|  | /* memcontrol.c - Memory Controller | 
|  | * | 
|  | * Copyright IBM Corporation, 2007 | 
|  | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 
|  | * | 
|  | * Copyright 2007 OpenVZ SWsoft Inc | 
|  | * Author: Pavel Emelianov <xemul@openvz.org> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/res_counter.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/vmalloc.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | struct cgroup_subsys mem_cgroup_subsys; | 
|  | static const int MEM_CGROUP_RECLAIM_RETRIES = 5; | 
|  | static struct kmem_cache *page_cgroup_cache; | 
|  |  | 
|  | /* | 
|  | * Statistics for memory cgroup. | 
|  | */ | 
|  | enum mem_cgroup_stat_index { | 
|  | /* | 
|  | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | 
|  | */ | 
|  | MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */ | 
|  | MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */ | 
|  | MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */ | 
|  | MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */ | 
|  |  | 
|  | MEM_CGROUP_STAT_NSTATS, | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_stat_cpu { | 
|  | s64 count[MEM_CGROUP_STAT_NSTATS]; | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | struct mem_cgroup_stat { | 
|  | struct mem_cgroup_stat_cpu cpustat[NR_CPUS]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * For accounting under irq disable, no need for increment preempt count. | 
|  | */ | 
|  | static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat, | 
|  | enum mem_cgroup_stat_index idx, int val) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | stat->cpustat[cpu].count[idx] += val; | 
|  | } | 
|  |  | 
|  | static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, | 
|  | enum mem_cgroup_stat_index idx) | 
|  | { | 
|  | int cpu; | 
|  | s64 ret = 0; | 
|  | for_each_possible_cpu(cpu) | 
|  | ret += stat->cpustat[cpu].count[idx]; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * per-zone information in memory controller. | 
|  | */ | 
|  |  | 
|  | enum mem_cgroup_zstat_index { | 
|  | MEM_CGROUP_ZSTAT_ACTIVE, | 
|  | MEM_CGROUP_ZSTAT_INACTIVE, | 
|  |  | 
|  | NR_MEM_CGROUP_ZSTAT, | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_per_zone { | 
|  | /* | 
|  | * spin_lock to protect the per cgroup LRU | 
|  | */ | 
|  | spinlock_t		lru_lock; | 
|  | struct list_head	active_list; | 
|  | struct list_head	inactive_list; | 
|  | unsigned long count[NR_MEM_CGROUP_ZSTAT]; | 
|  | }; | 
|  | /* Macro for accessing counter */ | 
|  | #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)]) | 
|  |  | 
|  | struct mem_cgroup_per_node { | 
|  | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_lru_info { | 
|  | struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The memory controller data structure. The memory controller controls both | 
|  | * page cache and RSS per cgroup. We would eventually like to provide | 
|  | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | 
|  | * to help the administrator determine what knobs to tune. | 
|  | * | 
|  | * TODO: Add a water mark for the memory controller. Reclaim will begin when | 
|  | * we hit the water mark. May be even add a low water mark, such that | 
|  | * no reclaim occurs from a cgroup at it's low water mark, this is | 
|  | * a feature that will be implemented much later in the future. | 
|  | */ | 
|  | struct mem_cgroup { | 
|  | struct cgroup_subsys_state css; | 
|  | /* | 
|  | * the counter to account for memory usage | 
|  | */ | 
|  | struct res_counter res; | 
|  | /* | 
|  | * Per cgroup active and inactive list, similar to the | 
|  | * per zone LRU lists. | 
|  | */ | 
|  | struct mem_cgroup_lru_info info; | 
|  |  | 
|  | int	prev_priority;	/* for recording reclaim priority */ | 
|  | /* | 
|  | * statistics. | 
|  | */ | 
|  | struct mem_cgroup_stat stat; | 
|  | }; | 
|  | static struct mem_cgroup init_mem_cgroup; | 
|  |  | 
|  | /* | 
|  | * We use the lower bit of the page->page_cgroup pointer as a bit spin | 
|  | * lock.  We need to ensure that page->page_cgroup is at least two | 
|  | * byte aligned (based on comments from Nick Piggin).  But since | 
|  | * bit_spin_lock doesn't actually set that lock bit in a non-debug | 
|  | * uniprocessor kernel, we should avoid setting it here too. | 
|  | */ | 
|  | #define PAGE_CGROUP_LOCK_BIT 	0x0 | 
|  | #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) | 
|  | #define PAGE_CGROUP_LOCK 	(1 << PAGE_CGROUP_LOCK_BIT) | 
|  | #else | 
|  | #define PAGE_CGROUP_LOCK	0x0 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * A page_cgroup page is associated with every page descriptor. The | 
|  | * page_cgroup helps us identify information about the cgroup | 
|  | */ | 
|  | struct page_cgroup { | 
|  | struct list_head lru;		/* per cgroup LRU list */ | 
|  | struct page *page; | 
|  | struct mem_cgroup *mem_cgroup; | 
|  | int ref_cnt;			/* cached, mapped, migrating */ | 
|  | int flags; | 
|  | }; | 
|  | #define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */ | 
|  | #define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */ | 
|  |  | 
|  | static int page_cgroup_nid(struct page_cgroup *pc) | 
|  | { | 
|  | return page_to_nid(pc->page); | 
|  | } | 
|  |  | 
|  | static enum zone_type page_cgroup_zid(struct page_cgroup *pc) | 
|  | { | 
|  | return page_zonenum(pc->page); | 
|  | } | 
|  |  | 
|  | enum charge_type { | 
|  | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 
|  | MEM_CGROUP_CHARGE_TYPE_MAPPED, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Always modified under lru lock. Then, not necessary to preempt_disable() | 
|  | */ | 
|  | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags, | 
|  | bool charge) | 
|  | { | 
|  | int val = (charge)? 1 : -1; | 
|  | struct mem_cgroup_stat *stat = &mem->stat; | 
|  |  | 
|  | VM_BUG_ON(!irqs_disabled()); | 
|  | if (flags & PAGE_CGROUP_FLAG_CACHE) | 
|  | __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val); | 
|  | else | 
|  | __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val); | 
|  |  | 
|  | if (charge) | 
|  | __mem_cgroup_stat_add_safe(stat, | 
|  | MEM_CGROUP_STAT_PGPGIN_COUNT, 1); | 
|  | else | 
|  | __mem_cgroup_stat_add_safe(stat, | 
|  | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_zone * | 
|  | mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) | 
|  | { | 
|  | return &mem->info.nodeinfo[nid]->zoneinfo[zid]; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_zone * | 
|  | page_cgroup_zoneinfo(struct page_cgroup *pc) | 
|  | { | 
|  | struct mem_cgroup *mem = pc->mem_cgroup; | 
|  | int nid = page_cgroup_nid(pc); | 
|  | int zid = page_cgroup_zid(pc); | 
|  |  | 
|  | return mem_cgroup_zoneinfo(mem, nid, zid); | 
|  | } | 
|  |  | 
|  | static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem, | 
|  | enum mem_cgroup_zstat_index idx) | 
|  | { | 
|  | int nid, zid; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | u64 total = 0; | 
|  |  | 
|  | for_each_online_node(nid) | 
|  | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | mz = mem_cgroup_zoneinfo(mem, nid, zid); | 
|  | total += MEM_CGROUP_ZSTAT(mz, idx); | 
|  | } | 
|  | return total; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) | 
|  | { | 
|  | return container_of(cgroup_subsys_state(cont, | 
|  | mem_cgroup_subsys_id), struct mem_cgroup, | 
|  | css); | 
|  | } | 
|  |  | 
|  | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 
|  | { | 
|  | return container_of(task_subsys_state(p, mem_cgroup_subsys_id), | 
|  | struct mem_cgroup, css); | 
|  | } | 
|  |  | 
|  | static inline int page_cgroup_locked(struct page *page) | 
|  | { | 
|  | return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | 
|  | } | 
|  |  | 
|  | static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc) | 
|  | { | 
|  | VM_BUG_ON(!page_cgroup_locked(page)); | 
|  | page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK); | 
|  | } | 
|  |  | 
|  | struct page_cgroup *page_get_page_cgroup(struct page *page) | 
|  | { | 
|  | return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK); | 
|  | } | 
|  |  | 
|  | static void lock_page_cgroup(struct page *page) | 
|  | { | 
|  | bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | 
|  | } | 
|  |  | 
|  | static int try_lock_page_cgroup(struct page *page) | 
|  | { | 
|  | return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | 
|  | } | 
|  |  | 
|  | static void unlock_page_cgroup(struct page *page) | 
|  | { | 
|  | bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, | 
|  | struct page_cgroup *pc) | 
|  | { | 
|  | int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; | 
|  |  | 
|  | if (from) | 
|  | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1; | 
|  | else | 
|  | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; | 
|  |  | 
|  | mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false); | 
|  | list_del_init(&pc->lru); | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, | 
|  | struct page_cgroup *pc) | 
|  | { | 
|  | int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; | 
|  |  | 
|  | if (!to) { | 
|  | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1; | 
|  | list_add(&pc->lru, &mz->inactive_list); | 
|  | } else { | 
|  | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1; | 
|  | list_add(&pc->lru, &mz->active_list); | 
|  | } | 
|  | mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true); | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active) | 
|  | { | 
|  | int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; | 
|  | struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); | 
|  |  | 
|  | if (from) | 
|  | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1; | 
|  | else | 
|  | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; | 
|  |  | 
|  | if (active) { | 
|  | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1; | 
|  | pc->flags |= PAGE_CGROUP_FLAG_ACTIVE; | 
|  | list_move(&pc->lru, &mz->active_list); | 
|  | } else { | 
|  | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1; | 
|  | pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE; | 
|  | list_move(&pc->lru, &mz->inactive_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | task_lock(task); | 
|  | ret = task->mm && mm_match_cgroup(task->mm, mem); | 
|  | task_unlock(task); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine assumes that the appropriate zone's lru lock is already held | 
|  | */ | 
|  | void mem_cgroup_move_lists(struct page *page, bool active) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * We cannot lock_page_cgroup while holding zone's lru_lock, | 
|  | * because other holders of lock_page_cgroup can be interrupted | 
|  | * with an attempt to rotate_reclaimable_page.  But we cannot | 
|  | * safely get to page_cgroup without it, so just try_lock it: | 
|  | * mem_cgroup_isolate_pages allows for page left on wrong list. | 
|  | */ | 
|  | if (!try_lock_page_cgroup(page)) | 
|  | return; | 
|  |  | 
|  | pc = page_get_page_cgroup(page); | 
|  | if (pc) { | 
|  | mz = page_cgroup_zoneinfo(pc); | 
|  | spin_lock_irqsave(&mz->lru_lock, flags); | 
|  | __mem_cgroup_move_lists(pc, active); | 
|  | spin_unlock_irqrestore(&mz->lru_lock, flags); | 
|  | } | 
|  | unlock_page_cgroup(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate mapped_ratio under memory controller. This will be used in | 
|  | * vmscan.c for deteremining we have to reclaim mapped pages. | 
|  | */ | 
|  | int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) | 
|  | { | 
|  | long total, rss; | 
|  |  | 
|  | /* | 
|  | * usage is recorded in bytes. But, here, we assume the number of | 
|  | * physical pages can be represented by "long" on any arch. | 
|  | */ | 
|  | total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L; | 
|  | rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); | 
|  | return (int)((rss * 100L) / total); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called from vmscan.c. In page reclaiming loop. balance | 
|  | * between active and inactive list is calculated. For memory controller | 
|  | * page reclaiming, we should use using mem_cgroup's imbalance rather than | 
|  | * zone's global lru imbalance. | 
|  | */ | 
|  | long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem) | 
|  | { | 
|  | unsigned long active, inactive; | 
|  | /* active and inactive are the number of pages. 'long' is ok.*/ | 
|  | active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE); | 
|  | inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE); | 
|  | return (long) (active / (inactive + 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * prev_priority control...this will be used in memory reclaim path. | 
|  | */ | 
|  | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | 
|  | { | 
|  | return mem->prev_priority; | 
|  | } | 
|  |  | 
|  | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) | 
|  | { | 
|  | if (priority < mem->prev_priority) | 
|  | mem->prev_priority = priority; | 
|  | } | 
|  |  | 
|  | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | 
|  | { | 
|  | mem->prev_priority = priority; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate # of pages to be scanned in this priority/zone. | 
|  | * See also vmscan.c | 
|  | * | 
|  | * priority starts from "DEF_PRIORITY" and decremented in each loop. | 
|  | * (see include/linux/mmzone.h) | 
|  | */ | 
|  |  | 
|  | long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem, | 
|  | struct zone *zone, int priority) | 
|  | { | 
|  | long nr_active; | 
|  | int nid = zone->zone_pgdat->node_id; | 
|  | int zid = zone_idx(zone); | 
|  | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); | 
|  |  | 
|  | nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE); | 
|  | return (nr_active >> priority); | 
|  | } | 
|  |  | 
|  | long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem, | 
|  | struct zone *zone, int priority) | 
|  | { | 
|  | long nr_inactive; | 
|  | int nid = zone->zone_pgdat->node_id; | 
|  | int zid = zone_idx(zone); | 
|  | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); | 
|  |  | 
|  | nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE); | 
|  | return (nr_inactive >> priority); | 
|  | } | 
|  |  | 
|  | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | 
|  | struct list_head *dst, | 
|  | unsigned long *scanned, int order, | 
|  | int mode, struct zone *z, | 
|  | struct mem_cgroup *mem_cont, | 
|  | int active) | 
|  | { | 
|  | unsigned long nr_taken = 0; | 
|  | struct page *page; | 
|  | unsigned long scan; | 
|  | LIST_HEAD(pc_list); | 
|  | struct list_head *src; | 
|  | struct page_cgroup *pc, *tmp; | 
|  | int nid = z->zone_pgdat->node_id; | 
|  | int zid = zone_idx(z); | 
|  | struct mem_cgroup_per_zone *mz; | 
|  |  | 
|  | BUG_ON(!mem_cont); | 
|  | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | 
|  | if (active) | 
|  | src = &mz->active_list; | 
|  | else | 
|  | src = &mz->inactive_list; | 
|  |  | 
|  |  | 
|  | spin_lock(&mz->lru_lock); | 
|  | scan = 0; | 
|  | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | 
|  | if (scan >= nr_to_scan) | 
|  | break; | 
|  | page = pc->page; | 
|  |  | 
|  | if (unlikely(!PageLRU(page))) | 
|  | continue; | 
|  |  | 
|  | if (PageActive(page) && !active) { | 
|  | __mem_cgroup_move_lists(pc, true); | 
|  | continue; | 
|  | } | 
|  | if (!PageActive(page) && active) { | 
|  | __mem_cgroup_move_lists(pc, false); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | scan++; | 
|  | list_move(&pc->lru, &pc_list); | 
|  |  | 
|  | if (__isolate_lru_page(page, mode) == 0) { | 
|  | list_move(&page->lru, dst); | 
|  | nr_taken++; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_splice(&pc_list, src); | 
|  | spin_unlock(&mz->lru_lock); | 
|  |  | 
|  | *scanned = scan; | 
|  | return nr_taken; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Charge the memory controller for page usage. | 
|  | * Return | 
|  | * 0 if the charge was successful | 
|  | * < 0 if the cgroup is over its limit | 
|  | */ | 
|  | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 
|  | gfp_t gfp_mask, enum charge_type ctype) | 
|  | { | 
|  | struct mem_cgroup *mem; | 
|  | struct page_cgroup *pc; | 
|  | unsigned long flags; | 
|  | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  |  | 
|  | if (mem_cgroup_subsys.disabled) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Should page_cgroup's go to their own slab? | 
|  | * One could optimize the performance of the charging routine | 
|  | * by saving a bit in the page_flags and using it as a lock | 
|  | * to see if the cgroup page already has a page_cgroup associated | 
|  | * with it | 
|  | */ | 
|  | retry: | 
|  | lock_page_cgroup(page); | 
|  | pc = page_get_page_cgroup(page); | 
|  | /* | 
|  | * The page_cgroup exists and | 
|  | * the page has already been accounted. | 
|  | */ | 
|  | if (pc) { | 
|  | VM_BUG_ON(pc->page != page); | 
|  | VM_BUG_ON(pc->ref_cnt <= 0); | 
|  |  | 
|  | pc->ref_cnt++; | 
|  | unlock_page_cgroup(page); | 
|  | goto done; | 
|  | } | 
|  | unlock_page_cgroup(page); | 
|  |  | 
|  | pc = kmem_cache_zalloc(page_cgroup_cache, gfp_mask); | 
|  | if (pc == NULL) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * We always charge the cgroup the mm_struct belongs to. | 
|  | * The mm_struct's mem_cgroup changes on task migration if the | 
|  | * thread group leader migrates. It's possible that mm is not | 
|  | * set, if so charge the init_mm (happens for pagecache usage). | 
|  | */ | 
|  | if (!mm) | 
|  | mm = &init_mm; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
|  | /* | 
|  | * For every charge from the cgroup, increment reference count | 
|  | */ | 
|  | css_get(&mem->css); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | while (res_counter_charge(&mem->res, PAGE_SIZE)) { | 
|  | if (!(gfp_mask & __GFP_WAIT)) | 
|  | goto out; | 
|  |  | 
|  | if (try_to_free_mem_cgroup_pages(mem, gfp_mask)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * try_to_free_mem_cgroup_pages() might not give us a full | 
|  | * picture of reclaim. Some pages are reclaimed and might be | 
|  | * moved to swap cache or just unmapped from the cgroup. | 
|  | * Check the limit again to see if the reclaim reduced the | 
|  | * current usage of the cgroup before giving up | 
|  | */ | 
|  | if (res_counter_check_under_limit(&mem->res)) | 
|  | continue; | 
|  |  | 
|  | if (!nr_retries--) { | 
|  | mem_cgroup_out_of_memory(mem, gfp_mask); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | pc->ref_cnt = 1; | 
|  | pc->mem_cgroup = mem; | 
|  | pc->page = page; | 
|  | pc->flags = PAGE_CGROUP_FLAG_ACTIVE; | 
|  | if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) | 
|  | pc->flags = PAGE_CGROUP_FLAG_CACHE; | 
|  |  | 
|  | lock_page_cgroup(page); | 
|  | if (page_get_page_cgroup(page)) { | 
|  | unlock_page_cgroup(page); | 
|  | /* | 
|  | * Another charge has been added to this page already. | 
|  | * We take lock_page_cgroup(page) again and read | 
|  | * page->cgroup, increment refcnt.... just retry is OK. | 
|  | */ | 
|  | res_counter_uncharge(&mem->res, PAGE_SIZE); | 
|  | css_put(&mem->css); | 
|  | kmem_cache_free(page_cgroup_cache, pc); | 
|  | goto retry; | 
|  | } | 
|  | page_assign_page_cgroup(page, pc); | 
|  |  | 
|  | mz = page_cgroup_zoneinfo(pc); | 
|  | spin_lock_irqsave(&mz->lru_lock, flags); | 
|  | __mem_cgroup_add_list(mz, pc); | 
|  | spin_unlock_irqrestore(&mz->lru_lock, flags); | 
|  |  | 
|  | unlock_page_cgroup(page); | 
|  | done: | 
|  | return 0; | 
|  | out: | 
|  | css_put(&mem->css); | 
|  | kmem_cache_free(page_cgroup_cache, pc); | 
|  | err: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) | 
|  | { | 
|  | return mem_cgroup_charge_common(page, mm, gfp_mask, | 
|  | MEM_CGROUP_CHARGE_TYPE_MAPPED); | 
|  | } | 
|  |  | 
|  | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | if (!mm) | 
|  | mm = &init_mm; | 
|  | return mem_cgroup_charge_common(page, mm, gfp_mask, | 
|  | MEM_CGROUP_CHARGE_TYPE_CACHE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Uncharging is always a welcome operation, we never complain, simply | 
|  | * uncharge. | 
|  | */ | 
|  | void mem_cgroup_uncharge_page(struct page *page) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  | struct mem_cgroup *mem; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (mem_cgroup_subsys.disabled) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Check if our page_cgroup is valid | 
|  | */ | 
|  | lock_page_cgroup(page); | 
|  | pc = page_get_page_cgroup(page); | 
|  | if (!pc) | 
|  | goto unlock; | 
|  |  | 
|  | VM_BUG_ON(pc->page != page); | 
|  | VM_BUG_ON(pc->ref_cnt <= 0); | 
|  |  | 
|  | if (--(pc->ref_cnt) == 0) { | 
|  | mz = page_cgroup_zoneinfo(pc); | 
|  | spin_lock_irqsave(&mz->lru_lock, flags); | 
|  | __mem_cgroup_remove_list(mz, pc); | 
|  | spin_unlock_irqrestore(&mz->lru_lock, flags); | 
|  |  | 
|  | page_assign_page_cgroup(page, NULL); | 
|  | unlock_page_cgroup(page); | 
|  |  | 
|  | mem = pc->mem_cgroup; | 
|  | res_counter_uncharge(&mem->res, PAGE_SIZE); | 
|  | css_put(&mem->css); | 
|  |  | 
|  | kmem_cache_free(page_cgroup_cache, pc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | unlock_page_cgroup(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns non-zero if a page (under migration) has valid page_cgroup member. | 
|  | * Refcnt of page_cgroup is incremented. | 
|  | */ | 
|  | int mem_cgroup_prepare_migration(struct page *page) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  |  | 
|  | if (mem_cgroup_subsys.disabled) | 
|  | return 0; | 
|  |  | 
|  | lock_page_cgroup(page); | 
|  | pc = page_get_page_cgroup(page); | 
|  | if (pc) | 
|  | pc->ref_cnt++; | 
|  | unlock_page_cgroup(page); | 
|  | return pc != NULL; | 
|  | } | 
|  |  | 
|  | void mem_cgroup_end_migration(struct page *page) | 
|  | { | 
|  | mem_cgroup_uncharge_page(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We know both *page* and *newpage* are now not-on-LRU and PG_locked. | 
|  | * And no race with uncharge() routines because page_cgroup for *page* | 
|  | * has extra one reference by mem_cgroup_prepare_migration. | 
|  | */ | 
|  | void mem_cgroup_page_migration(struct page *page, struct page *newpage) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | unsigned long flags; | 
|  |  | 
|  | lock_page_cgroup(page); | 
|  | pc = page_get_page_cgroup(page); | 
|  | if (!pc) { | 
|  | unlock_page_cgroup(page); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mz = page_cgroup_zoneinfo(pc); | 
|  | spin_lock_irqsave(&mz->lru_lock, flags); | 
|  | __mem_cgroup_remove_list(mz, pc); | 
|  | spin_unlock_irqrestore(&mz->lru_lock, flags); | 
|  |  | 
|  | page_assign_page_cgroup(page, NULL); | 
|  | unlock_page_cgroup(page); | 
|  |  | 
|  | pc->page = newpage; | 
|  | lock_page_cgroup(newpage); | 
|  | page_assign_page_cgroup(newpage, pc); | 
|  |  | 
|  | mz = page_cgroup_zoneinfo(pc); | 
|  | spin_lock_irqsave(&mz->lru_lock, flags); | 
|  | __mem_cgroup_add_list(mz, pc); | 
|  | spin_unlock_irqrestore(&mz->lru_lock, flags); | 
|  |  | 
|  | unlock_page_cgroup(newpage); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine traverse page_cgroup in given list and drop them all. | 
|  | * This routine ignores page_cgroup->ref_cnt. | 
|  | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. | 
|  | */ | 
|  | #define FORCE_UNCHARGE_BATCH	(128) | 
|  | static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, | 
|  | struct mem_cgroup_per_zone *mz, | 
|  | int active) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  | struct page *page; | 
|  | int count = FORCE_UNCHARGE_BATCH; | 
|  | unsigned long flags; | 
|  | struct list_head *list; | 
|  |  | 
|  | if (active) | 
|  | list = &mz->active_list; | 
|  | else | 
|  | list = &mz->inactive_list; | 
|  |  | 
|  | spin_lock_irqsave(&mz->lru_lock, flags); | 
|  | while (!list_empty(list)) { | 
|  | pc = list_entry(list->prev, struct page_cgroup, lru); | 
|  | page = pc->page; | 
|  | get_page(page); | 
|  | spin_unlock_irqrestore(&mz->lru_lock, flags); | 
|  | mem_cgroup_uncharge_page(page); | 
|  | put_page(page); | 
|  | if (--count <= 0) { | 
|  | count = FORCE_UNCHARGE_BATCH; | 
|  | cond_resched(); | 
|  | } | 
|  | spin_lock_irqsave(&mz->lru_lock, flags); | 
|  | } | 
|  | spin_unlock_irqrestore(&mz->lru_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make mem_cgroup's charge to be 0 if there is no task. | 
|  | * This enables deleting this mem_cgroup. | 
|  | */ | 
|  | static int mem_cgroup_force_empty(struct mem_cgroup *mem) | 
|  | { | 
|  | int ret = -EBUSY; | 
|  | int node, zid; | 
|  |  | 
|  | if (mem_cgroup_subsys.disabled) | 
|  | return 0; | 
|  |  | 
|  | css_get(&mem->css); | 
|  | /* | 
|  | * page reclaim code (kswapd etc..) will move pages between | 
|  | * active_list <-> inactive_list while we don't take a lock. | 
|  | * So, we have to do loop here until all lists are empty. | 
|  | */ | 
|  | while (mem->res.usage > 0) { | 
|  | if (atomic_read(&mem->css.cgroup->count) > 0) | 
|  | goto out; | 
|  | for_each_node_state(node, N_POSSIBLE) | 
|  | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | mz = mem_cgroup_zoneinfo(mem, node, zid); | 
|  | /* drop all page_cgroup in active_list */ | 
|  | mem_cgroup_force_empty_list(mem, mz, 1); | 
|  | /* drop all page_cgroup in inactive_list */ | 
|  | mem_cgroup_force_empty_list(mem, mz, 0); | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | css_put(&mem->css); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp) | 
|  | { | 
|  | *tmp = memparse(buf, &buf); | 
|  | if (*buf != '\0') | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Round up the value to the closest page size | 
|  | */ | 
|  | *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) | 
|  | { | 
|  | return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, | 
|  | cft->private); | 
|  | } | 
|  |  | 
|  | static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | 
|  | struct file *file, const char __user *userbuf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | return res_counter_write(&mem_cgroup_from_cont(cont)->res, | 
|  | cft->private, userbuf, nbytes, ppos, | 
|  | mem_cgroup_write_strategy); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | 
|  | { | 
|  | struct mem_cgroup *mem; | 
|  |  | 
|  | mem = mem_cgroup_from_cont(cont); | 
|  | switch (event) { | 
|  | case RES_MAX_USAGE: | 
|  | res_counter_reset_max(&mem->res); | 
|  | break; | 
|  | case RES_FAILCNT: | 
|  | res_counter_reset_failcnt(&mem->res); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mem_force_empty_write(struct cgroup *cont, unsigned int event) | 
|  | { | 
|  | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont)); | 
|  | } | 
|  |  | 
|  | static const struct mem_cgroup_stat_desc { | 
|  | const char *msg; | 
|  | u64 unit; | 
|  | } mem_cgroup_stat_desc[] = { | 
|  | [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, }, | 
|  | [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, }, | 
|  | [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, }, | 
|  | [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, }, | 
|  | }; | 
|  |  | 
|  | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, | 
|  | struct cgroup_map_cb *cb) | 
|  | { | 
|  | struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); | 
|  | struct mem_cgroup_stat *stat = &mem_cont->stat; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) { | 
|  | s64 val; | 
|  |  | 
|  | val = mem_cgroup_read_stat(stat, i); | 
|  | val *= mem_cgroup_stat_desc[i].unit; | 
|  | cb->fill(cb, mem_cgroup_stat_desc[i].msg, val); | 
|  | } | 
|  | /* showing # of active pages */ | 
|  | { | 
|  | unsigned long active, inactive; | 
|  |  | 
|  | inactive = mem_cgroup_get_all_zonestat(mem_cont, | 
|  | MEM_CGROUP_ZSTAT_INACTIVE); | 
|  | active = mem_cgroup_get_all_zonestat(mem_cont, | 
|  | MEM_CGROUP_ZSTAT_ACTIVE); | 
|  | cb->fill(cb, "active", (active) * PAGE_SIZE); | 
|  | cb->fill(cb, "inactive", (inactive) * PAGE_SIZE); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cftype mem_cgroup_files[] = { | 
|  | { | 
|  | .name = "usage_in_bytes", | 
|  | .private = RES_USAGE, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | { | 
|  | .name = "max_usage_in_bytes", | 
|  | .private = RES_MAX_USAGE, | 
|  | .trigger = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | { | 
|  | .name = "limit_in_bytes", | 
|  | .private = RES_LIMIT, | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | { | 
|  | .name = "failcnt", | 
|  | .private = RES_FAILCNT, | 
|  | .trigger = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | { | 
|  | .name = "force_empty", | 
|  | .trigger = mem_force_empty_write, | 
|  | }, | 
|  | { | 
|  | .name = "stat", | 
|  | .read_map = mem_control_stat_show, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 
|  | { | 
|  | struct mem_cgroup_per_node *pn; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | int zone, tmp = node; | 
|  | /* | 
|  | * This routine is called against possible nodes. | 
|  | * But it's BUG to call kmalloc() against offline node. | 
|  | * | 
|  | * TODO: this routine can waste much memory for nodes which will | 
|  | *       never be onlined. It's better to use memory hotplug callback | 
|  | *       function. | 
|  | */ | 
|  | if (!node_state(node, N_NORMAL_MEMORY)) | 
|  | tmp = -1; | 
|  | pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | 
|  | if (!pn) | 
|  | return 1; | 
|  |  | 
|  | mem->info.nodeinfo[node] = pn; | 
|  | memset(pn, 0, sizeof(*pn)); | 
|  |  | 
|  | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
|  | mz = &pn->zoneinfo[zone]; | 
|  | INIT_LIST_HEAD(&mz->active_list); | 
|  | INIT_LIST_HEAD(&mz->inactive_list); | 
|  | spin_lock_init(&mz->lru_lock); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 
|  | { | 
|  | kfree(mem->info.nodeinfo[node]); | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup *mem_cgroup_alloc(void) | 
|  | { | 
|  | struct mem_cgroup *mem; | 
|  |  | 
|  | if (sizeof(*mem) < PAGE_SIZE) | 
|  | mem = kmalloc(sizeof(*mem), GFP_KERNEL); | 
|  | else | 
|  | mem = vmalloc(sizeof(*mem)); | 
|  |  | 
|  | if (mem) | 
|  | memset(mem, 0, sizeof(*mem)); | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_free(struct mem_cgroup *mem) | 
|  | { | 
|  | if (sizeof(*mem) < PAGE_SIZE) | 
|  | kfree(mem); | 
|  | else | 
|  | vfree(mem); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct cgroup_subsys_state * | 
|  | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | 
|  | { | 
|  | struct mem_cgroup *mem; | 
|  | int node; | 
|  |  | 
|  | if (unlikely((cont->parent) == NULL)) { | 
|  | mem = &init_mem_cgroup; | 
|  | page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC); | 
|  | } else { | 
|  | mem = mem_cgroup_alloc(); | 
|  | if (!mem) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | res_counter_init(&mem->res); | 
|  |  | 
|  | for_each_node_state(node, N_POSSIBLE) | 
|  | if (alloc_mem_cgroup_per_zone_info(mem, node)) | 
|  | goto free_out; | 
|  |  | 
|  | return &mem->css; | 
|  | free_out: | 
|  | for_each_node_state(node, N_POSSIBLE) | 
|  | free_mem_cgroup_per_zone_info(mem, node); | 
|  | if (cont->parent != NULL) | 
|  | mem_cgroup_free(mem); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, | 
|  | struct cgroup *cont) | 
|  | { | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
|  | mem_cgroup_force_empty(mem); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_destroy(struct cgroup_subsys *ss, | 
|  | struct cgroup *cont) | 
|  | { | 
|  | int node; | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
|  |  | 
|  | for_each_node_state(node, N_POSSIBLE) | 
|  | free_mem_cgroup_per_zone_info(mem, node); | 
|  |  | 
|  | mem_cgroup_free(mem_cgroup_from_cont(cont)); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_populate(struct cgroup_subsys *ss, | 
|  | struct cgroup *cont) | 
|  | { | 
|  | if (mem_cgroup_subsys.disabled) | 
|  | return 0; | 
|  | return cgroup_add_files(cont, ss, mem_cgroup_files, | 
|  | ARRAY_SIZE(mem_cgroup_files)); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_move_task(struct cgroup_subsys *ss, | 
|  | struct cgroup *cont, | 
|  | struct cgroup *old_cont, | 
|  | struct task_struct *p) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | struct mem_cgroup *mem, *old_mem; | 
|  |  | 
|  | if (mem_cgroup_subsys.disabled) | 
|  | return; | 
|  |  | 
|  | mm = get_task_mm(p); | 
|  | if (mm == NULL) | 
|  | return; | 
|  |  | 
|  | mem = mem_cgroup_from_cont(cont); | 
|  | old_mem = mem_cgroup_from_cont(old_cont); | 
|  |  | 
|  | if (mem == old_mem) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Only thread group leaders are allowed to migrate, the mm_struct is | 
|  | * in effect owned by the leader | 
|  | */ | 
|  | if (!thread_group_leader(p)) | 
|  | goto out; | 
|  |  | 
|  | out: | 
|  | mmput(mm); | 
|  | } | 
|  |  | 
|  | struct cgroup_subsys mem_cgroup_subsys = { | 
|  | .name = "memory", | 
|  | .subsys_id = mem_cgroup_subsys_id, | 
|  | .create = mem_cgroup_create, | 
|  | .pre_destroy = mem_cgroup_pre_destroy, | 
|  | .destroy = mem_cgroup_destroy, | 
|  | .populate = mem_cgroup_populate, | 
|  | .attach = mem_cgroup_move_task, | 
|  | .early_init = 0, | 
|  | }; |