blob: 3cc3062b37679d2bcb58d04c51c5b42073f61725 [file] [log] [blame]
#ifndef _LINUX_MM_TYPES_H
#define _LINUX_MM_TYPES_H
#include <linux/auxvec.h>
#include <linux/types.h>
#include <linux/threads.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/prio_tree.h>
#include <linux/rbtree.h>
#include <linux/rwsem.h>
#include <linux/completion.h>
#include <linux/cpumask.h>
#include <linux/page-debug-flags.h>
#include <asm/page.h>
#include <asm/mmu.h>
#ifndef AT_VECTOR_SIZE_ARCH
#define AT_VECTOR_SIZE_ARCH 0
#endif
#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
struct address_space;
#define USE_SPLIT_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
/*
* Each physical page in the system has a struct page associated with
* it to keep track of whatever it is we are using the page for at the
* moment. Note that we have no way to track which tasks are using
* a page, though if it is a pagecache page, rmap structures can tell us
* who is mapping it.
*
* The objects in struct page are organized in double word blocks in
* order to allows us to use atomic double word operations on portions
* of struct page. That is currently only used by slub but the arrangement
* allows the use of atomic double word operations on the flags/mapping
* and lru list pointers also.
*/
struct page {
/* First double word block */
unsigned long flags; /* Atomic flags, some possibly
* updated asynchronously */
struct address_space *mapping; /* If low bit clear, points to
* inode address_space, or NULL.
* If page mapped as anonymous
* memory, low bit is set, and
* it points to anon_vma object:
* see PAGE_MAPPING_ANON below.
*/
/* Second double word */
struct {
union {
pgoff_t index; /* Our offset within mapping. */
void *freelist; /* slub first free object */
};
union {
/* Used for cmpxchg_double in slub */
unsigned long counters;
struct {
union {
/*
* Count of ptes mapped in
* mms, to show when page is
* mapped & limit reverse map
* searches.
*
* Used also for tail pages
* refcounting instead of
* _count. Tail pages cannot
* be mapped and keeping the
* tail page _count zero at
* all times guarantees
* get_page_unless_zero() will
* never succeed on tail
* pages.
*/
atomic_t _mapcount;
struct {
unsigned inuse:16;
unsigned objects:15;
unsigned frozen:1;
};
};
atomic_t _count; /* Usage count, see below. */
};
};
};
/* Third double word block */
union {
struct list_head lru; /* Pageout list, eg. active_list
* protected by zone->lru_lock !
*/
struct { /* slub per cpu partial pages */
struct page *next; /* Next partial slab */
#ifdef CONFIG_64BIT
int pages; /* Nr of partial slabs left */
int pobjects; /* Approximate # of objects */
#else
short int pages;
short int pobjects;
#endif
};
};
/* Remainder is not double word aligned */
union {
unsigned long private; /* Mapping-private opaque data:
* usually used for buffer_heads
* if PagePrivate set; used for
* swp_entry_t if PageSwapCache;
* indicates order in the buddy
* system if PG_buddy is set.
*/
#if USE_SPLIT_PTLOCKS
spinlock_t ptl;
#endif
struct kmem_cache *slab; /* SLUB: Pointer to slab */
struct page *first_page; /* Compound tail pages */
};
/*
* On machines where all RAM is mapped into kernel address space,
* we can simply calculate the virtual address. On machines with
* highmem some memory is mapped into kernel virtual memory
* dynamically, so we need a place to store that address.
* Note that this field could be 16 bits on x86 ... ;)
*
* Architectures with slow multiplication can define
* WANT_PAGE_VIRTUAL in asm/page.h
*/
#if defined(WANT_PAGE_VIRTUAL)
void *virtual; /* Kernel virtual address (NULL if
not kmapped, ie. highmem) */
#endif /* WANT_PAGE_VIRTUAL */
#ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
unsigned long debug_flags; /* Use atomic bitops on this */
#endif
#ifdef CONFIG_KMEMCHECK
/*
* kmemcheck wants to track the status of each byte in a page; this
* is a pointer to such a status block. NULL if not tracked.
*/
void *shadow;
#endif
}
/*
* The struct page can be forced to be double word aligned so that atomic ops
* on double words work. The SLUB allocator can make use of such a feature.
*/
#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
__aligned(2 * sizeof(unsigned long))
#endif
;
struct page_frag {
struct page *page;
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
__u32 offset;
__u32 size;
#else
__u16 offset;
__u16 size;
#endif
};
typedef unsigned long __nocast vm_flags_t;
/*
* A region containing a mapping of a non-memory backed file under NOMMU
* conditions. These are held in a global tree and are pinned by the VMAs that
* map parts of them.
*/
struct vm_region {
struct rb_node vm_rb; /* link in global region tree */
vm_flags_t vm_flags; /* VMA vm_flags */
unsigned long vm_start; /* start address of region */
unsigned long vm_end; /* region initialised to here */
unsigned long vm_top; /* region allocated to here */
unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
struct file *vm_file; /* the backing file or NULL */
int vm_usage; /* region usage count (access under nommu_region_sem) */
bool vm_icache_flushed : 1; /* true if the icache has been flushed for
* this region */
};
/*
* This struct defines a memory VMM memory area. There is one of these
* per VM-area/task. A VM area is any part of the process virtual memory
* space that has a special rule for the page-fault handlers (ie a shared
* library, the executable area etc).
*/
struct vm_area_struct {
struct mm_struct * vm_mm; /* The address space we belong to. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address
within vm_mm. */
/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next, *vm_prev;
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
struct rb_node vm_rb;
/*
* For areas with an address space and backing store,
* linkage into the address_space->i_mmap prio tree, or
* linkage to the list of like vmas hanging off its node, or
* linkage of vma in the address_space->i_mmap_nonlinear list.
*/
union {
struct {
struct list_head list;
void *parent; /* aligns with prio_tree_node parent */
struct vm_area_struct *head;
} vm_set;
struct raw_prio_tree_node prio_tree_node;
} shared;
/*
* A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
* list, after a COW of one of the file pages. A MAP_SHARED vma
* can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
* or brk vma (with NULL file) can only be in an anon_vma list.
*/
struct list_head anon_vma_chain; /* Serialized by mmap_sem &
* page_table_lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
/* Function pointers to deal with this struct. */
const struct vm_operations_struct *vm_ops;
/* Information about our backing store: */
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
units, *not* PAGE_CACHE_SIZE */
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */
#ifndef CONFIG_MMU
struct vm_region *vm_region; /* NOMMU mapping region */
#endif
#ifdef CONFIG_NUMA
struct mempolicy *vm_policy; /* NUMA policy for the VMA */
#endif
};
struct core_thread {
struct task_struct *task;
struct core_thread *next;
};
struct core_state {
atomic_t nr_threads;
struct core_thread dumper;
struct completion startup;
};
enum {
MM_FILEPAGES,
MM_ANONPAGES,
MM_SWAPENTS,
NR_MM_COUNTERS
};
#if USE_SPLIT_PTLOCKS && defined(CONFIG_MMU)
#define SPLIT_RSS_COUNTING
/* per-thread cached information, */
struct task_rss_stat {
int events; /* for synchronization threshold */
int count[NR_MM_COUNTERS];
};
#endif /* USE_SPLIT_PTLOCKS */
struct mm_rss_stat {
atomic_long_t count[NR_MM_COUNTERS];
};
struct mm_struct {
struct vm_area_struct * mmap; /* list of VMAs */
struct rb_root mm_rb;
struct vm_area_struct * mmap_cache; /* last find_vma result */
#ifdef CONFIG_MMU
unsigned long (*get_unmapped_area) (struct file *filp,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags);
void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
#endif
unsigned long mmap_base; /* base of mmap area */
unsigned long task_size; /* size of task vm space */
unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
pgd_t * pgd;
atomic_t mm_users; /* How many users with user space? */
atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
int map_count; /* number of VMAs */
spinlock_t page_table_lock; /* Protects page tables and some counters */
struct rw_semaphore mmap_sem;
struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
* together off init_mm.mmlist, and are protected
* by mmlist_lock
*/
unsigned long hiwater_rss; /* High-watermark of RSS usage */
unsigned long hiwater_vm; /* High-water virtual memory usage */
unsigned long total_vm; /* Total pages mapped */
unsigned long locked_vm; /* Pages that have PG_mlocked set */
unsigned long pinned_vm; /* Refcount permanently increased */
unsigned long shared_vm; /* Shared pages (files) */
unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */
unsigned long stack_vm; /* VM_GROWSUP/DOWN */
unsigned long reserved_vm; /* VM_RESERVED|VM_IO pages */
unsigned long def_flags;
unsigned long nr_ptes; /* Page table pages */
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
/*
* Special counters, in some configurations protected by the
* page_table_lock, in other configurations by being atomic.
*/
struct mm_rss_stat rss_stat;
struct linux_binfmt *binfmt;
cpumask_var_t cpu_vm_mask_var;
/* Architecture-specific MM context */
mm_context_t context;
/* Swap token stuff */
/*
* Last value of global fault stamp as seen by this process.
* In other words, this value gives an indication of how long
* it has been since this task got the token.
* Look at mm/thrash.c
*/
unsigned int faultstamp;
unsigned int token_priority;
unsigned int last_interval;
unsigned long flags; /* Must use atomic bitops to access the bits */
struct core_state *core_state; /* coredumping support */
#ifdef CONFIG_AIO
spinlock_t ioctx_lock;
struct hlist_head ioctx_list;
#endif
#ifdef CONFIG_MM_OWNER
/*
* "owner" points to a task that is regarded as the canonical
* user/owner of this mm. All of the following must be true in
* order for it to be changed:
*
* current == mm->owner
* current->mm != mm
* new_owner->mm == mm
* new_owner->alloc_lock is held
*/
struct task_struct __rcu *owner;
#endif
/* store ref to file /proc/<pid>/exe symlink points to */
struct file *exe_file;
unsigned long num_exe_file_vmas;
#ifdef CONFIG_MMU_NOTIFIER
struct mmu_notifier_mm *mmu_notifier_mm;
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgtable_t pmd_huge_pte; /* protected by page_table_lock */
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
struct cpumask cpumask_allocation;
#endif
};
static inline void mm_init_cpumask(struct mm_struct *mm)
{
#ifdef CONFIG_CPUMASK_OFFSTACK
mm->cpu_vm_mask_var = &mm->cpumask_allocation;
#endif
}
/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
{
return mm->cpu_vm_mask_var;
}
#endif /* _LINUX_MM_TYPES_H */