blob: 452271dda141abd5596b04f01e53fc01d6bfc175 [file] [log] [blame]
Chinese translated version of Documentation/filesystems/sysfs.txt
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
communicating in English you can also ask the Chinese maintainer for
help. Contact the Chinese maintainer if this translation is outdated
or if there is a problem with the translation.
Maintainer: Patrick Mochel <mochel@osdl.org>
Mike Murphy <mamurph@cs.clemson.edu>
Chinese maintainer: Fu Wei <tekkamanninja@gmail.com>
---------------------------------------------------------------------
Documentation/filesystems/sysfs.txt 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
译存在问题,请联系中文版维护者。
英文版维护者: Patrick Mochel <mochel@osdl.org>
Mike Murphy <mamurph@cs.clemson.edu>
中文版维护者: 傅炜 Fu Wei <tekkamanninja@gmail.com>
中文版翻译者: 傅炜 Fu Wei <tekkamanninja@gmail.com>
中文版校译者: 傅炜 Fu Wei <tekkamanninja@gmail.com>
以下为正文
---------------------------------------------------------------------
sysfs - 用于导出内核对象(kobject)的文件系统
Patrick Mochel <mochel@osdl.org>
Mike Murphy <mamurph@cs.clemson.edu>
修订: 16 August 2011
原始版本: 10 January 2003
sysfs 简介:
~~~~~~~~~~
sysfs 是一个最初基于 ramfs 且位于内存的文件系统。它提供导出内核
数据结构及其属性,以及它们之间的关联到用户空间的方法。
sysfs 始终与 kobject 的底层结构紧密相关。请阅读
Documentation/kobject.txt 文档以获得更多关于 kobject 接口的
信息。
使用 sysfs
~~~~~~~~~~~
只要内核配置中定义了 CONFIG_SYSFS ,sysfs 总是被编译进内核。你可
通过以下命令挂载它:
mount -t sysfs sysfs /sys
创建目录
~~~~~~~~
任何 kobject 在系统中注册,就会有一个目录在 sysfs 中被创建。这个
目录是作为该 kobject 的父对象所在目录的子目录创建的,以准确地传递
内核的对象层次到用户空间。sysfs 中的顶层目录代表着内核对象层次的
共同祖先;例如:某些对象属于某个子系统。
Sysfs 在与其目录关联的 kernfs_node 对象中内部保存一个指向实现
目录的 kobject 的指针。以前,这个 kobject 指针被 sysfs 直接用于
kobject 文件打开和关闭的引用计数。而现在的 sysfs 实现中,kobject
引用计数只能通过 sysfs_schedule_callback() 函数直接修改。
属性
~~~~
kobject 的属性可在文件系统中以普通文件的形式导出。Sysfs 为属性定义
了面向文件 I/O 操作的方法,以提供对内核属性的读写。
属性应为 ASCII 码文本文件。以一个文件只存储一个属性值为宜。但一个
文件只包含一个属性值可能影响效率,所以一个包含相同数据类型的属性值
数组也被广泛地接受。
混合类型、表达多行数据以及一些怪异的数据格式会遭到强烈反对。这样做是
很丢脸的,而且其代码会在未通知作者的情况下被重写。
一个简单的属性结构定义如下:
struct attribute {
char * name;
struct module *owner;
umode_t mode;
};
int sysfs_create_file(struct kobject * kobj, const struct attribute * attr);
void sysfs_remove_file(struct kobject * kobj, const struct attribute * attr);
一个单独的属性结构并不包含读写其属性值的方法。子系统最好为增删特定
对象类型的属性定义自己的属性结构体和封装函数。
例如:驱动程序模型定义的 device_attribute 结构体如下:
struct device_attribute {
struct attribute attr;
ssize_t (*show)(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t (*store)(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
};
int device_create_file(struct device *, const struct device_attribute *);
void device_remove_file(struct device *, const struct device_attribute *);
为了定义设备属性,同时定义了一下辅助宏:
#define DEVICE_ATTR(_name, _mode, _show, _store) \
struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
例如:声明
static DEVICE_ATTR(foo, S_IWUSR | S_IRUGO, show_foo, store_foo);
等同于如下代码:
static struct device_attribute dev_attr_foo = {
.attr = {
.name = "foo",
.mode = S_IWUSR | S_IRUGO,
.show = show_foo,
.store = store_foo,
},
};
子系统特有的回调函数
~~~~~~~~~~~~~~~~~~~
当一个子系统定义一个新的属性类型时,必须实现一系列的 sysfs 操作,
以帮助读写调用实现属性所有者的显示和储存方法。
struct sysfs_ops {
ssize_t (*show)(struct kobject *, struct attribute *, char *);
ssize_t (*store)(struct kobject *, struct attribute *, const char *, size_t);
};
[子系统应已经定义了一个 struct kobj_type 结构体作为这个类型的
描述符,并在此保存 sysfs_ops 的指针。更多的信息参见 kobject 的
文档]
sysfs 会为这个类型调用适当的方法。当一个文件被读写时,这个方法会
将一般的kobject 和 attribute 结构体指针转换为适当的指针类型后
调用相关联的函数。
示例:
#define to_dev(obj) container_of(obj, struct device, kobj)
#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct device_attribute *dev_attr = to_dev_attr(attr);
struct device *dev = to_dev(kobj);
ssize_t ret = -EIO;
if (dev_attr->show)
ret = dev_attr->show(dev, dev_attr, buf);
if (ret >= (ssize_t)PAGE_SIZE) {
printk("dev_attr_show: %pS returned bad count\n",
dev_attr->show);
}
return ret;
}
读写属性数据
~~~~~~~~~~~~
在声明属性时,必须指定 show() 或 store() 方法,以实现属性的
读或写。这些方法的类型应该和以下的设备属性定义一样简单。
ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf);
ssize_t (*store)(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
也就是说,他们应只以一个处理对象、一个属性和一个缓冲指针作为参数。
sysfs 会分配一个大小为 (PAGE_SIZE) 的缓冲区并传递给这个方法。
Sysfs 将会为每次读写操作调用一次这个方法。这使得这些方法在执行时
会出现以下的行为:
- 在读方面(read(2)),show() 方法应该填充整个缓冲区。回想属性
应只导出了一个属性值或是一个同类型属性值的数组,所以这个代价将
不会不太高。
这使得用户空间可以局部地读和任意的向前搜索整个文件。如果用户空间
向后搜索到零或使用‘0’偏移执行一个pread(2)操作,show()方法将
再次被调用,以重新填充缓存。
- 在写方面(write(2)),sysfs 希望在第一次写操作时得到整个缓冲区。
之后 Sysfs 传递整个缓冲区给 store() 方法。
当要写 sysfs 文件时,用户空间进程应首先读取整个文件,修该想要
改变的值,然后回写整个缓冲区。
在读写属性值时,属性方法的执行应操作相同的缓冲区。
注记:
- 写操作导致的 show() 方法重载,会忽略当前文件位置。
- 缓冲区应总是 PAGE_SIZE 大小。对于i386,这个值为4096。
- show() 方法应该返回写入缓冲区的字节数,也就是 snprintf()的
返回值。
- show() 应始终使用 snprintf()。
- store() 应返回缓冲区的已用字节数。如果整个缓存都已填满,只需返回
count 参数。
- show() 或 store() 可以返回错误值。当得到一个非法值,必须返回一个
错误值。
- 一个传递给方法的对象将会通过 sysfs 调用对象内嵌的引用计数固定在
内存中。尽管如此,对象代表的物理实体(如设备)可能已不存在。如有必要,
应该实现一个检测机制。
一个简单的(未经实验证实的)设备属性实现如下:
static ssize_t show_name(struct device *dev, struct device_attribute *attr,
char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%s\n", dev->name);
}
static ssize_t store_name(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
snprintf(dev->name, sizeof(dev->name), "%.*s",
(int)min(count, sizeof(dev->name) - 1), buf);
return count;
}
static DEVICE_ATTR(name, S_IRUGO, show_name, store_name);
(注意:真正的实现不允许用户空间设置设备名。)
顶层目录布局
~~~~~~~~~~~~
sysfs 目录的安排显示了内核数据结构之间的关系。
顶层 sysfs 目录如下:
block/
bus/
class/
dev/
devices/
firmware/
net/
fs/
devices/ 包含了一个设备树的文件系统表示。他直接映射了内部的内核
设备树,反映了设备的层次结构。
bus/ 包含了内核中各种总线类型的平面目录布局。每个总线目录包含两个
子目录:
devices/
drivers/
devices/ 包含了系统中出现的每个设备的符号链接,他们指向 root/ 下的
设备目录。
drivers/ 包含了每个已为特定总线上的设备而挂载的驱动程序的目录(这里
假定驱动没有跨越多个总线类型)。
fs/ 包含了一个为文件系统设立的目录。现在每个想要导出属性的文件系统必须
在 fs/ 下创建自己的层次结构(参见Documentation/filesystems/fuse.txt)。
dev/ 包含两个子目录: char/ 和 block/。在这两个子目录中,有以
<major>:<minor> 格式命名的符号链接。这些符号链接指向 sysfs 目录
中相应的设备。/sys/dev 提供一个通过一个 stat(2) 操作结果,查找
设备 sysfs 接口快捷的方法。
更多有关 driver-model 的特性信息可以在 Documentation/driver-model/
中找到。
TODO: 完成这一节。
当前接口
~~~~~~~~
以下的接口层普遍存在于当前的sysfs中:
- 设备 (include/linux/device.h)
----------------------------------
结构体:
struct device_attribute {
struct attribute attr;
ssize_t (*show)(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t (*store)(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
};
声明:
DEVICE_ATTR(_name, _mode, _show, _store);
增/删属性:
int device_create_file(struct device *dev, const struct device_attribute * attr);
void device_remove_file(struct device *dev, const struct device_attribute * attr);
- 总线驱动程序 (include/linux/device.h)
--------------------------------------
结构体:
struct bus_attribute {
struct attribute attr;
ssize_t (*show)(struct bus_type *, char * buf);
ssize_t (*store)(struct bus_type *, const char * buf, size_t count);
};
声明:
BUS_ATTR(_name, _mode, _show, _store)
增/删属性:
int bus_create_file(struct bus_type *, struct bus_attribute *);
void bus_remove_file(struct bus_type *, struct bus_attribute *);
- 设备驱动程序 (include/linux/device.h)
-----------------------------------------
结构体:
struct driver_attribute {
struct attribute attr;
ssize_t (*show)(struct device_driver *, char * buf);
ssize_t (*store)(struct device_driver *, const char * buf,
size_t count);
};
声明:
DRIVER_ATTR(_name, _mode, _show, _store)
增/删属性:
int driver_create_file(struct device_driver *, const struct driver_attribute *);
void driver_remove_file(struct device_driver *, const struct driver_attribute *);
文档
~~~~
sysfs 目录结构以及其中包含的属性定义了一个内核与用户空间之间的 ABI。
对于任何 ABI,其自身的稳定和适当的文档是非常重要的。所有新的 sysfs
属性必须在 Documentation/ABI 中有文档。详见 Documentation/ABI/README。