0x0480c018},
{0x00000071, 0x00000040},
{0x00000072, 0x01000000},
{0x00000074, 0x000000ff},
{0x00000075, 0x00143400},
{0x00000076, 0x08ec0800},
{0x00000077, 0x040000cc},
{0x00000079, 0x00000000},
{0x0000007a, 0x21000409},
{0x0000007c, 0x00000000},
{0x0000007d, 0xe8000000},
{0x0000007e, 0x044408a8},
{0x0000007f, 0x00000003},
{0x00000080, 0x00000000},
{0x00000081, 0x01000000},
{0x00000082, 0x02000000},
{0x00000083, 0x00000000},
{0x00000084, 0xe3f3e4f4},
{0x00000085, 0x00052024},
{0x00000087, 0x00000000},
{0x00000088, 0x66036603},
{0x00000089, 0x01000000},
{0x0000008b, 0x1c0a0000},
{0x0000008c, 0xff010000},
{0x0000008e, 0xffffefff},
{0x0000008f, 0xfff3efff},
{0x00000090, 0xfff3efbf},
{0x00000094, 0x00101101},
{0x00000095, 0x00000fff},
{0x00000096, 0x00116fff},
{0x00000097, 0x60010000},
{0x00000098, 0x10010000},
{0x00000099, 0x00006000},
{0x0000009a, 0x00001000},
{0x0000009f, 0x00a37400}
};
static const u32 oland_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = {
{0x0000006f, 0x03044000},
{0x00000070, 0x0480c018},
{0x00000071, 0x00000040},
{0x00000072, 0x01000000},
{0x00000074, 0x000000ff},
{0x00000075, 0x00143400},
{0x00000076, 0x08ec0800},
{0x00000077, 0x040000cc},
{0x00000079, 0x00000000},
{0x0000007a, 0x21000409},
{0x0000007c, 0x00000000},
{0x0000007d, 0xe8000000},
{0x0000007e, 0x044408a8},
{0x0000007f, 0x00000003},
{0x00000080, 0x00000000},
{0x00000081, 0x01000000},
{0x00000082, 0x02000000},
{0x00000083, 0x00000000},
{0x00000084, 0xe3f3e4f4},
{0x00000085, 0x00052024},
{0x00000087, 0x00000000},
{0x00000088, 0x66036603},
{0x00000089, 0x01000000},
{0x0000008b, 0x1c0a0000},
{0x0000008c, 0xff010000},
{0x0000008e, 0xffffefff},
{0x0000008f, 0xfff3efff},
{0x00000090, 0xfff3efbf},
{0x00000094, 0x00101101},
{0x00000095, 0x00000fff},
{0x00000096, 0x00116fff},
{0x00000097, 0x60010000},
{0x00000098, 0x10010000},
{0x00000099, 0x00006000},
{0x0000009a, 0x00001000},
{0x0000009f, 0x00a17730}
};
static const u32 hainan_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = {
{0x0000006f, 0x03044000},
{0x00000070, 0x0480c018},
{0x00000071, 0x00000040},
{0x00000072, 0x01000000},
{0x00000074, 0x000000ff},
{0x00000075, 0x00143400},
{0x00000076, 0x08ec0800},
{0x00000077, 0x040000cc},
{0x00000079, 0x00000000},
{0x0000007a, 0x21000409},
{0x0000007c, 0x00000000},
{0x0000007d, 0xe8000000},
{0x0000007e, 0x044408a8},
{0x0000007f, 0x00000003},
{0x00000080, 0x00000000},
{0x00000081, 0x01000000},
{0x00000082, 0x02000000},
{0x00000083, 0x00000000},
{0x00000084, 0xe3f3e4f4},
{0x00000085, 0x00052024},
{0x00000087, 0x00000000},
{0x00000088, 0x66036603},
{0x00000089, 0x01000000},
{0x0000008b, 0x1c0a0000},
{0x0000008c, 0xff010000},
{0x0000008e, 0xffffefff},
{0x0000008f, 0xfff3efff},
{0x00000090, 0xfff3efbf},
{0x00000094, 0x00101101},
{0x00000095, 0x00000fff},
{0x00000096, 0x00116fff},
{0x00000097, 0x60010000},
{0x00000098, 0x10010000},
{0x00000099, 0x00006000},
{0x0000009a, 0x00001000},
{0x0000009f, 0x00a07730}
};
/* ucode loading */
int si_mc_load_microcode(struct radeon_device *rdev)
{
const __be32 *fw_data = NULL;
const __le32 *new_fw_data = NULL;
u32 running;
u32 *io_mc_regs = NULL;
const __le32 *new_io_mc_regs = NULL;
int i, regs_size, ucode_size;
if (!rdev->mc_fw)
return -EINVAL;
if (rdev->new_fw) {
const struct mc_firmware_header_v1_0 *hdr =
(const struct mc_firmware_header_v1_0 *)rdev->mc_fw->data;
radeon_ucode_print_mc_hdr(&hdr->header);
regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
new_io_mc_regs = (const __le32 *)
(rdev->mc_fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
new_fw_data = (const __le32 *)
(rdev->mc_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
} else {
ucode_size = rdev->mc_fw->size / 4;
switch (rdev->family) {
case CHIP_TAHITI:
io_mc_regs = (u32 *)&tahiti_io_mc_regs;
regs_size = TAHITI_IO_MC_REGS_SIZE;
break;
case CHIP_PITCAIRN:
io_mc_regs = (u32 *)&pitcairn_io_mc_regs;
regs_size = TAHITI_IO_MC_REGS_SIZE;
break;
case CHIP_VERDE:
default:
io_mc_regs = (u32 *)&verde_io_mc_regs;
regs_size = TAHITI_IO_MC_REGS_SIZE;
break;
case CHIP_OLAND:
io_mc_regs = (u32 *)&oland_io_mc_regs;
regs_size = TAHITI_IO_MC_REGS_SIZE;
break;
case CHIP_HAINAN:
io_mc_regs = (u32 *)&hainan_io_mc_regs;
regs_size = TAHITI_IO_MC_REGS_SIZE;
break;
}
fw_data = (const __be32 *)rdev->mc_fw->data;
}
running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK;
if (running == 0) {
/* reset the engine and set to writable */
WREG32(MC_SEQ_SUP_CNTL, 0x00000008);
WREG32(MC_SEQ_SUP_CNTL, 0x00000010);
/* load mc io regs */
for (i = 0; i < regs_size; i++) {
if (rdev->new_fw) {
WREG32(MC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(new_io_mc_regs++));
WREG32(MC_SEQ_IO_DEBUG_DATA, le32_to_cpup(new_io_mc_regs++));
} else {
WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]);
WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]);
}
}
/* load the MC ucode */
for (i = 0; i < ucode_size; i++) {
if (rdev->new_fw)
WREG32(MC_SEQ_SUP_PGM, le32_to_cpup(new_fw_data++));
else
WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++));
}
/* put the engine back into the active state */
WREG32(MC_SEQ_SUP_CNTL, 0x00000008);
WREG32(MC_SEQ_SUP_CNTL, 0x00000004);
WREG32(MC_SEQ_SUP_CNTL, 0x00000001);
/* wait for training to complete */
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D0)
break;
udelay(1);
}
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D1)
break;
udelay(1);
}
}
return 0;
}
static int si_init_microcode(struct radeon_device *rdev)
{
const char *chip_name;
const char *new_chip_name;
size_t pfp_req_size, me_req_size, ce_req_size, rlc_req_size, mc_req_size;
size_t smc_req_size, mc2_req_size;
char fw_name[30];
int err;
int new_fw = 0;
bool new_smc = false;
bool si58_fw = false;
bool banks2_fw = false;
DRM_DEBUG("\n");
switch (rdev->family) {
case CHIP_TAHITI:
chip_name = "TAHITI";
new_chip_name = "tahiti";
pfp_req_size = SI_PFP_UCODE_SIZE * 4;
me_req_size = SI_PM4_UCODE_SIZE * 4;
ce_req_size = SI_CE_UCODE_SIZE * 4;
rlc_req_size = SI_RLC_UCODE_SIZE * 4;
mc_req_size = SI_MC_UCODE_SIZE * 4;
mc2_req_size = TAHITI_MC_UCODE_SIZE * 4;
smc_req_size = ALIGN(TAHITI_SMC_UCODE_SIZE, 4);
break;
case CHIP_PITCAIRN:
chip_name = "PITCAIRN";
if ((rdev->pdev->revision == 0x81) &&
((rdev->pdev->device == 0x6810) ||
(rdev->pdev->device == 0x6811)))
new_smc = true;
new_chip_name = "pitcairn";
pfp_req_size = SI_PFP_UCODE_SIZE * 4;
me_req_size = SI_PM4_UCODE_SIZE * 4;
ce_req_size = SI_CE_UCODE_SIZE * 4;
rlc_req_size = SI_RLC_UCODE_SIZE * 4;
mc_req_size = SI_MC_UCODE_SIZE * 4;
mc2_req_size = PITCAIRN_MC_UCODE_SIZE * 4;
smc_req_size = ALIGN(PITCAIRN_SMC_UCODE_SIZE, 4);
break;
case CHIP_VERDE:
chip_name = "VERDE";
if (((rdev->pdev->device == 0x6820) &&
((rdev->pdev->revision == 0x81) ||
(rdev->pdev->revision == 0x83))) ||
((rdev->pdev->device == 0x6821) &&
((rdev->pdev->revision == 0x83) ||
(rdev->pdev->revision == 0x87))) ||
((rdev->pdev->revision == 0x87) &&
((rdev->pdev->device == 0x6823) ||
(rdev->pdev->device == 0x682b))))
new_smc = true;
new_chip_name = "verde";
pfp_req_size = SI_PFP_UCODE_SIZE * 4;
me_req_size = SI_PM4_UCODE_SIZE * 4;
ce_req_size = SI_CE_UCODE_SIZE * 4;
rlc_req_size = SI_RLC_UCODE_SIZE * 4;
mc_req_size = SI_MC_UCODE_SIZE * 4;
mc2_req_size = VERDE_MC_UCODE_SIZE * 4;
smc_req_size = ALIGN(VERDE_SMC_UCODE_SIZE, 4);
break;
case CHIP_OLAND:
chip_name = "OLAND";
if (((rdev->pdev->revision == 0x81) &&
((rdev->pdev->device == 0x6600) ||
(rdev->pdev->device == 0x6604) ||
(rdev->pdev->device == 0x6605) ||
(rdev->pdev->device == 0x6610))) ||
((rdev->pdev->revision == 0x83) &&
(rdev->pdev->device == 0x6610)))
new_smc = true;
new_chip_name = "oland";
pfp_req_size = SI_PFP_UCODE_SIZE * 4;
me_req_size = SI_PM4_UCODE_SIZE * 4;
ce_req_size = SI_CE_UCODE_SIZE * 4;
rlc_req_size = SI_RLC_UCODE_SIZE * 4;
mc_req_size = mc2_req_size = OLAND_MC_UCODE_SIZE * 4;
smc_req_size = ALIGN(OLAND_SMC_UCODE_SIZE, 4);
break;
case CHIP_HAINAN:
chip_name = "HAINAN";
if (((rdev->pdev->revision == 0x81) &&
(rdev->pdev->device == 0x6660)) ||
((rdev->pdev->revision == 0x83) &&
((rdev->pdev->device == 0x6660) ||
(rdev->pdev->device == 0x6663) ||
(rdev->pdev->device == 0x6665) ||
(rdev->pdev->device == 0x6667))))
new_smc = true;
else if ((rdev->pdev->revision == 0xc3) &&
(rdev->pdev->device == 0x6665))
banks2_fw = true;
new_chip_name = "hainan";
pfp_req_size = SI_PFP_UCODE_SIZE * 4;
me_req_size = SI_PM4_UCODE_SIZE * 4;
ce_req_size = SI_CE_UCODE_SIZE * 4;
rlc_req_size = SI_RLC_UCODE_SIZE * 4;
mc_req_size = mc2_req_size = OLAND_MC_UCODE_SIZE * 4;
smc_req_size = ALIGN(HAINAN_SMC_UCODE_SIZE, 4);
break;
default: BUG();
}
/* this memory configuration requires special firmware */
if (((RREG32(MC_SEQ_MISC0) & 0xff000000) >> 24) == 0x58)
si58_fw = true;
DRM_INFO("Loading %s Microcode\n", new_chip_name);
snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", new_chip_name);
err = request_firmware(&rdev->pfp_fw, fw_name, rdev->dev);
if (err) {
snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name);
err = request_firmware(&rdev->pfp_fw, fw_name, rdev->dev);
if (err)
goto out;
if (rdev->pfp_fw->size != pfp_req_size) {
pr_err("si_cp: Bogus length %zu in firmware \"%s\"\n",
rdev->pfp_fw->size, fw_name);
err = -EINVAL;
goto out;
}
} else {
err = radeon_ucode_validate(rdev->pfp_fw);
if (err) {
pr_err("si_cp: validation failed for firmware \"%s\"\n",
fw_name);
goto out;
} else {
new_fw++;
}
}
snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", new_chip_name);
err = request_firmware(&rdev->me_fw, fw_name, rdev->dev);
if (err) {
snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name);
err = request_firmware(&rdev->me_fw, fw_name, rdev->dev);
if (err)
goto out;
if (rdev->me_fw->size != me_req_size) {
pr_err("si_cp: Bogus length %zu in firmware \"%s\"\n",
rdev->me_fw->size, fw_name);
err = -EINVAL;
}
} else {
err = radeon_ucode_validate(rdev->me_fw);
if (err) {
pr_err("si_cp: validation failed for firmware \"%s\"\n",
fw_name);
goto out;
} else {
new_fw++;
}
}
snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", new_chip_name);
err = request_firmware(&rdev->ce_fw, fw_name, rdev->dev);
if (err) {
snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name);
err = request_firmware(&rdev->ce_fw, fw_name, rdev->dev);
if (err)
goto out;
if (rdev->ce_fw->size != ce_req_size) {
pr_err("si_cp: Bogus length %zu in firmware \"%s\"\n",
rdev->ce_fw->size, fw_name);
err = -EINVAL;
}
} else {
err = radeon_ucode_validate(rdev->ce_fw);
if (err) {
pr_err("si_cp: validation failed for firmware \"%s\"\n",
fw_name);
goto out;
} else {
new_fw++;
}
}
snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", new_chip_name);
err = request_firmware(&rdev->rlc_fw, fw_name, rdev->dev);
if (err) {
snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name);
err = request_firmware(&rdev->rlc_fw, fw_name, rdev->dev);
if (err)
goto out;
if (rdev->rlc_fw->size != rlc_req_size) {
pr_err("si_rlc: Bogus length %zu in firmware \"%s\"\n",
rdev->rlc_fw->size, fw_name);
err = -EINVAL;
}
} else {
err = radeon_ucode_validate(rdev->rlc_fw);
if (err) {
pr_err("si_cp: validation failed for firmware \"%s\"\n",
fw_name);
goto out;
} else {
new_fw++;
}
}
if (si58_fw)
snprintf(fw_name, sizeof(fw_name), "radeon/si58_mc.bin");
else
snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", new_chip_name);
err = request_firmware(&rdev->mc_fw, fw_name, rdev->dev);
if (err) {
snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc2.bin", chip_name);
err = request_firmware(&rdev->mc_fw, fw_name, rdev->dev);
if (err) {
snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name);
err = request_firmware(&rdev->mc_fw, fw_name, rdev->dev);
if (err)
goto out;
}
if ((rdev->mc_fw->size != mc_req_size) &&
(rdev->mc_fw->size != mc2_req_size)) {
pr_err("si_mc: Bogus length %zu in firmware \"%s\"\n",
rdev->mc_fw->size, fw_name);
err = -EINVAL;
}
DRM_INFO("%s: %zu bytes\n", fw_name, rdev->mc_fw->size);
} else {
err = radeon_ucode_validate(rdev->mc_fw);
if (err) {
pr_err("si_cp: validation failed for firmware \"%s\"\n",
fw_name);
goto out;
} else {
new_fw++;
}
}
if (banks2_fw)
snprintf(fw_name, sizeof(fw_name), "radeon/banks_k_2_smc.bin");
else if (new_smc)
snprintf(fw_name, sizeof(fw_name), "radeon/%s_k_smc.bin", new_chip_name);
else
snprintf(fw_name, sizeof(fw_name), "radeon/%s_smc.bin", new_chip_name);
err = request_firmware(&rdev->smc_fw, fw_name, rdev->dev);
if (err) {
snprintf(fw_name, sizeof(fw_name), "radeon/%s_smc.bin", chip_name);
err = request_firmware(&rdev->smc_fw, fw_name, rdev->dev);
if (err) {
pr_err("smc: error loading firmware \"%s\"\n", fw_name);
release_firmware(rdev->smc_fw);
rdev->smc_fw = NULL;
err = 0;
} else if (rdev->smc_fw->size != smc_req_size) {
pr_err("si_smc: Bogus length %zu in firmware \"%s\"\n",
rdev->smc_fw->size, fw_name);
err = -EINVAL;
}
} else {
err = radeon_ucode_validate(rdev->smc_fw);
if (err) {
pr_err("si_cp: validation failed for firmware \"%s\"\n",
fw_name);
goto out;
} else {
new_fw++;
}
}
if (new_fw == 0) {
rdev->new_fw = false;
} else if (new_fw < 6) {
pr_err("si_fw: mixing new and old firmware!\n");
err = -EINVAL;
} else {
rdev->new_fw = true;
}
out:
if (err) {
if (err != -EINVAL)
pr_err("si_cp: Failed to load firmware \"%s\"\n",
fw_name);
release_firmware(rdev->pfp_fw);
rdev->pfp_fw = NULL;
release_firmware(rdev->me_fw);
rdev->me_fw = NULL;
release_firmware(rdev->ce_fw);
rdev->ce_fw = NULL;
release_firmware(rdev->rlc_fw);
rdev->rlc_fw = NULL;
release_firmware(rdev->mc_fw);
rdev->mc_fw = NULL;
release_firmware(rdev->smc_fw);
rdev->smc_fw = NULL;
}
return err;
}
/* watermark setup */
static u32 dce6_line_buffer_adjust(struct radeon_device *rdev,
struct radeon_crtc *radeon_crtc,
struct drm_display_mode *mode,
struct drm_display_mode *other_mode)
{
u32 tmp, buffer_alloc, i;
u32 pipe_offset = radeon_crtc->crtc_id * 0x20;
/*
* Line Buffer Setup
* There are 3 line buffers, each one shared by 2 display controllers.
* DC_LB_MEMORY_SPLIT controls how that line buffer is shared between
* the display controllers. The paritioning is done via one of four
* preset allocations specified in bits 21:20:
* 0 - half lb
* 2 - whole lb, other crtc must be disabled
*/
/* this can get tricky if we have two large displays on a paired group
* of crtcs. Ideally for multiple large displays we'd assign them to
* non-linked crtcs for maximum line buffer allocation.
*/
if (radeon_crtc->base.enabled && mode) {
if (other_mode) {
tmp = 0; /* 1/2 */
buffer_alloc = 1;
} else {
tmp = 2; /* whole */
buffer_alloc = 2;
}
} else {
tmp = 0;
buffer_alloc = 0;
}
WREG32(DC_LB_MEMORY_SPLIT + radeon_crtc->crtc_offset,
DC_LB_MEMORY_CONFIG(tmp));
WREG32(PIPE0_DMIF_BUFFER_CONTROL + pipe_offset,
DMIF_BUFFERS_ALLOCATED(buffer_alloc));
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(PIPE0_DMIF_BUFFER_CONTROL + pipe_offset) &
DMIF_BUFFERS_ALLOCATED_COMPLETED)
break;
udelay(1);
}
if (radeon_crtc->base.enabled && mode) {
switch (tmp) {
case 0:
default:
return 4096 * 2;
case 2:
return 8192 * 2;
}
}
/* controller not enabled, so no lb used */
return 0;
}
static u32 si_get_number_of_dram_channels(struct radeon_device *rdev)
{
u32 tmp = RREG32(MC_SHARED_CHMAP);
switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
case 0:
default:
return 1;
case 1:
return 2;
case 2:
return 4;
case 3:
return 8;
case 4:
return 3;
case 5:
return 6;
case 6:
return 10;
case 7:
return 12;
case 8:
return 16;
}
}
struct dce6_wm_params {
u32 dram_channels; /* number of dram channels */
u32 yclk; /* bandwidth per dram data pin in kHz */
u32 sclk; /* engine clock in kHz */
u32 disp_clk; /* display clock in kHz */
u32 src_width; /* viewport width */
u32 active_time; /* active display time in ns */
u32 blank_time; /* blank time in ns */
bool interlaced; /* mode is interlaced */
fixed20_12 vsc; /* vertical scale ratio */
u32 num_heads; /* number of active crtcs */
u32 bytes_per_pixel; /* bytes per pixel display + overlay */
u32 lb_size; /* line buffer allocated to pipe */
u32 vtaps; /* vertical scaler taps */
};
static u32 dce6_dram_bandwidth(struct dce6_wm_params *wm)
{
/* Calculate raw DRAM Bandwidth */
fixed20_12 dram_efficiency; /* 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
dram_efficiency.full = dfixed_const(7);
dram_efficiency.full = dfixed_div(dram_efficiency, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, dram_efficiency);
return dfixed_trunc(bandwidth);
}
static u32 dce6_dram_bandwidth_for_display(struct dce6_wm_params *wm)
{
/* Calculate DRAM Bandwidth and the part allocated to display. */
fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */
disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation);
return dfixed_trunc(bandwidth);
}
static u32 dce6_data_return_bandwidth(struct dce6_wm_params *wm)
{
/* Calculate the display Data return Bandwidth */
fixed20_12 return_efficiency; /* 0.8 */
fixed20_12 sclk, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
sclk.full = dfixed_const(wm->sclk);
sclk.full = dfixed_div(sclk, a);
a.full = dfixed_const(10);
return_efficiency.full = dfixed_const(8);
return_efficiency.full = dfixed_div(return_efficiency, a);
a.full = dfixed_const(32);
bandwidth.full = dfixed_mul(a, sclk);
bandwidth.full = dfixed_mul(bandwidth, return_efficiency);
return dfixed_trunc(bandwidth);
}
static u32 dce6_get_dmif_bytes_per_request(struct dce6_wm_params *wm)
{
return 32;
}
static u32 dce6_dmif_request_bandwidth(struct dce6_wm_params *wm)
{
/* Calculate the DMIF Request Bandwidth */
fixed20_12 disp_clk_request_efficiency; /* 0.8 */
fixed20_12 disp_clk, sclk, bandwidth;
fixed20_12 a, b1, b2;
u32 min_bandwidth;
a.full = dfixed_const(1000);
disp_clk.full = dfixed_const(wm->disp_clk);
disp_clk.full = dfixed_div(disp_clk, a);
a.full = dfixed_const(dce6_get_dmif_bytes_per_request(wm) / 2);
b1.full = dfixed_mul(a, disp_clk);
a.full = dfixed_const(1000);
sclk.full = dfixed_const(wm->sclk);
sclk.full = dfixed_div(sclk, a);
a.full = dfixed_const(dce6_get_dmif_bytes_per_request(wm));
b2.full = dfixed_mul(a, sclk);
a.full = dfixed_const(10);
disp_clk_request_efficiency.full = dfixed_const(8);
disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a);
min_bandwidth = min(dfixed_trunc(b1), dfixed_trunc(b2));
a.full = dfixed_const(min_bandwidth);
bandwidth.full = dfixed_mul(a, disp_clk_request_efficiency);
return dfixed_trunc(bandwidth);
}
static u32 dce6_available_bandwidth(struct dce6_wm_params *wm)
{
/* Calculate the Available bandwidth. Display can use this temporarily but not in average. */
u32 dram_bandwidth = dce6_dram_bandwidth(wm);
u32 data_return_bandwidth = dce6_data_return_bandwidth(wm);
u32 dmif_req_bandwidth = dce6_dmif_request_bandwidth(wm);
return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth));
}
static u32 dce6_average_bandwidth(struct dce6_wm_params *wm)
{
/* Calculate the display mode Average Bandwidth
* DisplayMode should contain the source and destination dimensions,
* timing, etc.
*/
fixed20_12 bpp;
fixed20_12 line_time;
fixed20_12 src_width;
fixed20_12 bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
line_time.full = dfixed_const(wm->active_time + wm->blank_time);
line_time.full = dfixed_div(line_time, a);
bpp.full = dfixed_const(wm->bytes_per_pixel);
src_width.full = dfixed_const(wm->src_width);
bandwidth.full = dfixed_mul(src_width, bpp);
bandwidth.full = dfixed_mul(bandwidth, wm->vsc);
bandwidth.full = dfixed_div(bandwidth, line_time);
return dfixed_trunc(bandwidth);
}
static u32 dce6_latency_watermark(struct dce6_wm_params *wm)
{
/* First calcualte the latency in ns */
u32 mc_latency = 2000; /* 2000 ns. */
u32 available_bandwidth = dce6_available_bandwidth(wm);
u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth;
u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth;
u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */
u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) +
(wm->num_heads * cursor_line_pair_return_time);
u32 latency = mc_latency + other_heads_data_return_time + dc_latency;
u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time;
u32 tmp, dmif_size = 12288;
fixed20_12 a, b, c;
if (wm->num_heads == 0)
return 0;
a.full = dfixed_const(2);
b.full = dfixed_const(1);
if ((wm->vsc.full > a.full) ||
((wm->vsc.full > b.full) && (wm->vtaps >= 3)) ||
(wm->vtaps >= 5) ||
((wm->vsc.full >= a.full) && wm->interlaced))
max_src_lines_per_dst_line = 4;
else
max_src_lines_per_dst_line = 2;
a.full = dfixed_const(available_bandwidth);
b.full = dfixed_const(wm->num_heads);
a.full = dfixed_div(a, b);
tmp = div_u64((u64) dmif_size * (u64) wm->disp_clk, mc_latency + 512);
tmp = min(dfixed_trunc(a), tmp);
lb_fill_bw = min(tmp, wm->disp_clk * wm->bytes_per_pixel / 1000);
a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel);
b.full = dfixed_const(1000);
c.full = dfixed_const(lb_fill_bw);
b.full = dfixed_div(c, b);
a.full = dfixed_div(a, b);
line_fill_time = dfixed_trunc(a);
if (line_fill_time < wm->active_time)
return latency;
else
return latency + (line_fill_time - wm->active_time);
}
static bool dce6_average_bandwidth_vs_dram_bandwidth_for_display(struct dce6_wm_params *wm)
{
if (dce6_average_bandwidth(wm) <=
(dce6_dram_bandwidth_for_display(wm) / wm->num_heads))
return true;
else
return false;
};
static bool dce6_average_bandwidth_vs_available_bandwidth(struct dce6_wm_params *wm)
{
if (dce6_average_bandwidth(wm) <=
(dce6_available_bandwidth(wm) / wm->num_heads))
return true;
else
return false;
};
static bool dce6_check_latency_hiding(struct dce6_wm_params *wm)
{
u32 lb_partitions = wm->lb_size / wm->src_width;
u32 line_time = wm->active_time + wm->blank_time;
u32 latency_tolerant_lines;
u32 latency_hiding;
fixed20_12 a;
a.full = dfixed_const(1);
if (wm->vsc.full > a.full)
latency_tolerant_lines = 1;
else {
if (lb_partitions <= (wm->vtaps + 1))
latency_tolerant_lines = 1;
else
latency_tolerant_lines = 2;
}
latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time);
if (dce6_latency_watermark(wm) <= latency_hiding)
return true;
else
return false;
}
static void dce6_program_watermarks(struct radeon_device *rdev,
struct radeon_crtc *radeon_crtc,
u32 lb_size, u32 num_heads)
{
struct drm_display_mode *mode = &radeon_crtc->base.mode;
struct dce6_wm_params wm_low, wm_high;
u32 dram_channels;
u32 active_time;
u32 line_time = 0;
u32 latency_watermark_a = 0, latency_watermark_b = 0;
u32 priority_a_mark = 0, priority_b_mark = 0;
u32 priority_a_cnt = PRIORITY_OFF;
u32 priority_b_cnt = PRIORITY_OFF;
u32 tmp, arb_control3;
fixed20_12 a, b, c;
if (radeon_crtc->base.enabled && num_heads && mode) {
active_time = (u32) div_u64((u64)mode->crtc_hdisplay * 1000000,
(u32)mode->clock);
line_time = (u32) div_u64((u64)mode->crtc_htotal * 1000000,
(u32)mode->clock);
line_time = min(line_time, (u32)65535);
priority_a_cnt = 0;
priority_b_cnt = 0;
if (rdev->family == CHIP_ARUBA)
dram_channels = evergreen_get_number_of_dram_channels(rdev);
else
dram_channels = si_get_number_of_dram_channels(rdev);
/* watermark for high clocks */
if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
wm_high.yclk =
radeon_dpm_get_mclk(rdev, false) * 10;
wm_high.sclk =
radeon_dpm_get_sclk(rdev, false) * 10;
} else {
wm_high.yclk = rdev->pm.current_mclk * 10;
wm_high.sclk = rdev->pm.current_sclk * 10;
}
wm_high.disp_clk = mode->clock;
wm_high.src_width = mode->crtc_hdisplay;
wm_high.active_time = active_time;
wm_high.blank_time = line_time - wm_high.active_time;
wm_high.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm_high.interlaced = true;
wm_high.vsc = radeon_crtc->vsc;
wm_high.vtaps = 1;
if (radeon_crtc->rmx_type != RMX_OFF)
wm_high.vtaps = 2;
wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm_high.lb_size = lb_size;
wm_high.dram_channels = dram_channels;
wm_high.num_heads = num_heads;
/* watermark for low clocks */
if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
wm_low.yclk =
radeon_dpm_get_mclk(rdev, true) * 10;
wm_low.sclk =
radeon_dpm_get_sclk(rdev, true) * 10;
} else {
wm_low.yclk = rdev->pm.current_mclk * 10;
wm_low.sclk = rdev->pm.current_sclk * 10;
}
wm_low.disp_clk = mode->clock;
wm_low.src_width = mode->crtc_hdisplay;
wm_low.active_time = active_time;
wm_low.blank_time = line_time - wm_low.active_time;
wm_low.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm_low.interlaced = true;
wm_low.vsc = radeon_crtc->vsc;
wm_low.vtaps = 1;
if (radeon_crtc->rmx_type != RMX_OFF)
wm_low.vtaps = 2;
wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm_low.lb_size = lb_size;
wm_low.dram_channels = dram_channels;
wm_low.num_heads = num_heads;
/* set for high clocks */
latency_watermark_a = min(dce6_latency_watermark(&wm_high), (u32)65535);
/* set for low clocks */
latency_watermark_b = min(dce6_latency_watermark(&wm_low), (u32)65535);
/* possibly force display priority to high */
/* should really do this at mode validation time... */
if (!dce6_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) ||
!dce6_average_bandwidth_vs_available_bandwidth(&wm_high) ||
!dce6_check_latency_hiding(&wm_high) ||
(rdev->disp_priority == 2)) {
DRM_DEBUG_KMS("force priority to high\n");
priority_a_cnt |= PRIORITY_ALWAYS_ON;
priority_b_cnt |= PRIORITY_ALWAYS_ON;
}
if (!dce6_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) ||
!dce6_average_bandwidth_vs_available_bandwidth(&wm_low) ||
!dce6_check_latency_hiding(&wm_low) ||
(rdev->disp_priority == 2)) {
DRM_DEBUG_KMS("force priority to high\n");
priority_a_cnt |= PRIORITY_ALWAYS_ON;
priority_b_cnt |= PRIORITY_ALWAYS_ON;
}
a.full = dfixed_const(1000);
b.full = dfixed_const(mode->clock);
b.full = dfixed_div(b, a);
c.full = dfixed_const(latency_watermark_a);
c.full = dfixed_mul(c, b);
c.full = dfixed_mul(c, radeon_crtc->hsc);
c.full = dfixed_div(c, a);
a.full = dfixed_const(16);
c.full = dfixed_div(c, a);
priority_a_mark = dfixed_trunc(c);
priority_a_cnt |= priority_a_mark & PRIORITY_MARK_MASK;
a.full = dfixed_const(1000);
b.full = dfixed_const(mode->clock);
b.full = dfixed_div(b, a);
c.full = dfixed_const(latency_watermark_b);
c.full = dfixed_mul(c, b);
c.full = dfixed_mul(c, radeon_crtc->hsc);
c.full = dfixed_div(c, a);
a.full = dfixed_const(16);
c.full = dfixed_div(c, a);
priority_b_mark = dfixed_trunc(c);
priority_b_cnt |= priority_b_mark & PRIORITY_MARK_MASK;
/* Save number of lines the linebuffer leads before the scanout */
radeon_crtc->lb_vblank_lead_lines = DIV_ROUND_UP(lb_size, mode->crtc_hdisplay);
}
/* select wm A */
arb_control3 = RREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset);
tmp = arb_control3;
tmp &= ~LATENCY_WATERMARK_MASK(3);
tmp |= LATENCY_WATERMARK_MASK(1);
WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset, tmp);
WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset,
(LATENCY_LOW_WATERMARK(latency_watermark_a) |
LATENCY_HIGH_WATERMARK(line_time)));
/* select wm B */
tmp = RREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset);
tmp &= ~LATENCY_WATERMARK_MASK(3);
tmp |= LATENCY_WATERMARK_MASK(2);
WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset, tmp);
WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset,
(LATENCY_LOW_WATERMARK(latency_watermark_b) |
LATENCY_HIGH_WATERMARK(line_time)));
/* restore original selection */
WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset, arb_control3);
/* write the priority marks */
WREG32(PRIORITY_A_CNT + radeon_crtc->crtc_offset, priority_a_cnt);
WREG32(PRIORITY_B_CNT + radeon_crtc->crtc_offset, priority_b_cnt);
/* save values for DPM */
radeon_crtc->line_time = line_time;
radeon_crtc->wm_high = latency_watermark_a;
radeon_crtc->wm_low = latency_watermark_b;
}
void dce6_bandwidth_update(struct radeon_device *rdev)
{
struct drm_display_mode *mode0 = NULL;
struct drm_display_mode *mode1 = NULL;
u32 num_heads = 0, lb_size;
int i;
if (!rdev->mode_info.mode_config_initialized)
return;
radeon_update_display_priority(rdev);
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->mode_info.crtcs[i]->base.enabled)
num_heads++;
}
for (i = 0; i < rdev->num_crtc; i += 2) {
mode0 = &rdev->mode_info.crtcs[i]->base.mode;
mode1 = &rdev->mode_info.crtcs[i+1]->base.mode;
lb_size = dce6_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i], mode0, mode1);
dce6_program_watermarks(rdev, rdev->mode_info.crtcs[i], lb_size, num_heads);
lb_size = dce6_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i+1], mode1, mode0);
dce6_program_watermarks(rdev, rdev->mode_info.crtcs[i+1], lb_size, num_heads);
}
}
/*
* Core functions
*/
static void si_tiling_mode_table_init(struct radeon_device *rdev)
{
u32 *tile = rdev->config.si.tile_mode_array;
const u32 num_tile_mode_states =
ARRAY_SIZE(rdev->config.si.tile_mode_array);
u32 reg_offset, split_equal_to_row_size;
switch (rdev->config.si.mem_row_size_in_kb) {
case 1:
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB;
break;
case 2:
default:
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB;
break;
case 4:
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB;
break;
}
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
tile[reg_offset] = 0;
switch(rdev->family) {
case CHIP_TAHITI:
case CHIP_PITCAIRN:
/* non-AA compressed depth or any compressed stencil */
tile[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 2xAA/4xAA compressed depth only */
tile[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 8xAA compressed depth only */
tile[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 2xAA/4xAA compressed depth with stencil (for depth buffer) */
tile[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Maps w/ a dimension less than the 2D macro-tile dimensions (for mipmapped depth textures) */
tile[4] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Uncompressed 16bpp depth - and stencil buffer allocated with it */
tile[5] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Uncompressed 32bpp depth - and stencil buffer allocated with it */
tile[6] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
/* Uncompressed 8bpp stencil without depth (drivers typically do not use) */
tile[7] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 1D and 1D Array Surfaces */
tile[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Displayable maps. */
tile[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Display 8bpp. */
tile[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Display 16bpp. */
tile[11] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Display 32bpp. */
tile[12] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
/* Thin. */
tile[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Thin 8 bpp. */
tile[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
/* Thin 16 bpp. */
tile[15] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
/* Thin 32 bpp. */
tile[16] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
/* Thin 64 bpp. */
tile[17] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
/* 8 bpp PRT. */
tile[21] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 16 bpp PRT */
tile[22] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
/* 32 bpp PRT */
tile[23] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 64 bpp PRT */
tile[24] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 128 bpp PRT */
tile[25] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_1KB) |
NUM_BANKS(ADDR_SURF_8_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
WREG32(GB_TILE_MODE0 + (reg_offset * 4), tile[reg_offset]);
break;
case CHIP_VERDE:
case CHIP_OLAND:
case CHIP_HAINAN:
/* non-AA compressed depth or any compressed stencil */
tile[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
/* 2xAA/4xAA compressed depth only */
tile[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
/* 8xAA compressed depth only */
tile[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
/* 2xAA/4xAA compressed depth with stencil (for depth buffer) */
tile[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
/* Maps w/ a dimension less than the 2D macro-tile dimensions (for mipmapped depth textures) */
tile[4] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Uncompressed 16bpp depth - and stencil buffer allocated with it */
tile[5] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Uncompressed 32bpp depth - and stencil buffer allocated with it */
tile[6] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Uncompressed 8bpp stencil without depth (drivers typically do not use) */
tile[7] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
/* 1D and 1D Array Surfaces */
tile[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Displayable maps. */
tile[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Display 8bpp. */
tile[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
/* Display 16bpp. */
tile[11] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Display 32bpp. */
tile[12] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Thin. */
tile[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Thin 8 bpp. */
tile[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Thin 16 bpp. */
tile[15] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Thin 32 bpp. */
tile[16] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* Thin 64 bpp. */
tile[17] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 8 bpp PRT. */
tile[21] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 16 bpp PRT */
tile[22] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
/* 32 bpp PRT */
tile[23] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 64 bpp PRT */
tile[24] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
/* 128 bpp PRT */
tile[25] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_1KB) |
NUM_BANKS(ADDR_SURF_8_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
WREG32(GB_TILE_MODE0 + (reg_offset * 4), tile[reg_offset]);
break;
default:
DRM_ERROR("unknown asic: 0x%x\n", rdev->family);
}
}
static void si_select_se_sh(struct radeon_device *rdev,
u32 se_num, u32 sh_num)
{
u32 data = INSTANCE_BROADCAST_WRITES;
if ((se_num == 0xffffffff) && (sh_num == 0xffffffff))
data |= SH_BROADCAST_WRITES | SE_BROADCAST_WRITES;
else if (se_num == 0xffffffff)
data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num);
else if (sh_num == 0xffffffff)
data |= SH_BROADCAST_WRITES | SE_INDEX(se_num);
else
data |= SH_INDEX(sh_num) | SE_INDEX(se_num);
WREG32(GRBM_GFX_INDEX, data);
}
static u32 si_create_bitmask(u32 bit_width)
{
u32 i, mask = 0;
for (i = 0; i < bit_width; i++) {
mask <<= 1;
mask |= 1;
}
return mask;
}
static u32 si_get_cu_enabled(struct radeon_device *rdev, u32 cu_per_sh)
{
u32 data, mask;
data = RREG32(CC_GC_SHADER_ARRAY_CONFIG);
if (data & 1)
data &= INACTIVE_CUS_MASK;
else
data = 0;
data |= RREG32(GC_USER_SHADER_ARRAY_CONFIG);
data >>= INACTIVE_CUS_SHIFT;
mask = si_create_bitmask(cu_per_sh);
return ~data & mask;
}
static void si_setup_spi(struct radeon_device *rdev,
u32 se_num, u32 sh_per_se,
u32 cu_per_sh)
{
int i, j, k;
u32 data, mask, active_cu;
for (i = 0; i < se_num; i++) {
for (j = 0; j < sh_per_se; j++) {
si_select_se_sh(rdev, i, j);
data = RREG32(SPI_STATIC_THREAD_MGMT_3);
active_cu = si_get_cu_enabled(rdev, cu_per_sh);
mask = 1;
for (k = 0; k < 16; k++) {
mask <<= k;
if (active_cu & mask) {
data &= ~mask;
WREG32(SPI_STATIC_THREAD_MGMT_3, data);
break;
}
}
}
}
si_select_se_sh(rdev, 0xffffffff, 0xffffffff);
}
static u32 si_get_rb_disabled(struct radeon_device *rdev,
u32 max_rb_num_per_se,
u32 sh_per_se)
{
u32 data, mask;
data = RREG32(CC_RB_BACKEND_DISABLE);
if (data & 1)
data &= BACKEND_DISABLE_MASK;
else
data = 0;
data |= RREG32(GC_USER_RB_BACKEND_DISABLE);
data >>= BACKEND_DISABLE_SHIFT;
mask = si_create_bitmask(max_rb_num_per_se / sh_per_se);
return data & mask;
}
static void si_setup_rb(struct radeon_device *rdev,
u32 se_num, u32 sh_per_se,
u32 max_rb_num_per_se)
{
int i, j;
u32 data, mask;
u32 disabled_rbs = 0;
u32 enabled_rbs = 0;
for (i = 0; i < se_num; i++) {
for (j = 0; j < sh_per_se; j++) {
si_select_se_sh(rdev, i, j);
data = si_get_rb_disabled(rdev, max_rb_num_per_se, sh_per_se);
disabled_rbs |= data << ((i * sh_per_se + j) * TAHITI_RB_BITMAP_WIDTH_PER_SH);
}
}
si_select_se_sh(rdev, 0xffffffff, 0xffffffff);
mask = 1;
for (i = 0; i < max_rb_num_per_se * se_num; i++) {
if (!(disabled_rbs & mask))
enabled_rbs |= mask;
mask <<= 1;
}
rdev->config.si.backend_enable_mask = enabled_rbs;
for (i = 0; i < se_num; i++) {
si_select_se_sh(rdev, i, 0xffffffff);
data = 0;
for (j = 0; j < sh_per_se; j++) {
switch (enabled_rbs & 3) {
case 1:
data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2);
break;
case 2:
data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2);
break;
case 3:
default:
data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2);
break;
}
enabled_rbs >>= 2;
}
WREG32(PA_SC_RASTER_CONFIG, data);
}
si_select_se_sh(rdev, 0xffffffff, 0xffffffff);
}
static void si_gpu_init(struct radeon_device *rdev)
{
u32 gb_addr_config = 0;
u32 mc_shared_chmap, mc_arb_ramcfg;
u32 sx_debug_1;
u32 hdp_host_path_cntl;
u32 tmp;
int i, j;
switch (rdev->family) {
case CHIP_TAHITI:
rdev->config.si.max_shader_engines = 2;
rdev->config.si.max_tile_pipes = 12;
rdev->config.si.max_cu_per_sh = 8;
rdev->config.si.max_sh_per_se = 2;
rdev->config.si.max_backends_per_se = 4;
rdev->config.si.max_texture_channel_caches = 12;
rdev->config.si.max_gprs = 256;
rdev->config.si.max_gs_threads = 32;
rdev->config.si.max_hw_contexts = 8;
rdev->config.si.sc_prim_fifo_size_frontend = 0x20;
rdev->config.si.sc_prim_fifo_size_backend = 0x100;
rdev->config.si.sc_hiz_tile_fifo_size = 0x30;
rdev->config.si.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TAHITI_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_PITCAIRN:
rdev->config.si.max_shader_engines = 2;
rdev->config.si.max_tile_pipes = 8;
rdev->config.si.max_cu_per_sh = 5;
rdev->config.si.max_sh_per_se = 2;
rdev->config.si.max_backends_per_se = 4;
rdev->config.si.max_texture_channel_caches = 8;
rdev->config.si.max_gprs = 256;
rdev->config.si.max_gs_threads = 32;
rdev->config.si.max_hw_contexts = 8;
rdev->config.si.sc_prim_fifo_size_frontend = 0x20;
rdev->config.si.sc_prim_fifo_size_backend = 0x100;
rdev->config.si.sc_hiz_tile_fifo_size = 0x30;
rdev->config.si.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TAHITI_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_VERDE:
default:
rdev->config.si.max_shader_engines = 1;
rdev->config.si.max_tile_pipes = 4;
rdev->config.si.max_cu_per_sh = 5;
rdev->config.si.max_sh_per_se = 2;
rdev->config.si.max_backends_per_se = 4;
rdev->config.si.max_texture_channel_caches = 4;
rdev->config.si.max_gprs = 256;
rdev->config.si.max_gs_threads = 32;
rdev->config.si.max_hw_contexts = 8;
rdev->config.si.sc_prim_fifo_size_frontend = 0x20;
rdev->config.si.sc_prim_fifo_size_backend = 0x40;
rdev->config.si.sc_hiz_tile_fifo_size = 0x30;
rdev->config.si.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = VERDE_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_OLAND:
rdev->config.si.max_shader_engines = 1;
rdev->config.si.max_tile_pipes = 4;
rdev->config.si.max_cu_per_sh = 6;
rdev->config.si.max_sh_per_se = 1;
rdev->config.si.max_backends_per_se = 2;
rdev->config.si.max_texture_channel_caches = 4;
rdev->config.si.max_gprs = 256;
rdev->config.si.max_gs_threads = 16;
rdev->config.si.max_hw_contexts = 8;
rdev->config.si.sc_prim_fifo_size_frontend = 0x20;
rdev->config.si.sc_prim_fifo_size_backend = 0x40;
rdev->config.si.sc_hiz_tile_fifo_size = 0x30;
rdev->config.si.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = VERDE_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_HAINAN:
rdev->config.si.max_shader_engines = 1;
rdev->config.si.max_tile_pipes = 4;
rdev->config.si.max_cu_per_sh = 5;
rdev->config.si.max_sh_per_se = 1;
rdev->config.si.max_backends_per_se = 1;
rdev->config.si.max_texture_channel_caches = 2;
rdev->config.si.max_gprs = 256;
rdev->config.si.max_gs_threads = 16;
rdev->config.si.max_hw_contexts = 8;
rdev->config.si.sc_prim_fifo_size_frontend = 0x20;
rdev->config.si.sc_prim_fifo_size_backend = 0x40;
rdev->config.si.sc_hiz_tile_fifo_size = 0x30;
rdev->config.si.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = HAINAN_GB_ADDR_CONFIG_GOLDEN;
break;
}
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
WREG32((0x2c14 + j), 0x00000000);
WREG32((0x2c18 + j), 0x00000000);
WREG32((0x2c1c + j), 0x00000000);
WREG32((0x2c20 + j), 0x00000000);
WREG32((0x2c24 + j), 0x00000000);
}
WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));
WREG32(SRBM_INT_CNTL, 1);
WREG32(SRBM_INT_ACK, 1);
evergreen_fix_pci_max_read_req_size(rdev);
WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN);
mc_shared_chmap = RREG32(MC_SHARED_CHMAP);
mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG);
rdev->config.si.num_tile_pipes = rdev->config.si.max_tile_pipes;
rdev->config.si.mem_max_burst_length_bytes = 256;
tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT;
rdev->config.si.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024;
if (rdev->config.si.mem_row_size_in_kb > 4)
rdev->config.si.mem_row_size_in_kb = 4;
/* XXX use MC settings? */
rdev->config.si.shader_engine_tile_size = 32;
rdev->config.si.num_gpus = 1;
rdev->config.si.multi_gpu_tile_size = 64;
/* fix up row size */
gb_addr_config &= ~ROW_SIZE_MASK;
switch (rdev->config.si.mem_row_size_in_kb) {
case 1:
default:
gb_addr_config |= ROW_SIZE(0);
break;
case 2:
gb_addr_config |= ROW_SIZE(1);
break;
case 4:
gb_addr_config |= ROW_SIZE(2);
break;
}
/* setup tiling info dword. gb_addr_config is not adequate since it does
* not have bank info, so create a custom tiling dword.
* bits 3:0 num_pipes
* bits 7:4 num_banks
* bits 11:8 group_size
* bits 15:12 row_size
*/
rdev->config.si.tile_config = 0;
switch (rdev->config.si.num_tile_pipes) {
case 1:
rdev->config.si.tile_config |= (0 << 0);
break;
case 2:
rdev->config.si.tile_config |= (1 << 0);
break;
case 4:
rdev->config.si.tile_config |= (2 << 0);
break;
case 8:
default:
/* XXX what about 12? */
rdev->config.si.tile_config |= (3 << 0);
break;
}
switch ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT) {
case 0: /* four banks */
rdev->config.si.tile_config |= 0 << 4;
break;
case 1: /* eight banks */
rdev->config.si.tile_config |= 1 << 4;
break;
case 2: /* sixteen banks */
default:
rdev->config.si.tile_config |= 2 << 4;
break;
}
rdev->config.si.tile_config |=
((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8;
rdev->config.si.tile_config |=
((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12;
WREG32(GB_ADDR_CONFIG, gb_addr_config);
WREG32(DMIF_ADDR_CONFIG, gb_addr_config);
WREG32(DMIF_ADDR_CALC, gb_addr_config);
WREG32(HDP_ADDR_CONFIG, gb_addr_config);
WREG32(DMA_TILING_CONFIG + DMA0_REGISTER_OFFSET, gb_addr_config);
WREG32(DMA_TILING_CONFIG + DMA1_REGISTER_OFFSET, gb_addr_config);
if (rdev->has_uvd) {
WREG32(UVD_UDEC_ADDR_CONFIG, gb_addr_config);
WREG32(UVD_UDEC_DB_ADDR_CONFIG, gb_addr_config);
WREG32(UVD_UDEC_DBW_ADDR_CONFIG, gb_addr_config);
}
si_tiling_mode_table_init(rdev);
si_setup_rb(rdev, rdev->config.si.max_shader_engines,
rdev->config.si.max_sh_per_se,
rdev->config.si.max_backends_per_se);
si_setup_spi(rdev, rdev->config.si.max_shader_engines,
rdev->config.si.max_sh_per_se,
rdev->config.si.max_cu_per_sh);
rdev->config.si.active_cus = 0;
for (i = 0; i < rdev->config.si.max_shader_engines; i++) {
for (j = 0; j < rdev->config.si.max_sh_per_se; j++) {
rdev->config.si.active_cus +=
hweight32(si_get_cu_active_bitmap(rdev, i, j));
}
}
/* set HW defaults for 3D engine */
WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) |
ROQ_IB2_START(0x2b)));
WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60));
sx_debug_1 = RREG32(SX_DEBUG_1);
WREG32(SX_DEBUG_1, sx_debug_1);
WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4));
WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.si.sc_prim_fifo_size_frontend) |
SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.si.sc_prim_fifo_size_backend) |
SC_HIZ_TILE_FIFO_SIZE(rdev->config.si.sc_hiz_tile_fifo_size) |
SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.si.sc_earlyz_tile_fifo_size)));
WREG32(VGT_NUM_INSTANCES, 1);
WREG32(CP_PERFMON_CNTL, 0);
WREG32(SQ_CONFIG, 0);
WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) |
FORCE_EOV_MAX_REZ_CNT(255)));
WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) |
AUTO_INVLD_EN(ES_AND_GS_AUTO));
WREG32(VGT_GS_VERTEX_REUSE, 16);
WREG32(PA_SC_LINE_STIPPLE_STATE, 0);
WREG32(CB_PERFCOUNTER0_SELECT0, 0);
WREG32(CB_PERFCOUNTER0_SELECT1, 0);
WREG32(CB_PERFCOUNTER1_SELECT0, 0);
WREG32(CB_PERFCOUNTER1_SELECT1, 0);
WREG32(CB_PERFCOUNTER2_SELECT0, 0);
WREG32(CB_PERFCOUNTER2_SELECT1, 0);
WREG32(CB_PERFCOUNTER3_SELECT0, 0);
WREG32(CB_PERFCOUNTER3_SELECT1, 0);
tmp = RREG32(HDP_MISC_CNTL);
tmp |= HDP_FLUSH_INVALIDATE_CACHE;
WREG32(HDP_MISC_CNTL, tmp);
hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL);
WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl);
WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3));
udelay(50);
}
/*
* GPU scratch registers helpers function.
*/
static void si_scratch_init(struct radeon_device *rdev)
{
int i;
rdev->scratch.num_reg = 7;
rdev->scratch.reg_base = SCRATCH_REG0;
for (i = 0; i < rdev->scratch.num_reg; i++) {
rdev->scratch.free[i] = true;
rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
}
}
void si_fence_ring_emit(struct radeon_device *rdev,
struct radeon_fence *fence)
{
struct radeon_ring *ring = &rdev->ring[fence->ring];
u64 addr = rdev->fence_drv[fence->ring].gpu_addr;
/* flush read cache over gart */
radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
radeon_ring_write(ring, (CP_COHER_CNTL2 - PACKET3_SET_CONFIG_REG_START) >> 2);
radeon_ring_write(ring, 0);
radeon_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3));
radeon_ring_write(ring, PACKET3_TCL1_ACTION_ENA |
PACKET3_TC_ACTION_ENA |
PACKET3_SH_KCACHE_ACTION_ENA |
PACKET3_SH_ICACHE_ACTION_ENA);
radeon_ring_write(ring, 0xFFFFFFFF);
radeon_ring_write(ring, 0);
radeon_ring_write(ring, 10); /* poll interval */
/* EVENT_WRITE_EOP - flush caches, send int */
radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4));
radeon_ring_write(ring, EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5));
radeon_ring_write(ring, lower_32_bits(addr));
radeon_ring_write(ring, (upper_32_bits(addr) & 0xff) | DATA_SEL(1) | INT_SEL(2));
radeon_ring_write(ring, fence->seq);
radeon_ring_write(ring, 0);
}
/*
* IB stuff
*/
void si_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
{
struct radeon_ring *ring = &rdev->ring[ib->ring];
unsigned vm_id = ib->vm ? ib->vm->ids[ib->ring].id : 0;
u32 header;
if (ib->is_const_ib) {
/* set switch buffer packet before const IB */
radeon_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
radeon_ring_write(ring, 0);
header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2);
} else {
u32 next_rptr;
if (ring->rptr_save_reg) {
next_rptr = ring->wptr + 3 + 4 + 8;
radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
radeon_ring_write(ring, ((ring->rptr_save_reg -
PACKET3_SET_CONFIG_REG_START) >> 2));
radeon_ring_write(ring, next_rptr);
} else if (rdev->wb.enabled) {
next_rptr = ring->wptr + 5 + 4 + 8;
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
radeon_ring_write(ring, (1 << 8));
radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
radeon_ring_write(ring, next_rptr);
}
header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
}
radeon_ring_write(ring, header);
radeon_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
(ib->gpu_addr & 0xFFFFFFFC));
radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF);
radeon_ring_write(ring, ib->length_dw | (vm_id << 24));
if (!ib->is_const_ib) {
/* flush read cache over gart for this vmid */
radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
radeon_ring_write(ring, (CP_COHER_CNTL2 - PACKET3_SET_CONFIG_REG_START) >> 2);
radeon_ring_write(ring, vm_id);
radeon_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3));
radeon_ring_write(ring, PACKET3_TCL1_ACTION_ENA |
PACKET3_TC_ACTION_ENA |
PACKET3_SH_KCACHE_ACTION_ENA |
PACKET3_SH_ICACHE_ACTION_ENA);
radeon_ring_write(ring, 0xFFFFFFFF);
radeon_ring_write(ring, 0);
radeon_ring_write(ring, 10); /* poll interval */
}
}
/*
* CP.
*/
static void si_cp_enable(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32(CP_ME_CNTL, 0);
else {
if (rdev->asic->copy.copy_ring_index == RADEON_RING_TYPE_GFX_INDEX)
radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);
WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT));
WREG32(SCRATCH_UMSK, 0);
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = false;
rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = false;
}
udelay(50);
}
static int si_cp_load_microcode(struct radeon_device *rdev)
{
int i;
if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw)
return -EINVAL;
si_cp_enable(rdev, false);
if (rdev->new_fw) {
const struct gfx_firmware_header_v1_0 *pfp_hdr =
(const struct gfx_firmware_header_v1_0 *)rdev->pfp_fw->data;
const struct gfx_firmware_header_v1_0 *ce_hdr =
(const struct gfx_firmware_header_v1_0 *)rdev->ce_fw->data;
const struct gfx_firmware_header_v1_0 *me_hdr =
(const struct gfx_firmware_header_v1_0 *)rdev->me_fw->data;
const __le32 *fw_data;
u32 fw_size;
radeon_ucode_print_gfx_hdr(&pfp_hdr->header);
radeon_ucode_print_gfx_hdr(&ce_hdr->header);
radeon_ucode_print_gfx_hdr(&me_hdr->header);
/* PFP */
fw_data = (const __le32 *)
(rdev->pfp_fw->data + le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes) / 4;
WREG32(CP_PFP_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(CP_PFP_UCODE_DATA, le32_to_cpup(fw_data++));
WREG32(CP_PFP_UCODE_ADDR, 0);
/* CE */
fw_data = (const __le32 *)
(rdev->ce_fw->data + le32_to_cpu(ce_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(ce_hdr->header.ucode_size_bytes) / 4;
WREG32(CP_CE_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(CP_CE_UCODE_DATA, le32_to_cpup(fw_data++));
WREG32(CP_CE_UCODE_ADDR, 0);
/* ME */
fw_data = (const __be32 *)
(rdev->me_fw->data + le32_to_cpu(me_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes) / 4;
WREG32(CP_ME_RAM_WADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(CP_ME_RAM_DATA, le32_to_cpup(fw_data++));
WREG32(CP_ME_RAM_WADDR, 0);
} else {
const __be32 *fw_data;
/* PFP */
fw_data = (const __be32 *)rdev->pfp_fw->data;
WREG32(CP_PFP_UCODE_ADDR, 0);
for (i = 0; i < SI_PFP_UCODE_SIZE; i++)
WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++));
WREG32(CP_PFP_UCODE_ADDR, 0);
/* CE */
fw_data = (const __be32 *)rdev->ce_fw->data;
WREG32(CP_CE_UCODE_ADDR, 0);
for (i = 0; i < SI_CE_UCODE_SIZE; i++)
WREG32(CP_CE_UCODE_DATA, be32_to_cpup(fw_data++));
WREG32(CP_CE_UCODE_ADDR, 0);
/* ME */
fw_data = (const __be32 *)rdev->me_fw->data;
WREG32(CP_ME_RAM_WADDR, 0);
for (i = 0; i < SI_PM4_UCODE_SIZE; i++)
WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++));
WREG32(CP_ME_RAM_WADDR, 0);
}
WREG32(CP_PFP_UCODE_ADDR, 0);
WREG32(CP_CE_UCODE_ADDR, 0);
WREG32(CP_ME_RAM_WADDR, 0);
WREG32(CP_ME_RAM_RADDR, 0);
return 0;
}
static int si_cp_start(struct radeon_device *rdev)
{
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
int r, i;
r = radeon_ring_lock(rdev, ring, 7 + 4);
if (r) {
DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
return r;
}
/* init the CP */
radeon_ring_write(ring, PACKET3(PACKET3_ME_INITIALIZE, 5));
radeon_ring_write(ring, 0x1);
radeon_ring_write(ring, 0x0);
radeon_ring_write(ring, rdev->config.si.max_hw_contexts - 1);
radeon_ring_write(ring, PACKET3_ME_INITIALIZE_DEVICE_ID(1));
radeon_ring_write(ring, 0);
radeon_ring_write(ring, 0);
/* init the CE partitions */
radeon_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2));
radeon_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE));
radeon_ring_write(ring, 0xc000);
radeon_ring_write(ring, 0xe000);
radeon_ring_unlock_commit(rdev, ring, false);
si_cp_enable(rdev, true);
r = radeon_ring_lock(rdev, ring, si_default_size + 10);
if (r) {
DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
return r;
}
/* setup clear context state */
radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
for (i = 0; i < si_default_size; i++)
radeon_ring_write(ring, si_default_state[i]);
radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);
/* set clear context state */
radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
radeon_ring_write(ring, 0);
radeon_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2));
radeon_ring_write(ring, 0x00000316);
radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */
radeon_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */
radeon_ring_unlock_commit(rdev, ring, false);
for (i = RADEON_RING_TYPE_GFX_INDEX; i <= CAYMAN_RING_TYPE_CP2_INDEX; ++i) {
ring = &rdev->ring[i];
r = radeon_ring_lock(rdev, ring, 2);
/* clear the compute context state */
radeon_ring_write(ring, PACKET3_COMPUTE(PACKET3_CLEAR_STATE, 0));
radeon_ring_write(ring, 0);
radeon_ring_unlock_commit(rdev, ring, false);
}
return 0;
}
static void si_cp_fini(struct radeon_device *rdev)
{
struct radeon_ring *ring;
si_cp_enable(rdev, false);
ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
radeon_ring_fini(rdev, ring);
radeon_scratch_free(rdev, ring->rptr_save_reg);
ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX];
radeon_ring_fini(rdev, ring);
radeon_scratch_free(rdev, ring->rptr_save_reg);
ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX];
radeon_ring_fini(rdev, ring);
radeon_scratch_free(rdev, ring->rptr_save_reg);
}
static int si_cp_resume(struct radeon_device *rdev)
{
struct radeon_ring *ring;
u32 tmp;
u32 rb_bufsz;
int r;
si_enable_gui_idle_interrupt(rdev, false);
WREG32(CP_SEM_WAIT_TIMER, 0x0);
WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0);
/* Set the write pointer delay */
WREG32(CP_RB_WPTR_DELAY, 0);
WREG32(CP_DEBUG, 0);
WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF);
/* ring 0 - compute and gfx */
/* Set ring buffer size */
ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = (order_base_2(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
tmp |= BUF_SWAP_32BIT;
#endif
WREG32(CP_RB0_CNTL, tmp);
/* Initialize the ring buffer's read and write pointers */
WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA);
ring->wptr = 0;
WREG32(CP_RB0_WPTR, ring->wptr);
/* set the wb address whether it's enabled or not */
WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC);
WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF);
if (rdev->wb.enabled)
WREG32(SCRATCH_UMSK, 0xff);
else {
tmp |= RB_NO_UPDATE;
WREG32(SCRATCH_UMSK, 0);
}
mdelay(1);
WREG32(CP_RB0_CNTL, tmp);
WREG32(CP_RB0_BASE, ring->gpu_addr >> 8);
/* ring1 - compute only */
/* Set ring buffer size */
ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = (order_base_2(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
tmp |= BUF_SWAP_32BIT;
#endif
WREG32(CP_RB1_CNTL, tmp);
/* Initialize the ring buffer's read and write pointers */
WREG32(CP_RB1_CNTL, tmp | RB_RPTR_WR_ENA);
ring->wptr = 0;
WREG32(CP_RB1_WPTR, ring->wptr);
/* set the wb address whether it's enabled or not */
WREG32(CP_RB1_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET) & 0xFFFFFFFC);
WREG32(CP_RB1_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET) & 0xFF);
mdelay(1);
WREG32(CP_RB1_CNTL, tmp);
WREG32(CP_RB1_BASE, ring->gpu_addr >> 8);
/* ring2 - compute only */
/* Set ring buffer size */
ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = (order_base_2(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
tmp |= BUF_SWAP_32BIT;
#endif
WREG32(CP_RB2_CNTL, tmp);
/* Initialize the ring buffer's read and write pointers */
WREG32(CP_RB2_CNTL, tmp | RB_RPTR_WR_ENA);
ring->wptr = 0;
WREG32(CP_RB2_WPTR, ring->wptr);
/* set the wb address whether it's enabled or not */
WREG32(CP_RB2_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET) & 0xFFFFFFFC);
WREG32(CP_RB2_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET) & 0xFF);
mdelay(1);
WREG32(CP_RB2_CNTL, tmp);
WREG32(CP_RB2_BASE, ring->gpu_addr >> 8);
/* start the rings */
si_cp_start(rdev);
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = true;
rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = true;
rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = true;
r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
if (r) {
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = false;
rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = false;
return r;
}
r = radeon_ring_test(rdev, CAYMAN_RING_TYPE_CP1_INDEX, &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]);
if (r) {
rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = false;
}
r = radeon_ring_test(rdev, CAYMAN_RING_TYPE_CP2_INDEX, &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]);
if (r) {
rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = false;
}
si_enable_gui_idle_interrupt(rdev, true);
if (rdev->asic->copy.copy_ring_index == RADEON_RING_TYPE_GFX_INDEX)
radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size);
return 0;
}
u32 si_gpu_check_soft_reset(struct radeon_device *rdev)
{
u32 reset_mask = 0;
u32 tmp;
/* GRBM_STATUS */
tmp = RREG32(GRBM_STATUS);
if (tmp & (PA_BUSY | SC_BUSY |
BCI_BUSY | SX_BUSY |
TA_BUSY | VGT_BUSY |
DB_BUSY | CB_BUSY |
GDS_BUSY | SPI_BUSY |
IA_BUSY | IA_BUSY_NO_DMA))
reset_mask |= RADEON_RESET_GFX;
if (tmp & (CF_RQ_PENDING | PF_RQ_PENDING |
CP_BUSY | CP_COHERENCY_BUSY))
reset_mask |= RADEON_RESET_CP;
if (tmp & GRBM_EE_BUSY)
reset_mask |= RADEON_RESET_GRBM | RADEON_RESET_GFX | RADEON_RESET_CP;
/* GRBM_STATUS2 */
tmp = RREG32(GRBM_STATUS2);
if (tmp & (RLC_RQ_PENDING | RLC_BUSY))
reset_mask |= RADEON_RESET_RLC;
/* DMA_STATUS_REG 0 */
tmp = RREG32(DMA_STATUS_REG + DMA0_REGISTER_OFFSET);
if (!(tmp & DMA_IDLE))
reset_mask |= RADEON_RESET_DMA;
/* DMA_STATUS_REG 1 */
tmp = RREG32(DMA_STATUS_REG + DMA1_REGISTER_OFFSET);
if (!(tmp & DMA_IDLE))
reset_mask |= RADEON_RESET_DMA1;
/* SRBM_STATUS2 */
tmp = RREG32(SRBM_STATUS2);
if (tmp & DMA_BUSY)
reset_mask |= RADEON_RESET_DMA;
if (tmp & DMA1_BUSY)
reset_mask |= RADEON_RESET_DMA1;
/* SRBM_STATUS */
tmp = RREG32(SRBM_STATUS);
if (tmp & IH_BUSY)
reset_mask |= RADEON_RESET_IH;
if (tmp & SEM_BUSY)
reset_mask |= RADEON_RESET_SEM;
if (tmp & GRBM_RQ_PENDING)
reset_mask |= RADEON_RESET_GRBM;
if (tmp & VMC_BUSY)
reset_mask |= RADEON_RESET_VMC;
if (tmp & (MCB_BUSY | MCB_NON_DISPLAY_BUSY |
MCC_BUSY | MCD_BUSY))
reset_mask |= RADEON_RESET_MC;
if (evergreen_is_display_hung(rdev))
reset_mask |= RADEON_RESET_DISPLAY;
/* VM_L2_STATUS */
tmp = RREG32(VM_L2_STATUS);
if (tmp & L2_BUSY)
reset_mask |= RADEON_RESET_VMC;
/* Skip MC reset as it's mostly likely not hung, just busy */
if (reset_mask & RADEON_RESET_MC) {
DRM_DEBUG("MC busy: 0x%08X, clearing.\n", reset_mask);
reset_mask &= ~RADEON_RESET_MC;
}
return reset_mask;
}
static void si_gpu_soft_reset(struct radeon_device *rdev, u32 reset_mask)
{
struct evergreen_mc_save save;
u32 grbm_soft_reset = 0, srbm_soft_reset = 0;
u32 tmp;
if (reset_mask == 0)
return;
dev_info(rdev->dev, "GPU softreset: 0x%08X\n", reset_mask);
evergreen_print_gpu_status_regs(rdev);
dev_info(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR));
dev_info(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS));
/* disable PG/CG */
si_fini_pg(rdev);
si_fini_cg(rdev);
/* stop the rlc */
si_rlc_stop(rdev);
/* Disable CP parsing/prefetching */
WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT);
if (reset_mask & RADEON_RESET_DMA) {
/* dma0 */
tmp = RREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET);
tmp &= ~DMA_RB_ENABLE;
WREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET, tmp);
}
if (reset_mask & RADEON_RESET_DMA1) {
/* dma1 */
tmp = RREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET);
tmp &= ~DMA_RB_ENABLE;
WREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET, tmp);
}
udelay(50);
evergreen_mc_stop(rdev, &save);
if (evergreen_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
if (reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP)) {
grbm_soft_reset = SOFT_RESET_CB |
SOFT_RESET_DB |
SOFT_RESET_GDS |
SOFT_RESET_PA |
SOFT_RESET_SC |
SOFT_RESET_BCI |
SOFT_RESET_SPI |
SOFT_RESET_SX |
SOFT_RESET_TC |
SOFT_RESET_TA |
SOFT_RESET_VGT |
SOFT_RESET_IA;
}
if (reset_mask & RADEON_RESET_CP) {
grbm_soft_reset |= SOFT_RESET_CP | SOFT_RESET_VGT;
srbm_soft_reset |= SOFT_RESET_GRBM;
}
if (reset_mask & RADEON_RESET_DMA)
srbm_soft_reset |= SOFT_RESET_DMA;
if (reset_mask & RADEON_RESET_DMA1)
srbm_soft_reset |= SOFT_RESET_DMA1;
if (reset_mask & RADEON_RESET_DISPLAY)
srbm_soft_reset |= SOFT_RESET_DC;
if (reset_mask & RADEON_RESET_RLC)
grbm_soft_reset |= SOFT_RESET_RLC;
if (reset_mask & RADEON_RESET_SEM)
srbm_soft_reset |= SOFT_RESET_SEM;
if (reset_mask & RADEON_RESET_IH)
srbm_soft_reset |= SOFT_RESET_IH;
if (reset_mask & RADEON_RESET_GRBM)
srbm_soft_reset |= SOFT_RESET_GRBM;
if (reset_mask & RADEON_RESET_VMC)
srbm_soft_reset |= SOFT_RESET_VMC;
if (reset_mask & RADEON_RESET_MC)
srbm_soft_reset |= SOFT_RESET_MC;
if (grbm_soft_reset) {
tmp = RREG32(GRBM_SOFT_RESET);
tmp |= grbm_soft_reset;
dev_info(rdev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(GRBM_SOFT_RESET, tmp);
tmp = RREG32(GRBM_SOFT_RESET);
udelay(50);
tmp &= ~grbm_soft_reset;
WREG32(GRBM_SOFT_RESET, tmp);
tmp = RREG32(GRBM_SOFT_RESET);
}
if (srbm_soft_reset) {
tmp = RREG32(SRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(rdev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(SRBM_SOFT_RESET, tmp);
tmp = RREG32(SRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(SRBM_SOFT_RESET, tmp);
tmp = RREG32(SRBM_SOFT_RESET);
}
/* Wait a little for things to settle down */
udelay(50);
evergreen_mc_resume(rdev, &save);
udelay(50);
evergreen_print_gpu_status_regs(rdev);
}
static void si_set_clk_bypass_mode(struct radeon_device *rdev)
{
u32 tmp, i;
tmp = RREG32(CG_SPLL_FUNC_CNTL);
tmp |= SPLL_BYPASS_EN;
WREG32(CG_SPLL_FUNC_CNTL, tmp);
tmp = RREG32(CG_SPLL_FUNC_CNTL_2);
tmp |= SPLL_CTLREQ_CHG;
WREG32(CG_SPLL_FUNC_CNTL_2, tmp);
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(SPLL_STATUS) & SPLL_CHG_STATUS)
break;
udelay(1);
}
tmp = RREG32(CG_SPLL_FUNC_CNTL_2);
tmp &= ~(SPLL_CTLREQ_CHG | SCLK_MUX_UPDATE);
WREG32(CG_SPLL_FUNC_CNTL_2, tmp);
tmp = RREG32(MPLL_CNTL_MODE);
tmp &= ~MPLL_MCLK_SEL;
WREG32(MPLL_CNTL_MODE, tmp);
}
static void si_spll_powerdown(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32(SPLL_CNTL_MODE);
tmp |= SPLL_SW_DIR_CONTROL;
WREG32(SPLL_CNTL_MODE, tmp);
tmp = RREG32(CG_SPLL_FUNC_CNTL);
tmp |= SPLL_RESET;
WREG32(CG_SPLL_FUNC_CNTL, tmp);
tmp = RREG32(CG_SPLL_FUNC_CNTL);
tmp |= SPLL_SLEEP;
WREG32(CG_SPLL_FUNC_CNTL, tmp);
tmp = RREG32(SPLL_CNTL_MODE);
tmp &= ~SPLL_SW_DIR_CONTROL;
WREG32(SPLL_CNTL_MODE, tmp);
}
static void si_gpu_pci_config_reset(struct radeon_device *rdev)
{
struct evergreen_mc_save save;
u32 tmp, i;
dev_info(rdev->dev, "GPU pci config reset\n");
/* disable dpm? */
/* disable cg/pg */
si_fini_pg(rdev);
si_fini_cg(rdev);
/* Disable CP parsing/prefetching */
WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT);
/* dma0 */
tmp = RREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET);
tmp &= ~DMA_RB_ENABLE;
WREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET, tmp);
/* dma1 */
tmp = RREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET);
tmp &= ~DMA_RB_ENABLE;
WREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET, tmp);
/* XXX other engines? */
/* halt the rlc, disable cp internal ints */
si_rlc_stop(rdev);
udelay(50);
/* disable mem access */
evergreen_mc_stop(rdev, &save);
if (evergreen_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timed out !\n");
}
/* set mclk/sclk to bypass */
si_set_clk_bypass_mode(rdev);
/* powerdown spll */
si_spll_powerdown(rdev);
/* disable BM */
pci_clear_master(rdev->pdev);
/* reset */
radeon_pci_config_reset(rdev);
/* wait for asic to come out of reset */
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(CONFIG_MEMSIZE) != 0xffffffff)
break;
udelay(1);
}
}
int si_asic_reset(struct radeon_device *rdev, bool hard)
{
u32 reset_mask;
if (hard) {
si_gpu_pci_config_reset(rdev);
return 0;
}
reset_mask = si_gpu_check_soft_reset(rdev);
if (reset_mask)
r600_set_bios_scratch_engine_hung(rdev, true);
/* try soft reset */
si_gpu_soft_reset(rdev, reset_mask);
reset_mask = si_gpu_check_soft_reset(rdev);
/* try pci config reset */
if (reset_mask && radeon_hard_reset)
si_gpu_pci_config_reset(rdev);
reset_mask = si_gpu_check_soft_reset(rdev);
if (!reset_mask)
r600_set_bios_scratch_engine_hung(rdev, false);
return 0;
}
/**
* si_gfx_is_lockup - Check if the GFX engine is locked up
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Check if the GFX engine is locked up.
* Returns true if the engine appears to be locked up, false if not.
*/
bool si_gfx_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
u32 reset_mask = si_gpu_check_soft_reset(rdev);
if (!(reset_mask & (RADEON_RESET_GFX |
RADEON_RESET_COMPUTE |
RADEON_RESET_CP))) {
radeon_ring_lockup_update(rdev, ring);
return false;
}
return radeon_ring_test_lockup(rdev, ring);
}
/* MC */
static void si_mc_program(struct radeon_device *rdev)
{
struct evergreen_mc_save save;
u32 tmp;
int i, j;
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
WREG32((0x2c14 + j), 0x00000000);
WREG32((0x2c18 + j), 0x00000000);
WREG32((0x2c1c + j), 0x00000000);
WREG32((0x2c20 + j), 0x00000000);
WREG32((0x2c24 + j), 0x00000000);
}
WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0);
evergreen_mc_stop(rdev, &save);
if (radeon_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
if (!ASIC_IS_NODCE(rdev))
/* Lockout access through VGA aperture*/
WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE);
/* Update configuration */
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
rdev->mc.vram_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
rdev->mc.vram_end >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
rdev->vram_scratch.gpu_addr >> 12);
tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16;
tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF);
WREG32(MC_VM_FB_LOCATION, tmp);
/* XXX double check these! */
WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8));
WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF);
WREG32(MC_VM_AGP_BASE, 0);
WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF);
WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF);
if (radeon_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
evergreen_mc_resume(rdev, &save);
if (!ASIC_IS_NODCE(rdev)) {
/* we need to own VRAM, so turn off the VGA renderer here
* to stop it overwriting our objects */
rv515_vga_render_disable(rdev);
}
}
void si_vram_gtt_location(struct radeon_device *rdev,
struct radeon_mc *mc)
{
if (mc->mc_vram_size > 0xFFC0000000ULL) {
/* leave room for at least 1024M GTT */
dev_warn(rdev->dev, "limiting VRAM\n");
mc->real_vram_size = 0xFFC0000000ULL;
mc->mc_vram_size = 0xFFC0000000ULL;
}
radeon_vram_location(rdev, &rdev->mc, 0);
rdev->mc.gtt_base_align = 0;
radeon_gtt_location(rdev, mc);
}
static int si_mc_init(struct radeon_device *rdev)
{
u32 tmp;
int chansize, numchan;
/* Get VRAM informations */
rdev->mc.vram_is_ddr = true;
tmp = RREG32(MC_ARB_RAMCFG);
if (tmp & CHANSIZE_OVERRIDE) {
chansize = 16;
} else if (tmp & CHANSIZE_MASK) {
chansize = 64;
} else {
chansize = 32;
}
tmp = RREG32(MC_SHARED_CHMAP);
switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
case 0:
default:
numchan = 1;
break;
case 1:
numchan = 2;
break;
case 2:
numchan = 4;
break;
case 3:
numchan = 8;
break;
case 4:
numchan = 3;
break;
case 5:
numchan = 6;
break;
case 6:
numchan = 10;
break;
case 7:
numchan = 12;
break;
case 8:
numchan = 16;
break;
}
rdev->mc.vram_width = numchan * chansize;
/* Could aper size report 0 ? */
rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
/* size in MB on si */
tmp = RREG32(CONFIG_MEMSIZE);
/* some boards may have garbage in the upper 16 bits */
if (tmp & 0xffff0000) {
DRM_INFO("Probable bad vram size: 0x%08x\n", tmp);
if (tmp & 0xffff)
tmp &= 0xffff;
}
rdev->mc.mc_vram_size = tmp * 1024ULL * 1024ULL;
rdev->mc.real_vram_size = rdev->mc.mc_vram_size;
rdev->mc.visible_vram_size = rdev->mc.aper_size;
si_vram_gtt_location(rdev, &rdev->mc);
radeon_update_bandwidth_info(rdev);
return 0;
}
/*
* GART
*/
void si_pcie_gart_tlb_flush(struct radeon_device *rdev)
{
/* flush hdp cache */
WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1);
/* bits 0-15 are the VM contexts0-15 */
WREG32(VM_INVALIDATE_REQUEST, 1);
}
static int si_pcie_gart_enable(struct radeon_device *rdev)
{
int r, i;
if (rdev->gart.robj == NULL) {
dev_err(rdev->dev, "No VRAM object for PCIE GART.\n");
return -EINVAL;
}
r = radeon_gart_table_vram_pin(rdev);
if (r)
return r;
/* Setup TLB control */
WREG32(MC_VM_MX_L1_TLB_CNTL,
(0xA << 7) |
ENABLE_L1_TLB |
ENABLE_L1_FRAGMENT_PROCESSING |
SYSTEM_ACCESS_MODE_NOT_IN_SYS |
ENABLE_ADVANCED_DRIVER_MODEL |
SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_CACHE |
ENABLE_L2_FRAGMENT_PROCESSING |
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
EFFECTIVE_L2_QUEUE_SIZE(7) |
CONTEXT1_IDENTITY_ACCESS_MODE(1));
WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE);
WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
BANK_SELECT(4) |
L2_CACHE_BIGK_FRAGMENT_SIZE(4));
/* setup context0 */
WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12);
WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12);
WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12);
WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
(u32)(rdev->dummy_page.addr >> 12));
WREG32(VM_CONTEXT0_CNTL2, 0);
WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) |
RANGE_PROTECTION_FAULT_ENABLE_DEFAULT));
WREG32(0x15D4, 0);
WREG32(0x15D8, 0);
WREG32(0x15DC, 0);
/* empty context1-15 */
/* set vm size, must be a multiple of 4 */
WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn - 1);
/* Assign the pt base to something valid for now; the pts used for
* the VMs are determined by the application and setup and assigned
* on the fly in the vm part of radeon_gart.c
*/
for (i = 1; i < 16; i++) {
if (i < 8)
WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2),
rdev->vm_manager.saved_table_addr[i]);
else
WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2),
rdev->vm_manager.saved_table_addr[i]);
}
/* enable context1-15 */
WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
(u32)(rdev->dummy_page.addr >> 12));
WREG32(VM_CONTEXT1_CNTL2, 4);
WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) |
PAGE_TABLE_BLOCK_SIZE(radeon_vm_block_size - 9) |
RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
RANGE_PROTECTION_FAULT_ENABLE_DEFAULT |
DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT |
PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT |
PDE0_PROTECTION_FAULT_ENABLE_DEFAULT |
VALID_PROTECTION_FAULT_ENABLE_INTERRUPT |
VALID_PROTECTION_FAULT_ENABLE_DEFAULT |
READ_PROTECTION_FAULT_ENABLE_INTERRUPT |
READ_PROTECTION_FAULT_ENABLE_DEFAULT |
WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT |
WRITE_PROTECTION_FAULT_ENABLE_DEFAULT);
si_pcie_gart_tlb_flush(rdev);
DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
(unsigned)(rdev->mc.gtt_size >> 20),
(unsigned long long)rdev->gart.table_addr);
rdev->gart.ready = true;
return 0;
}
static void si_pcie_gart_disable(struct radeon_device *rdev)
{
unsigned i;
for (i = 1; i < 16; ++i) {
uint32_t reg;
if (i < 8)
reg = VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2);
else
reg = VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2);
rdev->vm_manager.saved_table_addr[i] = RREG32(reg);
}
/* Disable all tables */
WREG32(VM_CONTEXT0_CNTL, 0);
WREG32(VM_CONTEXT1_CNTL, 0);
/* Setup TLB control */
WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS |
SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
EFFECTIVE_L2_QUEUE_SIZE(7) |
CONTEXT1_IDENTITY_ACCESS_MODE(1));
WREG32(VM_L2_CNTL2, 0);
WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
L2_CACHE_BIGK_FRAGMENT_SIZE(0));
radeon_gart_table_vram_unpin(rdev);
}
static void si_pcie_gart_fini(struct radeon_device *rdev)
{
si_pcie_gart_disable(rdev);
radeon_gart_table_vram_free(rdev);
radeon_gart_fini(rdev);
}
/* vm parser */
static bool si_vm_reg_valid(u32 reg)
{
/* context regs are fine */
if (reg >= 0x28000)
return true;
/* shader regs are also fine */
if (reg >= 0xB000 && reg < 0xC000)
return true;
/* check config regs */
switch (reg) {
case GRBM_GFX_INDEX:
case CP_STRMOUT_CNTL:
case VGT_VTX_VECT_EJECT_REG:
case VGT_CACHE_INVALIDATION:
case VGT_ESGS_RING_SIZE:
case VGT_GSVS_RING_SIZE:
case VGT_GS_VERTEX_REUSE:
case VGT_PRIMITIVE_TYPE:
case VGT_INDEX_TYPE:
case VGT_NUM_INDICES:
case VGT_NUM_INSTANCES:
case VGT_TF_RING_SIZE:
case VGT_HS_OFFCHIP_PARAM:
case VGT_TF_MEMORY_BASE:
case PA_CL_ENHANCE:
case PA_SU_LINE_STIPPLE_VALUE:
case PA_SC_LINE_STIPPLE_STATE:
case PA_SC_ENHANCE:
case SQC_CACHES:
case SPI_STATIC_THREAD_MGMT_1:
case SPI_STATIC_THREAD_MGMT_2:
case SPI_STATIC_THREAD_MGMT_3:
case SPI_PS_MAX_WAVE_ID:
case SPI_CONFIG_CNTL:
case SPI_CONFIG_CNTL_1:
case TA_CNTL_AUX:
case TA_CS_BC_BASE_ADDR:
return true;
default:
DRM_ERROR("Invalid register 0x%x in CS\n", reg);
return false;
}
}
static int si_vm_packet3_ce_check(struct radeon_device *rdev,
u32 *ib, struct radeon_cs_packet *pkt)
{
switch (pkt->opcode) {
case PACKET3_NOP:
case PACKET3_SET_BASE:
case PACKET3_SET_CE_DE_COUNTERS:
case PACKET3_LOAD_CONST_RAM:
case PACKET3_WRITE_CONST_RAM:
case PACKET3_WRITE_CONST_RAM_OFFSET:
case PACKET3_DUMP_CONST_RAM:
case PACKET3_INCREMENT_CE_COUNTER:
case PACKET3_WAIT_ON_DE_COUNTER:
case PACKET3_CE_WRITE:
break;
default:
DRM_ERROR("Invalid CE packet3: 0x%x\n", pkt->opcode);
return -EINVAL;
}
return 0;
}
static int si_vm_packet3_cp_dma_check(u32 *ib, u32 idx)
{
u32 start_reg, reg, i;
u32 command = ib[idx + 4];
u32 info = ib[idx + 1];
u32 idx_value = ib[idx];
if (command & PACKET3_CP_DMA_CMD_SAS) {
/* src address space is register */
if (((info & 0x60000000) >> 29) == 0) {
start_reg = idx_value << 2;
if (command & PACKET3_CP_DMA_CMD_SAIC) {
reg = start_reg;
if (!si_vm_reg_valid(reg)) {
DRM_ERROR("CP DMA Bad SRC register\n");
return -EINVAL;
}
} else {
for (i = 0; i < (command & 0x1fffff); i++) {
reg = start_reg + (4 * i);
if (!si_vm_reg_valid(reg)) {
DRM_ERROR("CP DMA Bad SRC register\n");
return -EINVAL;
}
}
}
}
}
if (command & PACKET3_CP_DMA_CMD_DAS) {
/* dst address space is register */
if (((info & 0x00300000) >> 20) == 0) {
start_reg = ib[idx + 2];
if (command & PACKET3_CP_DMA_CMD_DAIC) {
reg = start_reg;
if (!si_vm_reg_valid(reg)) {
DRM_ERROR("CP DMA Bad DST register\n");
return -EINVAL;
}
} else {
for (i = 0; i < (command & 0x1fffff); i++) {
reg = start_reg + (4 * i);
if (!si_vm_reg_valid(reg)) {
DRM_ERROR("CP DMA Bad DST register\n");
return -EINVAL;
}
}
}
}
}
return 0;
}
static int si_vm_packet3_gfx_check(struct radeon_device *rdev,
u32 *ib, struct radeon_cs_packet *pkt)
{
int r;
u32 idx = pkt->idx + 1;
u32 idx_value = ib[idx];
u32 start_reg, end_reg, reg, i;
switch (pkt->opcode) {
case PACKET3_NOP:
case PACKET3_SET_BASE:
case PACKET3_CLEAR_STATE:
case PACKET3_INDEX_BUFFER_SIZE:
case PACKET3_DISPATCH_DIRECT:
case PACKET3_DISPATCH_INDIRECT:
case PACKET3_ALLOC_GDS:
case PACKET3_WRITE_GDS_RAM:
case PACKET3_ATOMIC_GDS:
case PACKET3_ATOMIC:
case PACKET3_OCCLUSION_QUERY:
case PACKET3_SET_PREDICATION:
case PACKET3_COND_EXEC:
case PACKET3_PRED_EXEC:
case PACKET3_DRAW_INDIRECT:
case PACKET3_DRAW_INDEX_INDIRECT:
case PACKET3_INDEX_BASE:
case PACKET3_DRAW_INDEX_2:
case PACKET3_CONTEXT_CONTROL:
case PACKET3_INDEX_TYPE:
case PACKET3_DRAW_INDIRECT_MULTI:
case PACKET3_DRAW_INDEX_AUTO:
case PACKET3_DRAW_INDEX_IMMD:
case PACKET3_NUM_INSTANCES:
case PACKET3_DRAW_INDEX_MULTI_AUTO:
case PACKET3_STRMOUT_BUFFER_UPDATE:
case PACKET3_DRAW_INDEX_OFFSET_2:
case PACKET3_DRAW_INDEX_MULTI_ELEMENT:
case PACKET3_DRAW_INDEX_INDIRECT_MULTI:
case PACKET3_MPEG_INDEX:
case PACKET3_WAIT_REG_MEM:
case PACKET3_MEM_WRITE:
case PACKET3_PFP_SYNC_ME:
case PACKET3_SURFACE_SYNC:
case PACKET3_EVENT_WRITE:
case PACKET3_EVENT_WRITE_EOP:
case PACKET3_EVENT_WRITE_EOS:
case PACKET3_SET_CONTEXT_REG:
case PACKET3_SET_CONTEXT_REG_INDIRECT:
case PACKET3_SET_SH_REG:
case PACKET3_SET_SH_REG_OFFSET:
case PACKET3_INCREMENT_DE_COUNTER:
case PACKET3_WAIT_ON_CE_COUNTER:
case PACKET3_WAIT_ON_AVAIL_BUFFER:
case PACKET3_ME_WRITE:
break;
case PACKET3_COPY_DATA:
if ((idx_value & 0xf00) == 0) {
reg = ib[idx + 3] * 4;
if (!si_vm_reg_valid(reg))
return -EINVAL;
}
break;
case PACKET3_WRITE_DATA:
if ((idx_value & 0xf00) == 0) {
start_reg = ib[idx + 1] * 4;
if (idx_value & 0x10000) {
if (!si_vm_reg_valid(start_reg))
return -EINVAL;
} else {
for (i = 0; i < (pkt->count - 2); i++) {
reg = start_reg + (4 * i);
if (!si_vm_reg_valid(reg))
return -EINVAL;
}
}
}
break;
case PACKET3_COND_WRITE:
if (idx_value & 0x100) {
reg = ib[idx + 5] * 4;
if (!si_vm_reg_valid(reg))
return -EINVAL;
}
break;
case PACKET3_COPY_DW:
if (idx_value & 0x2) {
reg = ib[idx + 3] * 4;
if (!si_vm_reg_valid(reg))
return -EINVAL;
}
break;
case PACKET3_SET_CONFIG_REG:
start_reg = (idx_value << 2) + PACKET3_SET_CONFIG_REG_START;
end_reg = 4 * pkt->count + start_reg - 4;
if ((start_reg < PACKET3_SET_CONFIG_REG_START) ||
(start_reg >= PACKET3_SET_CONFIG_REG_END) ||
(end_reg >= PACKET3_SET_CONFIG_REG_END)) {
DRM_ERROR("bad PACKET3_SET_CONFIG_REG\n");
return -EINVAL;
}
for (i = 0; i < pkt->count; i++) {
reg = start_reg + (4 * i);
if (!si_vm_reg_valid(reg))
return -EINVAL;
}
break;
case PACKET3_CP_DMA:
r = si_vm_packet3_cp_dma_check(ib, idx);
if (r)
return r;
break;
default:
DRM_ERROR("Invalid GFX packet3: 0x%x\n", pkt->opcode);
return -EINVAL;
}
return 0;
}
static int si_vm_packet3_compute_check(struct radeon_device *rdev,
u32 *ib, struct radeon_cs_packet *pkt)
{
int r;
u32 idx = pkt->idx + 1;
u32 idx_value = ib[idx];
u32 start_reg, reg, i;
switch (pkt->opcode) {
case PACKET3_NOP:
case PACKET3_SET_BASE:
case PACKET3_CLEAR_STATE:
case PACKET3_DISPATCH_DIRECT:
case PACKET3_DISPATCH_INDIRECT:
case PACKET3_ALLOC_GDS:
case PACKET3_WRITE_GDS_RAM:
case PACKET3_ATOMIC_GDS:
case PACKET3_ATOMIC:
case PACKET3_OCCLUSION_QUERY:
case PACKET3_SET_PREDICATION:
case PACKET3_COND_EXEC:
case PACKET3_PRED_EXEC:
case PACKET3_CONTEXT_CONTROL:
case PACKET3_STRMOUT_BUFFER_UPDATE:
case PACKET3_WAIT_REG_MEM:
case PACKET3_MEM_WRITE:
case PACKET3_PFP_SYNC_ME:
case PACKET3_SURFACE_SYNC:
case PACKET3_EVENT_WRITE:
case PACKET3_EVENT_WRITE_EOP:
case PACKET3_EVENT_WRITE_EOS:
case PACKET3_SET_CONTEXT_REG:
case PACKET3_SET_CONTEXT_REG_INDIRECT:
case PACKET3_SET_SH_REG:
case PACKET3_SET_SH_REG_OFFSET:
case PACKET3_INCREMENT_DE_COUNTER:
case PACKET3_WAIT_ON_CE_COUNTER:
case PACKET3_WAIT_ON_AVAIL_BUFFER:
case PACKET3_ME_WRITE:
break;
case PACKET3_COPY_DATA:
if ((idx_value & 0xf00) == 0) {
reg = ib[idx + 3] * 4;
if (!si_vm_reg_valid(reg))
return -EINVAL;
}
break;
case PACKET3_WRITE_DATA:
if ((idx_value & 0xf00) == 0) {
start_reg = ib[idx + 1] * 4;
if (idx_value & 0x10000) {
if (!si_vm_reg_valid(start_reg))
return -EINVAL;
} else {
for (i = 0; i < (pkt->count - 2); i++) {
reg = start_reg + (4 * i);
if (!si_vm_reg_valid(reg))
return -EINVAL;
}
}
}
break;
case PACKET3_COND_WRITE:
if (idx_value & 0x100) {
reg = ib[idx + 5] * 4;
if (!si_vm_reg_valid(reg))
return -EINVAL;
}
break;
case PACKET3_COPY_DW:
if (idx_value & 0x2) {
reg = ib[idx + 3] * 4;
if (!si_vm_reg_valid(reg))
return -EINVAL;
}
break;
case PACKET3_CP_DMA:
r = si_vm_packet3_cp_dma_check(ib, idx);
if (r)
return r;
break;
default:
DRM_ERROR("Invalid Compute packet3: 0x%x\n", pkt->opcode);
return -EINVAL;
}
return 0;
}
int si_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib)
{
int ret = 0;
u32 idx = 0, i;
struct radeon_cs_packet pkt;
do {
pkt.idx = idx;
pkt.type = RADEON_CP_PACKET_GET_TYPE(ib->ptr[idx]);
pkt.count = RADEON_CP_PACKET_GET_COUNT(ib->ptr[idx]);
pkt.one_reg_wr = 0;
switch (pkt.type) {
case RADEON_PACKET_TYPE0:
dev_err(rdev->dev, "Packet0 not allowed!\n");
ret = -EINVAL;
break;
case RADEON_PACKET_TYPE2:
idx += 1;
break;
case RADEON_PACKET_TYPE3:
pkt.opcode = RADEON_CP_PACKET3_GET_OPCODE(ib->ptr[idx]);
if (ib->is_const_ib)
ret = si_vm_packet3_ce_check(rdev, ib->ptr, &pkt);
else {
switch (ib->ring) {
case RADEON_RING_TYPE_GFX_INDEX:
ret = si_vm_packet3_gfx_check(rdev, ib->ptr, &pkt);
break;
case CAYMAN_RING_TYPE_CP1_INDEX:
case CAYMAN_RING_TYPE_CP2_INDEX:
ret = si_vm_packet3_compute_check(rdev, ib->ptr, &pkt);
break;
default:
dev_err(rdev->dev, "Non-PM4 ring %d !\n", ib->ring);
ret = -EINVAL;
break;
}
}
idx += pkt.count + 2;
break;
default:
dev_err(rdev->dev, "Unknown packet type %d !\n", pkt.type);
ret = -EINVAL;
break;
}
if (ret) {
for (i = 0; i < ib->length_dw; i++) {
if (i == idx)
printk("\t0x%08x <---\n", ib->ptr[i]);
else
printk("\t0x%08x\n", ib->ptr[i]);
}
break;
}
} while (idx < ib->length_dw);
return ret;
}
/*
* vm
*/
int si_vm_init(struct radeon_device *rdev)
{
/* number of VMs */
rdev->vm_manager.nvm = 16;
/* base offset of vram pages */
rdev->vm_manager.vram_base_offset = 0;
return 0;
}
void si_vm_fini(struct radeon_device *rdev)
{
}
/**
* si_vm_decode_fault - print human readable fault info
*
* @rdev: radeon_device pointer
* @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
* @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
*
* Print human readable fault information (SI).
*/
static void si_vm_decode_fault(struct radeon_device *rdev,
u32 status, u32 addr)
{
u32 mc_id = (status & MEMORY_CLIENT_ID_MASK) >> MEMORY_CLIENT_ID_SHIFT;
u32 vmid = (status & FAULT_VMID_MASK) >> FAULT_VMID_SHIFT;
u32 protections = (status & PROTECTIONS_MASK) >> PROTECTIONS_SHIFT;
char *block;
if (rdev->family == CHIP_TAHITI) {
switch (mc_id) {
case 160:
case 144:
case 96:
case 80:
case 224:
case 208:
case 32:
case 16:
block = "CB";
break;
case 161:
case 145:
case 97:
case 81:
case 225:
case 209:
case 33:
case 17:
block = "CB_FMASK";
break;
case 162:
case 146:
case 98:
case 82:
case 226:
case 210:
case 34:
case 18:
block = "CB_CMASK";
break;
case 163:
case 147:
case 99:
case 83:
case 227:
case 211:
case 35:
case 19:
block = "CB_IMMED";
break;
case 164:
case 148:
case 100:
case 84:
case 228:
case 212:
case 36:
case 20:
block = "DB";
break;
case 165:
case 149:
case 101:
case 85:
case 229:
case 213:
case 37:
case 21:
block = "DB_HTILE";
break;
case 167:
case 151:
case 103:
case 87:
case 231:
case 215:
case 39:
case 23:
block = "DB_STEN";
break;
case 72:
case 68:
case 64:
case 8:
case 4:
case 0:
case 136:
case 132:
case 128:
case 200:
case 196:
case 192:
block = "TC";
break;
case 112:
case 48:
block = "CP";
break;
case 49:
case 177:
case 50:
case 178:
block = "SH";
break;
case 53:
case 190:
block = "VGT";
break;
case 117:
block = "IH";
break;
case 51:
case 115:
block = "RLC";
break;
case 119:
case 183:
block = "DMA0";
break;
case 61:
block = "DMA1";
break;
case 248:
case 120:
block = "HDP";
break;
default:
block = "unknown";
break;
}
} else {
switch (mc_id) {
case 32:
case 16:
case 96:
case 80:
case 160:
case 144:
case 224:
case 208:
block = "CB";
break;
case 33:
case 17:
case 97:
case 81:
case 161:
case 145:
case 225:
case 209:
block = "CB_FMASK";
break;
case 34:
case 18:
case 98:
case 82:
case 162:
case 146:
case 226:
case 210:
block = "CB_CMASK";
break;
case 35:
case 19:
case 99:
case 83:
case 163:
case 147:
case 227:
case 211:
block = "CB_IMMED";
break;
case 36:
case 20:
case 100:
case 84:
case 164:
case 148:
case 228:
case 212:
block = "DB";
break;
case 37:
case 21:
case 101:
case 85:
case 165:
case 149:
case 229:
case 213:
block = "DB_HTILE";
break;
case 39:
case 23:
case 103:
case 87:
case 167:
case 151:
case 231:
case 215:
block = "DB_STEN";
break;
case 72:
case 68:
case 8:
case 4:
case 136:
case 132:
case 200:
case 196:
block = "TC";
break;
case 112:
case 48:
block = "CP";
break;
case 49:
case 177:
case 50:
case 178:
block = "SH";
break;
case 53:
block = "VGT";
break;
case 117:
block = "IH";
break;
case 51:
case 115:
block = "RLC";
break;
case 119:
case 183:
block = "DMA0";
break;
case 61:
block = "DMA1";
break;
case 248:
case 120:
block = "HDP";
break;
default:
block = "unknown";
break;
}
}
printk("VM fault (0x%02x, vmid %d) at page %u, %s from %s (%d)\n",
protections, vmid, addr,
(status & MEMORY_CLIENT_RW_MASK) ? "write" : "read",
block, mc_id);
}
void si_vm_flush(struct radeon_device *rdev, struct radeon_ring *ring,
unsigned vm_id, uint64_t pd_addr)
{
/* write new base address */
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
WRITE_DATA_DST_SEL(0)));
if (vm_id < 8) {
radeon_ring_write(ring,
(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm_id << 2)) >> 2);
} else {
radeon_ring_write(ring,
(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm_id - 8) << 2)) >> 2);
}
radeon_ring_write(ring, 0);
radeon_ring_write(ring, pd_addr >> 12);
/* flush hdp cache */
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
WRITE_DATA_DST_SEL(0)));
radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2);
radeon_ring_write(ring, 0);
radeon_ring_write(ring, 0x1);
/* bits 0-15 are the VM contexts0-15 */
radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
WRITE_DATA_DST_SEL(0)));
radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
radeon_ring_write(ring, 0);
radeon_ring_write(ring, 1 << vm_id);
/* wait for the invalidate to complete */
radeon_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
radeon_ring_write(ring, (WAIT_REG_MEM_FUNCTION(0) | /* always */
WAIT_REG_MEM_ENGINE(0))); /* me */
radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
radeon_ring_write(ring, 0);
radeon_ring_write(ring, 0); /* ref */
radeon_ring_write(ring, 0); /* mask */
radeon_ring_write(ring, 0x20); /* poll interval */
/* sync PFP to ME, otherwise we might get invalid PFP reads */
radeon_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
radeon_ring_write(ring, 0x0);
}
/*
* Power and clock gating
*/
static void si_wait_for_rlc_serdes(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(RLC_SERDES_MASTER_BUSY_0) == 0)
break;
udelay(1);
}
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(RLC_SERDES_MASTER_BUSY_1) == 0)
break;
udelay(1);
}
}
static void si_enable_gui_idle_interrupt(struct radeon_device *rdev,
bool enable)
{
u32 tmp = RREG32(CP_INT_CNTL_RING0);
u32 mask;
int i;
if (enable)
tmp |= (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
else
tmp &= ~(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
WREG32(CP_INT_CNTL_RING0, tmp);
if (!enable) {
/* read a gfx register */
tmp = RREG32(DB_DEPTH_INFO);
mask = RLC_BUSY_STATUS | GFX_POWER_STATUS | GFX_CLOCK_STATUS | GFX_LS_STATUS;
for (i = 0; i < rdev->usec_timeout; i++) {
if ((RREG32(RLC_STAT) & mask) == (GFX_CLOCK_STATUS | GFX_POWER_STATUS))
break;
udelay(1);
}
}
}
static void si_set_uvd_dcm(struct radeon_device *rdev,
bool sw_mode)
{
u32 tmp, tmp2;
tmp = RREG32(UVD_CGC_CTRL);
tmp &= ~(CLK_OD_MASK | CG_DT_MASK);
tmp |= DCM | CG_DT(1) | CLK_OD(4);
if (sw_mode) {
tmp &= ~0x7ffff800;
tmp2 = DYN_OR_EN | DYN_RR_EN | G_DIV_ID(7);
} else {
tmp |= 0x7ffff800;
tmp2 = 0;
}
WREG32(UVD_CGC_CTRL, tmp);
WREG32_UVD_CTX(UVD_CGC_CTRL2, tmp2);
}
void si_init_uvd_internal_cg(struct radeon_device *rdev)
{
bool hw_mode = true;
if (hw_mode) {
si_set_uvd_dcm(rdev, false);
} else {
u32 tmp = RREG32(UVD_CGC_CTRL);
tmp &= ~DCM;
WREG32(UVD_CGC_CTRL, tmp);
}
}
static u32 si_halt_rlc(struct radeon_device *rdev)
{
u32 data, orig;
orig = data = RREG32(RLC_CNTL);
if (data & RLC_ENABLE) {
data &= ~RLC_ENABLE;
WREG32(RLC_CNTL, data);
si_wait_for_rlc_serdes(rdev);
}
return orig;
}
static void si_update_rlc(struct radeon_device *rdev, u32 rlc)
{
u32 tmp;
tmp = RREG32(RLC_CNTL);
if (tmp != rlc)
WREG32(RLC_CNTL, rlc);
}
static void si_enable_dma_pg(struct radeon_device *rdev, bool enable)
{
u32 data, orig;
orig = data = RREG32(DMA_PG);
if (enable && (rdev->pg_flags & RADEON_PG_SUPPORT_SDMA))
data |= PG_CNTL_ENABLE;
else
data &= ~PG_CNTL_ENABLE;
if (orig != data)
WREG32(DMA_PG, data);
}
static void si_init_dma_pg(struct radeon_device *rdev)
{
u32 tmp;
WREG32(DMA_PGFSM_WRITE, 0x00002000);
WREG32(DMA_PGFSM_CONFIG, 0x100010ff);
for (tmp = 0; tmp < 5; tmp++)
WREG32(DMA_PGFSM_WRITE, 0);
}
static void si_enable_gfx_cgpg(struct radeon_device *rdev,
bool enable)
{
u32 tmp;
if (enable && (rdev->pg_flags & RADEON_PG_SUPPORT_GFX_PG)) {
tmp = RLC_PUD(0x10) | RLC_PDD(0x10) | RLC_TTPD(0x10) | RLC_MSD(0x10);
WREG32(RLC_TTOP_D, tmp);
tmp = RREG32(RLC_PG_CNTL);
tmp |= GFX_PG_ENABLE;
WREG32(RLC_PG_CNTL, tmp);
tmp = RREG32(RLC_AUTO_PG_CTRL);
tmp |= AUTO_PG_EN;
WREG32(RLC_AUTO_PG_CTRL, tmp);
} else {
tmp = RREG32(RLC_AUTO_PG_CTRL);
tmp &= ~AUTO_PG_EN;
WREG32(RLC_AUTO_PG_CTRL, tmp);
tmp = RREG32(DB_RENDER_CONTROL);
}
}
static void si_init_gfx_cgpg(struct radeon_device *rdev)
{
u32 tmp;
WREG32(RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8);
tmp = RREG32(RLC_PG_CNTL);
tmp |= GFX_PG_SRC;
WREG32(RLC_PG_CNTL, tmp);
WREG32(RLC_CLEAR_STATE_RESTORE_BASE, rdev->rlc.clear_state_gpu_addr >> 8);
tmp = RREG32(RLC_AUTO_PG_CTRL);
tmp &= ~GRBM_REG_SGIT_MASK;
tmp |= GRBM_REG_SGIT(0x700);
tmp &= ~PG_AFTER_GRBM_REG_ST_MASK;
WREG32(RLC_AUTO_PG_CTRL, tmp);
}
static u32 si_get_cu_active_bitmap(struct radeon_device *rdev, u32 se, u32 sh)
{
u32 mask = 0, tmp, tmp1;
int i;
si_select_se_sh(rdev, se, sh);
tmp = RREG32(CC_GC_SHADER_ARRAY_CONFIG);
tmp1 = RREG32(GC_USER_SHADER_ARRAY_CONFIG);
si_select_se_sh(rdev, 0xffffffff, 0xffffffff);
tmp &= 0xffff0000;
tmp |= tmp1;
tmp >>= 16;
for (i = 0; i < rdev->config.si.max_cu_per_sh; i ++) {
mask <<= 1;
mask |= 1;
}
return (~tmp) & mask;
}
static void si_init_ao_cu_mask(struct radeon_device *rdev)
{
u32 i, j, k, active_cu_number = 0;
u32 mask, counter, cu_bitmap;
u32 tmp = 0;
for (i = 0; i < rdev->config.si.max_shader_engines; i++) {
for (j = 0; j < rdev->config.si.max_sh_per_se; j++) {
mask = 1;
cu_bitmap = 0;
counter = 0;
for (k = 0; k < rdev->config.si.max_cu_per_sh; k++) {
if (si_get_cu_active_bitmap(rdev, i, j) & mask) {
if (counter < 2)
cu_bitmap |= mask;
counter++;
}
mask <<= 1;
}
active_cu_number += counter;
tmp |= (cu_bitmap << (i * 16 + j * 8));
}
}
WREG32(RLC_PG_AO_CU_MASK, tmp);
tmp = RREG32(RLC_MAX_PG_CU);
tmp &= ~MAX_PU_CU_MASK;
tmp |= MAX_PU_CU(active_cu_number);
WREG32(RLC_MAX_PG_CU, tmp);
}
static void si_enable_cgcg(struct radeon_device *rdev,
bool enable)
{
u32 data, orig, tmp;
orig = data = RREG32(RLC_CGCG_CGLS_CTRL);
if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_GFX_CGCG)) {
si_enable_gui_idle_interrupt(rdev, true);
WREG32(RLC_GCPM_GENERAL_3, 0x00000080);
tmp = si_halt_rlc(rdev);
WREG32(RLC_SERDES_WR_MASTER_MASK_0, 0xffffffff);
WREG32(RLC_SERDES_WR_MASTER_MASK_1, 0xffffffff);
WREG32(RLC_SERDES_WR_CTRL, 0x00b000ff);
si_wait_for_rlc_serdes(rdev);
si_update_rlc(rdev, tmp);
WREG32(RLC_SERDES_WR_CTRL, 0x007000ff);
data |= CGCG_EN | CGLS_EN;
} else {
si_enable_gui_idle_interrupt(rdev, false);
RREG32(CB_CGTT_SCLK_CTRL);
RREG32(CB_CGTT_SCLK_CTRL);
RREG32(CB_CGTT_SCLK_CTRL);
RREG32(CB_CGTT_SCLK_CTRL);
data &= ~(CGCG_EN | CGLS_EN);
}
if (orig != data)
WREG32(RLC_CGCG_CGLS_CTRL, data);
}
static void si_enable_mgcg(struct radeon_device *rdev,
bool enable)
{
u32 data, orig, tmp = 0;
if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_GFX_MGCG)) {
orig = data = RREG32(CGTS_SM_CTRL_REG);
data = 0x96940200;
if (orig != data)
WREG32(CGTS_SM_CTRL_REG, data);
if (rdev->cg_flags & RADEON_CG_SUPPORT_GFX_CP_LS) {
orig = data = RREG32(CP_MEM_SLP_CNTL);
data |= CP_MEM_LS_EN;
if (orig != data)
WREG32(CP_MEM_SLP_CNTL, data);
}
orig = data = RREG32(RLC_CGTT_MGCG_OVERRIDE);
data &= 0xffffffc0;
if (orig != data)
WREG32(RLC_CGTT_MGCG_OVERRIDE, data);
tmp = si_halt_rlc(rdev);
WREG32(RLC_SERDES_WR_MASTER_MASK_0, 0xffffffff);
WREG32(RLC_SERDES_WR_MASTER_MASK_1, 0xffffffff);
WREG32(RLC_SERDES_WR_CTRL, 0x00d000ff);
si_update_rlc(rdev, tmp);
} else {
orig = data = RREG32(RLC_CGTT_MGCG_OVERRIDE);
data |= 0x00000003;
if (orig != data)
WREG32(RLC_CGTT_MGCG_OVERRIDE, data);
data = RREG32(CP_MEM_SLP_CNTL);
if (data & CP_MEM_LS_EN) {
data &= ~CP_MEM_LS_EN;
WREG32(CP_MEM_SLP_CNTL, data);
}
orig = data = RREG32(CGTS_SM_CTRL_REG);
data |= LS_OVERRIDE | OVERRIDE;
if (orig != data)
WREG32(CGTS_SM_CTRL_REG, data);
tmp = si_halt_rlc(rdev);
WREG32(RLC_SERDES_WR_MASTER_MASK_0, 0xffffffff);
WREG32(RLC_SERDES_WR_MASTER_MASK_1, 0xffffffff);
WREG32(RLC_SERDES_WR_CTRL, 0x00e000ff);
si_update_rlc(rdev, tmp);
}
}
static void si_enable_uvd_mgcg(struct radeon_device *rdev,
bool enable)
{
u32 orig, data, tmp;
if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_UVD_MGCG)) {
tmp = RREG32_UVD_CTX(UVD_CGC_MEM_CTRL);
tmp |= 0x3fff;
WREG32_UVD_CTX(UVD_CGC_MEM_CTRL, tmp);
orig = data = RREG32(UVD_CGC_CTRL);
data |= DCM;
if (orig != data)
WREG32(UVD_CGC_CTRL, data);
WREG32_SMC(SMC_CG_IND_START + CG_CGTT_LOCAL_0, 0);
WREG32_SMC(SMC_CG_IND_START + CG_CGTT_LOCAL_1, 0);
} else {
tmp = RREG32_UVD_CTX(UVD_CGC_MEM_CTRL);
tmp &= ~0x3fff;
WREG32_UVD_CTX(UVD_CGC_MEM_CTRL, tmp);
orig = data = RREG32(UVD_CGC_CTRL);
data &= ~DCM;
if (orig != data)
WREG32(UVD_CGC_CTRL, data);
WREG32_SMC(SMC_CG_IND_START + CG_CGTT_LOCAL_0, 0xffffffff);
WREG32_SMC(SMC_CG_IND_START + CG_CGTT_LOCAL_1, 0xffffffff);
}
}
static const u32 mc_cg_registers[] =
{
MC_HUB_MISC_HUB_CG,
MC_HUB_MISC_SIP_CG,
MC_HUB_MISC_VM_CG,
MC_XPB_CLK_GAT,
ATC_MISC_CG,
MC_CITF_MISC_WR_CG,
MC_CITF_MISC_RD_CG,
MC_CITF_MISC_VM_CG,
VM_L2_CG,
};
static void si_enable_mc_ls(struct radeon_device *rdev,
bool enable)
{
int i;
u32 orig, data;
for (i = 0; i < ARRAY_SIZE(mc_cg_registers); i++) {
orig = data = RREG32(mc_cg_registers[i]);
if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_MC_LS))
data |= MC_LS_ENABLE;
else
data &= ~MC_LS_ENABLE;
if (data != orig)
WREG32(mc_cg_registers[i], data);
}
}
static void si_enable_mc_mgcg(struct radeon_device *rdev,
bool enable)
{
int i;
u32 orig, data;
for (i = 0; i < ARRAY_SIZE(mc_cg_registers); i++) {
orig = data = RREG32(mc_cg_registers[i]);
if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_MC_MGCG))
data |= MC_CG_ENABLE;
else
data &= ~MC_CG_ENABLE;
if (data != orig)
WREG32(mc_cg_registers[i], data);
}
}
static void si_enable_dma_mgcg(struct radeon_device *rdev,
bool enable)
{
u32 orig, data, offset;
int i;
if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_SDMA_MGCG)) {
for (i = 0; i < 2; i++) {
if (i == 0)
offset = DMA0_REGISTER_OFFSET;
else
offset = DMA1_REGISTER_OFFSET;
orig = data = RREG32(DMA_POWER_CNTL + offset);
data &= ~MEM_POWER_OVERRIDE;
if (data != orig)
WREG32(DMA_POWER_CNTL + offset, data);
WREG32(DMA_CLK_CTRL + offset, 0x00000100);
}
} else {
for (i = 0; i < 2; i++) {
if (i == 0)
offset = DMA0_REGISTER_OFFSET;
else
offset = DMA1_REGISTER_OFFSET;
orig = data = RREG32(DMA_POWER_CNTL + offset);
data |= MEM_POWER_OVERRIDE;
if (data != orig)
WREG32(DMA_POWER_CNTL + offset, data);
orig = data = RREG32(DMA_CLK_CTRL + offset);
data = 0xff000000;
if (data != orig)
WREG32(DMA_CLK_CTRL + offset, data);
}
}
}
static void si_enable_bif_mgls(struct radeon_device *rdev,
bool enable)
{
u32 orig, data;
orig = data = RREG32_PCIE(PCIE_CNTL2);
if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_BIF_LS))
data |= SLV_MEM_LS_EN | MST_MEM_LS_EN |
REPLAY_MEM_LS_EN | SLV_MEM_AGGRESSIVE_LS_EN;
else
data &= ~(SLV_MEM_LS_EN | MST_MEM_LS_EN |
REPLAY_MEM_LS_EN | SLV_MEM_AGGRESSIVE_LS_EN);
if (orig != data)
WREG32_PCIE(PCIE_CNTL2, data);
}
static void si_enable_hdp_mgcg(struct radeon_device *rdev,
bool enable)
{
u32 orig, data;
orig = data = RREG32(HDP_HOST_PATH_CNTL);
if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_HDP_MGCG))
data &= ~CLOCK_GATING_DIS;
else
data |= CLOCK_GATING_DIS;
if (orig != data)
WREG32(HDP_HOST_PATH_CNTL, data);
}
static void si_enable_hdp_ls(struct radeon_device *rdev,
bool enable)
{
u32 orig, data;
orig = data = RREG32(HDP_MEM_POWER_LS);
if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_HDP_LS))
data |= HDP_LS_ENABLE;
else
data &= ~HDP_LS_ENABLE;
if (orig != data)
WREG32(HDP_MEM_POWER_LS, data);
}
static void si_update_cg(struct radeon_device *rdev,
u32 block, bool enable)
{
if (block & RADEON_CG_BLOCK_GFX) {
si_enable_gui_idle_interrupt(rdev, false);
/* order matters! */
if (enable) {
si_enable_mgcg(rdev, true);
si_enable_cgcg(rdev, true);
} else {
si_enable_cgcg(rdev, false);
si_enable_mgcg(rdev, false);
}
si_enable_gui_idle_interrupt(rdev, true);
}
if (block & RADEON_CG_BLOCK_MC) {
si_enable_mc_mgcg(rdev, enable);
si_enable_mc_ls(rdev, enable);
}
if (block & RADEON_CG_BLOCK_SDMA) {
si_enable_dma_mgcg(rdev, enable);
}
if (block & RADEON_CG_BLOCK_BIF) {
si_enable_bif_mgls(rdev, enable);
}
if (block & RADEON_CG_BLOCK_UVD) {
if (rdev->has_uvd) {
si_enable_uvd_mgcg(rdev, enable);
}
}
if (block & RADEON_CG_BLOCK_HDP) {
si_enable_hdp_mgcg(rdev, enable);
si_enable_hdp_ls(rdev, enable);
}
}
static void si_init_cg(struct radeon_device *rdev)
{
si_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_BIF |
RADEON_CG_BLOCK_HDP), true);
if (rdev->has_uvd) {
si_update_cg(rdev, RADEON_CG_BLOCK_UVD, true);
si_init_uvd_internal_cg(rdev);
}
}
static void si_fini_cg(struct radeon_device *rdev)
{
if (rdev->has_uvd) {
si_update_cg(rdev, RADEON_CG_BLOCK_UVD, false);
}
si_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_BIF |
RADEON_CG_BLOCK_HDP), false);
}
u32 si_get_csb_size(struct radeon_device *rdev)
{
u32 count = 0;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
if (rdev->rlc.cs_data == NULL)
return 0;
/* begin clear state */
count += 2;
/* context control state */
count += 3;
for (sect = rdev->rlc.cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT)
count += 2 + ext->reg_count;
else
return 0;
}
}
/* pa_sc_raster_config */
count += 3;
/* end clear state */
count += 2;
/* clear state */
count += 2;
return count;
}
void si_get_csb_buffer(struct radeon_device *rdev, volatile u32 *buffer)
{
u32 count = 0, i;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
if (rdev->rlc.cs_data == NULL)
return;
if (buffer == NULL)
return;
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1));
buffer[count++] = cpu_to_le32(0x80000000);
buffer[count++] = cpu_to_le32(0x80000000);
for (sect = rdev->rlc.cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT) {
buffer[count++] =
cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count));
buffer[count++] = cpu_to_le32(ext->reg_index - 0xa000);
for (i = 0; i < ext->reg_count; i++)
buffer[count++] = cpu_to_le32(ext->extent[i]);
} else {
return;
}
}
}
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 1));
buffer[count++] = cpu_to_le32(PA_SC_RASTER_CONFIG - PACKET3_SET_CONTEXT_REG_START);
switch (rdev->family) {
case CHIP_TAHITI:
case CHIP_PITCAIRN:
buffer[count++] = cpu_to_le32(0x2a00126a);
break;
case CHIP_VERDE:
buffer[count++] = cpu_to_le32(0x0000124a);
break;
case CHIP_OLAND:
buffer[count++] = cpu_to_le32(0x00000082);
break;
case CHIP_HAINAN:
buffer[count++] = cpu_to_le32(0x00000000);
break;
default:
buffer[count++] = cpu_to_le32(0x00000000);
break;
}
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0));
buffer[count++] = cpu_to_le32(0);
}
static void si_init_pg(struct radeon_device *rdev)
{
if (rdev->pg_flags) {
if (rdev->pg_flags & RADEON_PG_SUPPORT_SDMA) {
si_init_dma_pg(rdev);
}
si_init_ao_cu_mask(rdev);
if (rdev->pg_flags & RADEON_PG_SUPPORT_GFX_PG) {
si_init_gfx_cgpg(rdev);
} else {
WREG32(RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8);
WREG32(RLC_CLEAR_STATE_RESTORE_BASE, rdev->rlc.clear_state_gpu_addr >> 8);
}
si_enable_dma_pg(rdev, true);
si_enable_gfx_cgpg(rdev, true);
} else {
WREG32(RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8);
WREG32(RLC_CLEAR_STATE_RESTORE_BASE, rdev->rlc.clear_state_gpu_addr >> 8);
}
}
static void si_fini_pg(struct radeon_device *rdev)
{
if (rdev->pg_flags) {
si_enable_dma_pg(rdev, false);
si_enable_gfx_cgpg(rdev, false);
}
}
/*
* RLC
*/
void si_rlc_reset(struct radeon_device *rdev)
{
u32 tmp = RREG32(GRBM_SOFT_RESET);
tmp |= SOFT_RESET_RLC;
WREG32(GRBM_SOFT_RESET, tmp);
udelay(50);
tmp &= ~SOFT_RESET_RLC;
WREG32(GRBM_SOFT_RESET, tmp);
udelay(50);
}
static void si_rlc_stop(struct radeon_device *rdev)
{
WREG32(RLC_CNTL, 0);
si_enable_gui_idle_interrupt(rdev, false);
si_wait_for_rlc_serdes(rdev);
}
static void si_rlc_start(struct radeon_device *rdev)
{
WREG32(RLC_CNTL, RLC_ENABLE);
si_enable_gui_idle_interrupt(rdev, true);
udelay(50);
}
static bool si_lbpw_supported(struct radeon_device *rdev)
{
u32 tmp;
/* Enable LBPW only for DDR3 */
tmp = RREG32(MC_SEQ_MISC0);
if ((tmp & 0xF0000000) == 0xB0000000)
return true;
return false;
}
static void si_enable_lbpw(struct radeon_device *rdev, bool enable)
{
u32 tmp;
tmp = RREG32(RLC_LB_CNTL);
if (enable)
tmp |= LOAD_BALANCE_ENABLE;
else
tmp &= ~LOAD_BALANCE_ENABLE;
WREG32(RLC_LB_CNTL, tmp);
if (!enable) {
si_select_se_sh(rdev, 0xffffffff, 0xffffffff);
WREG32(SPI_LB_CU_MASK, 0x00ff);
}
}
static int si_rlc_resume(struct radeon_device *rdev)
{
u32 i;
if (!rdev->rlc_fw)
return -EINVAL;
si_rlc_stop(rdev);
si_rlc_reset(rdev);
si_init_pg(rdev);
si_init_cg(rdev);
WREG32(RLC_RL_BASE, 0);
WREG32(RLC_RL_SIZE, 0);
WREG32(RLC_LB_CNTL, 0);
WREG32(RLC_LB_CNTR_MAX, 0xffffffff);
WREG32(RLC_LB_CNTR_INIT, 0);
WREG32(RLC_LB_INIT_CU_MASK, 0xffffffff);
WREG32(RLC_MC_CNTL, 0);
WREG32(RLC_UCODE_CNTL, 0);
if (rdev->new_fw) {
const struct rlc_firmware_header_v1_0 *hdr =
(const struct rlc_firmware_header_v1_0 *)rdev->rlc_fw->data;
u32 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
const __le32 *fw_data = (const __le32 *)
(rdev->rlc_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
radeon_ucode_print_rlc_hdr(&hdr->header);
for (i = 0; i < fw_size; i++) {
WREG32(RLC_UCODE_ADDR, i);
WREG32(RLC_UCODE_DATA, le32_to_cpup(fw_data++));
}
} else {
const __be32 *fw_data =
(const __be32 *)rdev->rlc_fw->data;
for (i = 0; i < SI_RLC_UCODE_SIZE; i++) {
WREG32(RLC_UCODE_ADDR, i);
WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++));
}
}
WREG32(RLC_UCODE_ADDR, 0);
si_enable_lbpw(rdev, si_lbpw_supported(rdev));
si_rlc_start(rdev);
return 0;
}
static void si_enable_interrupts(struct radeon_device *rdev)
{
u32 ih_cntl = RREG32(IH_CNTL);
u32 ih_rb_cntl = RREG32(IH_RB_CNTL);
ih_cntl |= ENABLE_INTR;
ih_rb_cntl |= IH_RB_ENABLE;
WREG32(IH_CNTL, ih_cntl);
WREG32(IH_RB_CNTL, ih_rb_cntl);
rdev->ih.enabled = true;
}
static void si_disable_interrupts(struct radeon_device *rdev)
{
u32 ih_rb_cntl = RREG32(IH_RB_CNTL);
u32 ih_cntl = RREG32(IH_CNTL);
ih_rb_cntl &= ~IH_RB_ENABLE;
ih_cntl &= ~ENABLE_INTR;
WREG32(IH_RB_CNTL, ih_rb_cntl);
WREG32(IH_CNTL, ih_cntl);
/* set rptr, wptr to 0 */
WREG32(IH_RB_RPTR, 0);
WREG32(IH_RB_WPTR, 0);
rdev->ih.enabled = false;
rdev->ih.rptr = 0;
}
static void si_disable_interrupt_state(struct radeon_device *rdev)
{
int i;
u32 tmp;
tmp = RREG32(CP_INT_CNTL_RING0) &
(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
WREG32(CP_INT_CNTL_RING0, tmp);
WREG32(CP_INT_CNTL_RING1, 0);
WREG32(CP_INT_CNTL_RING2, 0);
tmp = RREG32(DMA_CNTL + DMA0_REGISTER_OFFSET) & ~TRAP_ENABLE;
WREG32(DMA_CNTL + DMA0_REGISTER_OFFSET, tmp);
tmp = RREG32(DMA_CNTL + DMA1_REGISTER_OFFSET) & ~TRAP_ENABLE;
WREG32(DMA_CNTL + DMA1_REGISTER_OFFSET, tmp);
WREG32(GRBM_INT_CNTL, 0);
WREG32(SRBM_INT_CNTL, 0);
for (i = 0; i < rdev->num_crtc; i++)
WREG32(INT_MASK + crtc_offsets[i], 0);
for (i = 0; i < rdev->num_crtc; i++)
WREG32(GRPH_INT_CONTROL + crtc_offsets[i], 0);
if (!ASIC_IS_NODCE(rdev)) {
WREG32(DAC_AUTODETECT_INT_CONTROL, 0);
for (i = 0; i < 6; i++)
WREG32_AND(DC_HPDx_INT_CONTROL(i),
DC_HPDx_INT_POLARITY);
}
}
static int si_irq_init(struct radeon_device *rdev)
{
int ret = 0;
int rb_bufsz;
u32 interrupt_cntl, ih_cntl, ih_rb_cntl;
/* allocate ring */
ret = r600_ih_ring_alloc(rdev);
if (ret)
return ret;
/* disable irqs */
si_disable_interrupts(rdev);
/* init rlc */
ret = si_rlc_resume(rdev);
if (ret) {
r600_ih_ring_fini(rdev);
return ret;
}
/* setup interrupt control */
/* set dummy read address to dummy page address */
WREG32(INTERRUPT_CNTL2, rdev->dummy_page.addr >> 8);
interrupt_cntl = RREG32(INTERRUPT_CNTL);
/* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi
* IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN
*/
interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE;
/* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */
interrupt_cntl &= ~IH_REQ_NONSNOOP_EN;
WREG32(INTERRUPT_CNTL, interrupt_cntl);
WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8);
rb_bufsz = order_base_2(rdev->ih.ring_size / 4);
ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE |
IH_WPTR_OVERFLOW_CLEAR |
(rb_bufsz << 1));
if (rdev->wb.enabled)
ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE;
/* set the writeback address whether it's enabled or not */
WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC);
WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF);
WREG32(IH_RB_CNTL, ih_rb_cntl);
/* set rptr, wptr to 0 */
WREG32(IH_RB_RPTR, 0);
WREG32(IH_RB_WPTR, 0);
/* Default settings for IH_CNTL (disabled at first) */
ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10) | MC_VMID(0);
/* RPTR_REARM only works if msi's are enabled */
if (rdev->msi_enabled)
ih_cntl |= RPTR_REARM;
WREG32(IH_CNTL, ih_cntl);
/* force the active interrupt state to all disabled */
si_disable_interrupt_state(rdev);
pci_set_master(rdev->pdev);
/* enable irqs */
si_enable_interrupts(rdev);
return ret;
}
/* The order we write back each register here is important */
int si_irq_set(struct radeon_device *rdev)
{
int i;
u32 cp_int_cntl;
u32 cp_int_cntl1 = 0, cp_int_cntl2 = 0;
u32 grbm_int_cntl = 0;
u32 dma_cntl, dma_cntl1;
u32 thermal_int = 0;
if (!rdev->irq.installed) {
WARN(1, "Can't enable IRQ/MSI because no handler is installed\n");
return -EINVAL;
}
/* don't enable anything if the ih is disabled */
if (!rdev->ih.enabled) {
si_disable_interrupts(rdev);
/* force the active interrupt state to all disabled */
si_disable_interrupt_state(rdev);
return 0;
}
cp_int_cntl = RREG32(CP_INT_CNTL_RING0) &
(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
dma_cntl = RREG32(DMA_CNTL + DMA0_REGISTER_OFFSET) & ~TRAP_ENABLE;
dma_cntl1 = RREG32(DMA_CNTL + DMA1_REGISTER_OFFSET) & ~TRAP_ENABLE;
thermal_int = RREG32(CG_THERMAL_INT) &
~(THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW);
/* enable CP interrupts on all rings */
if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) {
DRM_DEBUG("si_irq_set: sw int gfx\n");
cp_int_cntl |= TIME_STAMP_INT_ENABLE;
}
if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP1_INDEX])) {
DRM_DEBUG("si_irq_set: sw int cp1\n");
cp_int_cntl1 |= TIME_STAMP_INT_ENABLE;
}
if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP2_INDEX])) {
DRM_DEBUG("si_irq_set: sw int cp2\n");
cp_int_cntl2 |= TIME_STAMP_INT_ENABLE;
}
if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) {
DRM_DEBUG("si_irq_set: sw int dma\n");
dma_cntl |= TRAP_ENABLE;
}
if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_DMA1_INDEX])) {
DRM_DEBUG("si_irq_set: sw int dma1\n");
dma_cntl1 |= TRAP_ENABLE;
}
WREG32(CP_INT_CNTL_RING0, cp_int_cntl);
WREG32(CP_INT_CNTL_RING1, cp_int_cntl1);
WREG32(CP_INT_CNTL_RING2, cp_int_cntl2);
WREG32(DMA_CNTL + DMA0_REGISTER_OFFSET, dma_cntl);
WREG32(DMA_CNTL + DMA1_REGISTER_OFFSET, dma_cntl1);
WREG32(GRBM_INT_CNTL, grbm_int_cntl);
if (rdev->irq.dpm_thermal) {
DRM_DEBUG("dpm thermal\n");
thermal_int |= THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW;
}
for (i = 0; i < rdev->num_crtc; i++) {
radeon_irq_kms_set_irq_n_enabled(
rdev, INT_MASK + crtc_offsets[i], VBLANK_INT_MASK,
rdev->irq.crtc_vblank_int[i] ||
atomic_read(&rdev->irq.pflip[i]), "vblank", i);
}
for (i = 0; i < rdev->num_crtc; i++)
WREG32(GRPH_INT_CONTROL + crtc_offsets[i], GRPH_PFLIP_INT_MASK);
if (!ASIC_IS_NODCE(rdev)) {
for (i = 0; i < 6; i++) {
radeon_irq_kms_set_irq_n_enabled(
rdev, DC_HPDx_INT_CONTROL(i),
DC_HPDx_INT_EN | DC_HPDx_RX_INT_EN,
rdev->irq.hpd[i], "HPD", i);
}
}
WREG32(CG_THERMAL_INT, thermal_int);
/* posting read */
RREG32(SRBM_STATUS);
return 0;
}
/* The order we write back each register here is important */
static inline void si_irq_ack(struct radeon_device *rdev)
{
int i, j;
u32 *disp_int = rdev->irq.stat_regs.evergreen.disp_int;
u32 *grph_int = rdev->irq.stat_regs.evergreen.grph_int;
if (ASIC_IS_NODCE(rdev))
return;
for (i = 0; i < 6; i++) {
disp_int[i] = RREG32(si_disp_int_status[i]);
if (i < rdev->num_crtc)
grph_int[i] = RREG32(GRPH_INT_STATUS + crtc_offsets[i]);
}
/* We write back each interrupt register in pairs of two */
for (i = 0; i < rdev->num_crtc; i += 2) {
for (j = i; j < (i + 2); j++) {
if (grph_int[j] & GRPH_PFLIP_INT_OCCURRED)
WREG32(GRPH_INT_STATUS + crtc_offsets[j],
GRPH_PFLIP_INT_CLEAR);
}
for (j = i; j < (i + 2); j++) {
if (disp_int[j] & LB_D1_VBLANK_INTERRUPT)
WREG32(VBLANK_STATUS + crtc_offsets[j],
VBLANK_ACK);
if (disp_int[j] & LB_D1_VLINE_INTERRUPT)
WREG32(VLINE_STATUS + crtc_offsets[j],
VLINE_ACK);
}
}
for (i = 0; i < 6; i++) {
if (disp_int[i] & DC_HPD1_INTERRUPT)
WREG32_OR(DC_HPDx_INT_CONTROL(i), DC_HPDx_INT_ACK);
}
for (i = 0; i < 6; i++) {
if (disp_int[i] & DC_HPD1_RX_INTERRUPT)
WREG32_OR(DC_HPDx_INT_CONTROL(i), DC_HPDx_RX_INT_ACK);
}
}
static void si_irq_disable(struct radeon_device *rdev)
{
si_disable_interrupts(rdev);
/* Wait and acknowledge irq */
mdelay(1);
si_irq_ack(rdev);
si_disable_interrupt_state(rdev);
}
static void si_irq_suspend(struct radeon_device *rdev)
{
si_irq_disable(rdev);
si_rlc_stop(rdev);
}
static void si_irq_fini(struct radeon_device *rdev)
{
si_irq_suspend(rdev);
r600_ih_ring_fini(rdev);
}
static inline u32 si_get_ih_wptr(struct radeon_device *rdev)
{
u32 wptr, tmp;
if (rdev->wb.enabled)
wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]);
else
wptr = RREG32(IH_RB_WPTR);
if (wptr & RB_OVERFLOW) {
wptr &= ~RB_OVERFLOW;
/* When a ring buffer overflow happen start parsing interrupt
* from the last not overwritten vector (wptr + 16). Hopefully
* this should allow us to catchup.
*/
dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
wptr, rdev->ih.rptr, (wptr + 16) & rdev->ih.ptr_mask);
rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask;
tmp = RREG32(IH_RB_CNTL);
tmp |= IH_WPTR_OVERFLOW_CLEAR;
WREG32(IH_RB_CNTL, tmp);
}
return (wptr & rdev->ih.ptr_mask);
}
/* SI IV Ring
* Each IV ring entry is 128 bits:
* [7:0] - interrupt source id
* [31:8] - reserved
* [59:32] - interrupt source data
* [63:60] - reserved
* [71:64] - RINGID
* [79:72] - VMID
* [127:80] - reserved
*/
int si_irq_process(struct radeon_device *rdev)
{
u32 *disp_int = rdev->irq.stat_regs.evergreen.disp_int;
u32 crtc_idx, hpd_idx;
u32 mask;
u32 wptr;
u32 rptr;
u32 src_id, src_data, ring_id;
u32 ring_index;
bool queue_hotplug = false;
bool queue_dp = false;
bool queue_thermal = false;
u32 status, addr;
const char *event_name;
if (!rdev->ih.enabled || rdev->shutdown)
return IRQ_NONE;
wptr = si_get_ih_wptr(rdev);
restart_ih:
/* is somebody else already processing irqs? */
if (atomic_xchg(&rdev->ih.lock, 1))
return IRQ_NONE;
rptr = rdev->ih.rptr;
DRM_DEBUG("si_irq_process start: rptr %d, wptr %d\n", rptr, wptr);
/* Order reading of wptr vs. reading of IH ring data */
rmb();
/* display interrupts */
si_irq_ack(rdev);
while (rptr != wptr) {
/* wptr/rptr are in bytes! */
ring_index = rptr / 4;
src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff;
src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff;
ring_id = le32_to_cpu(rdev->ih.ring[ring_index + 2]) & 0xff;
switch (src_id) {
case 1: /* D1 vblank/vline */
case 2: /* D2 vblank/vline */
case 3: /* D3 vblank/vline */
case 4: /* D4 vblank/vline */
case 5: /* D5 vblank/vline */
case 6: /* D6 vblank/vline */
crtc_idx = src_id - 1;
if (src_data == 0) { /* vblank */
mask = LB_D1_VBLANK_INTERRUPT;
event_name = "vblank";
if (rdev->irq.crtc_vblank_int[crtc_idx]) {
drm_handle_vblank(rdev->ddev, crtc_idx);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (atomic_read(&rdev->irq.pflip[crtc_idx])) {
radeon_crtc_handle_vblank(rdev,
crtc_idx);
}
} else if (src_data == 1) { /* vline */
mask = LB_D1_VLINE_INTERRUPT;
event_name = "vline";
} else {
DRM_DEBUG("Unhandled interrupt: %d %d\n",
src_id, src_data);
break;
}
if (!(disp_int[crtc_idx] & mask)) {
DRM_DEBUG("IH: D%d %s - IH event w/o asserted irq bit?\n",
crtc_idx + 1, event_name);
}
disp_int[crtc_idx] &= ~mask;
DRM_DEBUG("IH: D%d %s\n", crtc_idx + 1, event_name);
break;
case 8: /* D1 page flip */
case 10: /* D2 page flip */
case 12: /* D3 page flip */
case 14: /* D4 page flip */
case 16: /* D5 page flip */
case 18: /* D6 page flip */
DRM_DEBUG("IH: D%d flip\n", ((src_id - 8) >> 1) + 1);
if (radeon_use_pflipirq > 0)
radeon_crtc_handle_flip(rdev, (src_id - 8) >> 1);
break;
case 42: /* HPD hotplug */
if (src_data <= 5) {
hpd_idx = src_data;
mask = DC_HPD1_INTERRUPT;
queue_hotplug = true;
event_name = "HPD";
} else if (src_data <= 11) {
hpd_idx = src_data - 6;
mask = DC_HPD1_RX_INTERRUPT;
queue_dp = true;
event_name = "HPD_RX";
} else {
DRM_DEBUG("Unhandled interrupt: %d %d\n",
src_id, src_data);
break;
}
if (!(disp_int[hpd_idx] & mask))
DRM_DEBUG("IH: IH event w/o asserted irq bit?\n");
disp_int[hpd_idx] &= ~mask;
DRM_DEBUG("IH: %s%d\n", event_name, hpd_idx + 1);
break;
case 96:
DRM_ERROR("SRBM_READ_ERROR: 0x%x\n", RREG32(SRBM_READ_ERROR));
WREG32(SRBM_INT_ACK, 0x1);
break;
case 124: /* UVD */
DRM_DEBUG("IH: UVD int: 0x%08x\n", src_data);
radeon_fence_process(rdev, R600_RING_TYPE_UVD_INDEX);
break;
case 146:
case 147:
addr = RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR);
status = RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS);
/* reset addr and status */
WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1);
if (addr == 0x0 && status == 0x0)
break;
dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data);
dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
addr);
dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
status);
si_vm_decode_fault(rdev, status, addr);
break;
case 176: /* RINGID0 CP_INT */
radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
break;
case 177: /* RINGID1 CP_INT */
radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX);
break;
case 178: /* RINGID2 CP_INT */
radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX);
break;
case 181: /* CP EOP event */
DRM_DEBUG("IH: CP EOP\n");
switch (ring_id) {
case 0:
radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
break;
case 1:
radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX);
break;
case 2:
radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX);
break;
}
break;
case 224: /* DMA trap event */
DRM_DEBUG("IH: DMA trap\n");
radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX);
break;
case 230: /* thermal low to high */
DRM_DEBUG("IH: thermal low to high\n");
rdev->pm.dpm.thermal.high_to_low = false;
queue_thermal = true;
break;
case 231: /* thermal high to low */
DRM_DEBUG("IH: thermal high to low\n");
rdev->pm.dpm.thermal.high_to_low = true;
queue_thermal = true;
break;
case 233: /* GUI IDLE */
DRM_DEBUG("IH: GUI idle\n");
break;
case 244: /* DMA trap event */
DRM_DEBUG("IH: DMA1 trap\n");
radeon_fence_process(rdev, CAYMAN_RING_TYPE_DMA1_INDEX);
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
/* wptr/rptr are in bytes! */
rptr += 16;
rptr &= rdev->ih.ptr_mask;
WREG32(IH_RB_RPTR, rptr);
}
if (queue_dp)
schedule_work(&rdev->dp_work);
if (queue_hotplug)
schedule_delayed_work(&rdev->hotplug_work, 0);
if (queue_thermal && rdev->pm.dpm_enabled)
schedule_work(&rdev->pm.dpm.thermal.work);
rdev->ih.rptr = rptr;
atomic_set(&rdev->ih.lock, 0);
/* make sure wptr hasn't changed while processing */
wptr = si_get_ih_wptr(rdev);
if (wptr != rptr)
goto restart_ih;
return IRQ_HANDLED;
}
/*
* startup/shutdown callbacks
*/
static void si_uvd_init(struct radeon_device *rdev)
{
int r;
if (!rdev->has_uvd)
return;
r = radeon_uvd_init(rdev);
if (r) {
dev_err(rdev->dev, "failed UVD (%d) init.\n", r);
/*
* At this point rdev->uvd.vcpu_bo is NULL which trickles down
* to early fails uvd_v2_2_resume() and thus nothing happens
* there. So it is pointless to try to go through that code
* hence why we disable uvd here.
*/
rdev->has_uvd = 0;
return;
}
rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_obj = NULL;
r600_ring_init(rdev, &rdev->ring[R600_RING_TYPE_UVD_INDEX], 4096);
}
static void si_uvd_start(struct radeon_device *rdev)
{
int r;
if (!rdev->has_uvd)
return;
r = uvd_v2_2_resume(rdev);
if (r) {
dev_err(rdev->dev, "failed UVD resume (%d).\n", r);
goto error;
}
r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_UVD_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing UVD fences (%d).\n", r);
goto error;
}
return;
error:
rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size = 0;
}
static void si_uvd_resume(struct radeon_device *rdev)
{
struct radeon_ring *ring;
int r;
if (!rdev->has_uvd || !rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size)
return;
ring = &rdev->ring[R600_RING_TYPE_UVD_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, 0, PACKET0(UVD_NO_OP, 0));
if (r) {
dev_err(rdev->dev, "failed initializing UVD ring (%d).\n", r);
return;
}
r = uvd_v1_0_init(rdev);
if (r) {
dev_err(rdev->dev, "failed initializing UVD (%d).\n", r);
return;
}
}
static void si_vce_init(struct radeon_device *rdev)
{
int r;
if (!rdev->has_vce)
return;
r = radeon_vce_init(rdev);
if (r) {
dev_err(rdev->dev, "failed VCE (%d) init.\n", r);
/*
* At this point rdev->vce.vcpu_bo is NULL which trickles down
* to early fails si_vce_start() and thus nothing happens
* there. So it is pointless to try to go through that code
* hence why we disable vce here.
*/
rdev->has_vce = 0;
return;
}
rdev->ring[TN_RING_TYPE_VCE1_INDEX].ring_obj = NULL;
r600_ring_init(rdev, &rdev->ring[TN_RING_TYPE_VCE1_INDEX], 4096);
rdev->ring[TN_RING_TYPE_VCE2_INDEX].ring_obj = NULL;
r600_ring_init(rdev, &rdev->ring[TN_RING_TYPE_VCE2_INDEX], 4096);
}
static void si_vce_start(struct radeon_device *rdev)
{
int r;
if (!rdev->has_vce)
return;
r = radeon_vce_resume(rdev);
if (r) {
dev_err(rdev->dev, "failed VCE resume (%d).\n", r);
goto error;
}
r = vce_v1_0_resume(rdev);
if (r) {
dev_err(rdev->dev, "failed VCE resume (%d).\n", r);
goto error;
}
r = radeon_fence_driver_start_ring(rdev, TN_RING_TYPE_VCE1_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing VCE1 fences (%d).\n", r);
goto error;
}
r = radeon_fence_driver_start_ring(rdev, TN_RING_TYPE_VCE2_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing VCE2 fences (%d).\n", r);
goto error;
}
return;
error:
rdev->ring[TN_RING_TYPE_VCE1_INDEX].ring_size = 0;
rdev->ring[TN_RING_TYPE_VCE2_INDEX].ring_size = 0;
}
static void si_vce_resume(struct radeon_device *rdev)
{
struct radeon_ring *ring;
int r;
if (!rdev->has_vce || !rdev->ring[TN_RING_TYPE_VCE1_INDEX].ring_size)
return;
ring = &rdev->ring[TN_RING_TYPE_VCE1_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, 0, VCE_CMD_NO_OP);
if (r) {
dev_err(rdev->dev, "failed initializing VCE1 ring (%d).\n", r);
return;
}
ring = &rdev->ring[TN_RING_TYPE_VCE2_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, 0, VCE_CMD_NO_OP);
if (r) {
dev_err(rdev->dev, "failed initializing VCE1 ring (%d).\n", r);
return;
}
r = vce_v1_0_init(rdev);
if (r) {
dev_err(rdev->dev, "failed initializing VCE (%d).\n", r);
return;
}
}
static int si_startup(struct radeon_device *rdev)
{
struct radeon_ring *ring;
int r;
/* enable pcie gen2/3 link */
si_pcie_gen3_enable(rdev);
/* enable aspm */
si_program_aspm(rdev);
/* scratch needs to be initialized before MC */
r = r600_vram_scratch_init(rdev);
if (r)
return r;
si_mc_program(rdev);
if (!rdev->pm.dpm_enabled) {
r = si_mc_load_microcode(rdev);
if (r) {
DRM_ERROR("Failed to load MC firmware!\n");
return r;
}
}
r = si_pcie_gart_enable(rdev);
if (r)
return r;
si_gpu_init(rdev);
/* allocate rlc buffers */
if (rdev->family == CHIP_VERDE) {
rdev->rlc.reg_list = verde_rlc_save_restore_register_list;
rdev->rlc.reg_list_size =
(u32)ARRAY_SIZE(verde_rlc_save_restore_register_list);
}
rdev->rlc.cs_data = si_cs_data;
r = sumo_rlc_init(rdev);
if (r) {
DRM_ERROR("Failed to init rlc BOs!\n");
return r;
}
/* allocate wb buffer */
r = radeon_wb_init(rdev);
if (r)
return r;
r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
return r;
}
r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP1_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
return r;
}
r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP2_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
return r;
}
r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_DMA_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r);
return r;
}
r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_DMA1_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r);
return r;
}
si_uvd_start(rdev);
si_vce_start(rdev);
/* Enable IRQ */
if (!rdev->irq.installed) {
r = radeon_irq_kms_init(rdev);
if (r)
return r;
}
r = si_irq_init(rdev);
if (r) {
DRM_ERROR("radeon: IH init failed (%d).\n", r);
radeon_irq_kms_fini(rdev);
return r;
}
si_irq_set(rdev);
ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET,
RADEON_CP_PACKET2);
if (r)
return r;
ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP1_RPTR_OFFSET,
RADEON_CP_PACKET2);
if (r)
return r;
ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP2_RPTR_OFFSET,
RADEON_CP_PACKET2);
if (r)
return r;
ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, R600_WB_DMA_RPTR_OFFSET,
DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0));
if (r)
return r;
ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, CAYMAN_WB_DMA1_RPTR_OFFSET,
DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0));
if (r)
return r;
r = si_cp_load_microcode(rdev);
if (r)
return r;
r = si_cp_resume(rdev);
if (r)
return r;
r = cayman_dma_resume(rdev);
if (r)
return r;
si_uvd_resume(rdev);
si_vce_resume(rdev);
r = radeon_ib_pool_init(rdev);
if (r) {
dev_err(rdev->dev, "IB initialization failed (%d).\n", r);
return r;
}
r = radeon_vm_manager_init(rdev);
if (r) {
dev_err(rdev->dev, "vm manager initialization failed (%d).\n", r);
return r;
}
r = radeon_audio_init(rdev);
if (r)
return r;
return 0;
}
int si_resume(struct radeon_device *rdev)
{
int r;
/* Do not reset GPU before posting, on rv770 hw unlike on r500 hw,
* posting will perform necessary task to bring back GPU into good
* shape.
*/
/* post card */
atom_asic_init(rdev->mode_info.atom_context);
/* init golden registers */
si_init_golden_registers(rdev);
if (rdev->pm.pm_method == PM_METHOD_DPM)
radeon_pm_resume(rdev);
rdev->accel_working = true;
r = si_startup(rdev);
if (r) {
DRM_ERROR("si startup failed on resume\n");
rdev->accel_working = false;
return r;
}
return r;
}
int si_suspend(struct radeon_device *rdev)
{
radeon_pm_suspend(rdev);
radeon_audio_fini(rdev);
radeon_vm_manager_fini(rdev);
si_cp_enable(rdev, false);
cayman_dma_stop(rdev);
if (rdev->has_uvd) {
uvd_v1_0_fini(rdev);
radeon_uvd_suspend(rdev);
}
if (rdev->has_vce)
radeon_vce_suspend(rdev);
si_fini_pg(rdev);
si_fini_cg(rdev);
si_irq_suspend(rdev);
radeon_wb_disable(rdev);
si_pcie_gart_disable(rdev);
return 0;
}
/* Plan is to move initialization in that function and use
* helper function so that radeon_device_init pretty much
* do nothing more than calling asic specific function. This
* should also allow to remove a bunch of callback function
* like vram_info.
*/
int si_init(struct radeon_device *rdev)
{
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
int r;
/* Read BIOS */
if (!radeon_get_bios(rdev)) {
if (ASIC_IS_AVIVO(rdev))
return -EINVAL;
}
/* Must be an ATOMBIOS */
if (!rdev->is_atom_bios) {
dev_err(rdev->dev, "Expecting atombios for cayman GPU\n");
return -EINVAL;
}
r = radeon_atombios_init(rdev);
if (r)
return r;
/* Post card if necessary */
if (!radeon_card_posted(rdev)) {
if (!rdev->bios) {
dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
return -EINVAL;
}
DRM_INFO("GPU not posted. posting now...\n");
atom_asic_init(rdev->mode_info.atom_context);
}
/* init golden registers */
si_init_golden_registers(rdev);
/* Initialize scratch registers */
si_scratch_init(rdev);
/* Initialize surface registers */
radeon_surface_init(rdev);
/* Initialize clocks */
radeon_get_clock_info(rdev->ddev);
/* Fence driver */
r = radeon_fence_driver_init(rdev);
if (r)
return r;
/* initialize memory controller */
r = si_mc_init(rdev);
if (r)
return r;
/* Memory manager */
r = radeon_bo_init(rdev);
if (r)
return r;
if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw ||
!rdev->rlc_fw || !rdev->mc_fw) {
r = si_init_microcode(rdev);
if (r) {
DRM_ERROR("Failed to load firmware!\n");
return r;
}
}
/* Initialize power management */
radeon_pm_init(rdev);
ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
ring->ring_obj = NULL;
r600_ring_init(rdev, ring, 1024 * 1024);
ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX];
ring->ring_obj = NULL;
r600_ring_init(rdev, ring, 1024 * 1024);
ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX];
ring->ring_obj = NULL;
r600_ring_init(rdev, ring, 1024 * 1024);
ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
ring->ring_obj = NULL;
r600_ring_init(rdev, ring, 64 * 1024);
ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
ring->ring_obj = NULL;
r600_ring_init(rdev, ring, 64 * 1024);
si_uvd_init(rdev);
si_vce_init(rdev);
rdev->ih.ring_obj = NULL;
r600_ih_ring_init(rdev, 64 * 1024);
r = r600_pcie_gart_init(rdev);
if (r)
return r;
rdev->accel_working = true;
r = si_startup(rdev);
if (r) {
dev_err(rdev->dev, "disabling GPU acceleration\n");
si_cp_fini(rdev);
cayman_dma_fini(rdev);
si_irq_fini(rdev);
sumo_rlc_fini(rdev);
radeon_wb_fini(rdev);
radeon_ib_pool_fini(rdev);
radeon_vm_manager_fini(rdev);
radeon_irq_kms_fini(rdev);
si_pcie_gart_fini(rdev);
rdev->accel_working = false;
}
/* Don't start up if the MC ucode is missing.
* The default clocks and voltages before the MC ucode
* is loaded are not suffient for advanced operations.
*/
if (!rdev->mc_fw) {
DRM_ERROR("radeon: MC ucode required for NI+.\n");
return -EINVAL;
}
return 0;
}
void si_fini(struct radeon_device *rdev)
{
radeon_pm_fini(rdev);
si_cp_fini(rdev);
cayman_dma_fini(rdev);
si_fini_pg(rdev);
si_fini_cg(rdev);
si_irq_fini(rdev);
sumo_rlc_fini(rdev);
radeon_wb_fini(rdev);
radeon_vm_manager_fini(rdev);
radeon_ib_pool_fini(rdev);
radeon_irq_kms_fini(rdev);
if (rdev->has_uvd) {
uvd_v1_0_fini(rdev);
radeon_uvd_fini(rdev);
}
if (rdev->has_vce)
radeon_vce_fini(rdev);
si_pcie_gart_fini(rdev);
r600_vram_scratch_fini(rdev);
radeon_gem_fini(rdev);
radeon_fence_driver_fini(rdev);
radeon_bo_fini(rdev);
radeon_atombios_fini(rdev);
kfree(rdev->bios);
rdev->bios = NULL;
}
/**
* si_get_gpu_clock_counter - return GPU clock counter snapshot
*
* @rdev: radeon_device pointer
*
* Fetches a GPU clock counter snapshot (SI).
* Returns the 64 bit clock counter snapshot.
*/
uint64_t si_get_gpu_clock_counter(struct radeon_device *rdev)
{
uint64_t clock;
mutex_lock(&rdev->gpu_clock_mutex);
WREG32(RLC_CAPTURE_GPU_CLOCK_COUNT, 1);
clock = (uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_LSB) |
((uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_MSB) << 32ULL);
mutex_unlock(&rdev->gpu_clock_mutex);
return clock;
}
int si_set_uvd_clocks(struct radeon_device *rdev, u32 vclk, u32 dclk)
{
unsigned fb_div = 0, vclk_div = 0, dclk_div = 0;
int r;
/* bypass vclk and dclk with bclk */
WREG32_P(CG_UPLL_FUNC_CNTL_2,
VCLK_SRC_SEL(1) | DCLK_SRC_SEL(1),
~(VCLK_SRC_SEL_MASK | DCLK_SRC_SEL_MASK));
/* put PLL in bypass mode */
WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_BYPASS_EN_MASK, ~UPLL_BYPASS_EN_MASK);
if (!vclk || !dclk) {
/* keep the Bypass mode */
return 0;
}
r = radeon_uvd_calc_upll_dividers(rdev, vclk, dclk, 125000, 250000,
16384, 0x03FFFFFF, 0, 128, 5,
&fb_div, &vclk_div, &dclk_div);
if (r)
return r;
/* set RESET_ANTI_MUX to 0 */
WREG32_P(CG_UPLL_FUNC_CNTL_5, 0, ~RESET_ANTI_MUX_MASK);
/* set VCO_MODE to 1 */
WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_VCO_MODE_MASK, ~UPLL_VCO_MODE_MASK);
/* disable sleep mode */
WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_SLEEP_MASK);
/* deassert UPLL_RESET */
WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_RESET_MASK);
mdelay(1);
r = radeon_uvd_send_upll_ctlreq(rdev, CG_UPLL_FUNC_CNTL);
if (r)
return r;
/* assert UPLL_RESET again */
WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_RESET_MASK, ~UPLL_RESET_MASK);
/* disable spread spectrum. */
WREG32_P(CG_UPLL_SPREAD_SPECTRUM, 0, ~SSEN_MASK);
/* set feedback divider */
WREG32_P(CG_UPLL_FUNC_CNTL_3, UPLL_FB_DIV(fb_div), ~UPLL_FB_DIV_MASK);
/* set ref divider to 0 */
WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_REF_DIV_MASK);
if (fb_div < 307200)
WREG32_P(CG_UPLL_FUNC_CNTL_4, 0, ~UPLL_SPARE_ISPARE9);
else
WREG32_P(CG_UPLL_FUNC_CNTL_4, UPLL_SPARE_ISPARE9, ~UPLL_SPARE_ISPARE9);
/* set PDIV_A and PDIV_B */
WREG32_P(CG_UPLL_FUNC_CNTL_2,
UPLL_PDIV_A(vclk_div) | UPLL_PDIV_B(dclk_div),
~(UPLL_PDIV_A_MASK | UPLL_PDIV_B_MASK));
/* give the PLL some time to settle */
mdelay(15);
/* deassert PLL_RESET */
WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_RESET_MASK);
mdelay(15);
/* switch from bypass mode to normal mode */
WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_BYPASS_EN_MASK);
r = radeon_uvd_send_upll_ctlreq(rdev, CG_UPLL_FUNC_CNTL);
if (r)
return r;
/* switch VCLK and DCLK selection */
WREG32_P(CG_UPLL_FUNC_CNTL_2,
VCLK_SRC_SEL(2) | DCLK_SRC_SEL(2),
~(VCLK_SRC_SEL_MASK | DCLK_SRC_SEL_MASK));
mdelay(100);
return 0;
}
static void si_pcie_gen3_enable(struct radeon_device *rdev)
{
struct pci_dev *root = rdev->pdev->bus->self;
enum pci_bus_speed speed_cap;
int bridge_pos, gpu_pos;
u32 speed_cntl, current_data_rate;
int i;
u16 tmp16;
if (pci_is_root_bus(rdev->pdev->bus))
return;
if (radeon_pcie_gen2 == 0)
return;
if (rdev->flags & RADEON_IS_IGP)
return;
if (!(rdev->flags & RADEON_IS_PCIE))
return;
speed_cap = pcie_get_speed_cap(root);
if (speed_cap == PCI_SPEED_UNKNOWN)
return;
if ((speed_cap != PCIE_SPEED_8_0GT) &&
(speed_cap != PCIE_SPEED_5_0GT))
return;
speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
current_data_rate = (speed_cntl & LC_CURRENT_DATA_RATE_MASK) >>
LC_CURRENT_DATA_RATE_SHIFT;
if (speed_cap == PCIE_SPEED_8_0GT) {
if (current_data_rate == 2) {
DRM_INFO("PCIE gen 3 link speeds already enabled\n");
return;
}
DRM_INFO("enabling PCIE gen 3 link speeds, disable with radeon.pcie_gen2=0\n");
} else if (speed_cap == PCIE_SPEED_5_0GT) {
if (current_data_rate == 1) {
DRM_INFO("PCIE gen 2 link speeds already enabled\n");
return;
}
DRM_INFO("enabling PCIE gen 2 link speeds, disable with radeon.pcie_gen2=0\n");
}
bridge_pos = pci_pcie_cap(root);
if (!bridge_pos)
return;
gpu_pos = pci_pcie_cap(rdev->pdev);
if (!gpu_pos)
return;
if (speed_cap == PCIE_SPEED_8_0GT) {
/* re-try equalization if gen3 is not already enabled */
if (current_data_rate != 2) {
u16 bridge_cfg, gpu_cfg;
u16 bridge_cfg2, gpu_cfg2;
u32 max_lw, current_lw, tmp;
pci_read_config_word(root, bridge_pos + PCI_EXP_LNKCTL, &bridge_cfg);
pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL, &gpu_cfg);
tmp16 = bridge_cfg | PCI_EXP_LNKCTL_HAWD;
pci_write_config_word(root, bridge_pos + PCI_EXP_LNKCTL, tmp16);
tmp16 = gpu_cfg | PCI_EXP_LNKCTL_HAWD;
pci_write_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL, tmp16);
tmp = RREG32_PCIE(PCIE_LC_STATUS1);
max_lw = (tmp & LC_DETECTED_LINK_WIDTH_MASK) >> LC_DETECTED_LINK_WIDTH_SHIFT;
current_lw = (tmp & LC_OPERATING_LINK_WIDTH_MASK) >> LC_OPERATING_LINK_WIDTH_SHIFT;
if (current_lw < max_lw) {
tmp = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL);
if (tmp & LC_RENEGOTIATION_SUPPORT) {
tmp &= ~(LC_LINK_WIDTH_MASK | LC_UPCONFIGURE_DIS);
tmp |= (max_lw << LC_LINK_WIDTH_SHIFT);
tmp |= LC_UPCONFIGURE_SUPPORT | LC_RENEGOTIATE_EN | LC_RECONFIG_NOW;
WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, tmp);
}
}
for (i = 0; i < 10; i++) {
/* check status */
pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_DEVSTA, &tmp16);
if (tmp16 & PCI_EXP_DEVSTA_TRPND)
break;
pci_read_config_word(root, bridge_pos + PCI_EXP_LNKCTL, &bridge_cfg);
pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL, &gpu_cfg);
pci_read_config_word(root, bridge_pos + PCI_EXP_LNKCTL2, &bridge_cfg2);
pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL2, &gpu_cfg2);
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL4);
tmp |= LC_SET_QUIESCE;
WREG32_PCIE_PORT(PCIE_LC_CNTL4, tmp);
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL4);
tmp |= LC_REDO_EQ;
WREG32_PCIE_PORT(PCIE_LC_CNTL4, tmp);
mdelay(100);
/* linkctl */
pci_read_config_word(root, bridge_pos + PCI_EXP_LNKCTL, &tmp16);
tmp16 &= ~PCI_EXP_LNKCTL_HAWD;
tmp16 |= (bridge_cfg & PCI_EXP_LNKCTL_HAWD);
pci_write_config_word(root, bridge_pos + PCI_EXP_LNKCTL, tmp16);
pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL, &tmp16);
tmp16 &= ~PCI_EXP_LNKCTL_HAWD;
tmp16 |= (gpu_cfg & PCI_EXP_LNKCTL_HAWD);
pci_write_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL, tmp16);
/* linkctl2 */
pci_read_config_word(root, bridge_pos + PCI_EXP_LNKCTL2, &tmp16);
tmp16 &= ~((1 << 4) | (7 << 9));
tmp16 |= (bridge_cfg2 & ((1 << 4) | (7 << 9)));
pci_write_config_word(root, bridge_pos + PCI_EXP_LNKCTL2, tmp16);
pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL2, &tmp16);
tmp16 &= ~((1 << 4) | (7 << 9));
tmp16 |= (gpu_cfg2 & ((1 << 4) | (7 << 9)));
pci_write_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL2, tmp16);
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL4);
tmp &= ~LC_SET_QUIESCE;
WREG32_PCIE_PORT(PCIE_LC_CNTL4, tmp);
}
}
}
/* set the link speed */
speed_cntl |= LC_FORCE_EN_SW_SPEED_CHANGE | LC_FORCE_DIS_HW_SPEED_CHANGE;
speed_cntl &= ~LC_FORCE_DIS_SW_SPEED_CHANGE;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl);
pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL2, &tmp16);
tmp16 &= ~0xf;
if (speed_cap == PCIE_SPEED_8_0GT)
tmp16 |= 3; /* gen3 */
else if (speed_cap == PCIE_SPEED_5_0GT)
tmp16 |= 2; /* gen2 */
else
tmp16 |= 1; /* gen1 */
pci_write_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL2, tmp16);
speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
speed_cntl |= LC_INITIATE_LINK_SPEED_CHANGE;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl);
for (i = 0; i < rdev->usec_timeout; i++) {
speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
if ((speed_cntl & LC_INITIATE_LINK_SPEED_CHANGE) == 0)
break;
udelay(1);
}
}
static void si_program_aspm(struct radeon_device *rdev)
{
u32 data, orig;
bool disable_l0s = false, disable_l1 = false, disable_plloff_in_l1 = false;
bool disable_clkreq = false;
if (radeon_aspm == 0)
return;
if (!(rdev->flags & RADEON_IS_PCIE))
return;
orig = data = RREG32_PCIE_PORT(PCIE_LC_N_FTS_CNTL);
data &= ~LC_XMIT_N_FTS_MASK;
data |= LC_XMIT_N_FTS(0x24) | LC_XMIT_N_FTS_OVERRIDE_EN;
if (orig != data)
WREG32_PCIE_PORT(PCIE_LC_N_FTS_CNTL, data);
orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL3);
data |= LC_GO_TO_RECOVERY;
if (orig != data)
WREG32_PCIE_PORT(PCIE_LC_CNTL3, data);
orig = data = RREG32_PCIE(PCIE_P_CNTL);
data |= P_IGNORE_EDB_ERR;
if (orig != data)
WREG32_PCIE(PCIE_P_CNTL, data);
orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL);
data &= ~(LC_L0S_INACTIVITY_MASK | LC_L1_INACTIVITY_MASK);
data |= LC_PMI_TO_L1_DIS;
if (!disable_l0s)
data |= LC_L0S_INACTIVITY(7);
if (!disable_l1) {
data |= LC_L1_INACTIVITY(7);
data &= ~LC_PMI_TO_L1_DIS;
if (orig != data)
WREG32_PCIE_PORT(PCIE_LC_CNTL, data);
if (!disable_plloff_in_l1) {
bool clk_req_support;
orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0);
data &= ~(PLL_POWER_STATE_IN_OFF_0_MASK | PLL_POWER_STATE_IN_TXS2_0_MASK);
data |= PLL_POWER_STATE_IN_OFF_0(7) | PLL_POWER_STATE_IN_TXS2_0(7);
if (orig != data)
WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0, data);
orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1);
data &= ~(PLL_POWER_STATE_IN_OFF_1_MASK | PLL_POWER_STATE_IN_TXS2_1_MASK);
data |= PLL_POWER_STATE_IN_OFF_1(7) | PLL_POWER_STATE_IN_TXS2_1(7);
if (orig != data)
WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1, data);
orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0);
data &= ~(PLL_POWER_STATE_IN_OFF_0_MASK | PLL_POWER_STATE_IN_TXS2_0_MASK);
data |= PLL_POWER_STATE_IN_OFF_0(7) | PLL_POWER_STATE_IN_TXS2_0(7);
if (orig != data)
WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0, data);
orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1);
data &= ~(PLL_POWER_STATE_IN_OFF_1_MASK | PLL_POWER_STATE_IN_TXS2_1_MASK);
data |= PLL_POWER_STATE_IN_OFF_1(7) | PLL_POWER_STATE_IN_TXS2_1(7);
if (orig != data)
WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1, data);
if ((rdev->family != CHIP_OLAND) && (rdev->family != CHIP_HAINAN)) {
orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0);
data &= ~PLL_RAMP_UP_TIME_0_MASK;
if (orig != data)
WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0, data);
orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1);
data &= ~PLL_RAMP_UP_TIME_1_MASK;
if (orig != data)
WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1, data);
orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_2);
data &= ~PLL_RAMP_UP_TIME_2_MASK;
if (orig != data)
WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_2, data);
orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_3);
data &= ~PLL_RAMP_UP_TIME_3_MASK;
if (orig != data)
WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_3, data);
orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0);
data &= ~PLL_RAMP_UP_TIME_0_MASK;
if (orig != data)
WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0, data);
orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1);
data &= ~PLL_RAMP_UP_TIME_1_MASK;
if (orig != data)
WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1, data);
orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_2);
data &= ~PLL_RAMP_UP_TIME_2_MASK;
if (orig != data)
WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_2, data);
orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_3);
data &= ~PLL_RAMP_UP_TIME_3_MASK;
if (orig != data)
WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_3, data);
}
orig = data = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL);
data &= ~LC_DYN_LANES_PWR_STATE_MASK;
data |= LC_DYN_LANES_PWR_STATE(3);
if (orig != data)
WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, data);
orig = data = RREG32_PIF_PHY0(PB0_PIF_CNTL);
data &= ~LS2_EXIT_TIME_MASK;
if ((rdev->family == CHIP_OLAND) || (rdev->family == CHIP_HAINAN))
data |= LS2_EXIT_TIME(5);
if (orig != data)
WREG32_PIF_PHY0(PB0_PIF_CNTL, data);
orig = data = RREG32_PIF_PHY1(PB1_PIF_CNTL);
data &= ~LS2_EXIT_TIME_MASK;
if ((rdev->family == CHIP_OLAND) || (rdev->family == CHIP_HAINAN))
data |= LS2_EXIT_TIME(5);
if (orig != data)
WREG32_PIF_PHY1(PB1_PIF_CNTL, data);
if (!disable_clkreq &&
!pci_is_root_bus(rdev->pdev->bus)) {
struct pci_dev *root = rdev->pdev->bus->self;
u32 lnkcap;
clk_req_support = false;
pcie_capability_read_dword(root, PCI_EXP_LNKCAP, &lnkcap);
if (lnkcap & PCI_EXP_LNKCAP_CLKPM)
clk_req_support = true;
} else {
clk_req_support = false;
}
if (clk_req_support) {
orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL2);
data |= LC_ALLOW_PDWN_IN_L1 | LC_ALLOW_PDWN_IN_L23;
if (orig != data)
WREG32_PCIE_PORT(PCIE_LC_CNTL2, data);
orig = data = RREG32(THM_CLK_CNTL);
data &= ~(CMON_CLK_SEL_MASK | TMON_CLK_SEL_MASK);
data |= CMON_CLK_SEL(1) | TMON_CLK_SEL(1);
if (orig != data)
WREG32(THM_CLK_CNTL, data);
orig = data = RREG32(MISC_CLK_CNTL);
data &= ~(DEEP_SLEEP_CLK_SEL_MASK | ZCLK_SEL_MASK);
data |= DEEP_SLEEP_CLK_SEL(1) | ZCLK_SEL(1);
if (orig != data)
WREG32(MISC_CLK_CNTL, data);
orig = data = RREG32(CG_CLKPIN_CNTL);
data &= ~BCLK_AS_XCLK;
if (orig != data)
WREG32(CG_CLKPIN_CNTL, data);
orig = data = RREG32(CG_CLKPIN_CNTL_2);
data &= ~FORCE_BIF_REFCLK_EN;
if (orig != data)
WREG32(CG_CLKPIN_CNTL_2, data);
orig = data = RREG32(MPLL_BYPASSCLK_SEL);
data &= ~MPLL_CLKOUT_SEL_MASK;
data |= MPLL_CLKOUT_SEL(4);
if (orig != data)
WREG32(MPLL_BYPASSCLK_SEL, data);
orig = data = RREG32(SPLL_CNTL_MODE);
data &= ~SPLL_REFCLK_SEL_MASK;
if (orig != data)
WREG32(SPLL_CNTL_MODE, data);
}
}
} else {
if (orig != data)
WREG32_PCIE_PORT(PCIE_LC_CNTL, data);
}
orig = data = RREG32_PCIE(PCIE_CNTL2);
data |= SLV_MEM_LS_EN | MST_MEM_LS_EN | REPLAY_MEM_LS_EN;
if (orig != data)
WREG32_PCIE(PCIE_CNTL2, data);
if (!disable_l0s) {
data = RREG32_PCIE_PORT(PCIE_LC_N_FTS_CNTL);
if((data & LC_N_FTS_MASK) == LC_N_FTS_MASK) {
data = RREG32_PCIE(PCIE_LC_STATUS1);
if ((data & LC_REVERSE_XMIT) && (data & LC_REVERSE_RCVR)) {
orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL);
data &= ~LC_L0S_INACTIVITY_MASK;
if (orig != data)
WREG32_PCIE_PORT(PCIE_LC_CNTL, data);
}
}
}
}
static int si_vce_send_vcepll_ctlreq(struct radeon_device *rdev)
{
unsigned i;
/* make sure VCEPLL_CTLREQ is deasserted */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~UPLL_CTLREQ_MASK);
mdelay(10);
/* assert UPLL_CTLREQ */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, UPLL_CTLREQ_MASK, ~UPLL_CTLREQ_MASK);
/* wait for CTLACK and CTLACK2 to get asserted */
for (i = 0; i < 100; ++i) {
uint32_t mask = UPLL_CTLACK_MASK | UPLL_CTLACK2_MASK;
if ((RREG32_SMC(CG_VCEPLL_FUNC_CNTL) & mask) == mask)
break;
mdelay(10);
}
/* deassert UPLL_CTLREQ */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~UPLL_CTLREQ_MASK);
if (i == 100) {
DRM_ERROR("Timeout setting UVD clocks!\n");
return -ETIMEDOUT;
}
return 0;
}
int si_set_vce_clocks(struct radeon_device *rdev, u32 evclk, u32 ecclk)
{
unsigned fb_div = 0, evclk_div = 0, ecclk_div = 0;
int r;
/* bypass evclk and ecclk with bclk */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL_2,
EVCLK_SRC_SEL(1) | ECCLK_SRC_SEL(1),
~(EVCLK_SRC_SEL_MASK | ECCLK_SRC_SEL_MASK));
/* put PLL in bypass mode */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, VCEPLL_BYPASS_EN_MASK,
~VCEPLL_BYPASS_EN_MASK);
if (!evclk || !ecclk) {
/* keep the Bypass mode, put PLL to sleep */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, VCEPLL_SLEEP_MASK,
~VCEPLL_SLEEP_MASK);
return 0;
}
r = radeon_uvd_calc_upll_dividers(rdev, evclk, ecclk, 125000, 250000,
16384, 0x03FFFFFF, 0, 128, 5,
&fb_div, &evclk_div, &ecclk_div);
if (r)
return r;
/* set RESET_ANTI_MUX to 0 */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL_5, 0, ~RESET_ANTI_MUX_MASK);
/* set VCO_MODE to 1 */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, VCEPLL_VCO_MODE_MASK,
~VCEPLL_VCO_MODE_MASK);
/* toggle VCEPLL_SLEEP to 1 then back to 0 */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, VCEPLL_SLEEP_MASK,
~VCEPLL_SLEEP_MASK);
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~VCEPLL_SLEEP_MASK);
/* deassert VCEPLL_RESET */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~VCEPLL_RESET_MASK);
mdelay(1);
r = si_vce_send_vcepll_ctlreq(rdev);
if (r)
return r;
/* assert VCEPLL_RESET again */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, VCEPLL_RESET_MASK, ~VCEPLL_RESET_MASK);
/* disable spread spectrum. */
WREG32_SMC_P(CG_VCEPLL_SPREAD_SPECTRUM, 0, ~SSEN_MASK);
/* set feedback divider */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL_3, VCEPLL_FB_DIV(fb_div), ~VCEPLL_FB_DIV_MASK);
/* set ref divider to 0 */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~VCEPLL_REF_DIV_MASK);
/* set PDIV_A and PDIV_B */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL_2,
VCEPLL_PDIV_A(evclk_div) | VCEPLL_PDIV_B(ecclk_div),
~(VCEPLL_PDIV_A_MASK | VCEPLL_PDIV_B_MASK));
/* give the PLL some time to settle */
mdelay(15);
/* deassert PLL_RESET */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~VCEPLL_RESET_MASK);
mdelay(15);
/* switch from bypass mode to normal mode */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~VCEPLL_BYPASS_EN_MASK);
r = si_vce_send_vcepll_ctlreq(rdev);
if (r)
return r;
/* switch VCLK and DCLK selection */
WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL_2,
EVCLK_SRC_SEL(16) | ECCLK_SRC_SEL(16),
~(EVCLK_SRC_SEL_MASK | ECCLK_SRC_SEL_MASK));
mdelay(100);
return 0;
}