blob: 7c5bed29ffef164224825a3f9e0eaac7aa786239 [file] [log] [blame]
/*
* Copyright 2014 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "dp.h"
#include "conn.h"
#include "head.h"
#include "ior.h"
#include <subdev/bios.h>
#include <subdev/bios/init.h>
#include <subdev/i2c.h>
#include <nvif/event.h>
struct lt_state {
struct nvkm_dp *dp;
u8 stat[6];
u8 conf[4];
bool pc2;
u8 pc2stat;
u8 pc2conf[2];
};
static int
nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay)
{
struct nvkm_dp *dp = lt->dp;
int ret;
if (dp->dpcd[DPCD_RC0E_AUX_RD_INTERVAL])
mdelay(dp->dpcd[DPCD_RC0E_AUX_RD_INTERVAL] * 4);
else
udelay(delay);
ret = nvkm_rdaux(dp->aux, DPCD_LS02, lt->stat, 6);
if (ret)
return ret;
if (pc) {
ret = nvkm_rdaux(dp->aux, DPCD_LS0C, &lt->pc2stat, 1);
if (ret)
lt->pc2stat = 0x00;
OUTP_TRACE(&dp->outp, "status %6ph pc2 %02x",
lt->stat, lt->pc2stat);
} else {
OUTP_TRACE(&dp->outp, "status %6ph", lt->stat);
}
return 0;
}
static int
nvkm_dp_train_drive(struct lt_state *lt, bool pc)
{
struct nvkm_dp *dp = lt->dp;
struct nvkm_ior *ior = dp->outp.ior;
struct nvkm_bios *bios = ior->disp->engine.subdev.device->bios;
struct nvbios_dpout info;
struct nvbios_dpcfg ocfg;
u8 ver, hdr, cnt, len;
u32 data;
int ret, i;
for (i = 0; i < ior->dp.nr; i++) {
u8 lane = (lt->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf;
u8 lpc2 = (lt->pc2stat >> (i * 2)) & 0x3;
u8 lpre = (lane & 0x0c) >> 2;
u8 lvsw = (lane & 0x03) >> 0;
u8 hivs = 3 - lpre;
u8 hipe = 3;
u8 hipc = 3;
if (lpc2 >= hipc)
lpc2 = hipc | DPCD_LC0F_LANE0_MAX_POST_CURSOR2_REACHED;
if (lpre >= hipe) {
lpre = hipe | DPCD_LC03_MAX_SWING_REACHED; /* yes. */
lvsw = hivs = 3 - (lpre & 3);
} else
if (lvsw >= hivs) {
lvsw = hivs | DPCD_LC03_MAX_SWING_REACHED;
}
lt->conf[i] = (lpre << 3) | lvsw;
lt->pc2conf[i >> 1] |= lpc2 << ((i & 1) * 4);
OUTP_TRACE(&dp->outp, "config lane %d %02x %02x",
i, lt->conf[i], lpc2);
data = nvbios_dpout_match(bios, dp->outp.info.hasht,
dp->outp.info.hashm,
&ver, &hdr, &cnt, &len, &info);
if (!data)
continue;
data = nvbios_dpcfg_match(bios, data, lpc2 & 3, lvsw & 3,
lpre & 3, &ver, &hdr, &cnt, &len,
&ocfg);
if (!data)
continue;
ior->func->dp.drive(ior, i, ocfg.pc, ocfg.dc,
ocfg.pe, ocfg.tx_pu);
}
ret = nvkm_wraux(dp->aux, DPCD_LC03(0), lt->conf, 4);
if (ret)
return ret;
if (pc) {
ret = nvkm_wraux(dp->aux, DPCD_LC0F, lt->pc2conf, 2);
if (ret)
return ret;
}
return 0;
}
static void
nvkm_dp_train_pattern(struct lt_state *lt, u8 pattern)
{
struct nvkm_dp *dp = lt->dp;
u8 sink_tp;
OUTP_TRACE(&dp->outp, "training pattern %d", pattern);
dp->outp.ior->func->dp.pattern(dp->outp.ior, pattern);
nvkm_rdaux(dp->aux, DPCD_LC02, &sink_tp, 1);
sink_tp &= ~DPCD_LC02_TRAINING_PATTERN_SET;
sink_tp |= pattern;
nvkm_wraux(dp->aux, DPCD_LC02, &sink_tp, 1);
}
static int
nvkm_dp_train_eq(struct lt_state *lt)
{
bool eq_done = false, cr_done = true;
int tries = 0, i;
if (lt->dp->dpcd[DPCD_RC02] & DPCD_RC02_TPS3_SUPPORTED)
nvkm_dp_train_pattern(lt, 3);
else
nvkm_dp_train_pattern(lt, 2);
do {
if ((tries &&
nvkm_dp_train_drive(lt, lt->pc2)) ||
nvkm_dp_train_sense(lt, lt->pc2, 400))
break;
eq_done = !!(lt->stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE);
for (i = 0; i < lt->dp->outp.ior->dp.nr && eq_done; i++) {
u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
if (!(lane & DPCD_LS02_LANE0_CR_DONE))
cr_done = false;
if (!(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) ||
!(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED))
eq_done = false;
}
} while (!eq_done && cr_done && ++tries <= 5);
return eq_done ? 0 : -1;
}
static int
nvkm_dp_train_cr(struct lt_state *lt)
{
bool cr_done = false, abort = false;
int voltage = lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET;
int tries = 0, i;
nvkm_dp_train_pattern(lt, 1);
do {
if (nvkm_dp_train_drive(lt, false) ||
nvkm_dp_train_sense(lt, false, 100))
break;
cr_done = true;
for (i = 0; i < lt->dp->outp.ior->dp.nr; i++) {
u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
if (!(lane & DPCD_LS02_LANE0_CR_DONE)) {
cr_done = false;
if (lt->conf[i] & DPCD_LC03_MAX_SWING_REACHED)
abort = true;
break;
}
}
if ((lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET) != voltage) {
voltage = lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET;
tries = 0;
}
} while (!cr_done && !abort && ++tries < 5);
return cr_done ? 0 : -1;
}
static int
nvkm_dp_train_links(struct nvkm_dp *dp)
{
struct nvkm_ior *ior = dp->outp.ior;
struct nvkm_disp *disp = dp->outp.disp;
struct nvkm_subdev *subdev = &disp->engine.subdev;
struct nvkm_bios *bios = subdev->device->bios;
struct lt_state lt = {
.dp = dp,
};
u32 lnkcmp;
u8 sink[2];
int ret;
OUTP_DBG(&dp->outp, "training %d x %d MB/s",
ior->dp.nr, ior->dp.bw * 27);
/* Intersect misc. capabilities of the OR and sink. */
if (disp->engine.subdev.device->chipset < 0xd0)
dp->dpcd[DPCD_RC02] &= ~DPCD_RC02_TPS3_SUPPORTED;
lt.pc2 = dp->dpcd[DPCD_RC02] & DPCD_RC02_TPS3_SUPPORTED;
/* Set desired link configuration on the source. */
if ((lnkcmp = lt.dp->info.lnkcmp)) {
if (dp->version < 0x30) {
while ((ior->dp.bw * 2700) < nvbios_rd16(bios, lnkcmp))
lnkcmp += 4;
lnkcmp = nvbios_rd16(bios, lnkcmp + 2);
} else {
while (ior->dp.bw < nvbios_rd08(bios, lnkcmp))
lnkcmp += 3;
lnkcmp = nvbios_rd16(bios, lnkcmp + 1);
}
nvbios_init(subdev, lnkcmp,
init.outp = &dp->outp.info;
init.or = ior->id;
init.link = ior->asy.link;
);
}
ret = ior->func->dp.links(ior, dp->aux);
if (ret) {
if (ret < 0) {
OUTP_ERR(&dp->outp, "train failed with %d", ret);
return ret;
}
return 0;
}
ior->func->dp.power(ior, ior->dp.nr);
/* Set desired link configuration on the sink. */
sink[0] = ior->dp.bw;
sink[1] = ior->dp.nr;
if (ior->dp.ef)
sink[1] |= DPCD_LC01_ENHANCED_FRAME_EN;
ret = nvkm_wraux(dp->aux, DPCD_LC00_LINK_BW_SET, sink, 2);
if (ret)
return ret;
/* Attempt to train the link in this configuration. */
memset(lt.stat, 0x00, sizeof(lt.stat));
ret = nvkm_dp_train_cr(&lt);
if (ret == 0)
ret = nvkm_dp_train_eq(&lt);
nvkm_dp_train_pattern(&lt, 0);
return ret;
}
static void
nvkm_dp_train_fini(struct nvkm_dp *dp)
{
/* Execute AfterLinkTraining script from DP Info table. */
nvbios_init(&dp->outp.disp->engine.subdev, dp->info.script[1],
init.outp = &dp->outp.info;
init.or = dp->outp.ior->id;
init.link = dp->outp.ior->asy.link;
);
}
static void
nvkm_dp_train_init(struct nvkm_dp *dp)
{
/* Execute EnableSpread/DisableSpread script from DP Info table. */
if (dp->dpcd[DPCD_RC03] & DPCD_RC03_MAX_DOWNSPREAD) {
nvbios_init(&dp->outp.disp->engine.subdev, dp->info.script[2],
init.outp = &dp->outp.info;
init.or = dp->outp.ior->id;
init.link = dp->outp.ior->asy.link;
);
} else {
nvbios_init(&dp->outp.disp->engine.subdev, dp->info.script[3],
init.outp = &dp->outp.info;
init.or = dp->outp.ior->id;
init.link = dp->outp.ior->asy.link;
);
}
/* Execute BeforeLinkTraining script from DP Info table. */
nvbios_init(&dp->outp.disp->engine.subdev, dp->info.script[0],
init.outp = &dp->outp.info;
init.or = dp->outp.ior->id;
init.link = dp->outp.ior->asy.link;
);
}
static const struct dp_rates {
u32 rate;
u8 bw;
u8 nr;
} nvkm_dp_rates[] = {
{ 2160000, 0x14, 4 },
{ 1080000, 0x0a, 4 },
{ 1080000, 0x14, 2 },
{ 648000, 0x06, 4 },
{ 540000, 0x0a, 2 },
{ 540000, 0x14, 1 },
{ 324000, 0x06, 2 },
{ 270000, 0x0a, 1 },
{ 162000, 0x06, 1 },
{}
};
static int
nvkm_dp_train(struct nvkm_dp *dp, u32 dataKBps)
{
struct nvkm_ior *ior = dp->outp.ior;
const u8 sink_nr = dp->dpcd[DPCD_RC02] & DPCD_RC02_MAX_LANE_COUNT;
const u8 sink_bw = dp->dpcd[DPCD_RC01_MAX_LINK_RATE];
const u8 outp_nr = dp->outp.info.dpconf.link_nr;
const u8 outp_bw = dp->outp.info.dpconf.link_bw;
const struct dp_rates *failsafe = NULL, *cfg;
int ret = -EINVAL;
u8 pwr;
/* Find the lowest configuration of the OR that can support
* the required link rate.
*
* We will refuse to program the OR to lower rates, even if
* link training fails at higher rates (or even if the sink
* can't support the rate at all, though the DD is supposed
* to prevent such situations from happening).
*
* Attempting to do so can cause the entire display to hang,
* and it's better to have a failed modeset than that.
*/
for (cfg = nvkm_dp_rates; cfg->rate; cfg++) {
if (cfg->nr <= outp_nr && cfg->nr <= outp_bw)
failsafe = cfg;
if (failsafe && cfg[1].rate < dataKBps)
break;
}
if (WARN_ON(!failsafe))
return ret;
/* Ensure sink is not in a low-power state. */
if (!nvkm_rdaux(dp->aux, DPCD_SC00, &pwr, 1)) {
if ((pwr & DPCD_SC00_SET_POWER) != DPCD_SC00_SET_POWER_D0) {
pwr &= ~DPCD_SC00_SET_POWER;
pwr |= DPCD_SC00_SET_POWER_D0;
nvkm_wraux(dp->aux, DPCD_SC00, &pwr, 1);
}
}
/* Link training. */
OUTP_DBG(&dp->outp, "training (min: %d x %d MB/s)",
failsafe->nr, failsafe->bw * 27);
nvkm_dp_train_init(dp);
for (cfg = nvkm_dp_rates; ret < 0 && cfg <= failsafe; cfg++) {
/* Skip configurations not supported by both OR and sink. */
if ((cfg->nr > outp_nr || cfg->bw > outp_bw ||
cfg->nr > sink_nr || cfg->bw > sink_bw)) {
if (cfg != failsafe)
continue;
OUTP_ERR(&dp->outp, "link rate unsupported by sink");
}
ior->dp.mst = dp->lt.mst;
ior->dp.ef = dp->dpcd[DPCD_RC02] & DPCD_RC02_ENHANCED_FRAME_CAP;
ior->dp.bw = cfg->bw;
ior->dp.nr = cfg->nr;
/* Program selected link configuration. */
ret = nvkm_dp_train_links(dp);
}
nvkm_dp_train_fini(dp);
if (ret < 0)
OUTP_ERR(&dp->outp, "training failed");
else
OUTP_DBG(&dp->outp, "training done");
atomic_set(&dp->lt.done, 1);
return ret;
}
static void
nvkm_dp_release(struct nvkm_outp *outp, struct nvkm_ior *ior)
{
struct nvkm_dp *dp = nvkm_dp(outp);
/* Prevent link from being retrained if sink sends an IRQ. */
atomic_set(&dp->lt.done, 0);
ior->dp.nr = 0;
/* Execute DisableLT script from DP Info Table. */
nvbios_init(&ior->disp->engine.subdev, dp->info.script[4],
init.outp = &dp->outp.info;
init.or = ior->id;
init.link = ior->arm.link;
);
}
static int
nvkm_dp_acquire(struct nvkm_outp *outp)
{
struct nvkm_dp *dp = nvkm_dp(outp);
struct nvkm_ior *ior = dp->outp.ior;
struct nvkm_head *head;
bool retrain = true;
u32 datakbps = 0;
u32 dataKBps;
u32 linkKBps;
u8 stat[3];
int ret, i;
mutex_lock(&dp->mutex);
/* Check that link configuration meets current requirements. */
list_for_each_entry(head, &outp->disp->head, head) {
if (ior->asy.head & (1 << head->id)) {
u32 khz = (head->asy.hz >> ior->asy.rgdiv) / 1000;
datakbps += khz * head->asy.or.depth;
}
}
linkKBps = ior->dp.bw * 27000 * ior->dp.nr;
dataKBps = DIV_ROUND_UP(datakbps, 8);
OUTP_DBG(&dp->outp, "data %d KB/s link %d KB/s mst %d->%d",
dataKBps, linkKBps, ior->dp.mst, dp->lt.mst);
if (linkKBps < dataKBps || ior->dp.mst != dp->lt.mst) {
OUTP_DBG(&dp->outp, "link requirements changed");
goto done;
}
/* Check that link is still trained. */
ret = nvkm_rdaux(dp->aux, DPCD_LS02, stat, 3);
if (ret) {
OUTP_DBG(&dp->outp,
"failed to read link status, assuming no sink");
goto done;
}
if (stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE) {
for (i = 0; i < ior->dp.nr; i++) {
u8 lane = (stat[i >> 1] >> ((i & 1) * 4)) & 0x0f;
if (!(lane & DPCD_LS02_LANE0_CR_DONE) ||
!(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) ||
!(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED)) {
OUTP_DBG(&dp->outp,
"lane %d not equalised", lane);
goto done;
}
}
retrain = false;
} else {
OUTP_DBG(&dp->outp, "no inter-lane alignment");
}
done:
if (retrain || !atomic_read(&dp->lt.done))
ret = nvkm_dp_train(dp, dataKBps);
mutex_unlock(&dp->mutex);
return ret;
}
static void
nvkm_dp_enable(struct nvkm_dp *dp, bool enable)
{
struct nvkm_i2c_aux *aux = dp->aux;
if (enable) {
if (!dp->present) {
OUTP_DBG(&dp->outp, "aux power -> always");
nvkm_i2c_aux_monitor(aux, true);
dp->present = true;
}
if (!nvkm_rdaux(aux, DPCD_RC00_DPCD_REV, dp->dpcd,
sizeof(dp->dpcd)))
return;
}
if (dp->present) {
OUTP_DBG(&dp->outp, "aux power -> demand");
nvkm_i2c_aux_monitor(aux, false);
dp->present = false;
}
atomic_set(&dp->lt.done, 0);
}
static int
nvkm_dp_hpd(struct nvkm_notify *notify)
{
const struct nvkm_i2c_ntfy_rep *line = notify->data;
struct nvkm_dp *dp = container_of(notify, typeof(*dp), hpd);
struct nvkm_conn *conn = dp->outp.conn;
struct nvkm_disp *disp = dp->outp.disp;
struct nvif_notify_conn_rep_v0 rep = {};
OUTP_DBG(&dp->outp, "HPD: %d", line->mask);
if (line->mask & NVKM_I2C_IRQ) {
if (atomic_read(&dp->lt.done))
dp->outp.func->acquire(&dp->outp);
rep.mask |= NVIF_NOTIFY_CONN_V0_IRQ;
} else {
nvkm_dp_enable(dp, true);
}
if (line->mask & NVKM_I2C_UNPLUG)
rep.mask |= NVIF_NOTIFY_CONN_V0_UNPLUG;
if (line->mask & NVKM_I2C_PLUG)
rep.mask |= NVIF_NOTIFY_CONN_V0_PLUG;
nvkm_event_send(&disp->hpd, rep.mask, conn->index, &rep, sizeof(rep));
return NVKM_NOTIFY_KEEP;
}
static void
nvkm_dp_fini(struct nvkm_outp *outp)
{
struct nvkm_dp *dp = nvkm_dp(outp);
nvkm_notify_put(&dp->hpd);
nvkm_dp_enable(dp, false);
}
static void
nvkm_dp_init(struct nvkm_outp *outp)
{
struct nvkm_dp *dp = nvkm_dp(outp);
nvkm_notify_put(&dp->outp.conn->hpd);
nvkm_dp_enable(dp, true);
nvkm_notify_get(&dp->hpd);
}
static void *
nvkm_dp_dtor(struct nvkm_outp *outp)
{
struct nvkm_dp *dp = nvkm_dp(outp);
nvkm_notify_fini(&dp->hpd);
return dp;
}
static const struct nvkm_outp_func
nvkm_dp_func = {
.dtor = nvkm_dp_dtor,
.init = nvkm_dp_init,
.fini = nvkm_dp_fini,
.acquire = nvkm_dp_acquire,
.release = nvkm_dp_release,
};
static int
nvkm_dp_ctor(struct nvkm_disp *disp, int index, struct dcb_output *dcbE,
struct nvkm_i2c_aux *aux, struct nvkm_dp *dp)
{
struct nvkm_device *device = disp->engine.subdev.device;
struct nvkm_bios *bios = device->bios;
struct nvkm_i2c *i2c = device->i2c;
u8 hdr, cnt, len;
u32 data;
int ret;
ret = nvkm_outp_ctor(&nvkm_dp_func, disp, index, dcbE, &dp->outp);
if (ret)
return ret;
dp->aux = aux;
if (!dp->aux) {
OUTP_ERR(&dp->outp, "no aux");
return -EINVAL;
}
/* bios data is not optional */
data = nvbios_dpout_match(bios, dp->outp.info.hasht,
dp->outp.info.hashm, &dp->version,
&hdr, &cnt, &len, &dp->info);
if (!data) {
OUTP_ERR(&dp->outp, "no bios dp data");
return -EINVAL;
}
OUTP_DBG(&dp->outp, "bios dp %02x %02x %02x %02x",
dp->version, hdr, cnt, len);
/* hotplug detect, replaces gpio-based mechanism with aux events */
ret = nvkm_notify_init(NULL, &i2c->event, nvkm_dp_hpd, true,
&(struct nvkm_i2c_ntfy_req) {
.mask = NVKM_I2C_PLUG | NVKM_I2C_UNPLUG |
NVKM_I2C_IRQ,
.port = dp->aux->id,
},
sizeof(struct nvkm_i2c_ntfy_req),
sizeof(struct nvkm_i2c_ntfy_rep),
&dp->hpd);
if (ret) {
OUTP_ERR(&dp->outp, "error monitoring aux hpd: %d", ret);
return ret;
}
mutex_init(&dp->mutex);
atomic_set(&dp->lt.done, 0);
return 0;
}
int
nvkm_dp_new(struct nvkm_disp *disp, int index, struct dcb_output *dcbE,
struct nvkm_outp **poutp)
{
struct nvkm_i2c *i2c = disp->engine.subdev.device->i2c;
struct nvkm_i2c_aux *aux;
struct nvkm_dp *dp;
if (dcbE->location == 0)
aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_CCB(dcbE->i2c_index));
else
aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbE->extdev));
if (!(dp = kzalloc(sizeof(*dp), GFP_KERNEL)))
return -ENOMEM;
*poutp = &dp->outp;
return nvkm_dp_ctor(disp, index, dcbE, aux, dp);
}