| /* |
| * Simple NUMA memory policy for the Linux kernel. |
| * |
| * Copyright 2003,2004 Andi Kleen, SuSE Labs. |
| * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. |
| * Subject to the GNU Public License, version 2. |
| * |
| * NUMA policy allows the user to give hints in which node(s) memory should |
| * be allocated. |
| * |
| * Support four policies per VMA and per process: |
| * |
| * The VMA policy has priority over the process policy for a page fault. |
| * |
| * interleave Allocate memory interleaved over a set of nodes, |
| * with normal fallback if it fails. |
| * For VMA based allocations this interleaves based on the |
| * offset into the backing object or offset into the mapping |
| * for anonymous memory. For process policy an process counter |
| * is used. |
| * |
| * bind Only allocate memory on a specific set of nodes, |
| * no fallback. |
| * FIXME: memory is allocated starting with the first node |
| * to the last. It would be better if bind would truly restrict |
| * the allocation to memory nodes instead |
| * |
| * preferred Try a specific node first before normal fallback. |
| * As a special case node -1 here means do the allocation |
| * on the local CPU. This is normally identical to default, |
| * but useful to set in a VMA when you have a non default |
| * process policy. |
| * |
| * default Allocate on the local node first, or when on a VMA |
| * use the process policy. This is what Linux always did |
| * in a NUMA aware kernel and still does by, ahem, default. |
| * |
| * The process policy is applied for most non interrupt memory allocations |
| * in that process' context. Interrupts ignore the policies and always |
| * try to allocate on the local CPU. The VMA policy is only applied for memory |
| * allocations for a VMA in the VM. |
| * |
| * Currently there are a few corner cases in swapping where the policy |
| * is not applied, but the majority should be handled. When process policy |
| * is used it is not remembered over swap outs/swap ins. |
| * |
| * Only the highest zone in the zone hierarchy gets policied. Allocations |
| * requesting a lower zone just use default policy. This implies that |
| * on systems with highmem kernel lowmem allocation don't get policied. |
| * Same with GFP_DMA allocations. |
| * |
| * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between |
| * all users and remembered even when nobody has memory mapped. |
| */ |
| |
| /* Notebook: |
| fix mmap readahead to honour policy and enable policy for any page cache |
| object |
| statistics for bigpages |
| global policy for page cache? currently it uses process policy. Requires |
| first item above. |
| handle mremap for shared memory (currently ignored for the policy) |
| grows down? |
| make bind policy root only? It can trigger oom much faster and the |
| kernel is not always grateful with that. |
| could replace all the switch()es with a mempolicy_ops structure. |
| */ |
| |
| #include <linux/mempolicy.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/hugetlb.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/nodemask.h> |
| #include <linux/cpuset.h> |
| #include <linux/gfp.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/module.h> |
| #include <linux/nsproxy.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/compat.h> |
| #include <linux/swap.h> |
| #include <linux/seq_file.h> |
| #include <linux/proc_fs.h> |
| #include <linux/migrate.h> |
| #include <linux/rmap.h> |
| #include <linux/security.h> |
| #include <linux/syscalls.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/uaccess.h> |
| |
| /* Internal flags */ |
| #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ |
| #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ |
| #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ |
| |
| static struct kmem_cache *policy_cache; |
| static struct kmem_cache *sn_cache; |
| |
| /* Highest zone. An specific allocation for a zone below that is not |
| policied. */ |
| enum zone_type policy_zone = 0; |
| |
| struct mempolicy default_policy = { |
| .refcnt = ATOMIC_INIT(1), /* never free it */ |
| .policy = MPOL_DEFAULT, |
| }; |
| |
| static void mpol_rebind_policy(struct mempolicy *pol, |
| const nodemask_t *newmask); |
| |
| /* Do sanity checking on a policy */ |
| static int mpol_check_policy(int mode, nodemask_t *nodes) |
| { |
| int empty = nodes_empty(*nodes); |
| |
| switch (mode) { |
| case MPOL_DEFAULT: |
| if (!empty) |
| return -EINVAL; |
| break; |
| case MPOL_BIND: |
| case MPOL_INTERLEAVE: |
| /* Preferred will only use the first bit, but allow |
| more for now. */ |
| if (empty) |
| return -EINVAL; |
| break; |
| } |
| return nodes_subset(*nodes, node_states[N_HIGH_MEMORY]) ? 0 : -EINVAL; |
| } |
| |
| /* Generate a custom zonelist for the BIND policy. */ |
| static struct zonelist *bind_zonelist(nodemask_t *nodes) |
| { |
| struct zonelist *zl; |
| int num, max, nd; |
| enum zone_type k; |
| |
| max = 1 + MAX_NR_ZONES * nodes_weight(*nodes); |
| max++; /* space for zlcache_ptr (see mmzone.h) */ |
| zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL); |
| if (!zl) |
| return ERR_PTR(-ENOMEM); |
| zl->zlcache_ptr = NULL; |
| num = 0; |
| /* First put in the highest zones from all nodes, then all the next |
| lower zones etc. Avoid empty zones because the memory allocator |
| doesn't like them. If you implement node hot removal you |
| have to fix that. */ |
| k = MAX_NR_ZONES - 1; |
| while (1) { |
| for_each_node_mask(nd, *nodes) { |
| struct zone *z = &NODE_DATA(nd)->node_zones[k]; |
| if (z->present_pages > 0) |
| zl->zones[num++] = z; |
| } |
| if (k == 0) |
| break; |
| k--; |
| } |
| if (num == 0) { |
| kfree(zl); |
| return ERR_PTR(-EINVAL); |
| } |
| zl->zones[num] = NULL; |
| return zl; |
| } |
| |
| /* Create a new policy */ |
| static struct mempolicy *mpol_new(int mode, nodemask_t *nodes) |
| { |
| struct mempolicy *policy; |
| |
| pr_debug("setting mode %d nodes[0] %lx\n", |
| mode, nodes ? nodes_addr(*nodes)[0] : -1); |
| |
| if (mode == MPOL_DEFAULT) |
| return NULL; |
| policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); |
| if (!policy) |
| return ERR_PTR(-ENOMEM); |
| atomic_set(&policy->refcnt, 1); |
| switch (mode) { |
| case MPOL_INTERLEAVE: |
| policy->v.nodes = *nodes; |
| nodes_and(policy->v.nodes, policy->v.nodes, |
| node_states[N_HIGH_MEMORY]); |
| if (nodes_weight(policy->v.nodes) == 0) { |
| kmem_cache_free(policy_cache, policy); |
| return ERR_PTR(-EINVAL); |
| } |
| break; |
| case MPOL_PREFERRED: |
| policy->v.preferred_node = first_node(*nodes); |
| if (policy->v.preferred_node >= MAX_NUMNODES) |
| policy->v.preferred_node = -1; |
| break; |
| case MPOL_BIND: |
| policy->v.zonelist = bind_zonelist(nodes); |
| if (IS_ERR(policy->v.zonelist)) { |
| void *error_code = policy->v.zonelist; |
| kmem_cache_free(policy_cache, policy); |
| return error_code; |
| } |
| break; |
| } |
| policy->policy = mode; |
| policy->cpuset_mems_allowed = cpuset_mems_allowed(current); |
| return policy; |
| } |
| |
| static void gather_stats(struct page *, void *, int pte_dirty); |
| static void migrate_page_add(struct page *page, struct list_head *pagelist, |
| unsigned long flags); |
| |
| /* Scan through pages checking if pages follow certain conditions. */ |
| static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, |
| unsigned long addr, unsigned long end, |
| const nodemask_t *nodes, unsigned long flags, |
| void *private) |
| { |
| pte_t *orig_pte; |
| pte_t *pte; |
| spinlock_t *ptl; |
| |
| orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| do { |
| struct page *page; |
| int nid; |
| |
| if (!pte_present(*pte)) |
| continue; |
| page = vm_normal_page(vma, addr, *pte); |
| if (!page) |
| continue; |
| /* |
| * The check for PageReserved here is important to avoid |
| * handling zero pages and other pages that may have been |
| * marked special by the system. |
| * |
| * If the PageReserved would not be checked here then f.e. |
| * the location of the zero page could have an influence |
| * on MPOL_MF_STRICT, zero pages would be counted for |
| * the per node stats, and there would be useless attempts |
| * to put zero pages on the migration list. |
| */ |
| if (PageReserved(page)) |
| continue; |
| nid = page_to_nid(page); |
| if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) |
| continue; |
| |
| if (flags & MPOL_MF_STATS) |
| gather_stats(page, private, pte_dirty(*pte)); |
| else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) |
| migrate_page_add(page, private, flags); |
| else |
| break; |
| } while (pte++, addr += PAGE_SIZE, addr != end); |
| pte_unmap_unlock(orig_pte, ptl); |
| return addr != end; |
| } |
| |
| static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, |
| unsigned long addr, unsigned long end, |
| const nodemask_t *nodes, unsigned long flags, |
| void *private) |
| { |
| pmd_t *pmd; |
| unsigned long next; |
| |
| pmd = pmd_offset(pud, addr); |
| do { |
| next = pmd_addr_end(addr, end); |
| if (pmd_none_or_clear_bad(pmd)) |
| continue; |
| if (check_pte_range(vma, pmd, addr, next, nodes, |
| flags, private)) |
| return -EIO; |
| } while (pmd++, addr = next, addr != end); |
| return 0; |
| } |
| |
| static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, |
| unsigned long addr, unsigned long end, |
| const nodemask_t *nodes, unsigned long flags, |
| void *private) |
| { |
| pud_t *pud; |
| unsigned long next; |
| |
| pud = pud_offset(pgd, addr); |
| do { |
| next = pud_addr_end(addr, end); |
| if (pud_none_or_clear_bad(pud)) |
| continue; |
| if (check_pmd_range(vma, pud, addr, next, nodes, |
| flags, private)) |
| return -EIO; |
| } while (pud++, addr = next, addr != end); |
| return 0; |
| } |
| |
| static inline int check_pgd_range(struct vm_area_struct *vma, |
| unsigned long addr, unsigned long end, |
| const nodemask_t *nodes, unsigned long flags, |
| void *private) |
| { |
| pgd_t *pgd; |
| unsigned long next; |
| |
| pgd = pgd_offset(vma->vm_mm, addr); |
| do { |
| next = pgd_addr_end(addr, end); |
| if (pgd_none_or_clear_bad(pgd)) |
| continue; |
| if (check_pud_range(vma, pgd, addr, next, nodes, |
| flags, private)) |
| return -EIO; |
| } while (pgd++, addr = next, addr != end); |
| return 0; |
| } |
| |
| /* |
| * Check if all pages in a range are on a set of nodes. |
| * If pagelist != NULL then isolate pages from the LRU and |
| * put them on the pagelist. |
| */ |
| static struct vm_area_struct * |
| check_range(struct mm_struct *mm, unsigned long start, unsigned long end, |
| const nodemask_t *nodes, unsigned long flags, void *private) |
| { |
| int err; |
| struct vm_area_struct *first, *vma, *prev; |
| |
| if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { |
| |
| err = migrate_prep(); |
| if (err) |
| return ERR_PTR(err); |
| } |
| |
| first = find_vma(mm, start); |
| if (!first) |
| return ERR_PTR(-EFAULT); |
| prev = NULL; |
| for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { |
| if (!(flags & MPOL_MF_DISCONTIG_OK)) { |
| if (!vma->vm_next && vma->vm_end < end) |
| return ERR_PTR(-EFAULT); |
| if (prev && prev->vm_end < vma->vm_start) |
| return ERR_PTR(-EFAULT); |
| } |
| if (!is_vm_hugetlb_page(vma) && |
| ((flags & MPOL_MF_STRICT) || |
| ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && |
| vma_migratable(vma)))) { |
| unsigned long endvma = vma->vm_end; |
| |
| if (endvma > end) |
| endvma = end; |
| if (vma->vm_start > start) |
| start = vma->vm_start; |
| err = check_pgd_range(vma, start, endvma, nodes, |
| flags, private); |
| if (err) { |
| first = ERR_PTR(err); |
| break; |
| } |
| } |
| prev = vma; |
| } |
| return first; |
| } |
| |
| /* Apply policy to a single VMA */ |
| static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new) |
| { |
| int err = 0; |
| struct mempolicy *old = vma->vm_policy; |
| |
| pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", |
| vma->vm_start, vma->vm_end, vma->vm_pgoff, |
| vma->vm_ops, vma->vm_file, |
| vma->vm_ops ? vma->vm_ops->set_policy : NULL); |
| |
| if (vma->vm_ops && vma->vm_ops->set_policy) |
| err = vma->vm_ops->set_policy(vma, new); |
| if (!err) { |
| mpol_get(new); |
| vma->vm_policy = new; |
| mpol_free(old); |
| } |
| return err; |
| } |
| |
| /* Step 2: apply policy to a range and do splits. */ |
| static int mbind_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end, struct mempolicy *new) |
| { |
| struct vm_area_struct *next; |
| int err; |
| |
| err = 0; |
| for (; vma && vma->vm_start < end; vma = next) { |
| next = vma->vm_next; |
| if (vma->vm_start < start) |
| err = split_vma(vma->vm_mm, vma, start, 1); |
| if (!err && vma->vm_end > end) |
| err = split_vma(vma->vm_mm, vma, end, 0); |
| if (!err) |
| err = policy_vma(vma, new); |
| if (err) |
| break; |
| } |
| return err; |
| } |
| |
| static int contextualize_policy(int mode, nodemask_t *nodes) |
| { |
| if (!nodes) |
| return 0; |
| |
| cpuset_update_task_memory_state(); |
| if (!cpuset_nodes_subset_current_mems_allowed(*nodes)) |
| return -EINVAL; |
| return mpol_check_policy(mode, nodes); |
| } |
| |
| |
| /* |
| * Update task->flags PF_MEMPOLICY bit: set iff non-default |
| * mempolicy. Allows more rapid checking of this (combined perhaps |
| * with other PF_* flag bits) on memory allocation hot code paths. |
| * |
| * If called from outside this file, the task 'p' should -only- be |
| * a newly forked child not yet visible on the task list, because |
| * manipulating the task flags of a visible task is not safe. |
| * |
| * The above limitation is why this routine has the funny name |
| * mpol_fix_fork_child_flag(). |
| * |
| * It is also safe to call this with a task pointer of current, |
| * which the static wrapper mpol_set_task_struct_flag() does, |
| * for use within this file. |
| */ |
| |
| void mpol_fix_fork_child_flag(struct task_struct *p) |
| { |
| if (p->mempolicy) |
| p->flags |= PF_MEMPOLICY; |
| else |
| p->flags &= ~PF_MEMPOLICY; |
| } |
| |
| static void mpol_set_task_struct_flag(void) |
| { |
| mpol_fix_fork_child_flag(current); |
| } |
| |
| /* Set the process memory policy */ |
| static long do_set_mempolicy(int mode, nodemask_t *nodes) |
| { |
| struct mempolicy *new; |
| |
| if (contextualize_policy(mode, nodes)) |
| return -EINVAL; |
| new = mpol_new(mode, nodes); |
| if (IS_ERR(new)) |
| return PTR_ERR(new); |
| mpol_free(current->mempolicy); |
| current->mempolicy = new; |
| mpol_set_task_struct_flag(); |
| if (new && new->policy == MPOL_INTERLEAVE) |
| current->il_next = first_node(new->v.nodes); |
| return 0; |
| } |
| |
| /* Fill a zone bitmap for a policy */ |
| static void get_zonemask(struct mempolicy *p, nodemask_t *nodes) |
| { |
| int i; |
| |
| nodes_clear(*nodes); |
| switch (p->policy) { |
| case MPOL_BIND: |
| for (i = 0; p->v.zonelist->zones[i]; i++) |
| node_set(zone_to_nid(p->v.zonelist->zones[i]), |
| *nodes); |
| break; |
| case MPOL_DEFAULT: |
| break; |
| case MPOL_INTERLEAVE: |
| *nodes = p->v.nodes; |
| break; |
| case MPOL_PREFERRED: |
| /* or use current node instead of memory_map? */ |
| if (p->v.preferred_node < 0) |
| *nodes = node_states[N_HIGH_MEMORY]; |
| else |
| node_set(p->v.preferred_node, *nodes); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static int lookup_node(struct mm_struct *mm, unsigned long addr) |
| { |
| struct page *p; |
| int err; |
| |
| err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); |
| if (err >= 0) { |
| err = page_to_nid(p); |
| put_page(p); |
| } |
| return err; |
| } |
| |
| /* Retrieve NUMA policy */ |
| static long do_get_mempolicy(int *policy, nodemask_t *nmask, |
| unsigned long addr, unsigned long flags) |
| { |
| int err; |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma = NULL; |
| struct mempolicy *pol = current->mempolicy; |
| |
| cpuset_update_task_memory_state(); |
| if (flags & |
| ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) |
| return -EINVAL; |
| |
| if (flags & MPOL_F_MEMS_ALLOWED) { |
| if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) |
| return -EINVAL; |
| *policy = 0; /* just so it's initialized */ |
| *nmask = cpuset_current_mems_allowed; |
| return 0; |
| } |
| |
| if (flags & MPOL_F_ADDR) { |
| down_read(&mm->mmap_sem); |
| vma = find_vma_intersection(mm, addr, addr+1); |
| if (!vma) { |
| up_read(&mm->mmap_sem); |
| return -EFAULT; |
| } |
| if (vma->vm_ops && vma->vm_ops->get_policy) |
| pol = vma->vm_ops->get_policy(vma, addr); |
| else |
| pol = vma->vm_policy; |
| } else if (addr) |
| return -EINVAL; |
| |
| if (!pol) |
| pol = &default_policy; |
| |
| if (flags & MPOL_F_NODE) { |
| if (flags & MPOL_F_ADDR) { |
| err = lookup_node(mm, addr); |
| if (err < 0) |
| goto out; |
| *policy = err; |
| } else if (pol == current->mempolicy && |
| pol->policy == MPOL_INTERLEAVE) { |
| *policy = current->il_next; |
| } else { |
| err = -EINVAL; |
| goto out; |
| } |
| } else |
| *policy = pol->policy; |
| |
| if (vma) { |
| up_read(¤t->mm->mmap_sem); |
| vma = NULL; |
| } |
| |
| err = 0; |
| if (nmask) |
| get_zonemask(pol, nmask); |
| |
| out: |
| if (vma) |
| up_read(¤t->mm->mmap_sem); |
| return err; |
| } |
| |
| #ifdef CONFIG_MIGRATION |
| /* |
| * page migration |
| */ |
| static void migrate_page_add(struct page *page, struct list_head *pagelist, |
| unsigned long flags) |
| { |
| /* |
| * Avoid migrating a page that is shared with others. |
| */ |
| if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) |
| isolate_lru_page(page, pagelist); |
| } |
| |
| static struct page *new_node_page(struct page *page, unsigned long node, int **x) |
| { |
| return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0); |
| } |
| |
| /* |
| * Migrate pages from one node to a target node. |
| * Returns error or the number of pages not migrated. |
| */ |
| static int migrate_to_node(struct mm_struct *mm, int source, int dest, |
| int flags) |
| { |
| nodemask_t nmask; |
| LIST_HEAD(pagelist); |
| int err = 0; |
| |
| nodes_clear(nmask); |
| node_set(source, nmask); |
| |
| check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask, |
| flags | MPOL_MF_DISCONTIG_OK, &pagelist); |
| |
| if (!list_empty(&pagelist)) |
| err = migrate_pages(&pagelist, new_node_page, dest); |
| |
| return err; |
| } |
| |
| /* |
| * Move pages between the two nodesets so as to preserve the physical |
| * layout as much as possible. |
| * |
| * Returns the number of page that could not be moved. |
| */ |
| int do_migrate_pages(struct mm_struct *mm, |
| const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) |
| { |
| LIST_HEAD(pagelist); |
| int busy = 0; |
| int err = 0; |
| nodemask_t tmp; |
| |
| down_read(&mm->mmap_sem); |
| |
| err = migrate_vmas(mm, from_nodes, to_nodes, flags); |
| if (err) |
| goto out; |
| |
| /* |
| * Find a 'source' bit set in 'tmp' whose corresponding 'dest' |
| * bit in 'to' is not also set in 'tmp'. Clear the found 'source' |
| * bit in 'tmp', and return that <source, dest> pair for migration. |
| * The pair of nodemasks 'to' and 'from' define the map. |
| * |
| * If no pair of bits is found that way, fallback to picking some |
| * pair of 'source' and 'dest' bits that are not the same. If the |
| * 'source' and 'dest' bits are the same, this represents a node |
| * that will be migrating to itself, so no pages need move. |
| * |
| * If no bits are left in 'tmp', or if all remaining bits left |
| * in 'tmp' correspond to the same bit in 'to', return false |
| * (nothing left to migrate). |
| * |
| * This lets us pick a pair of nodes to migrate between, such that |
| * if possible the dest node is not already occupied by some other |
| * source node, minimizing the risk of overloading the memory on a |
| * node that would happen if we migrated incoming memory to a node |
| * before migrating outgoing memory source that same node. |
| * |
| * A single scan of tmp is sufficient. As we go, we remember the |
| * most recent <s, d> pair that moved (s != d). If we find a pair |
| * that not only moved, but what's better, moved to an empty slot |
| * (d is not set in tmp), then we break out then, with that pair. |
| * Otherwise when we finish scannng from_tmp, we at least have the |
| * most recent <s, d> pair that moved. If we get all the way through |
| * the scan of tmp without finding any node that moved, much less |
| * moved to an empty node, then there is nothing left worth migrating. |
| */ |
| |
| tmp = *from_nodes; |
| while (!nodes_empty(tmp)) { |
| int s,d; |
| int source = -1; |
| int dest = 0; |
| |
| for_each_node_mask(s, tmp) { |
| d = node_remap(s, *from_nodes, *to_nodes); |
| if (s == d) |
| continue; |
| |
| source = s; /* Node moved. Memorize */ |
| dest = d; |
| |
| /* dest not in remaining from nodes? */ |
| if (!node_isset(dest, tmp)) |
| break; |
| } |
| if (source == -1) |
| break; |
| |
| node_clear(source, tmp); |
| err = migrate_to_node(mm, source, dest, flags); |
| if (err > 0) |
| busy += err; |
| if (err < 0) |
| break; |
| } |
| out: |
| up_read(&mm->mmap_sem); |
| if (err < 0) |
| return err; |
| return busy; |
| |
| } |
| |
| static struct page *new_vma_page(struct page *page, unsigned long private, int **x) |
| { |
| struct vm_area_struct *vma = (struct vm_area_struct *)private; |
| |
| return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, |
| page_address_in_vma(page, vma)); |
| } |
| #else |
| |
| static void migrate_page_add(struct page *page, struct list_head *pagelist, |
| unsigned long flags) |
| { |
| } |
| |
| int do_migrate_pages(struct mm_struct *mm, |
| const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) |
| { |
| return -ENOSYS; |
| } |
| |
| static struct page *new_vma_page(struct page *page, unsigned long private, int **x) |
| { |
| return NULL; |
| } |
| #endif |
| |
| static long do_mbind(unsigned long start, unsigned long len, |
| unsigned long mode, nodemask_t *nmask, |
| unsigned long flags) |
| { |
| struct vm_area_struct *vma; |
| struct mm_struct *mm = current->mm; |
| struct mempolicy *new; |
| unsigned long end; |
| int err; |
| LIST_HEAD(pagelist); |
| |
| if ((flags & ~(unsigned long)(MPOL_MF_STRICT | |
| MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) |
| || mode > MPOL_MAX) |
| return -EINVAL; |
| if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) |
| return -EPERM; |
| |
| if (start & ~PAGE_MASK) |
| return -EINVAL; |
| |
| if (mode == MPOL_DEFAULT) |
| flags &= ~MPOL_MF_STRICT; |
| |
| len = (len + PAGE_SIZE - 1) & PAGE_MASK; |
| end = start + len; |
| |
| if (end < start) |
| return -EINVAL; |
| if (end == start) |
| return 0; |
| |
| if (mpol_check_policy(mode, nmask)) |
| return -EINVAL; |
| |
| new = mpol_new(mode, nmask); |
| if (IS_ERR(new)) |
| return PTR_ERR(new); |
| |
| /* |
| * If we are using the default policy then operation |
| * on discontinuous address spaces is okay after all |
| */ |
| if (!new) |
| flags |= MPOL_MF_DISCONTIG_OK; |
| |
| pr_debug("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len, |
| mode, nmask ? nodes_addr(*nmask)[0] : -1); |
| |
| down_write(&mm->mmap_sem); |
| vma = check_range(mm, start, end, nmask, |
| flags | MPOL_MF_INVERT, &pagelist); |
| |
| err = PTR_ERR(vma); |
| if (!IS_ERR(vma)) { |
| int nr_failed = 0; |
| |
| err = mbind_range(vma, start, end, new); |
| |
| if (!list_empty(&pagelist)) |
| nr_failed = migrate_pages(&pagelist, new_vma_page, |
| (unsigned long)vma); |
| |
| if (!err && nr_failed && (flags & MPOL_MF_STRICT)) |
| err = -EIO; |
| } |
| |
| up_write(&mm->mmap_sem); |
| mpol_free(new); |
| return err; |
| } |
| |
| /* |
| * User space interface with variable sized bitmaps for nodelists. |
| */ |
| |
| /* Copy a node mask from user space. */ |
| static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, |
| unsigned long maxnode) |
| { |
| unsigned long k; |
| unsigned long nlongs; |
| unsigned long endmask; |
| |
| --maxnode; |
| nodes_clear(*nodes); |
| if (maxnode == 0 || !nmask) |
| return 0; |
| if (maxnode > PAGE_SIZE*BITS_PER_BYTE) |
| return -EINVAL; |
| |
| nlongs = BITS_TO_LONGS(maxnode); |
| if ((maxnode % BITS_PER_LONG) == 0) |
| endmask = ~0UL; |
| else |
| endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; |
| |
| /* When the user specified more nodes than supported just check |
| if the non supported part is all zero. */ |
| if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { |
| if (nlongs > PAGE_SIZE/sizeof(long)) |
| return -EINVAL; |
| for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { |
| unsigned long t; |
| if (get_user(t, nmask + k)) |
| return -EFAULT; |
| if (k == nlongs - 1) { |
| if (t & endmask) |
| return -EINVAL; |
| } else if (t) |
| return -EINVAL; |
| } |
| nlongs = BITS_TO_LONGS(MAX_NUMNODES); |
| endmask = ~0UL; |
| } |
| |
| if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) |
| return -EFAULT; |
| nodes_addr(*nodes)[nlongs-1] &= endmask; |
| return 0; |
| } |
| |
| /* Copy a kernel node mask to user space */ |
| static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, |
| nodemask_t *nodes) |
| { |
| unsigned long copy = ALIGN(maxnode-1, 64) / 8; |
| const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); |
| |
| if (copy > nbytes) { |
| if (copy > PAGE_SIZE) |
| return -EINVAL; |
| if (clear_user((char __user *)mask + nbytes, copy - nbytes)) |
| return -EFAULT; |
| copy = nbytes; |
| } |
| return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; |
| } |
| |
| asmlinkage long sys_mbind(unsigned long start, unsigned long len, |
| unsigned long mode, |
| unsigned long __user *nmask, unsigned long maxnode, |
| unsigned flags) |
| { |
| nodemask_t nodes; |
| int err; |
| |
| err = get_nodes(&nodes, nmask, maxnode); |
| if (err) |
| return err; |
| #ifdef CONFIG_CPUSETS |
| /* Restrict the nodes to the allowed nodes in the cpuset */ |
| nodes_and(nodes, nodes, current->mems_allowed); |
| #endif |
| return do_mbind(start, len, mode, &nodes, flags); |
| } |
| |
| /* Set the process memory policy */ |
| asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask, |
| unsigned long maxnode) |
| { |
| int err; |
| nodemask_t nodes; |
| |
| if (mode < 0 || mode > MPOL_MAX) |
| return -EINVAL; |
| err = get_nodes(&nodes, nmask, maxnode); |
| if (err) |
| return err; |
| return do_set_mempolicy(mode, &nodes); |
| } |
| |
| asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode, |
| const unsigned long __user *old_nodes, |
| const unsigned long __user *new_nodes) |
| { |
| struct mm_struct *mm; |
| struct task_struct *task; |
| nodemask_t old; |
| nodemask_t new; |
| nodemask_t task_nodes; |
| int err; |
| |
| err = get_nodes(&old, old_nodes, maxnode); |
| if (err) |
| return err; |
| |
| err = get_nodes(&new, new_nodes, maxnode); |
| if (err) |
| return err; |
| |
| /* Find the mm_struct */ |
| read_lock(&tasklist_lock); |
| task = pid ? |
| find_task_by_pid_ns(pid, current->nsproxy->pid_ns) : current; |
| if (!task) { |
| read_unlock(&tasklist_lock); |
| return -ESRCH; |
| } |
| mm = get_task_mm(task); |
| read_unlock(&tasklist_lock); |
| |
| if (!mm) |
| return -EINVAL; |
| |
| /* |
| * Check if this process has the right to modify the specified |
| * process. The right exists if the process has administrative |
| * capabilities, superuser privileges or the same |
| * userid as the target process. |
| */ |
| if ((current->euid != task->suid) && (current->euid != task->uid) && |
| (current->uid != task->suid) && (current->uid != task->uid) && |
| !capable(CAP_SYS_NICE)) { |
| err = -EPERM; |
| goto out; |
| } |
| |
| task_nodes = cpuset_mems_allowed(task); |
| /* Is the user allowed to access the target nodes? */ |
| if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) { |
| err = -EPERM; |
| goto out; |
| } |
| |
| if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| err = security_task_movememory(task); |
| if (err) |
| goto out; |
| |
| err = do_migrate_pages(mm, &old, &new, |
| capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); |
| out: |
| mmput(mm); |
| return err; |
| } |
| |
| |
| /* Retrieve NUMA policy */ |
| asmlinkage long sys_get_mempolicy(int __user *policy, |
| unsigned long __user *nmask, |
| unsigned long maxnode, |
| unsigned long addr, unsigned long flags) |
| { |
| int err; |
| int uninitialized_var(pval); |
| nodemask_t nodes; |
| |
| if (nmask != NULL && maxnode < MAX_NUMNODES) |
| return -EINVAL; |
| |
| err = do_get_mempolicy(&pval, &nodes, addr, flags); |
| |
| if (err) |
| return err; |
| |
| if (policy && put_user(pval, policy)) |
| return -EFAULT; |
| |
| if (nmask) |
| err = copy_nodes_to_user(nmask, maxnode, &nodes); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| |
| asmlinkage long compat_sys_get_mempolicy(int __user *policy, |
| compat_ulong_t __user *nmask, |
| compat_ulong_t maxnode, |
| compat_ulong_t addr, compat_ulong_t flags) |
| { |
| long err; |
| unsigned long __user *nm = NULL; |
| unsigned long nr_bits, alloc_size; |
| DECLARE_BITMAP(bm, MAX_NUMNODES); |
| |
| nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); |
| alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; |
| |
| if (nmask) |
| nm = compat_alloc_user_space(alloc_size); |
| |
| err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); |
| |
| if (!err && nmask) { |
| err = copy_from_user(bm, nm, alloc_size); |
| /* ensure entire bitmap is zeroed */ |
| err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); |
| err |= compat_put_bitmap(nmask, bm, nr_bits); |
| } |
| |
| return err; |
| } |
| |
| asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, |
| compat_ulong_t maxnode) |
| { |
| long err = 0; |
| unsigned long __user *nm = NULL; |
| unsigned long nr_bits, alloc_size; |
| DECLARE_BITMAP(bm, MAX_NUMNODES); |
| |
| nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); |
| alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; |
| |
| if (nmask) { |
| err = compat_get_bitmap(bm, nmask, nr_bits); |
| nm = compat_alloc_user_space(alloc_size); |
| err |= copy_to_user(nm, bm, alloc_size); |
| } |
| |
| if (err) |
| return -EFAULT; |
| |
| return sys_set_mempolicy(mode, nm, nr_bits+1); |
| } |
| |
| asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, |
| compat_ulong_t mode, compat_ulong_t __user *nmask, |
| compat_ulong_t maxnode, compat_ulong_t flags) |
| { |
| long err = 0; |
| unsigned long __user *nm = NULL; |
| unsigned long nr_bits, alloc_size; |
| nodemask_t bm; |
| |
| nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); |
| alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; |
| |
| if (nmask) { |
| err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); |
| nm = compat_alloc_user_space(alloc_size); |
| err |= copy_to_user(nm, nodes_addr(bm), alloc_size); |
| } |
| |
| if (err) |
| return -EFAULT; |
| |
| return sys_mbind(start, len, mode, nm, nr_bits+1, flags); |
| } |
| |
| #endif |
| |
| /* |
| * get_vma_policy(@task, @vma, @addr) |
| * @task - task for fallback if vma policy == default |
| * @vma - virtual memory area whose policy is sought |
| * @addr - address in @vma for shared policy lookup |
| * |
| * Returns effective policy for a VMA at specified address. |
| * Falls back to @task or system default policy, as necessary. |
| * Returned policy has extra reference count if shared, vma, |
| * or some other task's policy [show_numa_maps() can pass |
| * @task != current]. It is the caller's responsibility to |
| * free the reference in these cases. |
| */ |
| static struct mempolicy * get_vma_policy(struct task_struct *task, |
| struct vm_area_struct *vma, unsigned long addr) |
| { |
| struct mempolicy *pol = task->mempolicy; |
| int shared_pol = 0; |
| |
| if (vma) { |
| if (vma->vm_ops && vma->vm_ops->get_policy) { |
| pol = vma->vm_ops->get_policy(vma, addr); |
| shared_pol = 1; /* if pol non-NULL, add ref below */ |
| } else if (vma->vm_policy && |
| vma->vm_policy->policy != MPOL_DEFAULT) |
| pol = vma->vm_policy; |
| } |
| if (!pol) |
| pol = &default_policy; |
| else if (!shared_pol && pol != current->mempolicy) |
| mpol_get(pol); /* vma or other task's policy */ |
| return pol; |
| } |
| |
| /* Return a zonelist representing a mempolicy */ |
| static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy) |
| { |
| int nd; |
| |
| switch (policy->policy) { |
| case MPOL_PREFERRED: |
| nd = policy->v.preferred_node; |
| if (nd < 0) |
| nd = numa_node_id(); |
| break; |
| case MPOL_BIND: |
| /* Lower zones don't get a policy applied */ |
| /* Careful: current->mems_allowed might have moved */ |
| if (gfp_zone(gfp) >= policy_zone) |
| if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist)) |
| return policy->v.zonelist; |
| /*FALL THROUGH*/ |
| case MPOL_INTERLEAVE: /* should not happen */ |
| case MPOL_DEFAULT: |
| nd = numa_node_id(); |
| break; |
| default: |
| nd = 0; |
| BUG(); |
| } |
| return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp); |
| } |
| |
| /* Do dynamic interleaving for a process */ |
| static unsigned interleave_nodes(struct mempolicy *policy) |
| { |
| unsigned nid, next; |
| struct task_struct *me = current; |
| |
| nid = me->il_next; |
| next = next_node(nid, policy->v.nodes); |
| if (next >= MAX_NUMNODES) |
| next = first_node(policy->v.nodes); |
| me->il_next = next; |
| return nid; |
| } |
| |
| /* |
| * Depending on the memory policy provide a node from which to allocate the |
| * next slab entry. |
| */ |
| unsigned slab_node(struct mempolicy *policy) |
| { |
| int pol = policy ? policy->policy : MPOL_DEFAULT; |
| |
| switch (pol) { |
| case MPOL_INTERLEAVE: |
| return interleave_nodes(policy); |
| |
| case MPOL_BIND: |
| /* |
| * Follow bind policy behavior and start allocation at the |
| * first node. |
| */ |
| return zone_to_nid(policy->v.zonelist->zones[0]); |
| |
| case MPOL_PREFERRED: |
| if (policy->v.preferred_node >= 0) |
| return policy->v.preferred_node; |
| /* Fall through */ |
| |
| default: |
| return numa_node_id(); |
| } |
| } |
| |
| /* Do static interleaving for a VMA with known offset. */ |
| static unsigned offset_il_node(struct mempolicy *pol, |
| struct vm_area_struct *vma, unsigned long off) |
| { |
| unsigned nnodes = nodes_weight(pol->v.nodes); |
| unsigned target = (unsigned)off % nnodes; |
| int c; |
| int nid = -1; |
| |
| c = 0; |
| do { |
| nid = next_node(nid, pol->v.nodes); |
| c++; |
| } while (c <= target); |
| return nid; |
| } |
| |
| /* Determine a node number for interleave */ |
| static inline unsigned interleave_nid(struct mempolicy *pol, |
| struct vm_area_struct *vma, unsigned long addr, int shift) |
| { |
| if (vma) { |
| unsigned long off; |
| |
| /* |
| * for small pages, there is no difference between |
| * shift and PAGE_SHIFT, so the bit-shift is safe. |
| * for huge pages, since vm_pgoff is in units of small |
| * pages, we need to shift off the always 0 bits to get |
| * a useful offset. |
| */ |
| BUG_ON(shift < PAGE_SHIFT); |
| off = vma->vm_pgoff >> (shift - PAGE_SHIFT); |
| off += (addr - vma->vm_start) >> shift; |
| return offset_il_node(pol, vma, off); |
| } else |
| return interleave_nodes(pol); |
| } |
| |
| #ifdef CONFIG_HUGETLBFS |
| /* |
| * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) |
| * @vma = virtual memory area whose policy is sought |
| * @addr = address in @vma for shared policy lookup and interleave policy |
| * @gfp_flags = for requested zone |
| * @mpol = pointer to mempolicy pointer for reference counted 'BIND policy |
| * |
| * Returns a zonelist suitable for a huge page allocation. |
| * If the effective policy is 'BIND, returns pointer to policy's zonelist. |
| * If it is also a policy for which get_vma_policy() returns an extra |
| * reference, we must hold that reference until after allocation. |
| * In that case, return policy via @mpol so hugetlb allocation can drop |
| * the reference. For non-'BIND referenced policies, we can/do drop the |
| * reference here, so the caller doesn't need to know about the special case |
| * for default and current task policy. |
| */ |
| struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, |
| gfp_t gfp_flags, struct mempolicy **mpol) |
| { |
| struct mempolicy *pol = get_vma_policy(current, vma, addr); |
| struct zonelist *zl; |
| |
| *mpol = NULL; /* probably no unref needed */ |
| if (pol->policy == MPOL_INTERLEAVE) { |
| unsigned nid; |
| |
| nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT); |
| __mpol_free(pol); /* finished with pol */ |
| return NODE_DATA(nid)->node_zonelists + gfp_zone(gfp_flags); |
| } |
| |
| zl = zonelist_policy(GFP_HIGHUSER, pol); |
| if (unlikely(pol != &default_policy && pol != current->mempolicy)) { |
| if (pol->policy != MPOL_BIND) |
| __mpol_free(pol); /* finished with pol */ |
| else |
| *mpol = pol; /* unref needed after allocation */ |
| } |
| return zl; |
| } |
| #endif |
| |
| /* Allocate a page in interleaved policy. |
| Own path because it needs to do special accounting. */ |
| static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, |
| unsigned nid) |
| { |
| struct zonelist *zl; |
| struct page *page; |
| |
| zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp); |
| page = __alloc_pages(gfp, order, zl); |
| if (page && page_zone(page) == zl->zones[0]) |
| inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); |
| return page; |
| } |
| |
| /** |
| * alloc_page_vma - Allocate a page for a VMA. |
| * |
| * @gfp: |
| * %GFP_USER user allocation. |
| * %GFP_KERNEL kernel allocations, |
| * %GFP_HIGHMEM highmem/user allocations, |
| * %GFP_FS allocation should not call back into a file system. |
| * %GFP_ATOMIC don't sleep. |
| * |
| * @vma: Pointer to VMA or NULL if not available. |
| * @addr: Virtual Address of the allocation. Must be inside the VMA. |
| * |
| * This function allocates a page from the kernel page pool and applies |
| * a NUMA policy associated with the VMA or the current process. |
| * When VMA is not NULL caller must hold down_read on the mmap_sem of the |
| * mm_struct of the VMA to prevent it from going away. Should be used for |
| * all allocations for pages that will be mapped into |
| * user space. Returns NULL when no page can be allocated. |
| * |
| * Should be called with the mm_sem of the vma hold. |
| */ |
| struct page * |
| alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr) |
| { |
| struct mempolicy *pol = get_vma_policy(current, vma, addr); |
| struct zonelist *zl; |
| |
| cpuset_update_task_memory_state(); |
| |
| if (unlikely(pol->policy == MPOL_INTERLEAVE)) { |
| unsigned nid; |
| |
| nid = interleave_nid(pol, vma, addr, PAGE_SHIFT); |
| return alloc_page_interleave(gfp, 0, nid); |
| } |
| zl = zonelist_policy(gfp, pol); |
| if (pol != &default_policy && pol != current->mempolicy) { |
| /* |
| * slow path: ref counted policy -- shared or vma |
| */ |
| struct page *page = __alloc_pages(gfp, 0, zl); |
| __mpol_free(pol); |
| return page; |
| } |
| /* |
| * fast path: default or task policy |
| */ |
| return __alloc_pages(gfp, 0, zl); |
| } |
| |
| /** |
| * alloc_pages_current - Allocate pages. |
| * |
| * @gfp: |
| * %GFP_USER user allocation, |
| * %GFP_KERNEL kernel allocation, |
| * %GFP_HIGHMEM highmem allocation, |
| * %GFP_FS don't call back into a file system. |
| * %GFP_ATOMIC don't sleep. |
| * @order: Power of two of allocation size in pages. 0 is a single page. |
| * |
| * Allocate a page from the kernel page pool. When not in |
| * interrupt context and apply the current process NUMA policy. |
| * Returns NULL when no page can be allocated. |
| * |
| * Don't call cpuset_update_task_memory_state() unless |
| * 1) it's ok to take cpuset_sem (can WAIT), and |
| * 2) allocating for current task (not interrupt). |
| */ |
| struct page *alloc_pages_current(gfp_t gfp, unsigned order) |
| { |
| struct mempolicy *pol = current->mempolicy; |
| |
| if ((gfp & __GFP_WAIT) && !in_interrupt()) |
| cpuset_update_task_memory_state(); |
| if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) |
| pol = &default_policy; |
| if (pol->policy == MPOL_INTERLEAVE) |
| return alloc_page_interleave(gfp, order, interleave_nodes(pol)); |
| return __alloc_pages(gfp, order, zonelist_policy(gfp, pol)); |
| } |
| EXPORT_SYMBOL(alloc_pages_current); |
| |
| /* |
| * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it |
| * rebinds the mempolicy its copying by calling mpol_rebind_policy() |
| * with the mems_allowed returned by cpuset_mems_allowed(). This |
| * keeps mempolicies cpuset relative after its cpuset moves. See |
| * further kernel/cpuset.c update_nodemask(). |
| */ |
| |
| /* Slow path of a mempolicy copy */ |
| struct mempolicy *__mpol_copy(struct mempolicy *old) |
| { |
| struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); |
| |
| if (!new) |
| return ERR_PTR(-ENOMEM); |
| if (current_cpuset_is_being_rebound()) { |
| nodemask_t mems = cpuset_mems_allowed(current); |
| mpol_rebind_policy(old, &mems); |
| } |
| *new = *old; |
| atomic_set(&new->refcnt, 1); |
| if (new->policy == MPOL_BIND) { |
| int sz = ksize(old->v.zonelist); |
| new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL); |
| if (!new->v.zonelist) { |
| kmem_cache_free(policy_cache, new); |
| return ERR_PTR(-ENOMEM); |
| } |
| } |
| return new; |
| } |
| |
| /* Slow path of a mempolicy comparison */ |
| int __mpol_equal(struct mempolicy *a, struct mempolicy *b) |
| { |
| if (!a || !b) |
| return 0; |
| if (a->policy != b->policy) |
| return 0; |
| switch (a->policy) { |
| case MPOL_DEFAULT: |
| return 1; |
| case MPOL_INTERLEAVE: |
| return nodes_equal(a->v.nodes, b->v.nodes); |
| case MPOL_PREFERRED: |
| return a->v.preferred_node == b->v.preferred_node; |
| case MPOL_BIND: { |
| int i; |
| for (i = 0; a->v.zonelist->zones[i]; i++) |
| if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i]) |
| return 0; |
| return b->v.zonelist->zones[i] == NULL; |
| } |
| default: |
| BUG(); |
| return 0; |
| } |
| } |
| |
| /* Slow path of a mpol destructor. */ |
| void __mpol_free(struct mempolicy *p) |
| { |
| if (!atomic_dec_and_test(&p->refcnt)) |
| return; |
| if (p->policy == MPOL_BIND) |
| kfree(p->v.zonelist); |
| p->policy = MPOL_DEFAULT; |
| kmem_cache_free(policy_cache, p); |
| } |
| |
| /* |
| * Shared memory backing store policy support. |
| * |
| * Remember policies even when nobody has shared memory mapped. |
| * The policies are kept in Red-Black tree linked from the inode. |
| * They are protected by the sp->lock spinlock, which should be held |
| * for any accesses to the tree. |
| */ |
| |
| /* lookup first element intersecting start-end */ |
| /* Caller holds sp->lock */ |
| static struct sp_node * |
| sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) |
| { |
| struct rb_node *n = sp->root.rb_node; |
| |
| while (n) { |
| struct sp_node *p = rb_entry(n, struct sp_node, nd); |
| |
| if (start >= p->end) |
| n = n->rb_right; |
| else if (end <= p->start) |
| n = n->rb_left; |
| else |
| break; |
| } |
| if (!n) |
| return NULL; |
| for (;;) { |
| struct sp_node *w = NULL; |
| struct rb_node *prev = rb_prev(n); |
| if (!prev) |
| break; |
| w = rb_entry(prev, struct sp_node, nd); |
| if (w->end <= start) |
| break; |
| n = prev; |
| } |
| return rb_entry(n, struct sp_node, nd); |
| } |
| |
| /* Insert a new shared policy into the list. */ |
| /* Caller holds sp->lock */ |
| static void sp_insert(struct shared_policy *sp, struct sp_node *new) |
| { |
| struct rb_node **p = &sp->root.rb_node; |
| struct rb_node *parent = NULL; |
| struct sp_node *nd; |
| |
| while (*p) { |
| parent = *p; |
| nd = rb_entry(parent, struct sp_node, nd); |
| if (new->start < nd->start) |
| p = &(*p)->rb_left; |
| else if (new->end > nd->end) |
| p = &(*p)->rb_right; |
| else |
| BUG(); |
| } |
| rb_link_node(&new->nd, parent, p); |
| rb_insert_color(&new->nd, &sp->root); |
| pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, |
| new->policy ? new->policy->policy : 0); |
| } |
| |
| /* Find shared policy intersecting idx */ |
| struct mempolicy * |
| mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) |
| { |
| struct mempolicy *pol = NULL; |
| struct sp_node *sn; |
| |
| if (!sp->root.rb_node) |
| return NULL; |
| spin_lock(&sp->lock); |
| sn = sp_lookup(sp, idx, idx+1); |
| if (sn) { |
| mpol_get(sn->policy); |
| pol = sn->policy; |
| } |
| spin_unlock(&sp->lock); |
| return pol; |
| } |
| |
| static void sp_delete(struct shared_policy *sp, struct sp_node *n) |
| { |
| pr_debug("deleting %lx-l%lx\n", n->start, n->end); |
| rb_erase(&n->nd, &sp->root); |
| mpol_free(n->policy); |
| kmem_cache_free(sn_cache, n); |
| } |
| |
| static struct sp_node *sp_alloc(unsigned long start, unsigned long end, |
| struct mempolicy *pol) |
| { |
| struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL); |
| |
| if (!n) |
| return NULL; |
| n->start = start; |
| n->end = end; |
| mpol_get(pol); |
| n->policy = pol; |
| return n; |
| } |
| |
| /* Replace a policy range. */ |
| static int shared_policy_replace(struct shared_policy *sp, unsigned long start, |
| unsigned long end, struct sp_node *new) |
| { |
| struct sp_node *n, *new2 = NULL; |
| |
| restart: |
| spin_lock(&sp->lock); |
| n = sp_lookup(sp, start, end); |
| /* Take care of old policies in the same range. */ |
| while (n && n->start < end) { |
| struct rb_node *next = rb_next(&n->nd); |
| if (n->start >= start) { |
| if (n->end <= end) |
| sp_delete(sp, n); |
| else |
| n->start = end; |
| } else { |
| /* Old policy spanning whole new range. */ |
| if (n->end > end) { |
| if (!new2) { |
| spin_unlock(&sp->lock); |
| new2 = sp_alloc(end, n->end, n->policy); |
| if (!new2) |
| return -ENOMEM; |
| goto restart; |
| } |
| n->end = start; |
| sp_insert(sp, new2); |
| new2 = NULL; |
| break; |
| } else |
| n->end = start; |
| } |
| if (!next) |
| break; |
| n = rb_entry(next, struct sp_node, nd); |
| } |
| if (new) |
| sp_insert(sp, new); |
| spin_unlock(&sp->lock); |
| if (new2) { |
| mpol_free(new2->policy); |
| kmem_cache_free(sn_cache, new2); |
| } |
| return 0; |
| } |
| |
| void mpol_shared_policy_init(struct shared_policy *info, int policy, |
| nodemask_t *policy_nodes) |
| { |
| info->root = RB_ROOT; |
| spin_lock_init(&info->lock); |
| |
| if (policy != MPOL_DEFAULT) { |
| struct mempolicy *newpol; |
| |
| /* Falls back to MPOL_DEFAULT on any error */ |
| newpol = mpol_new(policy, policy_nodes); |
| if (!IS_ERR(newpol)) { |
| /* Create pseudo-vma that contains just the policy */ |
| struct vm_area_struct pvma; |
| |
| memset(&pvma, 0, sizeof(struct vm_area_struct)); |
| /* Policy covers entire file */ |
| pvma.vm_end = TASK_SIZE; |
| mpol_set_shared_policy(info, &pvma, newpol); |
| mpol_free(newpol); |
| } |
| } |
| } |
| |
| int mpol_set_shared_policy(struct shared_policy *info, |
| struct vm_area_struct *vma, struct mempolicy *npol) |
| { |
| int err; |
| struct sp_node *new = NULL; |
| unsigned long sz = vma_pages(vma); |
| |
| pr_debug("set_shared_policy %lx sz %lu %d %lx\n", |
| vma->vm_pgoff, |
| sz, npol? npol->policy : -1, |
| npol ? nodes_addr(npol->v.nodes)[0] : -1); |
| |
| if (npol) { |
| new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); |
| if (!new) |
| return -ENOMEM; |
| } |
| err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); |
| if (err && new) |
| kmem_cache_free(sn_cache, new); |
| return err; |
| } |
| |
| /* Free a backing policy store on inode delete. */ |
| void mpol_free_shared_policy(struct shared_policy *p) |
| { |
| struct sp_node *n; |
| struct rb_node *next; |
| |
| if (!p->root.rb_node) |
| return; |
| spin_lock(&p->lock); |
| next = rb_first(&p->root); |
| while (next) { |
| n = rb_entry(next, struct sp_node, nd); |
| next = rb_next(&n->nd); |
| rb_erase(&n->nd, &p->root); |
| mpol_free(n->policy); |
| kmem_cache_free(sn_cache, n); |
| } |
| spin_unlock(&p->lock); |
| } |
| |
| /* assumes fs == KERNEL_DS */ |
| void __init numa_policy_init(void) |
| { |
| nodemask_t interleave_nodes; |
| unsigned long largest = 0; |
| int nid, prefer = 0; |
| |
| policy_cache = kmem_cache_create("numa_policy", |
| sizeof(struct mempolicy), |
| 0, SLAB_PANIC, NULL); |
| |
| sn_cache = kmem_cache_create("shared_policy_node", |
| sizeof(struct sp_node), |
| 0, SLAB_PANIC, NULL); |
| |
| /* |
| * Set interleaving policy for system init. Interleaving is only |
| * enabled across suitably sized nodes (default is >= 16MB), or |
| * fall back to the largest node if they're all smaller. |
| */ |
| nodes_clear(interleave_nodes); |
| for_each_node_state(nid, N_HIGH_MEMORY) { |
| unsigned long total_pages = node_present_pages(nid); |
| |
| /* Preserve the largest node */ |
| if (largest < total_pages) { |
| largest = total_pages; |
| prefer = nid; |
| } |
| |
| /* Interleave this node? */ |
| if ((total_pages << PAGE_SHIFT) >= (16 << 20)) |
| node_set(nid, interleave_nodes); |
| } |
| |
| /* All too small, use the largest */ |
| if (unlikely(nodes_empty(interleave_nodes))) |
| node_set(prefer, interleave_nodes); |
| |
| if (do_set_mempolicy(MPOL_INTERLEAVE, &interleave_nodes)) |
| printk("numa_policy_init: interleaving failed\n"); |
| } |
| |
| /* Reset policy of current process to default */ |
| void numa_default_policy(void) |
| { |
| do_set_mempolicy(MPOL_DEFAULT, NULL); |
| } |
| |
| /* Migrate a policy to a different set of nodes */ |
| static void mpol_rebind_policy(struct mempolicy *pol, |
| const nodemask_t *newmask) |
| { |
| nodemask_t *mpolmask; |
| nodemask_t tmp; |
| |
| if (!pol) |
| return; |
| mpolmask = &pol->cpuset_mems_allowed; |
| if (nodes_equal(*mpolmask, *newmask)) |
| return; |
| |
| switch (pol->policy) { |
| case MPOL_DEFAULT: |
| break; |
| case MPOL_INTERLEAVE: |
| nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask); |
| pol->v.nodes = tmp; |
| *mpolmask = *newmask; |
| current->il_next = node_remap(current->il_next, |
| *mpolmask, *newmask); |
| break; |
| case MPOL_PREFERRED: |
| pol->v.preferred_node = node_remap(pol->v.preferred_node, |
| *mpolmask, *newmask); |
| *mpolmask = *newmask; |
| break; |
| case MPOL_BIND: { |
| nodemask_t nodes; |
| struct zone **z; |
| struct zonelist *zonelist; |
| |
| nodes_clear(nodes); |
| for (z = pol->v.zonelist->zones; *z; z++) |
| node_set(zone_to_nid(*z), nodes); |
| nodes_remap(tmp, nodes, *mpolmask, *newmask); |
| nodes = tmp; |
| |
| zonelist = bind_zonelist(&nodes); |
| |
| /* If no mem, then zonelist is NULL and we keep old zonelist. |
| * If that old zonelist has no remaining mems_allowed nodes, |
| * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT. |
| */ |
| |
| if (!IS_ERR(zonelist)) { |
| /* Good - got mem - substitute new zonelist */ |
| kfree(pol->v.zonelist); |
| pol->v.zonelist = zonelist; |
| } |
| *mpolmask = *newmask; |
| break; |
| } |
| default: |
| BUG(); |
| break; |
| } |
| } |
| |
| /* |
| * Wrapper for mpol_rebind_policy() that just requires task |
| * pointer, and updates task mempolicy. |
| */ |
| |
| void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) |
| { |
| mpol_rebind_policy(tsk->mempolicy, new); |
| } |
| |
| /* |
| * Rebind each vma in mm to new nodemask. |
| * |
| * Call holding a reference to mm. Takes mm->mmap_sem during call. |
| */ |
| |
| void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) |
| { |
| struct vm_area_struct *vma; |
| |
| down_write(&mm->mmap_sem); |
| for (vma = mm->mmap; vma; vma = vma->vm_next) |
| mpol_rebind_policy(vma->vm_policy, new); |
| up_write(&mm->mmap_sem); |
| } |
| |
| /* |
| * Display pages allocated per node and memory policy via /proc. |
| */ |
| |
| static const char * const policy_types[] = |
| { "default", "prefer", "bind", "interleave" }; |
| |
| /* |
| * Convert a mempolicy into a string. |
| * Returns the number of characters in buffer (if positive) |
| * or an error (negative) |
| */ |
| static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) |
| { |
| char *p = buffer; |
| int l; |
| nodemask_t nodes; |
| int mode = pol ? pol->policy : MPOL_DEFAULT; |
| |
| switch (mode) { |
| case MPOL_DEFAULT: |
| nodes_clear(nodes); |
| break; |
| |
| case MPOL_PREFERRED: |
| nodes_clear(nodes); |
| node_set(pol->v.preferred_node, nodes); |
| break; |
| |
| case MPOL_BIND: |
| get_zonemask(pol, &nodes); |
| break; |
| |
| case MPOL_INTERLEAVE: |
| nodes = pol->v.nodes; |
| break; |
| |
| default: |
| BUG(); |
| return -EFAULT; |
| } |
| |
| l = strlen(policy_types[mode]); |
| if (buffer + maxlen < p + l + 1) |
| return -ENOSPC; |
| |
| strcpy(p, policy_types[mode]); |
| p += l; |
| |
| if (!nodes_empty(nodes)) { |
| if (buffer + maxlen < p + 2) |
| return -ENOSPC; |
| *p++ = '='; |
| p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); |
| } |
| return p - buffer; |
| } |
| |
| struct numa_maps { |
| unsigned long pages; |
| unsigned long anon; |
| unsigned long active; |
| unsigned long writeback; |
| unsigned long mapcount_max; |
| unsigned long dirty; |
| unsigned long swapcache; |
| unsigned long node[MAX_NUMNODES]; |
| }; |
| |
| static void gather_stats(struct page *page, void *private, int pte_dirty) |
| { |
| struct numa_maps *md = private; |
| int count = page_mapcount(page); |
| |
| md->pages++; |
| if (pte_dirty || PageDirty(page)) |
| md->dirty++; |
| |
| if (PageSwapCache(page)) |
| md->swapcache++; |
| |
| if (PageActive(page)) |
| md->active++; |
| |
| if (PageWriteback(page)) |
| md->writeback++; |
| |
| if (PageAnon(page)) |
| md->anon++; |
| |
| if (count > md->mapcount_max) |
| md->mapcount_max = count; |
| |
| md->node[page_to_nid(page)]++; |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| static void check_huge_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, |
| struct numa_maps *md) |
| { |
| unsigned long addr; |
| struct page *page; |
| |
| for (addr = start; addr < end; addr += HPAGE_SIZE) { |
| pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK); |
| pte_t pte; |
| |
| if (!ptep) |
| continue; |
| |
| pte = *ptep; |
| if (pte_none(pte)) |
| continue; |
| |
| page = pte_page(pte); |
| if (!page) |
| continue; |
| |
| gather_stats(page, md, pte_dirty(*ptep)); |
| } |
| } |
| #else |
| static inline void check_huge_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, |
| struct numa_maps *md) |
| { |
| } |
| #endif |
| |
| int show_numa_map(struct seq_file *m, void *v) |
| { |
| struct proc_maps_private *priv = m->private; |
| struct vm_area_struct *vma = v; |
| struct numa_maps *md; |
| struct file *file = vma->vm_file; |
| struct mm_struct *mm = vma->vm_mm; |
| struct mempolicy *pol; |
| int n; |
| char buffer[50]; |
| |
| if (!mm) |
| return 0; |
| |
| md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL); |
| if (!md) |
| return 0; |
| |
| pol = get_vma_policy(priv->task, vma, vma->vm_start); |
| mpol_to_str(buffer, sizeof(buffer), pol); |
| /* |
| * unref shared or other task's mempolicy |
| */ |
| if (pol != &default_policy && pol != current->mempolicy) |
| __mpol_free(pol); |
| |
| seq_printf(m, "%08lx %s", vma->vm_start, buffer); |
| |
| if (file) { |
| seq_printf(m, " file="); |
| seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n\t= "); |
| } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { |
| seq_printf(m, " heap"); |
| } else if (vma->vm_start <= mm->start_stack && |
| vma->vm_end >= mm->start_stack) { |
| seq_printf(m, " stack"); |
| } |
| |
| if (is_vm_hugetlb_page(vma)) { |
| check_huge_range(vma, vma->vm_start, vma->vm_end, md); |
| seq_printf(m, " huge"); |
| } else { |
| check_pgd_range(vma, vma->vm_start, vma->vm_end, |
| &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md); |
| } |
| |
| if (!md->pages) |
| goto out; |
| |
| if (md->anon) |
| seq_printf(m," anon=%lu",md->anon); |
| |
| if (md->dirty) |
| seq_printf(m," dirty=%lu",md->dirty); |
| |
| if (md->pages != md->anon && md->pages != md->dirty) |
| seq_printf(m, " mapped=%lu", md->pages); |
| |
| if (md->mapcount_max > 1) |
| seq_printf(m, " mapmax=%lu", md->mapcount_max); |
| |
| if (md->swapcache) |
| seq_printf(m," swapcache=%lu", md->swapcache); |
| |
| if (md->active < md->pages && !is_vm_hugetlb_page(vma)) |
| seq_printf(m," active=%lu", md->active); |
| |
| if (md->writeback) |
| seq_printf(m," writeback=%lu", md->writeback); |
| |
| for_each_node_state(n, N_HIGH_MEMORY) |
| if (md->node[n]) |
| seq_printf(m, " N%d=%lu", n, md->node[n]); |
| out: |
| seq_putc(m, '\n'); |
| kfree(md); |
| |
| if (m->count < m->size) |
| m->version = (vma != priv->tail_vma) ? vma->vm_start : 0; |
| return 0; |
| } |