| /******************************************************************************* |
| * Filename: target_core_transport.c |
| * |
| * This file contains the Generic Target Engine Core. |
| * |
| * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc. |
| * Copyright (c) 2005, 2006, 2007 SBE, Inc. |
| * Copyright (c) 2007-2010 Rising Tide Systems |
| * Copyright (c) 2008-2010 Linux-iSCSI.org |
| * |
| * Nicholas A. Bellinger <nab@kernel.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| ******************************************************************************/ |
| |
| #include <linux/version.h> |
| #include <linux/net.h> |
| #include <linux/delay.h> |
| #include <linux/string.h> |
| #include <linux/timer.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/spinlock.h> |
| #include <linux/kthread.h> |
| #include <linux/in.h> |
| #include <linux/cdrom.h> |
| #include <asm/unaligned.h> |
| #include <net/sock.h> |
| #include <net/tcp.h> |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_tcq.h> |
| |
| #include <target/target_core_base.h> |
| #include <target/target_core_device.h> |
| #include <target/target_core_tmr.h> |
| #include <target/target_core_tpg.h> |
| #include <target/target_core_transport.h> |
| #include <target/target_core_fabric_ops.h> |
| #include <target/target_core_configfs.h> |
| |
| #include "target_core_alua.h" |
| #include "target_core_hba.h" |
| #include "target_core_pr.h" |
| #include "target_core_scdb.h" |
| #include "target_core_ua.h" |
| |
| /* #define DEBUG_CDB_HANDLER */ |
| #ifdef DEBUG_CDB_HANDLER |
| #define DEBUG_CDB_H(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_CDB_H(x...) |
| #endif |
| |
| /* #define DEBUG_CMD_MAP */ |
| #ifdef DEBUG_CMD_MAP |
| #define DEBUG_CMD_M(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_CMD_M(x...) |
| #endif |
| |
| /* #define DEBUG_MEM_ALLOC */ |
| #ifdef DEBUG_MEM_ALLOC |
| #define DEBUG_MEM(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_MEM(x...) |
| #endif |
| |
| /* #define DEBUG_MEM2_ALLOC */ |
| #ifdef DEBUG_MEM2_ALLOC |
| #define DEBUG_MEM2(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_MEM2(x...) |
| #endif |
| |
| /* #define DEBUG_SG_CALC */ |
| #ifdef DEBUG_SG_CALC |
| #define DEBUG_SC(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_SC(x...) |
| #endif |
| |
| /* #define DEBUG_SE_OBJ */ |
| #ifdef DEBUG_SE_OBJ |
| #define DEBUG_SO(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_SO(x...) |
| #endif |
| |
| /* #define DEBUG_CMD_VOL */ |
| #ifdef DEBUG_CMD_VOL |
| #define DEBUG_VOL(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_VOL(x...) |
| #endif |
| |
| /* #define DEBUG_CMD_STOP */ |
| #ifdef DEBUG_CMD_STOP |
| #define DEBUG_CS(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_CS(x...) |
| #endif |
| |
| /* #define DEBUG_PASSTHROUGH */ |
| #ifdef DEBUG_PASSTHROUGH |
| #define DEBUG_PT(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_PT(x...) |
| #endif |
| |
| /* #define DEBUG_TASK_STOP */ |
| #ifdef DEBUG_TASK_STOP |
| #define DEBUG_TS(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_TS(x...) |
| #endif |
| |
| /* #define DEBUG_TRANSPORT_STOP */ |
| #ifdef DEBUG_TRANSPORT_STOP |
| #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_TRANSPORT_S(x...) |
| #endif |
| |
| /* #define DEBUG_TASK_FAILURE */ |
| #ifdef DEBUG_TASK_FAILURE |
| #define DEBUG_TF(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_TF(x...) |
| #endif |
| |
| /* #define DEBUG_DEV_OFFLINE */ |
| #ifdef DEBUG_DEV_OFFLINE |
| #define DEBUG_DO(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_DO(x...) |
| #endif |
| |
| /* #define DEBUG_TASK_STATE */ |
| #ifdef DEBUG_TASK_STATE |
| #define DEBUG_TSTATE(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_TSTATE(x...) |
| #endif |
| |
| /* #define DEBUG_STATUS_THR */ |
| #ifdef DEBUG_STATUS_THR |
| #define DEBUG_ST(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_ST(x...) |
| #endif |
| |
| /* #define DEBUG_TASK_TIMEOUT */ |
| #ifdef DEBUG_TASK_TIMEOUT |
| #define DEBUG_TT(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_TT(x...) |
| #endif |
| |
| /* #define DEBUG_GENERIC_REQUEST_FAILURE */ |
| #ifdef DEBUG_GENERIC_REQUEST_FAILURE |
| #define DEBUG_GRF(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_GRF(x...) |
| #endif |
| |
| /* #define DEBUG_SAM_TASK_ATTRS */ |
| #ifdef DEBUG_SAM_TASK_ATTRS |
| #define DEBUG_STA(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_STA(x...) |
| #endif |
| |
| struct se_global *se_global; |
| |
| static struct kmem_cache *se_cmd_cache; |
| static struct kmem_cache *se_sess_cache; |
| struct kmem_cache *se_tmr_req_cache; |
| struct kmem_cache *se_ua_cache; |
| struct kmem_cache *se_mem_cache; |
| struct kmem_cache *t10_pr_reg_cache; |
| struct kmem_cache *t10_alua_lu_gp_cache; |
| struct kmem_cache *t10_alua_lu_gp_mem_cache; |
| struct kmem_cache *t10_alua_tg_pt_gp_cache; |
| struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; |
| |
| /* Used for transport_dev_get_map_*() */ |
| typedef int (*map_func_t)(struct se_task *, u32); |
| |
| static int transport_generic_write_pending(struct se_cmd *); |
| static int transport_processing_thread(void *); |
| static int __transport_execute_tasks(struct se_device *dev); |
| static void transport_complete_task_attr(struct se_cmd *cmd); |
| static void transport_direct_request_timeout(struct se_cmd *cmd); |
| static void transport_free_dev_tasks(struct se_cmd *cmd); |
| static u32 transport_generic_get_cdb_count(struct se_cmd *cmd, |
| unsigned long long starting_lba, u32 sectors, |
| enum dma_data_direction data_direction, |
| struct list_head *mem_list, int set_counts); |
| static int transport_generic_get_mem(struct se_cmd *cmd, u32 length, |
| u32 dma_size); |
| static int transport_generic_remove(struct se_cmd *cmd, |
| int release_to_pool, int session_reinstatement); |
| static int transport_get_sectors(struct se_cmd *cmd); |
| static struct list_head *transport_init_se_mem_list(void); |
| static int transport_map_sg_to_mem(struct se_cmd *cmd, |
| struct list_head *se_mem_list, void *in_mem, |
| u32 *se_mem_cnt); |
| static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd, |
| unsigned char *dst, struct list_head *se_mem_list); |
| static void transport_release_fe_cmd(struct se_cmd *cmd); |
| static void transport_remove_cmd_from_queue(struct se_cmd *cmd, |
| struct se_queue_obj *qobj); |
| static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq); |
| static void transport_stop_all_task_timers(struct se_cmd *cmd); |
| |
| int init_se_global(void) |
| { |
| struct se_global *global; |
| |
| global = kzalloc(sizeof(struct se_global), GFP_KERNEL); |
| if (!(global)) { |
| printk(KERN_ERR "Unable to allocate memory for struct se_global\n"); |
| return -1; |
| } |
| |
| INIT_LIST_HEAD(&global->g_lu_gps_list); |
| INIT_LIST_HEAD(&global->g_se_tpg_list); |
| INIT_LIST_HEAD(&global->g_hba_list); |
| INIT_LIST_HEAD(&global->g_se_dev_list); |
| spin_lock_init(&global->g_device_lock); |
| spin_lock_init(&global->hba_lock); |
| spin_lock_init(&global->se_tpg_lock); |
| spin_lock_init(&global->lu_gps_lock); |
| spin_lock_init(&global->plugin_class_lock); |
| |
| se_cmd_cache = kmem_cache_create("se_cmd_cache", |
| sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL); |
| if (!(se_cmd_cache)) { |
| printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n"); |
| goto out; |
| } |
| se_tmr_req_cache = kmem_cache_create("se_tmr_cache", |
| sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req), |
| 0, NULL); |
| if (!(se_tmr_req_cache)) { |
| printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req" |
| " failed\n"); |
| goto out; |
| } |
| se_sess_cache = kmem_cache_create("se_sess_cache", |
| sizeof(struct se_session), __alignof__(struct se_session), |
| 0, NULL); |
| if (!(se_sess_cache)) { |
| printk(KERN_ERR "kmem_cache_create() for struct se_session" |
| " failed\n"); |
| goto out; |
| } |
| se_ua_cache = kmem_cache_create("se_ua_cache", |
| sizeof(struct se_ua), __alignof__(struct se_ua), |
| 0, NULL); |
| if (!(se_ua_cache)) { |
| printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n"); |
| goto out; |
| } |
| se_mem_cache = kmem_cache_create("se_mem_cache", |
| sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL); |
| if (!(se_mem_cache)) { |
| printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n"); |
| goto out; |
| } |
| t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", |
| sizeof(struct t10_pr_registration), |
| __alignof__(struct t10_pr_registration), 0, NULL); |
| if (!(t10_pr_reg_cache)) { |
| printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration" |
| " failed\n"); |
| goto out; |
| } |
| t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", |
| sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), |
| 0, NULL); |
| if (!(t10_alua_lu_gp_cache)) { |
| printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache" |
| " failed\n"); |
| goto out; |
| } |
| t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", |
| sizeof(struct t10_alua_lu_gp_member), |
| __alignof__(struct t10_alua_lu_gp_member), 0, NULL); |
| if (!(t10_alua_lu_gp_mem_cache)) { |
| printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_" |
| "cache failed\n"); |
| goto out; |
| } |
| t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", |
| sizeof(struct t10_alua_tg_pt_gp), |
| __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); |
| if (!(t10_alua_tg_pt_gp_cache)) { |
| printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_" |
| "cache failed\n"); |
| goto out; |
| } |
| t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( |
| "t10_alua_tg_pt_gp_mem_cache", |
| sizeof(struct t10_alua_tg_pt_gp_member), |
| __alignof__(struct t10_alua_tg_pt_gp_member), |
| 0, NULL); |
| if (!(t10_alua_tg_pt_gp_mem_cache)) { |
| printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_" |
| "mem_t failed\n"); |
| goto out; |
| } |
| |
| se_global = global; |
| |
| return 0; |
| out: |
| if (se_cmd_cache) |
| kmem_cache_destroy(se_cmd_cache); |
| if (se_tmr_req_cache) |
| kmem_cache_destroy(se_tmr_req_cache); |
| if (se_sess_cache) |
| kmem_cache_destroy(se_sess_cache); |
| if (se_ua_cache) |
| kmem_cache_destroy(se_ua_cache); |
| if (se_mem_cache) |
| kmem_cache_destroy(se_mem_cache); |
| if (t10_pr_reg_cache) |
| kmem_cache_destroy(t10_pr_reg_cache); |
| if (t10_alua_lu_gp_cache) |
| kmem_cache_destroy(t10_alua_lu_gp_cache); |
| if (t10_alua_lu_gp_mem_cache) |
| kmem_cache_destroy(t10_alua_lu_gp_mem_cache); |
| if (t10_alua_tg_pt_gp_cache) |
| kmem_cache_destroy(t10_alua_tg_pt_gp_cache); |
| if (t10_alua_tg_pt_gp_mem_cache) |
| kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); |
| kfree(global); |
| return -1; |
| } |
| |
| void release_se_global(void) |
| { |
| struct se_global *global; |
| |
| global = se_global; |
| if (!(global)) |
| return; |
| |
| kmem_cache_destroy(se_cmd_cache); |
| kmem_cache_destroy(se_tmr_req_cache); |
| kmem_cache_destroy(se_sess_cache); |
| kmem_cache_destroy(se_ua_cache); |
| kmem_cache_destroy(se_mem_cache); |
| kmem_cache_destroy(t10_pr_reg_cache); |
| kmem_cache_destroy(t10_alua_lu_gp_cache); |
| kmem_cache_destroy(t10_alua_lu_gp_mem_cache); |
| kmem_cache_destroy(t10_alua_tg_pt_gp_cache); |
| kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); |
| kfree(global); |
| |
| se_global = NULL; |
| } |
| |
| /* SCSI statistics table index */ |
| static struct scsi_index_table scsi_index_table; |
| |
| /* |
| * Initialize the index table for allocating unique row indexes to various mib |
| * tables. |
| */ |
| void init_scsi_index_table(void) |
| { |
| memset(&scsi_index_table, 0, sizeof(struct scsi_index_table)); |
| spin_lock_init(&scsi_index_table.lock); |
| } |
| |
| /* |
| * Allocate a new row index for the entry type specified |
| */ |
| u32 scsi_get_new_index(scsi_index_t type) |
| { |
| u32 new_index; |
| |
| if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) { |
| printk(KERN_ERR "Invalid index type %d\n", type); |
| return -EINVAL; |
| } |
| |
| spin_lock(&scsi_index_table.lock); |
| new_index = ++scsi_index_table.scsi_mib_index[type]; |
| if (new_index == 0) |
| new_index = ++scsi_index_table.scsi_mib_index[type]; |
| spin_unlock(&scsi_index_table.lock); |
| |
| return new_index; |
| } |
| |
| void transport_init_queue_obj(struct se_queue_obj *qobj) |
| { |
| atomic_set(&qobj->queue_cnt, 0); |
| INIT_LIST_HEAD(&qobj->qobj_list); |
| init_waitqueue_head(&qobj->thread_wq); |
| spin_lock_init(&qobj->cmd_queue_lock); |
| } |
| EXPORT_SYMBOL(transport_init_queue_obj); |
| |
| static int transport_subsystem_reqmods(void) |
| { |
| int ret; |
| |
| ret = request_module("target_core_iblock"); |
| if (ret != 0) |
| printk(KERN_ERR "Unable to load target_core_iblock\n"); |
| |
| ret = request_module("target_core_file"); |
| if (ret != 0) |
| printk(KERN_ERR "Unable to load target_core_file\n"); |
| |
| ret = request_module("target_core_pscsi"); |
| if (ret != 0) |
| printk(KERN_ERR "Unable to load target_core_pscsi\n"); |
| |
| ret = request_module("target_core_stgt"); |
| if (ret != 0) |
| printk(KERN_ERR "Unable to load target_core_stgt\n"); |
| |
| return 0; |
| } |
| |
| int transport_subsystem_check_init(void) |
| { |
| if (se_global->g_sub_api_initialized) |
| return 0; |
| /* |
| * Request the loading of known TCM subsystem plugins.. |
| */ |
| if (transport_subsystem_reqmods() < 0) |
| return -1; |
| |
| se_global->g_sub_api_initialized = 1; |
| return 0; |
| } |
| |
| struct se_session *transport_init_session(void) |
| { |
| struct se_session *se_sess; |
| |
| se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); |
| if (!(se_sess)) { |
| printk(KERN_ERR "Unable to allocate struct se_session from" |
| " se_sess_cache\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| INIT_LIST_HEAD(&se_sess->sess_list); |
| INIT_LIST_HEAD(&se_sess->sess_acl_list); |
| |
| return se_sess; |
| } |
| EXPORT_SYMBOL(transport_init_session); |
| |
| /* |
| * Called with spin_lock_bh(&struct se_portal_group->session_lock called. |
| */ |
| void __transport_register_session( |
| struct se_portal_group *se_tpg, |
| struct se_node_acl *se_nacl, |
| struct se_session *se_sess, |
| void *fabric_sess_ptr) |
| { |
| unsigned char buf[PR_REG_ISID_LEN]; |
| |
| se_sess->se_tpg = se_tpg; |
| se_sess->fabric_sess_ptr = fabric_sess_ptr; |
| /* |
| * Used by struct se_node_acl's under ConfigFS to locate active se_session-t |
| * |
| * Only set for struct se_session's that will actually be moving I/O. |
| * eg: *NOT* discovery sessions. |
| */ |
| if (se_nacl) { |
| /* |
| * If the fabric module supports an ISID based TransportID, |
| * save this value in binary from the fabric I_T Nexus now. |
| */ |
| if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) { |
| memset(&buf[0], 0, PR_REG_ISID_LEN); |
| TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess, |
| &buf[0], PR_REG_ISID_LEN); |
| se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); |
| } |
| spin_lock_irq(&se_nacl->nacl_sess_lock); |
| /* |
| * The se_nacl->nacl_sess pointer will be set to the |
| * last active I_T Nexus for each struct se_node_acl. |
| */ |
| se_nacl->nacl_sess = se_sess; |
| |
| list_add_tail(&se_sess->sess_acl_list, |
| &se_nacl->acl_sess_list); |
| spin_unlock_irq(&se_nacl->nacl_sess_lock); |
| } |
| list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); |
| |
| printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", |
| TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr); |
| } |
| EXPORT_SYMBOL(__transport_register_session); |
| |
| void transport_register_session( |
| struct se_portal_group *se_tpg, |
| struct se_node_acl *se_nacl, |
| struct se_session *se_sess, |
| void *fabric_sess_ptr) |
| { |
| spin_lock_bh(&se_tpg->session_lock); |
| __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); |
| spin_unlock_bh(&se_tpg->session_lock); |
| } |
| EXPORT_SYMBOL(transport_register_session); |
| |
| void transport_deregister_session_configfs(struct se_session *se_sess) |
| { |
| struct se_node_acl *se_nacl; |
| |
| /* |
| * Used by struct se_node_acl's under ConfigFS to locate active struct se_session |
| */ |
| se_nacl = se_sess->se_node_acl; |
| if ((se_nacl)) { |
| spin_lock_irq(&se_nacl->nacl_sess_lock); |
| list_del(&se_sess->sess_acl_list); |
| /* |
| * If the session list is empty, then clear the pointer. |
| * Otherwise, set the struct se_session pointer from the tail |
| * element of the per struct se_node_acl active session list. |
| */ |
| if (list_empty(&se_nacl->acl_sess_list)) |
| se_nacl->nacl_sess = NULL; |
| else { |
| se_nacl->nacl_sess = container_of( |
| se_nacl->acl_sess_list.prev, |
| struct se_session, sess_acl_list); |
| } |
| spin_unlock_irq(&se_nacl->nacl_sess_lock); |
| } |
| } |
| EXPORT_SYMBOL(transport_deregister_session_configfs); |
| |
| void transport_free_session(struct se_session *se_sess) |
| { |
| kmem_cache_free(se_sess_cache, se_sess); |
| } |
| EXPORT_SYMBOL(transport_free_session); |
| |
| void transport_deregister_session(struct se_session *se_sess) |
| { |
| struct se_portal_group *se_tpg = se_sess->se_tpg; |
| struct se_node_acl *se_nacl; |
| |
| if (!(se_tpg)) { |
| transport_free_session(se_sess); |
| return; |
| } |
| |
| spin_lock_bh(&se_tpg->session_lock); |
| list_del(&se_sess->sess_list); |
| se_sess->se_tpg = NULL; |
| se_sess->fabric_sess_ptr = NULL; |
| spin_unlock_bh(&se_tpg->session_lock); |
| |
| /* |
| * Determine if we need to do extra work for this initiator node's |
| * struct se_node_acl if it had been previously dynamically generated. |
| */ |
| se_nacl = se_sess->se_node_acl; |
| if ((se_nacl)) { |
| spin_lock_bh(&se_tpg->acl_node_lock); |
| if (se_nacl->dynamic_node_acl) { |
| if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache( |
| se_tpg))) { |
| list_del(&se_nacl->acl_list); |
| se_tpg->num_node_acls--; |
| spin_unlock_bh(&se_tpg->acl_node_lock); |
| |
| core_tpg_wait_for_nacl_pr_ref(se_nacl); |
| core_free_device_list_for_node(se_nacl, se_tpg); |
| TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg, |
| se_nacl); |
| spin_lock_bh(&se_tpg->acl_node_lock); |
| } |
| } |
| spin_unlock_bh(&se_tpg->acl_node_lock); |
| } |
| |
| transport_free_session(se_sess); |
| |
| printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n", |
| TPG_TFO(se_tpg)->get_fabric_name()); |
| } |
| EXPORT_SYMBOL(transport_deregister_session); |
| |
| /* |
| * Called with T_TASK(cmd)->t_state_lock held. |
| */ |
| static void transport_all_task_dev_remove_state(struct se_cmd *cmd) |
| { |
| struct se_device *dev; |
| struct se_task *task; |
| unsigned long flags; |
| |
| if (!T_TASK(cmd)) |
| return; |
| |
| list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { |
| dev = task->se_dev; |
| if (!(dev)) |
| continue; |
| |
| if (atomic_read(&task->task_active)) |
| continue; |
| |
| if (!(atomic_read(&task->task_state_active))) |
| continue; |
| |
| spin_lock_irqsave(&dev->execute_task_lock, flags); |
| list_del(&task->t_state_list); |
| DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n", |
| CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task); |
| spin_unlock_irqrestore(&dev->execute_task_lock, flags); |
| |
| atomic_set(&task->task_state_active, 0); |
| atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left); |
| } |
| } |
| |
| /* transport_cmd_check_stop(): |
| * |
| * 'transport_off = 1' determines if t_transport_active should be cleared. |
| * 'transport_off = 2' determines if task_dev_state should be removed. |
| * |
| * A non-zero u8 t_state sets cmd->t_state. |
| * Returns 1 when command is stopped, else 0. |
| */ |
| static int transport_cmd_check_stop( |
| struct se_cmd *cmd, |
| int transport_off, |
| u8 t_state) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| /* |
| * Determine if IOCTL context caller in requesting the stopping of this |
| * command for LUN shutdown purposes. |
| */ |
| if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) { |
| DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)" |
| " == TRUE for ITT: 0x%08x\n", __func__, __LINE__, |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| |
| cmd->deferred_t_state = cmd->t_state; |
| cmd->t_state = TRANSPORT_DEFERRED_CMD; |
| atomic_set(&T_TASK(cmd)->t_transport_active, 0); |
| if (transport_off == 2) |
| transport_all_task_dev_remove_state(cmd); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| complete(&T_TASK(cmd)->transport_lun_stop_comp); |
| return 1; |
| } |
| /* |
| * Determine if frontend context caller is requesting the stopping of |
| * this command for frontend excpections. |
| */ |
| if (atomic_read(&T_TASK(cmd)->t_transport_stop)) { |
| DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) ==" |
| " TRUE for ITT: 0x%08x\n", __func__, __LINE__, |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| |
| cmd->deferred_t_state = cmd->t_state; |
| cmd->t_state = TRANSPORT_DEFERRED_CMD; |
| if (transport_off == 2) |
| transport_all_task_dev_remove_state(cmd); |
| |
| /* |
| * Clear struct se_cmd->se_lun before the transport_off == 2 handoff |
| * to FE. |
| */ |
| if (transport_off == 2) |
| cmd->se_lun = NULL; |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| complete(&T_TASK(cmd)->t_transport_stop_comp); |
| return 1; |
| } |
| if (transport_off) { |
| atomic_set(&T_TASK(cmd)->t_transport_active, 0); |
| if (transport_off == 2) { |
| transport_all_task_dev_remove_state(cmd); |
| /* |
| * Clear struct se_cmd->se_lun before the transport_off == 2 |
| * handoff to fabric module. |
| */ |
| cmd->se_lun = NULL; |
| /* |
| * Some fabric modules like tcm_loop can release |
| * their internally allocated I/O reference now and |
| * struct se_cmd now. |
| */ |
| if (CMD_TFO(cmd)->check_stop_free != NULL) { |
| spin_unlock_irqrestore( |
| &T_TASK(cmd)->t_state_lock, flags); |
| |
| CMD_TFO(cmd)->check_stop_free(cmd); |
| return 1; |
| } |
| } |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| return 0; |
| } else if (t_state) |
| cmd->t_state = t_state; |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| return 0; |
| } |
| |
| static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) |
| { |
| return transport_cmd_check_stop(cmd, 2, 0); |
| } |
| |
| static void transport_lun_remove_cmd(struct se_cmd *cmd) |
| { |
| struct se_lun *lun = SE_LUN(cmd); |
| unsigned long flags; |
| |
| if (!lun) |
| return; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| goto check_lun; |
| } |
| atomic_set(&T_TASK(cmd)->transport_dev_active, 0); |
| transport_all_task_dev_remove_state(cmd); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| |
| check_lun: |
| spin_lock_irqsave(&lun->lun_cmd_lock, flags); |
| if (atomic_read(&T_TASK(cmd)->transport_lun_active)) { |
| list_del(&cmd->se_lun_list); |
| atomic_set(&T_TASK(cmd)->transport_lun_active, 0); |
| #if 0 |
| printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n" |
| CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun); |
| #endif |
| } |
| spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); |
| } |
| |
| void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) |
| { |
| transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); |
| transport_lun_remove_cmd(cmd); |
| |
| if (transport_cmd_check_stop_to_fabric(cmd)) |
| return; |
| if (remove) |
| transport_generic_remove(cmd, 0, 0); |
| } |
| |
| void transport_cmd_finish_abort_tmr(struct se_cmd *cmd) |
| { |
| transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); |
| |
| if (transport_cmd_check_stop_to_fabric(cmd)) |
| return; |
| |
| transport_generic_remove(cmd, 0, 0); |
| } |
| |
| static int transport_add_cmd_to_queue( |
| struct se_cmd *cmd, |
| int t_state) |
| { |
| struct se_device *dev = cmd->se_dev; |
| struct se_queue_obj *qobj = dev->dev_queue_obj; |
| struct se_queue_req *qr; |
| unsigned long flags; |
| |
| qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC); |
| if (!(qr)) { |
| printk(KERN_ERR "Unable to allocate memory for" |
| " struct se_queue_req\n"); |
| return -1; |
| } |
| INIT_LIST_HEAD(&qr->qr_list); |
| |
| qr->cmd = (void *)cmd; |
| qr->state = t_state; |
| |
| if (t_state) { |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| cmd->t_state = t_state; |
| atomic_set(&T_TASK(cmd)->t_transport_active, 1); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| } |
| |
| spin_lock_irqsave(&qobj->cmd_queue_lock, flags); |
| list_add_tail(&qr->qr_list, &qobj->qobj_list); |
| atomic_inc(&T_TASK(cmd)->t_transport_queue_active); |
| spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); |
| |
| atomic_inc(&qobj->queue_cnt); |
| wake_up_interruptible(&qobj->thread_wq); |
| return 0; |
| } |
| |
| /* |
| * Called with struct se_queue_obj->cmd_queue_lock held. |
| */ |
| static struct se_queue_req * |
| __transport_get_qr_from_queue(struct se_queue_obj *qobj) |
| { |
| struct se_cmd *cmd; |
| struct se_queue_req *qr = NULL; |
| |
| if (list_empty(&qobj->qobj_list)) |
| return NULL; |
| |
| list_for_each_entry(qr, &qobj->qobj_list, qr_list) |
| break; |
| |
| if (qr->cmd) { |
| cmd = (struct se_cmd *)qr->cmd; |
| atomic_dec(&T_TASK(cmd)->t_transport_queue_active); |
| } |
| list_del(&qr->qr_list); |
| atomic_dec(&qobj->queue_cnt); |
| |
| return qr; |
| } |
| |
| static struct se_queue_req * |
| transport_get_qr_from_queue(struct se_queue_obj *qobj) |
| { |
| struct se_cmd *cmd; |
| struct se_queue_req *qr; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qobj->cmd_queue_lock, flags); |
| if (list_empty(&qobj->qobj_list)) { |
| spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); |
| return NULL; |
| } |
| |
| list_for_each_entry(qr, &qobj->qobj_list, qr_list) |
| break; |
| |
| if (qr->cmd) { |
| cmd = (struct se_cmd *)qr->cmd; |
| atomic_dec(&T_TASK(cmd)->t_transport_queue_active); |
| } |
| list_del(&qr->qr_list); |
| atomic_dec(&qobj->queue_cnt); |
| spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); |
| |
| return qr; |
| } |
| |
| static void transport_remove_cmd_from_queue(struct se_cmd *cmd, |
| struct se_queue_obj *qobj) |
| { |
| struct se_cmd *q_cmd; |
| struct se_queue_req *qr = NULL, *qr_p = NULL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qobj->cmd_queue_lock, flags); |
| if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) { |
| spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); |
| return; |
| } |
| |
| list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) { |
| q_cmd = (struct se_cmd *)qr->cmd; |
| if (q_cmd != cmd) |
| continue; |
| |
| atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active); |
| atomic_dec(&qobj->queue_cnt); |
| list_del(&qr->qr_list); |
| kfree(qr); |
| } |
| spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); |
| |
| if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) { |
| printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n", |
| CMD_TFO(cmd)->get_task_tag(cmd), |
| atomic_read(&T_TASK(cmd)->t_transport_queue_active)); |
| } |
| } |
| |
| /* |
| * Completion function used by TCM subsystem plugins (such as FILEIO) |
| * for queueing up response from struct se_subsystem_api->do_task() |
| */ |
| void transport_complete_sync_cache(struct se_cmd *cmd, int good) |
| { |
| struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next, |
| struct se_task, t_list); |
| |
| if (good) { |
| cmd->scsi_status = SAM_STAT_GOOD; |
| task->task_scsi_status = GOOD; |
| } else { |
| task->task_scsi_status = SAM_STAT_CHECK_CONDITION; |
| task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST; |
| TASK_CMD(task)->transport_error_status = |
| PYX_TRANSPORT_ILLEGAL_REQUEST; |
| } |
| |
| transport_complete_task(task, good); |
| } |
| EXPORT_SYMBOL(transport_complete_sync_cache); |
| |
| /* transport_complete_task(): |
| * |
| * Called from interrupt and non interrupt context depending |
| * on the transport plugin. |
| */ |
| void transport_complete_task(struct se_task *task, int success) |
| { |
| struct se_cmd *cmd = TASK_CMD(task); |
| struct se_device *dev = task->se_dev; |
| int t_state; |
| unsigned long flags; |
| #if 0 |
| printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task, |
| T_TASK(cmd)->t_task_cdb[0], dev); |
| #endif |
| if (dev) { |
| spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags); |
| atomic_inc(&dev->depth_left); |
| atomic_inc(&SE_HBA(dev)->left_queue_depth); |
| spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); |
| } |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| atomic_set(&task->task_active, 0); |
| |
| /* |
| * See if any sense data exists, if so set the TASK_SENSE flag. |
| * Also check for any other post completion work that needs to be |
| * done by the plugins. |
| */ |
| if (dev && dev->transport->transport_complete) { |
| if (dev->transport->transport_complete(task) != 0) { |
| cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; |
| task->task_sense = 1; |
| success = 1; |
| } |
| } |
| |
| /* |
| * See if we are waiting for outstanding struct se_task |
| * to complete for an exception condition |
| */ |
| if (atomic_read(&task->task_stop)) { |
| /* |
| * Decrement T_TASK(cmd)->t_se_count if this task had |
| * previously thrown its timeout exception handler. |
| */ |
| if (atomic_read(&task->task_timeout)) { |
| atomic_dec(&T_TASK(cmd)->t_se_count); |
| atomic_set(&task->task_timeout, 0); |
| } |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| complete(&task->task_stop_comp); |
| return; |
| } |
| /* |
| * If the task's timeout handler has fired, use the t_task_cdbs_timeout |
| * left counter to determine when the struct se_cmd is ready to be queued to |
| * the processing thread. |
| */ |
| if (atomic_read(&task->task_timeout)) { |
| if (!(atomic_dec_and_test( |
| &T_TASK(cmd)->t_task_cdbs_timeout_left))) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, |
| flags); |
| return; |
| } |
| t_state = TRANSPORT_COMPLETE_TIMEOUT; |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| transport_add_cmd_to_queue(cmd, t_state); |
| return; |
| } |
| atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left); |
| |
| /* |
| * Decrement the outstanding t_task_cdbs_left count. The last |
| * struct se_task from struct se_cmd will complete itself into the |
| * device queue depending upon int success. |
| */ |
| if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) { |
| if (!success) |
| T_TASK(cmd)->t_tasks_failed = 1; |
| |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| return; |
| } |
| |
| if (!success || T_TASK(cmd)->t_tasks_failed) { |
| t_state = TRANSPORT_COMPLETE_FAILURE; |
| if (!task->task_error_status) { |
| task->task_error_status = |
| PYX_TRANSPORT_UNKNOWN_SAM_OPCODE; |
| cmd->transport_error_status = |
| PYX_TRANSPORT_UNKNOWN_SAM_OPCODE; |
| } |
| } else { |
| atomic_set(&T_TASK(cmd)->t_transport_complete, 1); |
| t_state = TRANSPORT_COMPLETE_OK; |
| } |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| transport_add_cmd_to_queue(cmd, t_state); |
| } |
| EXPORT_SYMBOL(transport_complete_task); |
| |
| /* |
| * Called by transport_add_tasks_from_cmd() once a struct se_cmd's |
| * struct se_task list are ready to be added to the active execution list |
| * struct se_device |
| |
| * Called with se_dev_t->execute_task_lock called. |
| */ |
| static inline int transport_add_task_check_sam_attr( |
| struct se_task *task, |
| struct se_task *task_prev, |
| struct se_device *dev) |
| { |
| /* |
| * No SAM Task attribute emulation enabled, add to tail of |
| * execution queue |
| */ |
| if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) { |
| list_add_tail(&task->t_execute_list, &dev->execute_task_list); |
| return 0; |
| } |
| /* |
| * HEAD_OF_QUEUE attribute for received CDB, which means |
| * the first task that is associated with a struct se_cmd goes to |
| * head of the struct se_device->execute_task_list, and task_prev |
| * after that for each subsequent task |
| */ |
| if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) { |
| list_add(&task->t_execute_list, |
| (task_prev != NULL) ? |
| &task_prev->t_execute_list : |
| &dev->execute_task_list); |
| |
| DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x" |
| " in execution queue\n", |
| T_TASK(task->task_se_cmd)->t_task_cdb[0]); |
| return 1; |
| } |
| /* |
| * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been |
| * transitioned from Dermant -> Active state, and are added to the end |
| * of the struct se_device->execute_task_list |
| */ |
| list_add_tail(&task->t_execute_list, &dev->execute_task_list); |
| return 0; |
| } |
| |
| /* __transport_add_task_to_execute_queue(): |
| * |
| * Called with se_dev_t->execute_task_lock called. |
| */ |
| static void __transport_add_task_to_execute_queue( |
| struct se_task *task, |
| struct se_task *task_prev, |
| struct se_device *dev) |
| { |
| int head_of_queue; |
| |
| head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev); |
| atomic_inc(&dev->execute_tasks); |
| |
| if (atomic_read(&task->task_state_active)) |
| return; |
| /* |
| * Determine if this task needs to go to HEAD_OF_QUEUE for the |
| * state list as well. Running with SAM Task Attribute emulation |
| * will always return head_of_queue == 0 here |
| */ |
| if (head_of_queue) |
| list_add(&task->t_state_list, (task_prev) ? |
| &task_prev->t_state_list : |
| &dev->state_task_list); |
| else |
| list_add_tail(&task->t_state_list, &dev->state_task_list); |
| |
| atomic_set(&task->task_state_active, 1); |
| |
| DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n", |
| CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd), |
| task, dev); |
| } |
| |
| static void transport_add_tasks_to_state_queue(struct se_cmd *cmd) |
| { |
| struct se_device *dev; |
| struct se_task *task; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { |
| dev = task->se_dev; |
| |
| if (atomic_read(&task->task_state_active)) |
| continue; |
| |
| spin_lock(&dev->execute_task_lock); |
| list_add_tail(&task->t_state_list, &dev->state_task_list); |
| atomic_set(&task->task_state_active, 1); |
| |
| DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n", |
| CMD_TFO(task->task_se_cmd)->get_task_tag( |
| task->task_se_cmd), task, dev); |
| |
| spin_unlock(&dev->execute_task_lock); |
| } |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| } |
| |
| static void transport_add_tasks_from_cmd(struct se_cmd *cmd) |
| { |
| struct se_device *dev = SE_DEV(cmd); |
| struct se_task *task, *task_prev = NULL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->execute_task_lock, flags); |
| list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { |
| if (atomic_read(&task->task_execute_queue)) |
| continue; |
| /* |
| * __transport_add_task_to_execute_queue() handles the |
| * SAM Task Attribute emulation if enabled |
| */ |
| __transport_add_task_to_execute_queue(task, task_prev, dev); |
| atomic_set(&task->task_execute_queue, 1); |
| task_prev = task; |
| } |
| spin_unlock_irqrestore(&dev->execute_task_lock, flags); |
| |
| return; |
| } |
| |
| /* transport_get_task_from_execute_queue(): |
| * |
| * Called with dev->execute_task_lock held. |
| */ |
| static struct se_task * |
| transport_get_task_from_execute_queue(struct se_device *dev) |
| { |
| struct se_task *task; |
| |
| if (list_empty(&dev->execute_task_list)) |
| return NULL; |
| |
| list_for_each_entry(task, &dev->execute_task_list, t_execute_list) |
| break; |
| |
| list_del(&task->t_execute_list); |
| atomic_set(&task->task_execute_queue, 0); |
| atomic_dec(&dev->execute_tasks); |
| |
| return task; |
| } |
| |
| /* transport_remove_task_from_execute_queue(): |
| * |
| * |
| */ |
| void transport_remove_task_from_execute_queue( |
| struct se_task *task, |
| struct se_device *dev) |
| { |
| unsigned long flags; |
| |
| if (atomic_read(&task->task_execute_queue) == 0) { |
| dump_stack(); |
| return; |
| } |
| |
| spin_lock_irqsave(&dev->execute_task_lock, flags); |
| list_del(&task->t_execute_list); |
| atomic_set(&task->task_execute_queue, 0); |
| atomic_dec(&dev->execute_tasks); |
| spin_unlock_irqrestore(&dev->execute_task_lock, flags); |
| } |
| |
| unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) |
| { |
| switch (cmd->data_direction) { |
| case DMA_NONE: |
| return "NONE"; |
| case DMA_FROM_DEVICE: |
| return "READ"; |
| case DMA_TO_DEVICE: |
| return "WRITE"; |
| case DMA_BIDIRECTIONAL: |
| return "BIDI"; |
| default: |
| break; |
| } |
| |
| return "UNKNOWN"; |
| } |
| |
| void transport_dump_dev_state( |
| struct se_device *dev, |
| char *b, |
| int *bl) |
| { |
| *bl += sprintf(b + *bl, "Status: "); |
| switch (dev->dev_status) { |
| case TRANSPORT_DEVICE_ACTIVATED: |
| *bl += sprintf(b + *bl, "ACTIVATED"); |
| break; |
| case TRANSPORT_DEVICE_DEACTIVATED: |
| *bl += sprintf(b + *bl, "DEACTIVATED"); |
| break; |
| case TRANSPORT_DEVICE_SHUTDOWN: |
| *bl += sprintf(b + *bl, "SHUTDOWN"); |
| break; |
| case TRANSPORT_DEVICE_OFFLINE_ACTIVATED: |
| case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED: |
| *bl += sprintf(b + *bl, "OFFLINE"); |
| break; |
| default: |
| *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status); |
| break; |
| } |
| |
| *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d", |
| atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left), |
| dev->queue_depth); |
| *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n", |
| DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors); |
| *bl += sprintf(b + *bl, " "); |
| } |
| |
| /* transport_release_all_cmds(): |
| * |
| * |
| */ |
| static void transport_release_all_cmds(struct se_device *dev) |
| { |
| struct se_cmd *cmd = NULL; |
| struct se_queue_req *qr = NULL, *qr_p = NULL; |
| int bug_out = 0, t_state; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); |
| list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list, |
| qr_list) { |
| |
| cmd = (struct se_cmd *)qr->cmd; |
| t_state = qr->state; |
| list_del(&qr->qr_list); |
| kfree(qr); |
| spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, |
| flags); |
| |
| printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u," |
| " t_state: %u directly\n", |
| CMD_TFO(cmd)->get_task_tag(cmd), |
| CMD_TFO(cmd)->get_cmd_state(cmd), t_state); |
| |
| transport_release_fe_cmd(cmd); |
| bug_out = 1; |
| |
| spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); |
| } |
| spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags); |
| #if 0 |
| if (bug_out) |
| BUG(); |
| #endif |
| } |
| |
| void transport_dump_vpd_proto_id( |
| struct t10_vpd *vpd, |
| unsigned char *p_buf, |
| int p_buf_len) |
| { |
| unsigned char buf[VPD_TMP_BUF_SIZE]; |
| int len; |
| |
| memset(buf, 0, VPD_TMP_BUF_SIZE); |
| len = sprintf(buf, "T10 VPD Protocol Identifier: "); |
| |
| switch (vpd->protocol_identifier) { |
| case 0x00: |
| sprintf(buf+len, "Fibre Channel\n"); |
| break; |
| case 0x10: |
| sprintf(buf+len, "Parallel SCSI\n"); |
| break; |
| case 0x20: |
| sprintf(buf+len, "SSA\n"); |
| break; |
| case 0x30: |
| sprintf(buf+len, "IEEE 1394\n"); |
| break; |
| case 0x40: |
| sprintf(buf+len, "SCSI Remote Direct Memory Access" |
| " Protocol\n"); |
| break; |
| case 0x50: |
| sprintf(buf+len, "Internet SCSI (iSCSI)\n"); |
| break; |
| case 0x60: |
| sprintf(buf+len, "SAS Serial SCSI Protocol\n"); |
| break; |
| case 0x70: |
| sprintf(buf+len, "Automation/Drive Interface Transport" |
| " Protocol\n"); |
| break; |
| case 0x80: |
| sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); |
| break; |
| default: |
| sprintf(buf+len, "Unknown 0x%02x\n", |
| vpd->protocol_identifier); |
| break; |
| } |
| |
| if (p_buf) |
| strncpy(p_buf, buf, p_buf_len); |
| else |
| printk(KERN_INFO "%s", buf); |
| } |
| |
| void |
| transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) |
| { |
| /* |
| * Check if the Protocol Identifier Valid (PIV) bit is set.. |
| * |
| * from spc3r23.pdf section 7.5.1 |
| */ |
| if (page_83[1] & 0x80) { |
| vpd->protocol_identifier = (page_83[0] & 0xf0); |
| vpd->protocol_identifier_set = 1; |
| transport_dump_vpd_proto_id(vpd, NULL, 0); |
| } |
| } |
| EXPORT_SYMBOL(transport_set_vpd_proto_id); |
| |
| int transport_dump_vpd_assoc( |
| struct t10_vpd *vpd, |
| unsigned char *p_buf, |
| int p_buf_len) |
| { |
| unsigned char buf[VPD_TMP_BUF_SIZE]; |
| int ret = 0, len; |
| |
| memset(buf, 0, VPD_TMP_BUF_SIZE); |
| len = sprintf(buf, "T10 VPD Identifier Association: "); |
| |
| switch (vpd->association) { |
| case 0x00: |
| sprintf(buf+len, "addressed logical unit\n"); |
| break; |
| case 0x10: |
| sprintf(buf+len, "target port\n"); |
| break; |
| case 0x20: |
| sprintf(buf+len, "SCSI target device\n"); |
| break; |
| default: |
| sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); |
| ret = -1; |
| break; |
| } |
| |
| if (p_buf) |
| strncpy(p_buf, buf, p_buf_len); |
| else |
| printk("%s", buf); |
| |
| return ret; |
| } |
| |
| int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) |
| { |
| /* |
| * The VPD identification association.. |
| * |
| * from spc3r23.pdf Section 7.6.3.1 Table 297 |
| */ |
| vpd->association = (page_83[1] & 0x30); |
| return transport_dump_vpd_assoc(vpd, NULL, 0); |
| } |
| EXPORT_SYMBOL(transport_set_vpd_assoc); |
| |
| int transport_dump_vpd_ident_type( |
| struct t10_vpd *vpd, |
| unsigned char *p_buf, |
| int p_buf_len) |
| { |
| unsigned char buf[VPD_TMP_BUF_SIZE]; |
| int ret = 0, len; |
| |
| memset(buf, 0, VPD_TMP_BUF_SIZE); |
| len = sprintf(buf, "T10 VPD Identifier Type: "); |
| |
| switch (vpd->device_identifier_type) { |
| case 0x00: |
| sprintf(buf+len, "Vendor specific\n"); |
| break; |
| case 0x01: |
| sprintf(buf+len, "T10 Vendor ID based\n"); |
| break; |
| case 0x02: |
| sprintf(buf+len, "EUI-64 based\n"); |
| break; |
| case 0x03: |
| sprintf(buf+len, "NAA\n"); |
| break; |
| case 0x04: |
| sprintf(buf+len, "Relative target port identifier\n"); |
| break; |
| case 0x08: |
| sprintf(buf+len, "SCSI name string\n"); |
| break; |
| default: |
| sprintf(buf+len, "Unsupported: 0x%02x\n", |
| vpd->device_identifier_type); |
| ret = -1; |
| break; |
| } |
| |
| if (p_buf) |
| strncpy(p_buf, buf, p_buf_len); |
| else |
| printk("%s", buf); |
| |
| return ret; |
| } |
| |
| int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) |
| { |
| /* |
| * The VPD identifier type.. |
| * |
| * from spc3r23.pdf Section 7.6.3.1 Table 298 |
| */ |
| vpd->device_identifier_type = (page_83[1] & 0x0f); |
| return transport_dump_vpd_ident_type(vpd, NULL, 0); |
| } |
| EXPORT_SYMBOL(transport_set_vpd_ident_type); |
| |
| int transport_dump_vpd_ident( |
| struct t10_vpd *vpd, |
| unsigned char *p_buf, |
| int p_buf_len) |
| { |
| unsigned char buf[VPD_TMP_BUF_SIZE]; |
| int ret = 0; |
| |
| memset(buf, 0, VPD_TMP_BUF_SIZE); |
| |
| switch (vpd->device_identifier_code_set) { |
| case 0x01: /* Binary */ |
| sprintf(buf, "T10 VPD Binary Device Identifier: %s\n", |
| &vpd->device_identifier[0]); |
| break; |
| case 0x02: /* ASCII */ |
| sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n", |
| &vpd->device_identifier[0]); |
| break; |
| case 0x03: /* UTF-8 */ |
| sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n", |
| &vpd->device_identifier[0]); |
| break; |
| default: |
| sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" |
| " 0x%02x", vpd->device_identifier_code_set); |
| ret = -1; |
| break; |
| } |
| |
| if (p_buf) |
| strncpy(p_buf, buf, p_buf_len); |
| else |
| printk("%s", buf); |
| |
| return ret; |
| } |
| |
| int |
| transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) |
| { |
| static const char hex_str[] = "0123456789abcdef"; |
| int j = 0, i = 4; /* offset to start of the identifer */ |
| |
| /* |
| * The VPD Code Set (encoding) |
| * |
| * from spc3r23.pdf Section 7.6.3.1 Table 296 |
| */ |
| vpd->device_identifier_code_set = (page_83[0] & 0x0f); |
| switch (vpd->device_identifier_code_set) { |
| case 0x01: /* Binary */ |
| vpd->device_identifier[j++] = |
| hex_str[vpd->device_identifier_type]; |
| while (i < (4 + page_83[3])) { |
| vpd->device_identifier[j++] = |
| hex_str[(page_83[i] & 0xf0) >> 4]; |
| vpd->device_identifier[j++] = |
| hex_str[page_83[i] & 0x0f]; |
| i++; |
| } |
| break; |
| case 0x02: /* ASCII */ |
| case 0x03: /* UTF-8 */ |
| while (i < (4 + page_83[3])) |
| vpd->device_identifier[j++] = page_83[i++]; |
| break; |
| default: |
| break; |
| } |
| |
| return transport_dump_vpd_ident(vpd, NULL, 0); |
| } |
| EXPORT_SYMBOL(transport_set_vpd_ident); |
| |
| static void core_setup_task_attr_emulation(struct se_device *dev) |
| { |
| /* |
| * If this device is from Target_Core_Mod/pSCSI, disable the |
| * SAM Task Attribute emulation. |
| * |
| * This is currently not available in upsream Linux/SCSI Target |
| * mode code, and is assumed to be disabled while using TCM/pSCSI. |
| */ |
| if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) { |
| dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH; |
| return; |
| } |
| |
| dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED; |
| DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x" |
| " device\n", TRANSPORT(dev)->name, |
| TRANSPORT(dev)->get_device_rev(dev)); |
| } |
| |
| static void scsi_dump_inquiry(struct se_device *dev) |
| { |
| struct t10_wwn *wwn = DEV_T10_WWN(dev); |
| int i, device_type; |
| /* |
| * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer |
| */ |
| printk(" Vendor: "); |
| for (i = 0; i < 8; i++) |
| if (wwn->vendor[i] >= 0x20) |
| printk("%c", wwn->vendor[i]); |
| else |
| printk(" "); |
| |
| printk(" Model: "); |
| for (i = 0; i < 16; i++) |
| if (wwn->model[i] >= 0x20) |
| printk("%c", wwn->model[i]); |
| else |
| printk(" "); |
| |
| printk(" Revision: "); |
| for (i = 0; i < 4; i++) |
| if (wwn->revision[i] >= 0x20) |
| printk("%c", wwn->revision[i]); |
| else |
| printk(" "); |
| |
| printk("\n"); |
| |
| device_type = TRANSPORT(dev)->get_device_type(dev); |
| printk(" Type: %s ", scsi_device_type(device_type)); |
| printk(" ANSI SCSI revision: %02x\n", |
| TRANSPORT(dev)->get_device_rev(dev)); |
| } |
| |
| struct se_device *transport_add_device_to_core_hba( |
| struct se_hba *hba, |
| struct se_subsystem_api *transport, |
| struct se_subsystem_dev *se_dev, |
| u32 device_flags, |
| void *transport_dev, |
| struct se_dev_limits *dev_limits, |
| const char *inquiry_prod, |
| const char *inquiry_rev) |
| { |
| int force_pt; |
| struct se_device *dev; |
| |
| dev = kzalloc(sizeof(struct se_device), GFP_KERNEL); |
| if (!(dev)) { |
| printk(KERN_ERR "Unable to allocate memory for se_dev_t\n"); |
| return NULL; |
| } |
| dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL); |
| if (!(dev->dev_queue_obj)) { |
| printk(KERN_ERR "Unable to allocate memory for" |
| " dev->dev_queue_obj\n"); |
| kfree(dev); |
| return NULL; |
| } |
| transport_init_queue_obj(dev->dev_queue_obj); |
| |
| dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj), |
| GFP_KERNEL); |
| if (!(dev->dev_status_queue_obj)) { |
| printk(KERN_ERR "Unable to allocate memory for" |
| " dev->dev_status_queue_obj\n"); |
| kfree(dev->dev_queue_obj); |
| kfree(dev); |
| return NULL; |
| } |
| transport_init_queue_obj(dev->dev_status_queue_obj); |
| |
| dev->dev_flags = device_flags; |
| dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED; |
| dev->dev_ptr = (void *) transport_dev; |
| dev->se_hba = hba; |
| dev->se_sub_dev = se_dev; |
| dev->transport = transport; |
| atomic_set(&dev->active_cmds, 0); |
| INIT_LIST_HEAD(&dev->dev_list); |
| INIT_LIST_HEAD(&dev->dev_sep_list); |
| INIT_LIST_HEAD(&dev->dev_tmr_list); |
| INIT_LIST_HEAD(&dev->execute_task_list); |
| INIT_LIST_HEAD(&dev->delayed_cmd_list); |
| INIT_LIST_HEAD(&dev->ordered_cmd_list); |
| INIT_LIST_HEAD(&dev->state_task_list); |
| spin_lock_init(&dev->execute_task_lock); |
| spin_lock_init(&dev->delayed_cmd_lock); |
| spin_lock_init(&dev->ordered_cmd_lock); |
| spin_lock_init(&dev->state_task_lock); |
| spin_lock_init(&dev->dev_alua_lock); |
| spin_lock_init(&dev->dev_reservation_lock); |
| spin_lock_init(&dev->dev_status_lock); |
| spin_lock_init(&dev->dev_status_thr_lock); |
| spin_lock_init(&dev->se_port_lock); |
| spin_lock_init(&dev->se_tmr_lock); |
| |
| dev->queue_depth = dev_limits->queue_depth; |
| atomic_set(&dev->depth_left, dev->queue_depth); |
| atomic_set(&dev->dev_ordered_id, 0); |
| |
| se_dev_set_default_attribs(dev, dev_limits); |
| |
| dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX); |
| dev->creation_time = get_jiffies_64(); |
| spin_lock_init(&dev->stats_lock); |
| |
| spin_lock(&hba->device_lock); |
| list_add_tail(&dev->dev_list, &hba->hba_dev_list); |
| hba->dev_count++; |
| spin_unlock(&hba->device_lock); |
| /* |
| * Setup the SAM Task Attribute emulation for struct se_device |
| */ |
| core_setup_task_attr_emulation(dev); |
| /* |
| * Force PR and ALUA passthrough emulation with internal object use. |
| */ |
| force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE); |
| /* |
| * Setup the Reservations infrastructure for struct se_device |
| */ |
| core_setup_reservations(dev, force_pt); |
| /* |
| * Setup the Asymmetric Logical Unit Assignment for struct se_device |
| */ |
| if (core_setup_alua(dev, force_pt) < 0) |
| goto out; |
| |
| /* |
| * Startup the struct se_device processing thread |
| */ |
| dev->process_thread = kthread_run(transport_processing_thread, dev, |
| "LIO_%s", TRANSPORT(dev)->name); |
| if (IS_ERR(dev->process_thread)) { |
| printk(KERN_ERR "Unable to create kthread: LIO_%s\n", |
| TRANSPORT(dev)->name); |
| goto out; |
| } |
| |
| /* |
| * Preload the initial INQUIRY const values if we are doing |
| * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI |
| * passthrough because this is being provided by the backend LLD. |
| * This is required so that transport_get_inquiry() copies these |
| * originals once back into DEV_T10_WWN(dev) for the virtual device |
| * setup. |
| */ |
| if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) { |
| if (!(inquiry_prod) || !(inquiry_prod)) { |
| printk(KERN_ERR "All non TCM/pSCSI plugins require" |
| " INQUIRY consts\n"); |
| goto out; |
| } |
| |
| strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8); |
| strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16); |
| strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4); |
| } |
| scsi_dump_inquiry(dev); |
| |
| return dev; |
| out: |
| kthread_stop(dev->process_thread); |
| |
| spin_lock(&hba->device_lock); |
| list_del(&dev->dev_list); |
| hba->dev_count--; |
| spin_unlock(&hba->device_lock); |
| |
| se_release_vpd_for_dev(dev); |
| |
| kfree(dev->dev_status_queue_obj); |
| kfree(dev->dev_queue_obj); |
| kfree(dev); |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(transport_add_device_to_core_hba); |
| |
| /* transport_generic_prepare_cdb(): |
| * |
| * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will |
| * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2. |
| * The point of this is since we are mapping iSCSI LUNs to |
| * SCSI Target IDs having a non-zero LUN in the CDB will throw the |
| * devices and HBAs for a loop. |
| */ |
| static inline void transport_generic_prepare_cdb( |
| unsigned char *cdb) |
| { |
| switch (cdb[0]) { |
| case READ_10: /* SBC - RDProtect */ |
| case READ_12: /* SBC - RDProtect */ |
| case READ_16: /* SBC - RDProtect */ |
| case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */ |
| case VERIFY: /* SBC - VRProtect */ |
| case VERIFY_16: /* SBC - VRProtect */ |
| case WRITE_VERIFY: /* SBC - VRProtect */ |
| case WRITE_VERIFY_12: /* SBC - VRProtect */ |
| break; |
| default: |
| cdb[1] &= 0x1f; /* clear logical unit number */ |
| break; |
| } |
| } |
| |
| static struct se_task * |
| transport_generic_get_task(struct se_cmd *cmd, |
| enum dma_data_direction data_direction) |
| { |
| struct se_task *task; |
| struct se_device *dev = SE_DEV(cmd); |
| unsigned long flags; |
| |
| task = dev->transport->alloc_task(cmd); |
| if (!task) { |
| printk(KERN_ERR "Unable to allocate struct se_task\n"); |
| return NULL; |
| } |
| |
| INIT_LIST_HEAD(&task->t_list); |
| INIT_LIST_HEAD(&task->t_execute_list); |
| INIT_LIST_HEAD(&task->t_state_list); |
| init_completion(&task->task_stop_comp); |
| task->task_no = T_TASK(cmd)->t_tasks_no++; |
| task->task_se_cmd = cmd; |
| task->se_dev = dev; |
| task->task_data_direction = data_direction; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| return task; |
| } |
| |
| static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *); |
| |
| void transport_device_setup_cmd(struct se_cmd *cmd) |
| { |
| cmd->se_dev = SE_LUN(cmd)->lun_se_dev; |
| } |
| EXPORT_SYMBOL(transport_device_setup_cmd); |
| |
| /* |
| * Used by fabric modules containing a local struct se_cmd within their |
| * fabric dependent per I/O descriptor. |
| */ |
| void transport_init_se_cmd( |
| struct se_cmd *cmd, |
| struct target_core_fabric_ops *tfo, |
| struct se_session *se_sess, |
| u32 data_length, |
| int data_direction, |
| int task_attr, |
| unsigned char *sense_buffer) |
| { |
| INIT_LIST_HEAD(&cmd->se_lun_list); |
| INIT_LIST_HEAD(&cmd->se_delayed_list); |
| INIT_LIST_HEAD(&cmd->se_ordered_list); |
| /* |
| * Setup t_task pointer to t_task_backstore |
| */ |
| cmd->t_task = &cmd->t_task_backstore; |
| |
| INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list); |
| init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp); |
| init_completion(&T_TASK(cmd)->transport_lun_stop_comp); |
| init_completion(&T_TASK(cmd)->t_transport_stop_comp); |
| spin_lock_init(&T_TASK(cmd)->t_state_lock); |
| atomic_set(&T_TASK(cmd)->transport_dev_active, 1); |
| |
| cmd->se_tfo = tfo; |
| cmd->se_sess = se_sess; |
| cmd->data_length = data_length; |
| cmd->data_direction = data_direction; |
| cmd->sam_task_attr = task_attr; |
| cmd->sense_buffer = sense_buffer; |
| } |
| EXPORT_SYMBOL(transport_init_se_cmd); |
| |
| static int transport_check_alloc_task_attr(struct se_cmd *cmd) |
| { |
| /* |
| * Check if SAM Task Attribute emulation is enabled for this |
| * struct se_device storage object |
| */ |
| if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) |
| return 0; |
| |
| if (cmd->sam_task_attr == MSG_ACA_TAG) { |
| DEBUG_STA("SAM Task Attribute ACA" |
| " emulation is not supported\n"); |
| return -1; |
| } |
| /* |
| * Used to determine when ORDERED commands should go from |
| * Dormant to Active status. |
| */ |
| cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id); |
| smp_mb__after_atomic_inc(); |
| DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", |
| cmd->se_ordered_id, cmd->sam_task_attr, |
| TRANSPORT(cmd->se_dev)->name); |
| return 0; |
| } |
| |
| void transport_free_se_cmd( |
| struct se_cmd *se_cmd) |
| { |
| if (se_cmd->se_tmr_req) |
| core_tmr_release_req(se_cmd->se_tmr_req); |
| /* |
| * Check and free any extended CDB buffer that was allocated |
| */ |
| if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb) |
| kfree(T_TASK(se_cmd)->t_task_cdb); |
| } |
| EXPORT_SYMBOL(transport_free_se_cmd); |
| |
| static void transport_generic_wait_for_tasks(struct se_cmd *, int, int); |
| |
| /* transport_generic_allocate_tasks(): |
| * |
| * Called from fabric RX Thread. |
| */ |
| int transport_generic_allocate_tasks( |
| struct se_cmd *cmd, |
| unsigned char *cdb) |
| { |
| int ret; |
| |
| transport_generic_prepare_cdb(cdb); |
| |
| /* |
| * This is needed for early exceptions. |
| */ |
| cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks; |
| |
| transport_device_setup_cmd(cmd); |
| /* |
| * Ensure that the received CDB is less than the max (252 + 8) bytes |
| * for VARIABLE_LENGTH_CMD |
| */ |
| if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { |
| printk(KERN_ERR "Received SCSI CDB with command_size: %d that" |
| " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", |
| scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); |
| return -1; |
| } |
| /* |
| * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, |
| * allocate the additional extended CDB buffer now.. Otherwise |
| * setup the pointer from __t_task_cdb to t_task_cdb. |
| */ |
| if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) { |
| T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb), |
| GFP_KERNEL); |
| if (!(T_TASK(cmd)->t_task_cdb)) { |
| printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb" |
| " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n", |
| scsi_command_size(cdb), |
| (unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb)); |
| return -1; |
| } |
| } else |
| T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0]; |
| /* |
| * Copy the original CDB into T_TASK(cmd). |
| */ |
| memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb)); |
| /* |
| * Setup the received CDB based on SCSI defined opcodes and |
| * perform unit attention, persistent reservations and ALUA |
| * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb |
| * pointer is expected to be setup before we reach this point. |
| */ |
| ret = transport_generic_cmd_sequencer(cmd, cdb); |
| if (ret < 0) |
| return ret; |
| /* |
| * Check for SAM Task Attribute Emulation |
| */ |
| if (transport_check_alloc_task_attr(cmd) < 0) { |
| cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; |
| cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; |
| return -2; |
| } |
| spin_lock(&cmd->se_lun->lun_sep_lock); |
| if (cmd->se_lun->lun_sep) |
| cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; |
| spin_unlock(&cmd->se_lun->lun_sep_lock); |
| return 0; |
| } |
| EXPORT_SYMBOL(transport_generic_allocate_tasks); |
| |
| /* |
| * Used by fabric module frontends not defining a TFO->new_cmd_map() |
| * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis |
| */ |
| int transport_generic_handle_cdb( |
| struct se_cmd *cmd) |
| { |
| if (!SE_LUN(cmd)) { |
| dump_stack(); |
| printk(KERN_ERR "SE_LUN(cmd) is NULL\n"); |
| return -1; |
| } |
| |
| transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD); |
| return 0; |
| } |
| EXPORT_SYMBOL(transport_generic_handle_cdb); |
| |
| /* |
| * Used by fabric module frontends defining a TFO->new_cmd_map() caller |
| * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to |
| * complete setup in TCM process context w/ TFO->new_cmd_map(). |
| */ |
| int transport_generic_handle_cdb_map( |
| struct se_cmd *cmd) |
| { |
| if (!SE_LUN(cmd)) { |
| dump_stack(); |
| printk(KERN_ERR "SE_LUN(cmd) is NULL\n"); |
| return -1; |
| } |
| |
| transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP); |
| return 0; |
| } |
| EXPORT_SYMBOL(transport_generic_handle_cdb_map); |
| |
| /* transport_generic_handle_data(): |
| * |
| * |
| */ |
| int transport_generic_handle_data( |
| struct se_cmd *cmd) |
| { |
| /* |
| * For the software fabric case, then we assume the nexus is being |
| * failed/shutdown when signals are pending from the kthread context |
| * caller, so we return a failure. For the HW target mode case running |
| * in interrupt code, the signal_pending() check is skipped. |
| */ |
| if (!in_interrupt() && signal_pending(current)) |
| return -1; |
| /* |
| * If the received CDB has aleady been ABORTED by the generic |
| * target engine, we now call transport_check_aborted_status() |
| * to queue any delated TASK_ABORTED status for the received CDB to the |
| * fabric module as we are expecting no further incoming DATA OUT |
| * sequences at this point. |
| */ |
| if (transport_check_aborted_status(cmd, 1) != 0) |
| return 0; |
| |
| transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE); |
| return 0; |
| } |
| EXPORT_SYMBOL(transport_generic_handle_data); |
| |
| /* transport_generic_handle_tmr(): |
| * |
| * |
| */ |
| int transport_generic_handle_tmr( |
| struct se_cmd *cmd) |
| { |
| /* |
| * This is needed for early exceptions. |
| */ |
| cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks; |
| transport_device_setup_cmd(cmd); |
| |
| transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR); |
| return 0; |
| } |
| EXPORT_SYMBOL(transport_generic_handle_tmr); |
| |
| void transport_generic_free_cmd_intr( |
| struct se_cmd *cmd) |
| { |
| transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR); |
| } |
| EXPORT_SYMBOL(transport_generic_free_cmd_intr); |
| |
| static int transport_stop_tasks_for_cmd(struct se_cmd *cmd) |
| { |
| struct se_task *task, *task_tmp; |
| unsigned long flags; |
| int ret = 0; |
| |
| DEBUG_TS("ITT[0x%08x] - Stopping tasks\n", |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| |
| /* |
| * No tasks remain in the execution queue |
| */ |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| list_for_each_entry_safe(task, task_tmp, |
| &T_TASK(cmd)->t_task_list, t_list) { |
| DEBUG_TS("task_no[%d] - Processing task %p\n", |
| task->task_no, task); |
| /* |
| * If the struct se_task has not been sent and is not active, |
| * remove the struct se_task from the execution queue. |
| */ |
| if (!atomic_read(&task->task_sent) && |
| !atomic_read(&task->task_active)) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, |
| flags); |
| transport_remove_task_from_execute_queue(task, |
| task->se_dev); |
| |
| DEBUG_TS("task_no[%d] - Removed from execute queue\n", |
| task->task_no); |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| continue; |
| } |
| |
| /* |
| * If the struct se_task is active, sleep until it is returned |
| * from the plugin. |
| */ |
| if (atomic_read(&task->task_active)) { |
| atomic_set(&task->task_stop, 1); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, |
| flags); |
| |
| DEBUG_TS("task_no[%d] - Waiting to complete\n", |
| task->task_no); |
| wait_for_completion(&task->task_stop_comp); |
| DEBUG_TS("task_no[%d] - Stopped successfully\n", |
| task->task_no); |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| atomic_dec(&T_TASK(cmd)->t_task_cdbs_left); |
| |
| atomic_set(&task->task_active, 0); |
| atomic_set(&task->task_stop, 0); |
| } else { |
| DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no); |
| ret++; |
| } |
| |
| __transport_stop_task_timer(task, &flags); |
| } |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| return ret; |
| } |
| |
| static void transport_failure_reset_queue_depth(struct se_device *dev) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags); |
| atomic_inc(&dev->depth_left); |
| atomic_inc(&SE_HBA(dev)->left_queue_depth); |
| spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); |
| } |
| |
| /* |
| * Handle SAM-esque emulation for generic transport request failures. |
| */ |
| static void transport_generic_request_failure( |
| struct se_cmd *cmd, |
| struct se_device *dev, |
| int complete, |
| int sc) |
| { |
| DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" |
| " CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd), |
| T_TASK(cmd)->t_task_cdb[0]); |
| DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:" |
| " %d/%d transport_error_status: %d\n", |
| CMD_TFO(cmd)->get_cmd_state(cmd), |
| cmd->t_state, cmd->deferred_t_state, |
| cmd->transport_error_status); |
| DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d" |
| " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --" |
| " t_transport_active: %d t_transport_stop: %d" |
| " t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs, |
| atomic_read(&T_TASK(cmd)->t_task_cdbs_left), |
| atomic_read(&T_TASK(cmd)->t_task_cdbs_sent), |
| atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left), |
| atomic_read(&T_TASK(cmd)->t_transport_active), |
| atomic_read(&T_TASK(cmd)->t_transport_stop), |
| atomic_read(&T_TASK(cmd)->t_transport_sent)); |
| |
| transport_stop_all_task_timers(cmd); |
| |
| if (dev) |
| transport_failure_reset_queue_depth(dev); |
| /* |
| * For SAM Task Attribute emulation for failed struct se_cmd |
| */ |
| if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) |
| transport_complete_task_attr(cmd); |
| |
| if (complete) { |
| transport_direct_request_timeout(cmd); |
| cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE; |
| } |
| |
| switch (cmd->transport_error_status) { |
| case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE: |
| cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; |
| break; |
| case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS: |
| cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY; |
| break; |
| case PYX_TRANSPORT_INVALID_CDB_FIELD: |
| cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; |
| break; |
| case PYX_TRANSPORT_INVALID_PARAMETER_LIST: |
| cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST; |
| break; |
| case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES: |
| if (!sc) |
| transport_new_cmd_failure(cmd); |
| /* |
| * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES, |
| * we force this session to fall back to session |
| * recovery. |
| */ |
| CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess); |
| CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0); |
| |
| goto check_stop; |
| case PYX_TRANSPORT_LU_COMM_FAILURE: |
| case PYX_TRANSPORT_ILLEGAL_REQUEST: |
| cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; |
| break; |
| case PYX_TRANSPORT_UNKNOWN_MODE_PAGE: |
| cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE; |
| break; |
| case PYX_TRANSPORT_WRITE_PROTECTED: |
| cmd->scsi_sense_reason = TCM_WRITE_PROTECTED; |
| break; |
| case PYX_TRANSPORT_RESERVATION_CONFLICT: |
| /* |
| * No SENSE Data payload for this case, set SCSI Status |
| * and queue the response to $FABRIC_MOD. |
| * |
| * Uses linux/include/scsi/scsi.h SAM status codes defs |
| */ |
| cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; |
| /* |
| * For UA Interlock Code 11b, a RESERVATION CONFLICT will |
| * establish a UNIT ATTENTION with PREVIOUS RESERVATION |
| * CONFLICT STATUS. |
| * |
| * See spc4r17, section 7.4.6 Control Mode Page, Table 349 |
| */ |
| if (SE_SESS(cmd) && |
| DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2) |
| core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl, |
| cmd->orig_fe_lun, 0x2C, |
| ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); |
| |
| CMD_TFO(cmd)->queue_status(cmd); |
| goto check_stop; |
| case PYX_TRANSPORT_USE_SENSE_REASON: |
| /* |
| * struct se_cmd->scsi_sense_reason already set |
| */ |
| break; |
| default: |
| printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n", |
| T_TASK(cmd)->t_task_cdb[0], |
| cmd->transport_error_status); |
| cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; |
| break; |
| } |
| |
| if (!sc) |
| transport_new_cmd_failure(cmd); |
| else |
| transport_send_check_condition_and_sense(cmd, |
| cmd->scsi_sense_reason, 0); |
| check_stop: |
| transport_lun_remove_cmd(cmd); |
| if (!(transport_cmd_check_stop_to_fabric(cmd))) |
| ; |
| } |
| |
| static void transport_direct_request_timeout(struct se_cmd *cmd) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| return; |
| } |
| if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| return; |
| } |
| |
| atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout), |
| &T_TASK(cmd)->t_se_count); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| } |
| |
| static void transport_generic_request_timeout(struct se_cmd *cmd) |
| { |
| unsigned long flags; |
| |
| /* |
| * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove() |
| * to allow last call to free memory resources. |
| */ |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) { |
| int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1); |
| |
| atomic_sub(tmp, &T_TASK(cmd)->t_se_count); |
| } |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| transport_generic_remove(cmd, 0, 0); |
| } |
| |
| static int |
| transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length) |
| { |
| unsigned char *buf; |
| |
| buf = kzalloc(data_length, GFP_KERNEL); |
| if (!(buf)) { |
| printk(KERN_ERR "Unable to allocate memory for buffer\n"); |
| return -1; |
| } |
| |
| T_TASK(cmd)->t_tasks_se_num = 0; |
| T_TASK(cmd)->t_task_buf = buf; |
| |
| return 0; |
| } |
| |
| static inline u32 transport_lba_21(unsigned char *cdb) |
| { |
| return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3]; |
| } |
| |
| static inline u32 transport_lba_32(unsigned char *cdb) |
| { |
| return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; |
| } |
| |
| static inline unsigned long long transport_lba_64(unsigned char *cdb) |
| { |
| unsigned int __v1, __v2; |
| |
| __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; |
| __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; |
| |
| return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32; |
| } |
| |
| /* |
| * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs |
| */ |
| static inline unsigned long long transport_lba_64_ext(unsigned char *cdb) |
| { |
| unsigned int __v1, __v2; |
| |
| __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15]; |
| __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19]; |
| |
| return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32; |
| } |
| |
| static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags); |
| se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; |
| spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags); |
| } |
| |
| /* |
| * Called from interrupt context. |
| */ |
| static void transport_task_timeout_handler(unsigned long data) |
| { |
| struct se_task *task = (struct se_task *)data; |
| struct se_cmd *cmd = TASK_CMD(task); |
| unsigned long flags; |
| |
| DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd); |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| if (task->task_flags & TF_STOP) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| return; |
| } |
| task->task_flags &= ~TF_RUNNING; |
| |
| /* |
| * Determine if transport_complete_task() has already been called. |
| */ |
| if (!(atomic_read(&task->task_active))) { |
| DEBUG_TT("transport task: %p cmd: %p timeout task_active" |
| " == 0\n", task, cmd); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| return; |
| } |
| |
| atomic_inc(&T_TASK(cmd)->t_se_count); |
| atomic_inc(&T_TASK(cmd)->t_transport_timeout); |
| T_TASK(cmd)->t_tasks_failed = 1; |
| |
| atomic_set(&task->task_timeout, 1); |
| task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT; |
| task->task_scsi_status = 1; |
| |
| if (atomic_read(&task->task_stop)) { |
| DEBUG_TT("transport task: %p cmd: %p timeout task_stop" |
| " == 1\n", task, cmd); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| complete(&task->task_stop_comp); |
| return; |
| } |
| |
| if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) { |
| DEBUG_TT("transport task: %p cmd: %p timeout non zero" |
| " t_task_cdbs_left\n", task, cmd); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| return; |
| } |
| DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n", |
| task, cmd); |
| |
| cmd->t_state = TRANSPORT_COMPLETE_FAILURE; |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE); |
| } |
| |
| /* |
| * Called with T_TASK(cmd)->t_state_lock held. |
| */ |
| static void transport_start_task_timer(struct se_task *task) |
| { |
| struct se_device *dev = task->se_dev; |
| int timeout; |
| |
| if (task->task_flags & TF_RUNNING) |
| return; |
| /* |
| * If the task_timeout is disabled, exit now. |
| */ |
| timeout = DEV_ATTRIB(dev)->task_timeout; |
| if (!(timeout)) |
| return; |
| |
| init_timer(&task->task_timer); |
| task->task_timer.expires = (get_jiffies_64() + timeout * HZ); |
| task->task_timer.data = (unsigned long) task; |
| task->task_timer.function = transport_task_timeout_handler; |
| |
| task->task_flags |= TF_RUNNING; |
| add_timer(&task->task_timer); |
| #if 0 |
| printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:" |
| " %d\n", task->task_se_cmd, task, timeout); |
| #endif |
| } |
| |
| /* |
| * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held. |
| */ |
| void __transport_stop_task_timer(struct se_task *task, unsigned long *flags) |
| { |
| struct se_cmd *cmd = TASK_CMD(task); |
| |
| if (!(task->task_flags & TF_RUNNING)) |
| return; |
| |
| task->task_flags |= TF_STOP; |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags); |
| |
| del_timer_sync(&task->task_timer); |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags); |
| task->task_flags &= ~TF_RUNNING; |
| task->task_flags &= ~TF_STOP; |
| } |
| |
| static void transport_stop_all_task_timers(struct se_cmd *cmd) |
| { |
| struct se_task *task = NULL, *task_tmp; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| list_for_each_entry_safe(task, task_tmp, |
| &T_TASK(cmd)->t_task_list, t_list) |
| __transport_stop_task_timer(task, &flags); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| } |
| |
| static inline int transport_tcq_window_closed(struct se_device *dev) |
| { |
| if (dev->dev_tcq_window_closed++ < |
| PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) { |
| msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT); |
| } else |
| msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG); |
| |
| wake_up_interruptible(&dev->dev_queue_obj->thread_wq); |
| return 0; |
| } |
| |
| /* |
| * Called from Fabric Module context from transport_execute_tasks() |
| * |
| * The return of this function determins if the tasks from struct se_cmd |
| * get added to the execution queue in transport_execute_tasks(), |
| * or are added to the delayed or ordered lists here. |
| */ |
| static inline int transport_execute_task_attr(struct se_cmd *cmd) |
| { |
| if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) |
| return 1; |
| /* |
| * Check for the existence of HEAD_OF_QUEUE, and if true return 1 |
| * to allow the passed struct se_cmd list of tasks to the front of the list. |
| */ |
| if (cmd->sam_task_attr == MSG_HEAD_TAG) { |
| atomic_inc(&SE_DEV(cmd)->dev_hoq_count); |
| smp_mb__after_atomic_inc(); |
| DEBUG_STA("Added HEAD_OF_QUEUE for CDB:" |
| " 0x%02x, se_ordered_id: %u\n", |
| T_TASK(cmd)->t_task_cdb[0], |
| cmd->se_ordered_id); |
| return 1; |
| } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { |
| spin_lock(&SE_DEV(cmd)->ordered_cmd_lock); |
| list_add_tail(&cmd->se_ordered_list, |
| &SE_DEV(cmd)->ordered_cmd_list); |
| spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock); |
| |
| atomic_inc(&SE_DEV(cmd)->dev_ordered_sync); |
| smp_mb__after_atomic_inc(); |
| |
| DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered" |
| " list, se_ordered_id: %u\n", |
| T_TASK(cmd)->t_task_cdb[0], |
| cmd->se_ordered_id); |
| /* |
| * Add ORDERED command to tail of execution queue if |
| * no other older commands exist that need to be |
| * completed first. |
| */ |
| if (!(atomic_read(&SE_DEV(cmd)->simple_cmds))) |
| return 1; |
| } else { |
| /* |
| * For SIMPLE and UNTAGGED Task Attribute commands |
| */ |
| atomic_inc(&SE_DEV(cmd)->simple_cmds); |
| smp_mb__after_atomic_inc(); |
| } |
| /* |
| * Otherwise if one or more outstanding ORDERED task attribute exist, |
| * add the dormant task(s) built for the passed struct se_cmd to the |
| * execution queue and become in Active state for this struct se_device. |
| */ |
| if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) { |
| /* |
| * Otherwise, add cmd w/ tasks to delayed cmd queue that |
| * will be drained upon completion of HEAD_OF_QUEUE task. |
| */ |
| spin_lock(&SE_DEV(cmd)->delayed_cmd_lock); |
| cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR; |
| list_add_tail(&cmd->se_delayed_list, |
| &SE_DEV(cmd)->delayed_cmd_list); |
| spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock); |
| |
| DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to" |
| " delayed CMD list, se_ordered_id: %u\n", |
| T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr, |
| cmd->se_ordered_id); |
| /* |
| * Return zero to let transport_execute_tasks() know |
| * not to add the delayed tasks to the execution list. |
| */ |
| return 0; |
| } |
| /* |
| * Otherwise, no ORDERED task attributes exist.. |
| */ |
| return 1; |
| } |
| |
| /* |
| * Called from fabric module context in transport_generic_new_cmd() and |
| * transport_generic_process_write() |
| */ |
| static int transport_execute_tasks(struct se_cmd *cmd) |
| { |
| int add_tasks; |
| |
| if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) { |
| if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) { |
| cmd->transport_error_status = |
| PYX_TRANSPORT_LU_COMM_FAILURE; |
| transport_generic_request_failure(cmd, NULL, 0, 1); |
| return 0; |
| } |
| } |
| /* |
| * Call transport_cmd_check_stop() to see if a fabric exception |
| * has occurred that prevents execution. |
| */ |
| if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) { |
| /* |
| * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE |
| * attribute for the tasks of the received struct se_cmd CDB |
| */ |
| add_tasks = transport_execute_task_attr(cmd); |
| if (add_tasks == 0) |
| goto execute_tasks; |
| /* |
| * This calls transport_add_tasks_from_cmd() to handle |
| * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation |
| * (if enabled) in __transport_add_task_to_execute_queue() and |
| * transport_add_task_check_sam_attr(). |
| */ |
| transport_add_tasks_from_cmd(cmd); |
| } |
| /* |
| * Kick the execution queue for the cmd associated struct se_device |
| * storage object. |
| */ |
| execute_tasks: |
| __transport_execute_tasks(SE_DEV(cmd)); |
| return 0; |
| } |
| |
| /* |
| * Called to check struct se_device tcq depth window, and once open pull struct se_task |
| * from struct se_device->execute_task_list and |
| * |
| * Called from transport_processing_thread() |
| */ |
| static int __transport_execute_tasks(struct se_device *dev) |
| { |
| int error; |
| struct se_cmd *cmd = NULL; |
| struct se_task *task; |
| unsigned long flags; |
| |
| /* |
| * Check if there is enough room in the device and HBA queue to send |
| * struct se_transport_task's to the selected transport. |
| */ |
| check_depth: |
| spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags); |
| if (!(atomic_read(&dev->depth_left)) || |
| !(atomic_read(&SE_HBA(dev)->left_queue_depth))) { |
| spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); |
| return transport_tcq_window_closed(dev); |
| } |
| dev->dev_tcq_window_closed = 0; |
| |
| spin_lock(&dev->execute_task_lock); |
| task = transport_get_task_from_execute_queue(dev); |
| spin_unlock(&dev->execute_task_lock); |
| |
| if (!task) { |
| spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); |
| return 0; |
| } |
| |
| atomic_dec(&dev->depth_left); |
| atomic_dec(&SE_HBA(dev)->left_queue_depth); |
| spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); |
| |
| cmd = TASK_CMD(task); |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| atomic_set(&task->task_active, 1); |
| atomic_set(&task->task_sent, 1); |
| atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent); |
| |
| if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) == |
| T_TASK(cmd)->t_task_cdbs) |
| atomic_set(&cmd->transport_sent, 1); |
| |
| transport_start_task_timer(task); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| /* |
| * The struct se_cmd->transport_emulate_cdb() function pointer is used |
| * to grab REPORT_LUNS CDBs before they hit the |
| * struct se_subsystem_api->do_task() caller below. |
| */ |
| if (cmd->transport_emulate_cdb) { |
| error = cmd->transport_emulate_cdb(cmd); |
| if (error != 0) { |
| cmd->transport_error_status = error; |
| atomic_set(&task->task_active, 0); |
| atomic_set(&cmd->transport_sent, 0); |
| transport_stop_tasks_for_cmd(cmd); |
| transport_generic_request_failure(cmd, dev, 0, 1); |
| goto check_depth; |
| } |
| /* |
| * Handle the successful completion for transport_emulate_cdb() |
| * for synchronous operation, following SCF_EMULATE_CDB_ASYNC |
| * Otherwise the caller is expected to complete the task with |
| * proper status. |
| */ |
| if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) { |
| cmd->scsi_status = SAM_STAT_GOOD; |
| task->task_scsi_status = GOOD; |
| transport_complete_task(task, 1); |
| } |
| } else { |
| /* |
| * Currently for all virtual TCM plugins including IBLOCK, FILEIO and |
| * RAMDISK we use the internal transport_emulate_control_cdb() logic |
| * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK |
| * LUN emulation code. |
| * |
| * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we |
| * call ->do_task() directly and let the underlying TCM subsystem plugin |
| * code handle the CDB emulation. |
| */ |
| if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) && |
| (!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB))) |
| error = transport_emulate_control_cdb(task); |
| else |
| error = TRANSPORT(dev)->do_task(task); |
| |
| if (error != 0) { |
| cmd->transport_error_status = error; |
| atomic_set(&task->task_active, 0); |
| atomic_set(&cmd->transport_sent, 0); |
| transport_stop_tasks_for_cmd(cmd); |
| transport_generic_request_failure(cmd, dev, 0, 1); |
| } |
| } |
| |
| goto check_depth; |
| |
| return 0; |
| } |
| |
| void transport_new_cmd_failure(struct se_cmd *se_cmd) |
| { |
| unsigned long flags; |
| /* |
| * Any unsolicited data will get dumped for failed command inside of |
| * the fabric plugin |
| */ |
| spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags); |
| se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED; |
| se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; |
| spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags); |
| |
| CMD_TFO(se_cmd)->new_cmd_failure(se_cmd); |
| } |
| |
| static void transport_nop_wait_for_tasks(struct se_cmd *, int, int); |
| |
| static inline u32 transport_get_sectors_6( |
| unsigned char *cdb, |
| struct se_cmd *cmd, |
| int *ret) |
| { |
| struct se_device *dev = SE_LUN(cmd)->lun_se_dev; |
| |
| /* |
| * Assume TYPE_DISK for non struct se_device objects. |
| * Use 8-bit sector value. |
| */ |
| if (!dev) |
| goto type_disk; |
| |
| /* |
| * Use 24-bit allocation length for TYPE_TAPE. |
| */ |
| if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) |
| return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4]; |
| |
| /* |
| * Everything else assume TYPE_DISK Sector CDB location. |
| * Use 8-bit sector value. |
| */ |
| type_disk: |
| return (u32)cdb[4]; |
| } |
| |
| static inline u32 transport_get_sectors_10( |
| unsigned char *cdb, |
| struct se_cmd *cmd, |
| int *ret) |
| { |
| struct se_device *dev = SE_LUN(cmd)->lun_se_dev; |
| |
| /* |
| * Assume TYPE_DISK for non struct se_device objects. |
| * Use 16-bit sector value. |
| */ |
| if (!dev) |
| goto type_disk; |
| |
| /* |
| * XXX_10 is not defined in SSC, throw an exception |
| */ |
| if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) { |
| *ret = -1; |
| return 0; |
| } |
| |
| /* |
| * Everything else assume TYPE_DISK Sector CDB location. |
| * Use 16-bit sector value. |
| */ |
| type_disk: |
| return (u32)(cdb[7] << 8) + cdb[8]; |
| } |
| |
| static inline u32 transport_get_sectors_12( |
| unsigned char *cdb, |
| struct se_cmd *cmd, |
| int *ret) |
| { |
| struct se_device *dev = SE_LUN(cmd)->lun_se_dev; |
| |
| /* |
| * Assume TYPE_DISK for non struct se_device objects. |
| * Use 32-bit sector value. |
| */ |
| if (!dev) |
| goto type_disk; |
| |
| /* |
| * XXX_12 is not defined in SSC, throw an exception |
| */ |
| if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) { |
| *ret = -1; |
| return 0; |
| } |
| |
| /* |
| * Everything else assume TYPE_DISK Sector CDB location. |
| * Use 32-bit sector value. |
| */ |
| type_disk: |
| return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9]; |
| } |
| |
| static inline u32 transport_get_sectors_16( |
| unsigned char *cdb, |
| struct se_cmd *cmd, |
| int *ret) |
| { |
| struct se_device *dev = SE_LUN(cmd)->lun_se_dev; |
| |
| /* |
| * Assume TYPE_DISK for non struct se_device objects. |
| * Use 32-bit sector value. |
| */ |
| if (!dev) |
| goto type_disk; |
| |
| /* |
| * Use 24-bit allocation length for TYPE_TAPE. |
| */ |
| if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) |
| return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14]; |
| |
| type_disk: |
| return (u32)(cdb[10] << 24) + (cdb[11] << 16) + |
| (cdb[12] << 8) + cdb[13]; |
| } |
| |
| /* |
| * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants |
| */ |
| static inline u32 transport_get_sectors_32( |
| unsigned char *cdb, |
| struct se_cmd *cmd, |
| int *ret) |
| { |
| /* |
| * Assume TYPE_DISK for non struct se_device objects. |
| * Use 32-bit sector value. |
| */ |
| return (u32)(cdb[28] << 24) + (cdb[29] << 16) + |
| (cdb[30] << 8) + cdb[31]; |
| |
| } |
| |
| static inline u32 transport_get_size( |
| u32 sectors, |
| unsigned char *cdb, |
| struct se_cmd *cmd) |
| { |
| struct se_device *dev = SE_DEV(cmd); |
| |
| if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) { |
| if (cdb[1] & 1) { /* sectors */ |
| return DEV_ATTRIB(dev)->block_size * sectors; |
| } else /* bytes */ |
| return sectors; |
| } |
| #if 0 |
| printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for" |
| " %s object\n", DEV_ATTRIB(dev)->block_size, sectors, |
| DEV_ATTRIB(dev)->block_size * sectors, |
| TRANSPORT(dev)->name); |
| #endif |
| return DEV_ATTRIB(dev)->block_size * sectors; |
| } |
| |
| unsigned char transport_asciihex_to_binaryhex(unsigned char val[2]) |
| { |
| unsigned char result = 0; |
| /* |
| * MSB |
| */ |
| if ((val[0] >= 'a') && (val[0] <= 'f')) |
| result = ((val[0] - 'a' + 10) & 0xf) << 4; |
| else |
| if ((val[0] >= 'A') && (val[0] <= 'F')) |
| result = ((val[0] - 'A' + 10) & 0xf) << 4; |
| else /* digit */ |
| result = ((val[0] - '0') & 0xf) << 4; |
| /* |
| * LSB |
| */ |
| if ((val[1] >= 'a') && (val[1] <= 'f')) |
| result |= ((val[1] - 'a' + 10) & 0xf); |
| else |
| if ((val[1] >= 'A') && (val[1] <= 'F')) |
| result |= ((val[1] - 'A' + 10) & 0xf); |
| else /* digit */ |
| result |= ((val[1] - '0') & 0xf); |
| |
| return result; |
| } |
| EXPORT_SYMBOL(transport_asciihex_to_binaryhex); |
| |
| static void transport_xor_callback(struct se_cmd *cmd) |
| { |
| unsigned char *buf, *addr; |
| struct se_mem *se_mem; |
| unsigned int offset; |
| int i; |
| /* |
| * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command |
| * |
| * 1) read the specified logical block(s); |
| * 2) transfer logical blocks from the data-out buffer; |
| * 3) XOR the logical blocks transferred from the data-out buffer with |
| * the logical blocks read, storing the resulting XOR data in a buffer; |
| * 4) if the DISABLE WRITE bit is set to zero, then write the logical |
| * blocks transferred from the data-out buffer; and |
| * 5) transfer the resulting XOR data to the data-in buffer. |
| */ |
| buf = kmalloc(cmd->data_length, GFP_KERNEL); |
| if (!(buf)) { |
| printk(KERN_ERR "Unable to allocate xor_callback buf\n"); |
| return; |
| } |
| /* |
| * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list |
| * into the locally allocated *buf |
| */ |
| transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list); |
| /* |
| * Now perform the XOR against the BIDI read memory located at |
| * T_TASK(cmd)->t_mem_bidi_list |
| */ |
| |
| offset = 0; |
| list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) { |
| addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0); |
| if (!(addr)) |
| goto out; |
| |
| for (i = 0; i < se_mem->se_len; i++) |
| *(addr + se_mem->se_off + i) ^= *(buf + offset + i); |
| |
| offset += se_mem->se_len; |
| kunmap_atomic(addr, KM_USER0); |
| } |
| out: |
| kfree(buf); |
| } |
| |
| /* |
| * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd |
| */ |
| static int transport_get_sense_data(struct se_cmd *cmd) |
| { |
| unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL; |
| struct se_device *dev; |
| struct se_task *task = NULL, *task_tmp; |
| unsigned long flags; |
| u32 offset = 0; |
| |
| if (!SE_LUN(cmd)) { |
| printk(KERN_ERR "SE_LUN(cmd) is NULL\n"); |
| return -1; |
| } |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| return 0; |
| } |
| |
| list_for_each_entry_safe(task, task_tmp, |
| &T_TASK(cmd)->t_task_list, t_list) { |
| |
| if (!task->task_sense) |
| continue; |
| |
| dev = task->se_dev; |
| if (!(dev)) |
| continue; |
| |
| if (!TRANSPORT(dev)->get_sense_buffer) { |
| printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer" |
| " is NULL\n"); |
| continue; |
| } |
| |
| sense_buffer = TRANSPORT(dev)->get_sense_buffer(task); |
| if (!(sense_buffer)) { |
| printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate" |
| " sense buffer for task with sense\n", |
| CMD_TFO(cmd)->get_task_tag(cmd), task->task_no); |
| continue; |
| } |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd, |
| TRANSPORT_SENSE_BUFFER); |
| |
| memcpy((void *)&buffer[offset], (void *)sense_buffer, |
| TRANSPORT_SENSE_BUFFER); |
| cmd->scsi_status = task->task_scsi_status; |
| /* Automatically padded */ |
| cmd->scsi_sense_length = |
| (TRANSPORT_SENSE_BUFFER + offset); |
| |
| printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x" |
| " and sense\n", |
| dev->se_hba->hba_id, TRANSPORT(dev)->name, |
| cmd->scsi_status); |
| return 0; |
| } |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| return -1; |
| } |
| |
| static int transport_allocate_resources(struct se_cmd *cmd) |
| { |
| u32 length = cmd->data_length; |
| |
| if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) || |
| (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) |
| return transport_generic_get_mem(cmd, length, PAGE_SIZE); |
| else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) |
| return transport_generic_allocate_buf(cmd, length); |
| else |
| return 0; |
| } |
| |
| static int |
| transport_handle_reservation_conflict(struct se_cmd *cmd) |
| { |
| cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; |
| cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; |
| cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT; |
| cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; |
| /* |
| * For UA Interlock Code 11b, a RESERVATION CONFLICT will |
| * establish a UNIT ATTENTION with PREVIOUS RESERVATION |
| * CONFLICT STATUS. |
| * |
| * See spc4r17, section 7.4.6 Control Mode Page, Table 349 |
| */ |
| if (SE_SESS(cmd) && |
| DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2) |
| core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl, |
| cmd->orig_fe_lun, 0x2C, |
| ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); |
| return -2; |
| } |
| |
| /* transport_generic_cmd_sequencer(): |
| * |
| * Generic Command Sequencer that should work for most DAS transport |
| * drivers. |
| * |
| * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD |
| * RX Thread. |
| * |
| * FIXME: Need to support other SCSI OPCODES where as well. |
| */ |
| static int transport_generic_cmd_sequencer( |
| struct se_cmd *cmd, |
| unsigned char *cdb) |
| { |
| struct se_device *dev = SE_DEV(cmd); |
| struct se_subsystem_dev *su_dev = dev->se_sub_dev; |
| int ret = 0, sector_ret = 0, passthrough; |
| u32 sectors = 0, size = 0, pr_reg_type = 0; |
| u16 service_action; |
| u8 alua_ascq = 0; |
| /* |
| * Check for an existing UNIT ATTENTION condition |
| */ |
| if (core_scsi3_ua_check(cmd, cdb) < 0) { |
| cmd->transport_wait_for_tasks = |
| &transport_nop_wait_for_tasks; |
| cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; |
| cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION; |
| return -2; |
| } |
| /* |
| * Check status of Asymmetric Logical Unit Assignment port |
| */ |
| ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq); |
| if (ret != 0) { |
| cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; |
| /* |
| * Set SCSI additional sense code (ASC) to 'LUN Not Accessible'; |
| * The ALUA additional sense code qualifier (ASCQ) is determined |
| * by the ALUA primary or secondary access state.. |
| */ |
| if (ret > 0) { |
| #if 0 |
| printk(KERN_INFO "[%s]: ALUA TG Port not available," |
| " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n", |
| CMD_TFO(cmd)->get_fabric_name(), alua_ascq); |
| #endif |
| transport_set_sense_codes(cmd, 0x04, alua_ascq); |
| cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; |
| cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY; |
| return -2; |
| } |
| goto out_invalid_cdb_field; |
| } |
| /* |
| * Check status for SPC-3 Persistent Reservations |
| */ |
| if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) { |
| if (T10_PR_OPS(su_dev)->t10_seq_non_holder( |
| cmd, cdb, pr_reg_type) != 0) |
| return transport_handle_reservation_conflict(cmd); |
| /* |
| * This means the CDB is allowed for the SCSI Initiator port |
| * when said port is *NOT* holding the legacy SPC-2 or |
| * SPC-3 Persistent Reservation. |
| */ |
| } |
| |
| switch (cdb[0]) { |
| case READ_6: |
| sectors = transport_get_sectors_6(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| cmd->transport_split_cdb = &split_cdb_XX_6; |
| T_TASK(cmd)->t_task_lba = transport_lba_21(cdb); |
| cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; |
| break; |
| case READ_10: |
| sectors = transport_get_sectors_10(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| cmd->transport_split_cdb = &split_cdb_XX_10; |
| T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); |
| cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; |
| break; |
| case READ_12: |
| sectors = transport_get_sectors_12(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| cmd->transport_split_cdb = &split_cdb_XX_12; |
| T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); |
| cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; |
| break; |
| case READ_16: |
| sectors = transport_get_sectors_16(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| cmd->transport_split_cdb = &split_cdb_XX_16; |
| T_TASK(cmd)->t_task_lba = transport_lba_64(cdb); |
| cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; |
| break; |
| case WRITE_6: |
| sectors = transport_get_sectors_6(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| cmd->transport_split_cdb = &split_cdb_XX_6; |
| T_TASK(cmd)->t_task_lba = transport_lba_21(cdb); |
| cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; |
| break; |
| case WRITE_10: |
| sectors = transport_get_sectors_10(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| cmd->transport_split_cdb = &split_cdb_XX_10; |
| T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); |
| T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); |
| cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; |
| break; |
| case WRITE_12: |
| sectors = transport_get_sectors_12(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| cmd->transport_split_cdb = &split_cdb_XX_12; |
| T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); |
| T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); |
| cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; |
| break; |
| case WRITE_16: |
| sectors = transport_get_sectors_16(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| cmd->transport_split_cdb = &split_cdb_XX_16; |
| T_TASK(cmd)->t_task_lba = transport_lba_64(cdb); |
| T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); |
| cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; |
| break; |
| case XDWRITEREAD_10: |
| if ((cmd->data_direction != DMA_TO_DEVICE) || |
| !(T_TASK(cmd)->t_tasks_bidi)) |
| goto out_invalid_cdb_field; |
| sectors = transport_get_sectors_10(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| cmd->transport_split_cdb = &split_cdb_XX_10; |
| T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); |
| cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; |
| passthrough = (TRANSPORT(dev)->transport_type == |
| TRANSPORT_PLUGIN_PHBA_PDEV); |
| /* |
| * Skip the remaining assignments for TCM/PSCSI passthrough |
| */ |
| if (passthrough) |
| break; |
| /* |
| * Setup BIDI XOR callback to be run during transport_generic_complete_ok() |
| */ |
| cmd->transport_complete_callback = &transport_xor_callback; |
| T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); |
| break; |
| case VARIABLE_LENGTH_CMD: |
| service_action = get_unaligned_be16(&cdb[8]); |
| /* |
| * Determine if this is TCM/PSCSI device and we should disable |
| * internal emulation for this CDB. |
| */ |
| passthrough = (TRANSPORT(dev)->transport_type == |
| TRANSPORT_PLUGIN_PHBA_PDEV); |
| |
| switch (service_action) { |
| case XDWRITEREAD_32: |
| sectors = transport_get_sectors_32(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| /* |
| * Use WRITE_32 and READ_32 opcodes for the emulated |
| * XDWRITE_READ_32 logic. |
| */ |
| cmd->transport_split_cdb = &split_cdb_XX_32; |
| T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb); |
| cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; |
| |
| /* |
| * Skip the remaining assignments for TCM/PSCSI passthrough |
| */ |
| if (passthrough) |
| break; |
| |
| /* |
| * Setup BIDI XOR callback to be run during |
| * transport_generic_complete_ok() |
| */ |
| cmd->transport_complete_callback = &transport_xor_callback; |
| T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8); |
| break; |
| case WRITE_SAME_32: |
| sectors = transport_get_sectors_32(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]); |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; |
| |
| /* |
| * Skip the remaining assignments for TCM/PSCSI passthrough |
| */ |
| if (passthrough) |
| break; |
| |
| if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) { |
| printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA" |
| " bits not supported for Block Discard" |
| " Emulation\n"); |
| goto out_invalid_cdb_field; |
| } |
| /* |
| * Currently for the emulated case we only accept |
| * tpws with the UNMAP=1 bit set. |
| */ |
| if (!(cdb[10] & 0x08)) { |
| printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not" |
| " supported for Block Discard Emulation\n"); |
| goto out_invalid_cdb_field; |
| } |
| break; |
| default: |
| printk(KERN_ERR "VARIABLE_LENGTH_CMD service action" |
| " 0x%04x not supported\n", service_action); |
| goto out_unsupported_cdb; |
| } |
| break; |
| case 0xa3: |
| if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) { |
| /* MAINTENANCE_IN from SCC-2 */ |
| /* |
| * Check for emulated MI_REPORT_TARGET_PGS. |
| */ |
| if (cdb[1] == MI_REPORT_TARGET_PGS) { |
| cmd->transport_emulate_cdb = |
| (T10_ALUA(su_dev)->alua_type == |
| SPC3_ALUA_EMULATED) ? |
| &core_emulate_report_target_port_groups : |
| NULL; |
| } |
| size = (cdb[6] << 24) | (cdb[7] << 16) | |
| (cdb[8] << 8) | cdb[9]; |
| } else { |
| /* GPCMD_SEND_KEY from multi media commands */ |
| size = (cdb[8] << 8) + cdb[9]; |
| } |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case MODE_SELECT: |
| size = cdb[4]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; |
| break; |
| case MODE_SELECT_10: |
| size = (cdb[7] << 8) + cdb[8]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; |
| break; |
| case MODE_SENSE: |
| size = cdb[4]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case MODE_SENSE_10: |
| case GPCMD_READ_BUFFER_CAPACITY: |
| case GPCMD_SEND_OPC: |
| case LOG_SELECT: |
| case LOG_SENSE: |
| size = (cdb[7] << 8) + cdb[8]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case READ_BLOCK_LIMITS: |
| size = READ_BLOCK_LEN; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case GPCMD_GET_CONFIGURATION: |
| case GPCMD_READ_FORMAT_CAPACITIES: |
| case GPCMD_READ_DISC_INFO: |
| case GPCMD_READ_TRACK_RZONE_INFO: |
| size = (cdb[7] << 8) + cdb[8]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; |
| break; |
| case PERSISTENT_RESERVE_IN: |
| case PERSISTENT_RESERVE_OUT: |
| cmd->transport_emulate_cdb = |
| (T10_RES(su_dev)->res_type == |
| SPC3_PERSISTENT_RESERVATIONS) ? |
| &core_scsi3_emulate_pr : NULL; |
| size = (cdb[7] << 8) + cdb[8]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case GPCMD_MECHANISM_STATUS: |
| case GPCMD_READ_DVD_STRUCTURE: |
| size = (cdb[8] << 8) + cdb[9]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; |
| break; |
| case READ_POSITION: |
| size = READ_POSITION_LEN; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case 0xa4: |
| if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) { |
| /* MAINTENANCE_OUT from SCC-2 |
| * |
| * Check for emulated MO_SET_TARGET_PGS. |
| */ |
| if (cdb[1] == MO_SET_TARGET_PGS) { |
| cmd->transport_emulate_cdb = |
| (T10_ALUA(su_dev)->alua_type == |
| SPC3_ALUA_EMULATED) ? |
| &core_emulate_set_target_port_groups : |
| NULL; |
| } |
| |
| size = (cdb[6] << 24) | (cdb[7] << 16) | |
| (cdb[8] << 8) | cdb[9]; |
| } else { |
| /* GPCMD_REPORT_KEY from multi media commands */ |
| size = (cdb[8] << 8) + cdb[9]; |
| } |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case INQUIRY: |
| size = (cdb[3] << 8) + cdb[4]; |
| /* |
| * Do implict HEAD_OF_QUEUE processing for INQUIRY. |
| * See spc4r17 section 5.3 |
| */ |
| if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) |
| cmd->sam_task_attr = MSG_HEAD_TAG; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case READ_BUFFER: |
| size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case READ_CAPACITY: |
| size = READ_CAP_LEN; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case READ_MEDIA_SERIAL_NUMBER: |
| case SECURITY_PROTOCOL_IN: |
| case SECURITY_PROTOCOL_OUT: |
| size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case SERVICE_ACTION_IN: |
| case ACCESS_CONTROL_IN: |
| case ACCESS_CONTROL_OUT: |
| case EXTENDED_COPY: |
| case READ_ATTRIBUTE: |
| case RECEIVE_COPY_RESULTS: |
| case WRITE_ATTRIBUTE: |
| size = (cdb[10] << 24) | (cdb[11] << 16) | |
| (cdb[12] << 8) | cdb[13]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case RECEIVE_DIAGNOSTIC: |
| case SEND_DIAGNOSTIC: |
| size = (cdb[3] << 8) | cdb[4]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */ |
| #if 0 |
| case GPCMD_READ_CD: |
| sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; |
| size = (2336 * sectors); |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| #endif |
| case READ_TOC: |
| size = cdb[8]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case REQUEST_SENSE: |
| size = cdb[4]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case READ_ELEMENT_STATUS: |
| size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case WRITE_BUFFER: |
| size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case RESERVE: |
| case RESERVE_10: |
| /* |
| * The SPC-2 RESERVE does not contain a size in the SCSI CDB. |
| * Assume the passthrough or $FABRIC_MOD will tell us about it. |
| */ |
| if (cdb[0] == RESERVE_10) |
| size = (cdb[7] << 8) | cdb[8]; |
| else |
| size = cmd->data_length; |
| |
| /* |
| * Setup the legacy emulated handler for SPC-2 and |
| * >= SPC-3 compatible reservation handling (CRH=1) |
| * Otherwise, we assume the underlying SCSI logic is |
| * is running in SPC_PASSTHROUGH, and wants reservations |
| * emulation disabled. |
| */ |
| cmd->transport_emulate_cdb = |
| (T10_RES(su_dev)->res_type != |
| SPC_PASSTHROUGH) ? |
| &core_scsi2_emulate_crh : NULL; |
| cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; |
| break; |
| case RELEASE: |
| case RELEASE_10: |
| /* |
| * The SPC-2 RELEASE does not contain a size in the SCSI CDB. |
| * Assume the passthrough or $FABRIC_MOD will tell us about it. |
| */ |
| if (cdb[0] == RELEASE_10) |
| size = (cdb[7] << 8) | cdb[8]; |
| else |
| size = cmd->data_length; |
| |
| cmd->transport_emulate_cdb = |
| (T10_RES(su_dev)->res_type != |
| SPC_PASSTHROUGH) ? |
| &core_scsi2_emulate_crh : NULL; |
| cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; |
| break; |
| case SYNCHRONIZE_CACHE: |
| case 0x91: /* SYNCHRONIZE_CACHE_16: */ |
| /* |
| * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE |
| */ |
| if (cdb[0] == SYNCHRONIZE_CACHE) { |
| sectors = transport_get_sectors_10(cdb, cmd, §or_ret); |
| T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); |
| } else { |
| sectors = transport_get_sectors_16(cdb, cmd, §or_ret); |
| T_TASK(cmd)->t_task_lba = transport_lba_64(cdb); |
| } |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| |
| size = transport_get_size(sectors, cdb, cmd); |
| cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; |
| |
| /* |
| * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb() |
| */ |
| if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) |
| break; |
| /* |
| * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation |
| * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks() |
| */ |
| cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC; |
| /* |
| * Check to ensure that LBA + Range does not exceed past end of |
| * device. |
| */ |
| if (transport_get_sectors(cmd) < 0) |
| goto out_invalid_cdb_field; |
| break; |
| case UNMAP: |
| size = get_unaligned_be16(&cdb[7]); |
| passthrough = (TRANSPORT(dev)->transport_type == |
| TRANSPORT_PLUGIN_PHBA_PDEV); |
| /* |
| * Determine if the received UNMAP used to for direct passthrough |
| * into Linux/SCSI with struct request via TCM/pSCSI or we are |
| * signaling the use of internal transport_generic_unmap() emulation |
| * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO |
| * subsystem plugin backstores. |
| */ |
| if (!(passthrough)) |
| cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP; |
| |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| case WRITE_SAME_16: |
| sectors = transport_get_sectors_16(cdb, cmd, §or_ret); |
| if (sector_ret) |
| goto out_unsupported_cdb; |
| size = transport_get_size(sectors, cdb, cmd); |
| T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]); |
| passthrough = (TRANSPORT(dev)->transport_type == |
| TRANSPORT_PLUGIN_PHBA_PDEV); |
| /* |
| * Determine if the received WRITE_SAME_16 is used to for direct |
| * passthrough into Linux/SCSI with struct request via TCM/pSCSI |
| * or we are signaling the use of internal WRITE_SAME + UNMAP=1 |
| * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and |
| * TCM/FILEIO subsystem plugin backstores. |
| */ |
| if (!(passthrough)) { |
| if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) { |
| printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA" |
| " bits not supported for Block Discard" |
| " Emulation\n"); |
| goto out_invalid_cdb_field; |
| } |
| /* |
| * Currently for the emulated case we only accept |
| * tpws with the UNMAP=1 bit set. |
| */ |
| if (!(cdb[1] & 0x08)) { |
| printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not " |
| " supported for Block Discard Emulation\n"); |
| goto out_invalid_cdb_field; |
| } |
| } |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; |
| break; |
| case ALLOW_MEDIUM_REMOVAL: |
| case GPCMD_CLOSE_TRACK: |
| case ERASE: |
| case INITIALIZE_ELEMENT_STATUS: |
| case GPCMD_LOAD_UNLOAD: |
| case REZERO_UNIT: |
| case SEEK_10: |
| case GPCMD_SET_SPEED: |
| case SPACE: |
| case START_STOP: |
| case TEST_UNIT_READY: |
| case VERIFY: |
| case WRITE_FILEMARKS: |
| case MOVE_MEDIUM: |
| cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; |
| break; |
| case REPORT_LUNS: |
| cmd->transport_emulate_cdb = |
| &transport_core_report_lun_response; |
| size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; |
| /* |
| * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS |
| * See spc4r17 section 5.3 |
| */ |
| if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) |
| cmd->sam_task_attr = MSG_HEAD_TAG; |
| cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; |
| break; |
| default: |
| printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode" |
| " 0x%02x, sending CHECK_CONDITION.\n", |
| CMD_TFO(cmd)->get_fabric_name(), cdb[0]); |
| cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; |
| goto out_unsupported_cdb; |
| } |
| |
| if (size != cmd->data_length) { |
| printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:" |
| " %u does not match SCSI CDB Length: %u for SAM Opcode:" |
| " 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(), |
| cmd->data_length, size, cdb[0]); |
| |
| cmd->cmd_spdtl = size; |
| |
| if (cmd->data_direction == DMA_TO_DEVICE) { |
| printk(KERN_ERR "Rejecting underflow/overflow" |
| " WRITE data\n"); |
| goto out_invalid_cdb_field; |
| } |
| /* |
| * Reject READ_* or WRITE_* with overflow/underflow for |
| * type SCF_SCSI_DATA_SG_IO_CDB. |
| */ |
| if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512)) { |
| printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op" |
| " CDB on non 512-byte sector setup subsystem" |
| " plugin: %s\n", TRANSPORT(dev)->name); |
| /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ |
| goto out_invalid_cdb_field; |
| } |
| |
| if (size > cmd->data_length) { |
| cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; |
| cmd->residual_count = (size - cmd->data_length); |
| } else { |
| cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; |
| cmd->residual_count = (cmd->data_length - size); |
| } |
| cmd->data_length = size; |
| } |
| |
| transport_set_supported_SAM_opcode(cmd); |
| return ret; |
| |
| out_unsupported_cdb: |
| cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; |
| cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; |
| return -2; |
| out_invalid_cdb_field: |
| cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; |
| cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; |
| return -2; |
| } |
| |
| static inline void transport_release_tasks(struct se_cmd *); |
| |
| /* |
| * This function will copy a contiguous *src buffer into a destination |
| * struct scatterlist array. |
| */ |
| static void transport_memcpy_write_contig( |
| struct se_cmd *cmd, |
| struct scatterlist *sg_d, |
| unsigned char *src) |
| { |
| u32 i = 0, length = 0, total_length = cmd->data_length; |
| void *dst; |
| |
| while (total_length) { |
| length = sg_d[i].length; |
| |
| if (length > total_length) |
| length = total_length; |
| |
| dst = sg_virt(&sg_d[i]); |
| |
| memcpy(dst, src, length); |
| |
| if (!(total_length -= length)) |
| return; |
| |
| src += length; |
| i++; |
| } |
| } |
| |
| /* |
| * This function will copy a struct scatterlist array *sg_s into a destination |
| * contiguous *dst buffer. |
| */ |
| static void transport_memcpy_read_contig( |
| struct se_cmd *cmd, |
| unsigned char *dst, |
| struct scatterlist *sg_s) |
| { |
| u32 i = 0, length = 0, total_length = cmd->data_length; |
| void *src; |
| |
| while (total_length) { |
| length = sg_s[i].length; |
| |
| if (length > total_length) |
| length = total_length; |
| |
| src = sg_virt(&sg_s[i]); |
| |
| memcpy(dst, src, length); |
| |
| if (!(total_length -= length)) |
| return; |
| |
| dst += length; |
| i++; |
| } |
| } |
| |
| static void transport_memcpy_se_mem_read_contig( |
| struct se_cmd *cmd, |
| unsigned char *dst, |
| struct list_head *se_mem_list) |
| { |
| struct se_mem *se_mem; |
| void *src; |
| u32 length = 0, total_length = cmd->data_length; |
| |
| list_for_each_entry(se_mem, se_mem_list, se_list) { |
| length = se_mem->se_len; |
| |
| if (length > total_length) |
| length = total_length; |
| |
| src = page_address(se_mem->se_page) + se_mem->se_off; |
| |
| memcpy(dst, src, length); |
| |
| if (!(total_length -= length)) |
| return; |
| |
| dst += length; |
| } |
| } |
| |
| /* |
| * Called from transport_generic_complete_ok() and |
| * transport_generic_request_failure() to determine which dormant/delayed |
| * and ordered cmds need to have their tasks added to the execution queue. |
| */ |
| static void transport_complete_task_attr(struct se_cmd *cmd) |
| { |
| struct se_device *dev = SE_DEV(cmd); |
| struct se_cmd *cmd_p, *cmd_tmp; |
| int new_active_tasks = 0; |
| |
| if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { |
| atomic_dec(&dev->simple_cmds); |
| smp_mb__after_atomic_dec(); |
| dev->dev_cur_ordered_id++; |
| DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for" |
| " SIMPLE: %u\n", dev->dev_cur_ordered_id, |
| cmd->se_ordered_id); |
| } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { |
| atomic_dec(&dev->dev_hoq_count); |
| smp_mb__after_atomic_dec(); |
| dev->dev_cur_ordered_id++; |
| DEBUG_STA("Incremented dev_cur_ordered_id: %u for" |
| " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, |
| cmd->se_ordered_id); |
| } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { |
| spin_lock(&dev->ordered_cmd_lock); |
| list_del(&cmd->se_ordered_list); |
| atomic_dec(&dev->dev_ordered_sync); |
| smp_mb__after_atomic_dec(); |
| spin_unlock(&dev->ordered_cmd_lock); |
| |
| dev->dev_cur_ordered_id++; |
| DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:" |
| " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); |
| } |
| /* |
| * Process all commands up to the last received |
| * ORDERED task attribute which requires another blocking |
| * boundary |
| */ |
| spin_lock(&dev->delayed_cmd_lock); |
| list_for_each_entry_safe(cmd_p, cmd_tmp, |
| &dev->delayed_cmd_list, se_delayed_list) { |
| |
| list_del(&cmd_p->se_delayed_list); |
| spin_unlock(&dev->delayed_cmd_lock); |
| |
| DEBUG_STA("Calling add_tasks() for" |
| " cmd_p: 0x%02x Task Attr: 0x%02x" |
| " Dormant -> Active, se_ordered_id: %u\n", |
| T_TASK(cmd_p)->t_task_cdb[0], |
| cmd_p->sam_task_attr, cmd_p->se_ordered_id); |
| |
| transport_add_tasks_from_cmd(cmd_p); |
| new_active_tasks++; |
| |
| spin_lock(&dev->delayed_cmd_lock); |
| if (cmd_p->sam_task_attr == MSG_ORDERED_TAG) |
| break; |
| } |
| spin_unlock(&dev->delayed_cmd_lock); |
| /* |
| * If new tasks have become active, wake up the transport thread |
| * to do the processing of the Active tasks. |
| */ |
| if (new_active_tasks != 0) |
| wake_up_interruptible(&dev->dev_queue_obj->thread_wq); |
| } |
| |
| static void transport_generic_complete_ok(struct se_cmd *cmd) |
| { |
| int reason = 0; |
| /* |
| * Check if we need to move delayed/dormant tasks from cmds on the |
| * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task |
| * Attribute. |
| */ |
| if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) |
| transport_complete_task_attr(cmd); |
| /* |
| * Check if we need to retrieve a sense buffer from |
| * the struct se_cmd in question. |
| */ |
| if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { |
| if (transport_get_sense_data(cmd) < 0) |
| reason = TCM_NON_EXISTENT_LUN; |
| |
| /* |
| * Only set when an struct se_task->task_scsi_status returned |
| * a non GOOD status. |
| */ |
| if (cmd->scsi_status) { |
| transport_send_check_condition_and_sense( |
| cmd, reason, 1); |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop_to_fabric(cmd); |
| return; |
| } |
| } |
| /* |
| * Check for a callback, used by amongst other things |
| * XDWRITE_READ_10 emulation. |
| */ |
| if (cmd->transport_complete_callback) |
| cmd->transport_complete_callback(cmd); |
| |
| switch (cmd->data_direction) { |
| case DMA_FROM_DEVICE: |
| spin_lock(&cmd->se_lun->lun_sep_lock); |
| if (SE_LUN(cmd)->lun_sep) { |
| SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets += |
| cmd->data_length; |
| } |
| spin_unlock(&cmd->se_lun->lun_sep_lock); |
| /* |
| * If enabled by TCM fabirc module pre-registered SGL |
| * memory, perform the memcpy() from the TCM internal |
| * contigious buffer back to the original SGL. |
| */ |
| if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG) |
| transport_memcpy_write_contig(cmd, |
| T_TASK(cmd)->t_task_pt_sgl, |
| T_TASK(cmd)->t_task_buf); |
| |
| CMD_TFO(cmd)->queue_data_in(cmd); |
| break; |
| case DMA_TO_DEVICE: |
| spin_lock(&cmd->se_lun->lun_sep_lock); |
| if (SE_LUN(cmd)->lun_sep) { |
| SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets += |
| cmd->data_length; |
| } |
| spin_unlock(&cmd->se_lun->lun_sep_lock); |
| /* |
| * Check if we need to send READ payload for BIDI-COMMAND |
| */ |
| if (T_TASK(cmd)->t_mem_bidi_list != NULL) { |
| spin_lock(&cmd->se_lun->lun_sep_lock); |
| if (SE_LUN(cmd)->lun_sep) { |
| SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets += |
| cmd->data_length; |
| } |
| spin_unlock(&cmd->se_lun->lun_sep_lock); |
| CMD_TFO(cmd)->queue_data_in(cmd); |
| break; |
| } |
| /* Fall through for DMA_TO_DEVICE */ |
| case DMA_NONE: |
| CMD_TFO(cmd)->queue_status(cmd); |
| break; |
| default: |
| break; |
| } |
| |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop_to_fabric(cmd); |
| } |
| |
| static void transport_free_dev_tasks(struct se_cmd *cmd) |
| { |
| struct se_task *task, *task_tmp; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| list_for_each_entry_safe(task, task_tmp, |
| &T_TASK(cmd)->t_task_list, t_list) { |
| if (atomic_read(&task->task_active)) |
| continue; |
| |
| kfree(task->task_sg_bidi); |
| kfree(task->task_sg); |
| |
| list_del(&task->t_list); |
| |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| if (task->se_dev) |
| TRANSPORT(task->se_dev)->free_task(task); |
| else |
| printk(KERN_ERR "task[%u] - task->se_dev is NULL\n", |
| task->task_no); |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| } |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| } |
| |
| static inline void transport_free_pages(struct se_cmd *cmd) |
| { |
| struct se_mem *se_mem, *se_mem_tmp; |
| int free_page = 1; |
| |
| if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) |
| free_page = 0; |
| if (cmd->se_dev->transport->do_se_mem_map) |
| free_page = 0; |
| |
| if (T_TASK(cmd)->t_task_buf) { |
| kfree(T_TASK(cmd)->t_task_buf); |
| T_TASK(cmd)->t_task_buf = NULL; |
| return; |
| } |
| |
| /* |
| * Caller will handle releasing of struct se_mem. |
| */ |
| if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC) |
| return; |
| |
| if (!(T_TASK(cmd)->t_tasks_se_num)) |
| return; |
| |
| list_for_each_entry_safe(se_mem, se_mem_tmp, |
| T_TASK(cmd)->t_mem_list, se_list) { |
| /* |
| * We only release call __free_page(struct se_mem->se_page) when |
| * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use, |
| */ |
| if (free_page) |
| __free_page(se_mem->se_page); |
| |
| list_del(&se_mem->se_list); |
| kmem_cache_free(se_mem_cache, se_mem); |
| } |
| |
| if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) { |
| list_for_each_entry_safe(se_mem, se_mem_tmp, |
| T_TASK(cmd)->t_mem_bidi_list, se_list) { |
| /* |
| * We only release call __free_page(struct se_mem->se_page) when |
| * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use, |
| */ |
| if (free_page) |
| __free_page(se_mem->se_page); |
| |
| list_del(&se_mem->se_list); |
| kmem_cache_free(se_mem_cache, se_mem); |
| } |
| } |
| |
| kfree(T_TASK(cmd)->t_mem_bidi_list); |
| T_TASK(cmd)->t_mem_bidi_list = NULL; |
| kfree(T_TASK(cmd)->t_mem_list); |
| T_TASK(cmd)->t_mem_list = NULL; |
| T_TASK(cmd)->t_tasks_se_num = 0; |
| } |
| |
| static inline void transport_release_tasks(struct se_cmd *cmd) |
| { |
| transport_free_dev_tasks(cmd); |
| } |
| |
| static inline int transport_dec_and_check(struct se_cmd *cmd) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| if (atomic_read(&T_TASK(cmd)->t_fe_count)) { |
| if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, |
| flags); |
| return 1; |
| } |
| } |
| |
| if (atomic_read(&T_TASK(cmd)->t_se_count)) { |
| if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, |
| flags); |
| return 1; |
| } |
| } |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| return 0; |
| } |
| |
| static void transport_release_fe_cmd(struct se_cmd *cmd) |
| { |
| unsigned long flags; |
| |
| if (transport_dec_and_check(cmd)) |
| return; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| goto free_pages; |
| } |
| atomic_set(&T_TASK(cmd)->transport_dev_active, 0); |
| transport_all_task_dev_remove_state(cmd); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| transport_release_tasks(cmd); |
| free_pages: |
| transport_free_pages(cmd); |
| transport_free_se_cmd(cmd); |
| CMD_TFO(cmd)->release_cmd_direct(cmd); |
| } |
| |
| static int transport_generic_remove( |
| struct se_cmd *cmd, |
| int release_to_pool, |
| int session_reinstatement) |
| { |
| unsigned long flags; |
| |
| if (!(T_TASK(cmd))) |
| goto release_cmd; |
| |
| if (transport_dec_and_check(cmd)) { |
| if (session_reinstatement) { |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| transport_all_task_dev_remove_state(cmd); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, |
| flags); |
| } |
| return 1; |
| } |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| goto free_pages; |
| } |
| atomic_set(&T_TASK(cmd)->transport_dev_active, 0); |
| transport_all_task_dev_remove_state(cmd); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| transport_release_tasks(cmd); |
| free_pages: |
| transport_free_pages(cmd); |
| |
| release_cmd: |
| if (release_to_pool) { |
| transport_release_cmd_to_pool(cmd); |
| } else { |
| transport_free_se_cmd(cmd); |
| CMD_TFO(cmd)->release_cmd_direct(cmd); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map |
| * @cmd: Associated se_cmd descriptor |
| * @mem: SGL style memory for TCM WRITE / READ |
| * @sg_mem_num: Number of SGL elements |
| * @mem_bidi_in: SGL style memory for TCM BIDI READ |
| * @sg_mem_bidi_num: Number of BIDI READ SGL elements |
| * |
| * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage |
| * of parameters. |
| */ |
| int transport_generic_map_mem_to_cmd( |
| struct se_cmd *cmd, |
| struct scatterlist *mem, |
| u32 sg_mem_num, |
| struct scatterlist *mem_bidi_in, |
| u32 sg_mem_bidi_num) |
| { |
| u32 se_mem_cnt_out = 0; |
| int ret; |
| |
| if (!(mem) || !(sg_mem_num)) |
| return 0; |
| /* |
| * Passed *mem will contain a list_head containing preformatted |
| * struct se_mem elements... |
| */ |
| if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) { |
| if ((mem_bidi_in) || (sg_mem_bidi_num)) { |
| printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported" |
| " with BIDI-COMMAND\n"); |
| return -ENOSYS; |
| } |
| |
| T_TASK(cmd)->t_mem_list = (struct list_head *)mem; |
| T_TASK(cmd)->t_tasks_se_num = sg_mem_num; |
| cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC; |
| return 0; |
| } |
| /* |
| * Otherwise, assume the caller is passing a struct scatterlist |
| * array from include/linux/scatterlist.h |
| */ |
| if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) || |
| (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) { |
| /* |
| * For CDB using TCM struct se_mem linked list scatterlist memory |
| * processed into a TCM struct se_subsystem_dev, we do the mapping |
| * from the passed physical memory to struct se_mem->se_page here. |
| */ |
| T_TASK(cmd)->t_mem_list = transport_init_se_mem_list(); |
| if (!(T_TASK(cmd)->t_mem_list)) |
| return -ENOMEM; |
| |
| ret = transport_map_sg_to_mem(cmd, |
| T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out); |
| if (ret < 0) |
| return -ENOMEM; |
| |
| T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out; |
| /* |
| * Setup BIDI READ list of struct se_mem elements |
| */ |
| if ((mem_bidi_in) && (sg_mem_bidi_num)) { |
| T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list(); |
| if (!(T_TASK(cmd)->t_mem_bidi_list)) { |
| kfree(T_TASK(cmd)->t_mem_list); |
| return -ENOMEM; |
| } |
| se_mem_cnt_out = 0; |
| |
| ret = transport_map_sg_to_mem(cmd, |
| T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in, |
| &se_mem_cnt_out); |
| if (ret < 0) { |
| kfree(T_TASK(cmd)->t_mem_list); |
| return -ENOMEM; |
| } |
| |
| T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out; |
| } |
| cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; |
| |
| } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) { |
| if (mem_bidi_in || sg_mem_bidi_num) { |
| printk(KERN_ERR "BIDI-Commands not supported using " |
| "SCF_SCSI_CONTROL_NONSG_IO_CDB\n"); |
| return -ENOSYS; |
| } |
| /* |
| * For incoming CDBs using a contiguous buffer internall with TCM, |
| * save the passed struct scatterlist memory. After TCM storage object |
| * processing has completed for this struct se_cmd, TCM core will call |
| * transport_memcpy_[write,read]_contig() as necessary from |
| * transport_generic_complete_ok() and transport_write_pending() in order |
| * to copy the TCM buffer to/from the original passed *mem in SGL -> |
| * struct scatterlist format. |
| */ |
| cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG; |
| T_TASK(cmd)->t_task_pt_sgl = mem; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(transport_generic_map_mem_to_cmd); |
| |
| |
| static inline long long transport_dev_end_lba(struct se_device *dev) |
| { |
| return dev->transport->get_blocks(dev) + 1; |
| } |
| |
| static int transport_get_sectors(struct se_cmd *cmd) |
| { |
| struct se_device *dev = SE_DEV(cmd); |
| |
| T_TASK(cmd)->t_tasks_sectors = |
| (cmd->data_length / DEV_ATTRIB(dev)->block_size); |
| if (!(T_TASK(cmd)->t_tasks_sectors)) |
| T_TASK(cmd)->t_tasks_sectors = 1; |
| |
| if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK) |
| return 0; |
| |
| if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) > |
| transport_dev_end_lba(dev)) { |
| printk(KERN_ERR "LBA: %llu Sectors: %u exceeds" |
| " transport_dev_end_lba(): %llu\n", |
| T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors, |
| transport_dev_end_lba(dev)); |
| cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; |
| cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY; |
| return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS; |
| } |
| |
| return 0; |
| } |
| |
| static int transport_new_cmd_obj(struct se_cmd *cmd) |
| { |
| struct se_device *dev = SE_DEV(cmd); |
| u32 task_cdbs = 0, rc; |
| |
| if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) { |
| task_cdbs++; |
| T_TASK(cmd)->t_task_cdbs++; |
| } else { |
| int set_counts = 1; |
| |
| /* |
| * Setup any BIDI READ tasks and memory from |
| * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks |
| * are queued first for the non pSCSI passthrough case. |
| */ |
| if ((T_TASK(cmd)->t_mem_bidi_list != NULL) && |
| (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) { |
| rc = transport_generic_get_cdb_count(cmd, |
| T_TASK(cmd)->t_task_lba, |
| T_TASK(cmd)->t_tasks_sectors, |
| DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list, |
| set_counts); |
| if (!(rc)) { |
| cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; |
| cmd->scsi_sense_reason = |
| TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; |
| return PYX_TRANSPORT_LU_COMM_FAILURE; |
| } |
| set_counts = 0; |
| } |
| /* |
| * Setup the tasks and memory from T_TASK(cmd)->t_mem_list |
| * Note for BIDI transfers this will contain the WRITE payload |
| */ |
| task_cdbs = transport_generic_get_cdb_count(cmd, |
| T_TASK(cmd)->t_task_lba, |
| T_TASK(cmd)->t_tasks_sectors, |
| cmd->data_direction, T_TASK(cmd)->t_mem_list, |
| set_counts); |
| if (!(task_cdbs)) { |
| cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; |
| cmd->scsi_sense_reason = |
| TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; |
| return PYX_TRANSPORT_LU_COMM_FAILURE; |
| } |
| T_TASK(cmd)->t_task_cdbs += task_cdbs; |
| |
| #if 0 |
| printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:" |
| " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length, |
| T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors, |
| T_TASK(cmd)->t_task_cdbs); |
| #endif |
| } |
| |
| atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs); |
| atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs); |
| atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs); |
| return 0; |
| } |
| |
| static struct list_head *transport_init_se_mem_list(void) |
| { |
| struct list_head *se_mem_list; |
| |
| se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL); |
| if (!(se_mem_list)) { |
| printk(KERN_ERR "Unable to allocate memory for se_mem_list\n"); |
| return NULL; |
| } |
| INIT_LIST_HEAD(se_mem_list); |
| |
| return se_mem_list; |
| } |
| |
| static int |
| transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size) |
| { |
| unsigned char *buf; |
| struct se_mem *se_mem; |
| |
| T_TASK(cmd)->t_mem_list = transport_init_se_mem_list(); |
| if (!(T_TASK(cmd)->t_mem_list)) |
| return -ENOMEM; |
| |
| /* |
| * If the device uses memory mapping this is enough. |
| */ |
| if (cmd->se_dev->transport->do_se_mem_map) |
| return 0; |
| |
| /* |
| * Setup BIDI-COMMAND READ list of struct se_mem elements |
| */ |
| if (T_TASK(cmd)->t_tasks_bidi) { |
| T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list(); |
| if (!(T_TASK(cmd)->t_mem_bidi_list)) { |
| kfree(T_TASK(cmd)->t_mem_list); |
| return -ENOMEM; |
| } |
| } |
| |
| while (length) { |
| se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL); |
| if (!(se_mem)) { |
| printk(KERN_ERR "Unable to allocate struct se_mem\n"); |
| goto out; |
| } |
| |
| /* #warning FIXME Allocate contigous pages for struct se_mem elements */ |
| se_mem->se_page = alloc_pages(GFP_KERNEL, 0); |
| if (!(se_mem->se_page)) { |
| printk(KERN_ERR "alloc_pages() failed\n"); |
| goto out; |
| } |
| |
| buf = kmap_atomic(se_mem->se_page, KM_IRQ0); |
| if (!(buf)) { |
| printk(KERN_ERR "kmap_atomic() failed\n"); |
| goto out; |
| } |
| INIT_LIST_HEAD(&se_mem->se_list); |
| se_mem->se_len = (length > dma_size) ? dma_size : length; |
| memset(buf, 0, se_mem->se_len); |
| kunmap_atomic(buf, KM_IRQ0); |
| |
| list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list); |
| T_TASK(cmd)->t_tasks_se_num++; |
| |
| DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)" |
| " Offset(%u)\n", se_mem->se_page, se_mem->se_len, |
| se_mem->se_off); |
| |
| length -= se_mem->se_len; |
| } |
| |
| DEBUG_MEM("Allocated total struct se_mem elements(%u)\n", |
| T_TASK(cmd)->t_tasks_se_num); |
| |
| return 0; |
| out: |
| if (se_mem) |
| __free_pages(se_mem->se_page, 0); |
| kmem_cache_free(se_mem_cache, se_mem); |
| return -1; |
| } |
| |
| u32 transport_calc_sg_num( |
| struct se_task *task, |
| struct se_mem *in_se_mem, |
| u32 task_offset) |
| { |
| struct se_cmd *se_cmd = task->task_se_cmd; |
| struct se_device *se_dev = SE_DEV(se_cmd); |
| struct se_mem *se_mem = in_se_mem; |
| struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd); |
| u32 sg_length, task_size = task->task_size, task_sg_num_padded; |
| |
| while (task_size != 0) { |
| DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)" |
| " se_mem->se_off(%u) task_offset(%u)\n", |
| se_mem->se_page, se_mem->se_len, |
| se_mem->se_off, task_offset); |
| |
| if (task_offset == 0) { |
| if (task_size >= se_mem->se_len) { |
| sg_length = se_mem->se_len; |
| |
| if (!(list_is_last(&se_mem->se_list, |
| T_TASK(se_cmd)->t_mem_list))) |
| se_mem = list_entry(se_mem->se_list.next, |
| struct se_mem, se_list); |
| } else { |
| sg_length = task_size; |
| task_size -= sg_length; |
| goto next; |
| } |
| |
| DEBUG_SC("sg_length(%u) task_size(%u)\n", |
| sg_length, task_size); |
| } else { |
| if ((se_mem->se_len - task_offset) > task_size) { |
| sg_length = task_size; |
| task_size -= sg_length; |
| goto next; |
| } else { |
| sg_length = (se_mem->se_len - task_offset); |
| |
| if (!(list_is_last(&se_mem->se_list, |
| T_TASK(se_cmd)->t_mem_list))) |
| se_mem = list_entry(se_mem->se_list.next, |
| struct se_mem, se_list); |
| } |
| |
| DEBUG_SC("sg_length(%u) task_size(%u)\n", |
| sg_length, task_size); |
| |
| task_offset = 0; |
| } |
| task_size -= sg_length; |
| next: |
| DEBUG_SC("task[%u] - Reducing task_size to(%u)\n", |
| task->task_no, task_size); |
| |
| task->task_sg_num++; |
| } |
| /* |
| * Check if the fabric module driver is requesting that all |
| * struct se_task->task_sg[] be chained together.. If so, |
| * then allocate an extra padding SG entry for linking and |
| * marking the end of the chained SGL. |
| */ |
| if (tfo->task_sg_chaining) { |
| task_sg_num_padded = (task->task_sg_num + 1); |
| task->task_padded_sg = 1; |
| } else |
| task_sg_num_padded = task->task_sg_num; |
| |
| task->task_sg = kzalloc(task_sg_num_padded * |
| sizeof(struct scatterlist), GFP_KERNEL); |
| if (!(task->task_sg)) { |
| printk(KERN_ERR "Unable to allocate memory for" |
| " task->task_sg\n"); |
| return 0; |
| } |
| sg_init_table(&task->task_sg[0], task_sg_num_padded); |
| /* |
| * Setup task->task_sg_bidi for SCSI READ payload for |
| * TCM/pSCSI passthrough if present for BIDI-COMMAND |
| */ |
| if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) && |
| (TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) { |
| task->task_sg_bidi = kzalloc(task_sg_num_padded * |
| sizeof(struct scatterlist), GFP_KERNEL); |
| if (!(task->task_sg_bidi)) { |
| printk(KERN_ERR "Unable to allocate memory for" |
| " task->task_sg_bidi\n"); |
| return 0; |
| } |
| sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded); |
| } |
| /* |
| * For the chaining case, setup the proper end of SGL for the |
| * initial submission struct task into struct se_subsystem_api. |
| * This will be cleared later by transport_do_task_sg_chain() |
| */ |
| if (task->task_padded_sg) { |
| sg_mark_end(&task->task_sg[task->task_sg_num - 1]); |
| /* |
| * Added the 'if' check before marking end of bi-directional |
| * scatterlist (which gets created only in case of request |
| * (RD + WR). |
| */ |
| if (task->task_sg_bidi) |
| sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]); |
| } |
| |
| DEBUG_SC("Successfully allocated task->task_sg_num(%u)," |
| " task_sg_num_padded(%u)\n", task->task_sg_num, |
| task_sg_num_padded); |
| |
| return task->task_sg_num; |
| } |
| |
| static inline int transport_set_tasks_sectors_disk( |
| struct se_task *task, |
| struct se_device *dev, |
| unsigned long long lba, |
| u32 sectors, |
| int *max_sectors_set) |
| { |
| if ((lba + sectors) > transport_dev_end_lba(dev)) { |
| task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1); |
| |
| if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) { |
| task->task_sectors = DEV_ATTRIB(dev)->max_sectors; |
| *max_sectors_set = 1; |
| } |
| } else { |
| if (sectors > DEV_ATTRIB(dev)->max_sectors) { |
| task->task_sectors = DEV_ATTRIB(dev)->max_sectors; |
| *max_sectors_set = 1; |
| } else |
| task->task_sectors = sectors; |
| } |
| |
| return 0; |
| } |
| |
| static inline int transport_set_tasks_sectors_non_disk( |
| struct se_task *task, |
| struct se_device *dev, |
| unsigned long long lba, |
| u32 sectors, |
| int *max_sectors_set) |
| { |
| if (sectors > DEV_ATTRIB(dev)->max_sectors) { |
| task->task_sectors = DEV_ATTRIB(dev)->max_sectors; |
| *max_sectors_set = 1; |
| } else |
| task->task_sectors = sectors; |
| |
| return 0; |
| } |
| |
| static inline int transport_set_tasks_sectors( |
| struct se_task *task, |
| struct se_device *dev, |
| unsigned long long lba, |
| u32 sectors, |
| int *max_sectors_set) |
| { |
| return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ? |
| transport_set_tasks_sectors_disk(task, dev, lba, sectors, |
| max_sectors_set) : |
| transport_set_tasks_sectors_non_disk(task, dev, lba, sectors, |
| max_sectors_set); |
| } |
| |
| static int transport_map_sg_to_mem( |
| struct se_cmd *cmd, |
| struct list_head *se_mem_list, |
| void *in_mem, |
| u32 *se_mem_cnt) |
| { |
| struct se_mem *se_mem; |
| struct scatterlist *sg; |
| u32 sg_count = 1, cmd_size = cmd->data_length; |
| |
| if (!in_mem) { |
| printk(KERN_ERR "No source scatterlist\n"); |
| return -1; |
| } |
| sg = (struct scatterlist *)in_mem; |
| |
| while (cmd_size) { |
| se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL); |
| if (!(se_mem)) { |
| printk(KERN_ERR "Unable to allocate struct se_mem\n"); |
| return -1; |
| } |
| INIT_LIST_HEAD(&se_mem->se_list); |
| DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u" |
| " sg_page: %p offset: %d length: %d\n", cmd_size, |
| sg_page(sg), sg->offset, sg->length); |
| |
| se_mem->se_page = sg_page(sg); |
| se_mem->se_off = sg->offset; |
| |
| if (cmd_size > sg->length) { |
| se_mem->se_len = sg->length; |
| sg = sg_next(sg); |
| sg_count++; |
| } else |
| se_mem->se_len = cmd_size; |
| |
| cmd_size -= se_mem->se_len; |
| |
| DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n", |
| *se_mem_cnt, cmd_size); |
| DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n", |
| se_mem->se_page, se_mem->se_off, se_mem->se_len); |
| |
| list_add_tail(&se_mem->se_list, se_mem_list); |
| (*se_mem_cnt)++; |
| } |
| |
| DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)" |
| " struct se_mem\n", sg_count, *se_mem_cnt); |
| |
| if (sg_count != *se_mem_cnt) |
| BUG(); |
| |
| return 0; |
| } |
| |
| /* transport_map_mem_to_sg(): |
| * |
| * |
| */ |
| int transport_map_mem_to_sg( |
| struct se_task *task, |
| struct list_head *se_mem_list, |
| void *in_mem, |
| struct se_mem *in_se_mem, |
| struct se_mem **out_se_mem, |
| u32 *se_mem_cnt, |
| u32 *task_offset) |
| { |
| struct se_cmd *se_cmd = task->task_se_cmd; |
| struct se_mem *se_mem = in_se_mem; |
| struct scatterlist *sg = (struct scatterlist *)in_mem; |
| u32 task_size = task->task_size, sg_no = 0; |
| |
| if (!sg) { |
| printk(KERN_ERR "Unable to locate valid struct" |
| " scatterlist pointer\n"); |
| return -1; |
| } |
| |
| while (task_size != 0) { |
| /* |
| * Setup the contigious array of scatterlists for |
| * this struct se_task. |
| */ |
| sg_assign_page(sg, se_mem->se_page); |
| |
| if (*task_offset == 0) { |
| sg->offset = se_mem->se_off; |
| |
| if (task_size >= se_mem->se_len) { |
| sg->length = se_mem->se_len; |
| |
| if (!(list_is_last(&se_mem->se_list, |
| T_TASK(se_cmd)->t_mem_list))) { |
| se_mem = list_entry(se_mem->se_list.next, |
| struct se_mem, se_list); |
| (*se_mem_cnt)++; |
| } |
| } else { |
| sg->length = task_size; |
| /* |
| * Determine if we need to calculate an offset |
| * into the struct se_mem on the next go around.. |
| */ |
| task_size -= sg->length; |
| if (!(task_size)) |
| *task_offset = sg->length; |
| |
| goto next; |
| } |
| |
| } else { |
| sg->offset = (*task_offset + se_mem->se_off); |
| |
| if ((se_mem->se_len - *task_offset) > task_size) { |
| sg->length = task_size; |
| /* |
| * Determine if we need to calculate an offset |
| * into the struct se_mem on the next go around.. |
| */ |
| task_size -= sg->length; |
| if (!(task_size)) |
| *task_offset += sg->length; |
| |
| goto next; |
| } else { |
| sg->length = (se_mem->se_len - *task_offset); |
| |
| if (!(list_is_last(&se_mem->se_list, |
| T_TASK(se_cmd)->t_mem_list))) { |
| se_mem = list_entry(se_mem->se_list.next, |
| struct se_mem, se_list); |
| (*se_mem_cnt)++; |
| } |
| } |
| |
| *task_offset = 0; |
| } |
| task_size -= sg->length; |
| next: |
| DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing" |
| " task_size to(%u), task_offset: %u\n", task->task_no, sg_no, |
| sg_page(sg), sg->length, sg->offset, task_size, *task_offset); |
| |
| sg_no++; |
| if (!(task_size)) |
| break; |
| |
| sg = sg_next(sg); |
| |
| if (task_size > se_cmd->data_length) |
| BUG(); |
| } |
| *out_se_mem = se_mem; |
| |
| DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)" |
| " SGs\n", task->task_no, *se_mem_cnt, sg_no); |
| |
| return 0; |
| } |
| |
| /* |
| * This function can be used by HW target mode drivers to create a linked |
| * scatterlist from all contiguously allocated struct se_task->task_sg[]. |
| * This is intended to be called during the completion path by TCM Core |
| * when struct target_core_fabric_ops->check_task_sg_chaining is enabled. |
| */ |
| void transport_do_task_sg_chain(struct se_cmd *cmd) |
| { |
| struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL; |
| struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL; |
| struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL; |
| struct se_task *task; |
| struct target_core_fabric_ops *tfo = CMD_TFO(cmd); |
| u32 task_sg_num = 0, sg_count = 0; |
| int i; |
| |
| if (tfo->task_sg_chaining == 0) { |
| printk(KERN_ERR "task_sg_chaining is diabled for fabric module:" |
| " %s\n", tfo->get_fabric_name()); |
| dump_stack(); |
| return; |
| } |
| /* |
| * Walk the struct se_task list and setup scatterlist chains |
| * for each contiguosly allocated struct se_task->task_sg[]. |
| */ |
| list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { |
| if (!(task->task_sg) || !(task->task_padded_sg)) |
| continue; |
| |
| if (sg_head && sg_link) { |
| sg_head_cur = &task->task_sg[0]; |
| sg_link_cur = &task->task_sg[task->task_sg_num]; |
| /* |
| * Either add chain or mark end of scatterlist |
| */ |
| if (!(list_is_last(&task->t_list, |
| &T_TASK(cmd)->t_task_list))) { |
| /* |
| * Clear existing SGL termination bit set in |
| * transport_calc_sg_num(), see sg_mark_end() |
| */ |
| sg_end_cur = &task->task_sg[task->task_sg_num - 1]; |
| sg_end_cur->page_link &= ~0x02; |
| |
| sg_chain(sg_head, task_sg_num, sg_head_cur); |
| sg_count += task->task_sg_num; |
| task_sg_num = (task->task_sg_num + 1); |
| } else { |
| sg_chain(sg_head, task_sg_num, sg_head_cur); |
| sg_count += task->task_sg_num; |
| task_sg_num = task->task_sg_num; |
| } |
| |
| sg_head = sg_head_cur; |
| sg_link = sg_link_cur; |
| continue; |
| } |
| sg_head = sg_first = &task->task_sg[0]; |
| sg_link = &task->task_sg[task->task_sg_num]; |
| /* |
| * Check for single task.. |
| */ |
| if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) { |
| /* |
| * Clear existing SGL termination bit set in |
| * transport_calc_sg_num(), see sg_mark_end() |
| */ |
| sg_end = &task->task_sg[task->task_sg_num - 1]; |
| sg_end->page_link &= ~0x02; |
| sg_count += task->task_sg_num; |
| task_sg_num = (task->task_sg_num + 1); |
| } else { |
| sg_count += task->task_sg_num; |
| task_sg_num = task->task_sg_num; |
| } |
| } |
| /* |
| * Setup the starting pointer and total t_tasks_sg_linked_no including |
| * padding SGs for linking and to mark the end. |
| */ |
| T_TASK(cmd)->t_tasks_sg_chained = sg_first; |
| T_TASK(cmd)->t_tasks_sg_chained_no = sg_count; |
| |
| DEBUG_CMD_M("Setup cmd: %p T_TASK(cmd)->t_tasks_sg_chained: %p and" |
| " t_tasks_sg_chained_no: %u\n", cmd, T_TASK(cmd)->t_tasks_sg_chained, |
| T_TASK(cmd)->t_tasks_sg_chained_no); |
| |
| for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg, |
| T_TASK(cmd)->t_tasks_sg_chained_no, i) { |
| |
| DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d, magic: 0x%08x\n", |
| i, sg, sg_page(sg), sg->length, sg->offset, sg->sg_magic); |
| if (sg_is_chain(sg)) |
| DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg); |
| if (sg_is_last(sg)) |
| DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg); |
| } |
| } |
| EXPORT_SYMBOL(transport_do_task_sg_chain); |
| |
| static int transport_do_se_mem_map( |
| struct se_device *dev, |
| struct se_task *task, |
| struct list_head *se_mem_list, |
| void *in_mem, |
| struct se_mem *in_se_mem, |
| struct se_mem **out_se_mem, |
| u32 *se_mem_cnt, |
| u32 *task_offset_in) |
| { |
| u32 task_offset = *task_offset_in; |
| int ret = 0; |
| /* |
| * se_subsystem_api_t->do_se_mem_map is used when internal allocation |
| * has been done by the transport plugin. |
| */ |
| if (TRANSPORT(dev)->do_se_mem_map) { |
| ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list, |
| in_mem, in_se_mem, out_se_mem, se_mem_cnt, |
| task_offset_in); |
| if (ret == 0) |
| T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt; |
| |
| return ret; |
| } |
| |
| BUG_ON(list_empty(se_mem_list)); |
| /* |
| * This is the normal path for all normal non BIDI and BIDI-COMMAND |
| * WRITE payloads.. If we need to do BIDI READ passthrough for |
| * TCM/pSCSI the first call to transport_do_se_mem_map -> |
| * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the |
| * allocation for task->task_sg_bidi, and the subsequent call to |
| * transport_do_se_mem_map() from transport_generic_get_cdb_count() |
| */ |
| if (!(task->task_sg_bidi)) { |
| /* |
| * Assume default that transport plugin speaks preallocated |
| * scatterlists. |
| */ |
| if (!(transport_calc_sg_num(task, in_se_mem, task_offset))) |
| return -1; |
| /* |
| * struct se_task->task_sg now contains the struct scatterlist array. |
| */ |
| return transport_map_mem_to_sg(task, se_mem_list, task->task_sg, |
| in_se_mem, out_se_mem, se_mem_cnt, |
| task_offset_in); |
| } |
| /* |
| * Handle the se_mem_list -> struct task->task_sg_bidi |
| * memory map for the extra BIDI READ payload |
| */ |
| return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi, |
| in_se_mem, out_se_mem, se_mem_cnt, |
| task_offset_in); |
| } |
| |
| static u32 transport_generic_get_cdb_count( |
| struct se_cmd *cmd, |
| unsigned long long lba, |
| u32 sectors, |
| enum dma_data_direction data_direction, |
| struct list_head *mem_list, |
| int set_counts) |
| { |
| unsigned char *cdb = NULL; |
| struct se_task *task; |
| struct se_mem *se_mem = NULL, *se_mem_lout = NULL; |
| struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL; |
| struct se_device *dev = SE_DEV(cmd); |
| int max_sectors_set = 0, ret; |
| u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0; |
| |
| if (!mem_list) { |
| printk(KERN_ERR "mem_list is NULL in transport_generic_get" |
| "_cdb_count()\n"); |
| return 0; |
| } |
| /* |
| * While using RAMDISK_DR backstores is the only case where |
| * mem_list will ever be empty at this point. |
| */ |
| if (!(list_empty(mem_list))) |
| se_mem = list_entry(mem_list->next, struct se_mem, se_list); |
| /* |
| * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to |
| * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation |
| */ |
| if ((T_TASK(cmd)->t_mem_bidi_list != NULL) && |
| !(list_empty(T_TASK(cmd)->t_mem_bidi_list)) && |
| (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) |
| se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next, |
| struct se_mem, se_list); |
| |
| while (sectors) { |
| DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n", |
| CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors, |
| transport_dev_end_lba(dev)); |
| |
| task = transport_generic_get_task(cmd, data_direction); |
| if (!(task)) |
| goto out; |
| |
| transport_set_tasks_sectors(task, dev, lba, sectors, |
| &max_sectors_set); |
| |
| task->task_lba = lba; |
| lba += task->task_sectors; |
| sectors -= task->task_sectors; |
| task->task_size = (task->task_sectors * |
| DEV_ATTRIB(dev)->block_size); |
| |
| cdb = TRANSPORT(dev)->get_cdb(task); |
| if ((cdb)) { |
| memcpy(cdb, T_TASK(cmd)->t_task_cdb, |
| scsi_command_size(T_TASK(cmd)->t_task_cdb)); |
| cmd->transport_split_cdb(task->task_lba, |
| &task->task_sectors, cdb); |
| } |
| |
| /* |
| * Perform the SE OBJ plugin and/or Transport plugin specific |
| * mapping for T_TASK(cmd)->t_mem_list. And setup the |
| * task->task_sg and if necessary task->task_sg_bidi |
| */ |
| ret = transport_do_se_mem_map(dev, task, mem_list, |
| NULL, se_mem, &se_mem_lout, &se_mem_cnt, |
| &task_offset_in); |
| if (ret < 0) |
| goto out; |
| |
| se_mem = se_mem_lout; |
| /* |
| * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi |
| * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI |
| * |
| * Note that the first call to transport_do_se_mem_map() above will |
| * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map() |
| * -> transport_calc_sg_num(), and the second here will do the |
| * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI. |
| */ |
| if (task->task_sg_bidi != NULL) { |
| ret = transport_do_se_mem_map(dev, task, |
| T_TASK(cmd)->t_mem_bidi_list, NULL, |
| se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt, |
| &task_offset_in); |
| if (ret < 0) |
| goto out; |
| |
| se_mem_bidi = se_mem_bidi_lout; |
| } |
| task_cdbs++; |
| |
| DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n", |
| task_cdbs, task->task_sg_num); |
| |
| if (max_sectors_set) { |
| max_sectors_set = 0; |
| continue; |
| } |
| |
| if (!sectors) |
| break; |
| } |
| |
| if (set_counts) { |
| atomic_inc(&T_TASK(cmd)->t_fe_count); |
| atomic_inc(&T_TASK(cmd)->t_se_count); |
| } |
| |
| DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n", |
| CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE) |
| ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs); |
| |
| return task_cdbs; |
| out: |
| return 0; |
| } |
| |
| static int |
| transport_map_control_cmd_to_task(struct se_cmd *cmd) |
| { |
| struct se_device *dev = SE_DEV(cmd); |
| unsigned char *cdb; |
| struct se_task *task; |
| int ret; |
| |
| task = transport_generic_get_task(cmd, cmd->data_direction); |
| if (!task) |
| return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; |
| |
| cdb = TRANSPORT(dev)->get_cdb(task); |
| if (cdb) |
| memcpy(cdb, cmd->t_task->t_task_cdb, |
| scsi_command_size(cmd->t_task->t_task_cdb)); |
| |
| task->task_size = cmd->data_length; |
| task->task_sg_num = |
| (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0; |
| |
| atomic_inc(&cmd->t_task->t_fe_count); |
| atomic_inc(&cmd->t_task->t_se_count); |
| |
| if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) { |
| struct se_mem *se_mem = NULL, *se_mem_lout = NULL; |
| u32 se_mem_cnt = 0, task_offset = 0; |
| |
| if (!list_empty(T_TASK(cmd)->t_mem_list)) |
| se_mem = list_entry(T_TASK(cmd)->t_mem_list->next, |
| struct se_mem, se_list); |
| |
| ret = transport_do_se_mem_map(dev, task, |
| cmd->t_task->t_mem_list, NULL, se_mem, |
| &se_mem_lout, &se_mem_cnt, &task_offset); |
| if (ret < 0) |
| return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; |
| |
| if (dev->transport->map_task_SG) |
| return dev->transport->map_task_SG(task); |
| return 0; |
| } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) { |
| if (dev->transport->map_task_non_SG) |
| return dev->transport->map_task_non_SG(task); |
| return 0; |
| } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) { |
| if (dev->transport->cdb_none) |
| return dev->transport->cdb_none(task); |
| return 0; |
| } else { |
| BUG(); |
| return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; |
| } |
| } |
| |
| /* transport_generic_new_cmd(): Called from transport_processing_thread() |
| * |
| * Allocate storage transport resources from a set of values predefined |
| * by transport_generic_cmd_sequencer() from the iSCSI Target RX process. |
| * Any non zero return here is treated as an "out of resource' op here. |
| */ |
| /* |
| * Generate struct se_task(s) and/or their payloads for this CDB. |
| */ |
| static int transport_generic_new_cmd(struct se_cmd *cmd) |
| { |
| struct se_portal_group *se_tpg; |
| struct se_task *task; |
| struct se_device *dev = SE_DEV(cmd); |
| int ret = 0; |
| |
| /* |
| * Determine is the TCM fabric module has already allocated physical |
| * memory, and is directly calling transport_generic_map_mem_to_cmd() |
| * to setup beforehand the linked list of physical memory at |
| * T_TASK(cmd)->t_mem_list of struct se_mem->se_page |
| */ |
| if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) { |
| ret = transport_allocate_resources(cmd); |
| if (ret < 0) |
| return ret; |
| } |
| |
| ret = transport_get_sectors(cmd); |
| if (ret < 0) |
| return ret; |
| |
| ret = transport_new_cmd_obj(cmd); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Determine if the calling TCM fabric module is talking to |
| * Linux/NET via kernel sockets and needs to allocate a |
| * struct iovec array to complete the struct se_cmd |
| */ |
| se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg; |
| if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) { |
| ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd); |
| if (ret < 0) |
| return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; |
| } |
| |
| if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) { |
| list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { |
| if (atomic_read(&task->task_sent)) |
| continue; |
| if (!dev->transport->map_task_SG) |
| continue; |
| |
| ret = dev->transport->map_task_SG(task); |
| if (ret < 0) |
| return ret; |
| } |
| } else { |
| ret = transport_map_control_cmd_to_task(cmd); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* |
| * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready.. |
| * This WRITE struct se_cmd (and all of its associated struct se_task's) |
| * will be added to the struct se_device execution queue after its WRITE |
| * data has arrived. (ie: It gets handled by the transport processing |
| * thread a second time) |
| */ |
| if (cmd->data_direction == DMA_TO_DEVICE) { |
| transport_add_tasks_to_state_queue(cmd); |
| return transport_generic_write_pending(cmd); |
| } |
| /* |
| * Everything else but a WRITE, add the struct se_cmd's struct se_task's |
| * to the execution queue. |
| */ |
| transport_execute_tasks(cmd); |
| return 0; |
| } |
| |
| /* transport_generic_process_write(): |
| * |
| * |
| */ |
| void transport_generic_process_write(struct se_cmd *cmd) |
| { |
| #if 0 |
| /* |
| * Copy SCSI Presented DTL sector(s) from received buffers allocated to |
| * original EDTL |
| */ |
| if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { |
| if (!T_TASK(cmd)->t_tasks_se_num) { |
| unsigned char *dst, *buf = |
| (unsigned char *)T_TASK(cmd)->t_task_buf; |
| |
| dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL); |
| if (!(dst)) { |
| printk(KERN_ERR "Unable to allocate memory for" |
| " WRITE underflow\n"); |
| transport_generic_request_failure(cmd, NULL, |
| PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1); |
| return; |
| } |
| memcpy(dst, buf, cmd->cmd_spdtl); |
| |
| kfree(T_TASK(cmd)->t_task_buf); |
| T_TASK(cmd)->t_task_buf = dst; |
| } else { |
| struct scatterlist *sg = |
| (struct scatterlist *sg)T_TASK(cmd)->t_task_buf; |
| struct scatterlist *orig_sg; |
| |
| orig_sg = kzalloc(sizeof(struct scatterlist) * |
| T_TASK(cmd)->t_tasks_se_num, |
| GFP_KERNEL))) { |
| if (!(orig_sg)) { |
| printk(KERN_ERR "Unable to allocate memory" |
| " for WRITE underflow\n"); |
| transport_generic_request_failure(cmd, NULL, |
| PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1); |
| return; |
| } |
| |
| memcpy(orig_sg, T_TASK(cmd)->t_task_buf, |
| sizeof(struct scatterlist) * |
| T_TASK(cmd)->t_tasks_se_num); |
| |
| cmd->data_length = cmd->cmd_spdtl; |
| /* |
| * FIXME, clear out original struct se_task and state |
| * information. |
| */ |
| if (transport_generic_new_cmd(cmd) < 0) { |
| transport_generic_request_failure(cmd, NULL, |
| PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1); |
| kfree(orig_sg); |
| return; |
| } |
| |
| transport_memcpy_write_sg(cmd, orig_sg); |
| } |
| } |
| #endif |
| transport_execute_tasks(cmd); |
| } |
| EXPORT_SYMBOL(transport_generic_process_write); |
| |
| /* transport_generic_write_pending(): |
| * |
| * |
| */ |
| static int transport_generic_write_pending(struct se_cmd *cmd) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| cmd->t_state = TRANSPORT_WRITE_PENDING; |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| /* |
| * For the TCM control CDBs using a contiguous buffer, do the memcpy |
| * from the passed Linux/SCSI struct scatterlist located at |
| * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at |
| * T_TASK(se_cmd)->t_task_buf. |
| */ |
| if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG) |
| transport_memcpy_read_contig(cmd, |
| T_TASK(cmd)->t_task_buf, |
| T_TASK(cmd)->t_task_pt_sgl); |
| /* |
| * Clear the se_cmd for WRITE_PENDING status in order to set |
| * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data |
| * can be called from HW target mode interrupt code. This is safe |
| * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending |
| * because the se_cmd->se_lun pointer is not being cleared. |
| */ |
| transport_cmd_check_stop(cmd, 1, 0); |
| |
| /* |
| * Call the fabric write_pending function here to let the |
| * frontend know that WRITE buffers are ready. |
| */ |
| ret = CMD_TFO(cmd)->write_pending(cmd); |
| if (ret < 0) |
| return ret; |
| |
| return PYX_TRANSPORT_WRITE_PENDING; |
| } |
| |
| /* transport_release_cmd_to_pool(): |
| * |
| * |
| */ |
| void transport_release_cmd_to_pool(struct se_cmd *cmd) |
| { |
| BUG_ON(!T_TASK(cmd)); |
| BUG_ON(!CMD_TFO(cmd)); |
| |
| transport_free_se_cmd(cmd); |
| CMD_TFO(cmd)->release_cmd_to_pool(cmd); |
| } |
| EXPORT_SYMBOL(transport_release_cmd_to_pool); |
| |
| /* transport_generic_free_cmd(): |
| * |
| * Called from processing frontend to release storage engine resources |
| */ |
| void transport_generic_free_cmd( |
| struct se_cmd *cmd, |
| int wait_for_tasks, |
| int release_to_pool, |
| int session_reinstatement) |
| { |
| if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd)) |
| transport_release_cmd_to_pool(cmd); |
| else { |
| core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd); |
| |
| if (SE_LUN(cmd)) { |
| #if 0 |
| printk(KERN_INFO "cmd: %p ITT: 0x%08x contains" |
| " SE_LUN(cmd)\n", cmd, |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| #endif |
| transport_lun_remove_cmd(cmd); |
| } |
| |
| if (wait_for_tasks && cmd->transport_wait_for_tasks) |
| cmd->transport_wait_for_tasks(cmd, 0, 0); |
| |
| transport_free_dev_tasks(cmd); |
| |
| transport_generic_remove(cmd, release_to_pool, |
| session_reinstatement); |
| } |
| } |
| EXPORT_SYMBOL(transport_generic_free_cmd); |
| |
| static void transport_nop_wait_for_tasks( |
| struct se_cmd *cmd, |
| int remove_cmd, |
| int session_reinstatement) |
| { |
| return; |
| } |
| |
| /* transport_lun_wait_for_tasks(): |
| * |
| * Called from ConfigFS context to stop the passed struct se_cmd to allow |
| * an struct se_lun to be successfully shutdown. |
| */ |
| static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) |
| { |
| unsigned long flags; |
| int ret; |
| /* |
| * If the frontend has already requested this struct se_cmd to |
| * be stopped, we can safely ignore this struct se_cmd. |
| */ |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| if (atomic_read(&T_TASK(cmd)->t_transport_stop)) { |
| atomic_set(&T_TASK(cmd)->transport_lun_stop, 0); |
| DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop ==" |
| " TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd)); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| transport_cmd_check_stop(cmd, 1, 0); |
| return -1; |
| } |
| atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq); |
| |
| ret = transport_stop_tasks_for_cmd(cmd); |
| |
| DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:" |
| " %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret); |
| if (!ret) { |
| DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n", |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp); |
| DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n", |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| } |
| transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); |
| |
| return 0; |
| } |
| |
| /* #define DEBUG_CLEAR_LUN */ |
| #ifdef DEBUG_CLEAR_LUN |
| #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x) |
| #else |
| #define DEBUG_CLEAR_L(x...) |
| #endif |
| |
| static void __transport_clear_lun_from_sessions(struct se_lun *lun) |
| { |
| struct se_cmd *cmd = NULL; |
| unsigned long lun_flags, cmd_flags; |
| /* |
| * Do exception processing and return CHECK_CONDITION status to the |
| * Initiator Port. |
| */ |
| spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); |
| while (!list_empty_careful(&lun->lun_cmd_list)) { |
| cmd = list_entry(lun->lun_cmd_list.next, |
| struct se_cmd, se_lun_list); |
| list_del(&cmd->se_lun_list); |
| |
| if (!(T_TASK(cmd))) { |
| printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL" |
| "[i,t]_state: %u/%u\n", |
| CMD_TFO(cmd)->get_task_tag(cmd), |
| CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state); |
| BUG(); |
| } |
| atomic_set(&T_TASK(cmd)->transport_lun_active, 0); |
| /* |
| * This will notify iscsi_target_transport.c: |
| * transport_cmd_check_stop() that a LUN shutdown is in |
| * progress for the iscsi_cmd_t. |
| */ |
| spin_lock(&T_TASK(cmd)->t_state_lock); |
| DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport" |
| "_lun_stop for ITT: 0x%08x\n", |
| SE_LUN(cmd)->unpacked_lun, |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| atomic_set(&T_TASK(cmd)->transport_lun_stop, 1); |
| spin_unlock(&T_TASK(cmd)->t_state_lock); |
| |
| spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); |
| |
| if (!(SE_LUN(cmd))) { |
| printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n", |
| CMD_TFO(cmd)->get_task_tag(cmd), |
| CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state); |
| BUG(); |
| } |
| /* |
| * If the Storage engine still owns the iscsi_cmd_t, determine |
| * and/or stop its context. |
| */ |
| DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport" |
| "_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun, |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| |
| if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) { |
| spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); |
| continue; |
| } |
| |
| DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun" |
| "_wait_for_tasks(): SUCCESS\n", |
| SE_LUN(cmd)->unpacked_lun, |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags); |
| if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags); |
| goto check_cond; |
| } |
| atomic_set(&T_TASK(cmd)->transport_dev_active, 0); |
| transport_all_task_dev_remove_state(cmd); |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags); |
| |
| transport_free_dev_tasks(cmd); |
| /* |
| * The Storage engine stopped this struct se_cmd before it was |
| * send to the fabric frontend for delivery back to the |
| * Initiator Node. Return this SCSI CDB back with an |
| * CHECK_CONDITION status. |
| */ |
| check_cond: |
| transport_send_check_condition_and_sense(cmd, |
| TCM_NON_EXISTENT_LUN, 0); |
| /* |
| * If the fabric frontend is waiting for this iscsi_cmd_t to |
| * be released, notify the waiting thread now that LU has |
| * finished accessing it. |
| */ |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags); |
| if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) { |
| DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for" |
| " struct se_cmd: %p ITT: 0x%08x\n", |
| lun->unpacked_lun, |
| cmd, CMD_TFO(cmd)->get_task_tag(cmd)); |
| |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, |
| cmd_flags); |
| transport_cmd_check_stop(cmd, 1, 0); |
| complete(&T_TASK(cmd)->transport_lun_fe_stop_comp); |
| spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); |
| continue; |
| } |
| DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n", |
| lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd)); |
| |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags); |
| spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); |
| } |
| spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); |
| } |
| |
| static int transport_clear_lun_thread(void *p) |
| { |
| struct se_lun *lun = (struct se_lun *)p; |
| |
| __transport_clear_lun_from_sessions(lun); |
| complete(&lun->lun_shutdown_comp); |
| |
| return 0; |
| } |
| |
| int transport_clear_lun_from_sessions(struct se_lun *lun) |
| { |
| struct task_struct *kt; |
| |
| kt = kthread_run(transport_clear_lun_thread, (void *)lun, |
| "tcm_cl_%u", lun->unpacked_lun); |
| if (IS_ERR(kt)) { |
| printk(KERN_ERR "Unable to start clear_lun thread\n"); |
| return -1; |
| } |
| wait_for_completion(&lun->lun_shutdown_comp); |
| |
| return 0; |
| } |
| |
| /* transport_generic_wait_for_tasks(): |
| * |
| * Called from frontend or passthrough context to wait for storage engine |
| * to pause and/or release frontend generated struct se_cmd. |
| */ |
| static void transport_generic_wait_for_tasks( |
| struct se_cmd *cmd, |
| int remove_cmd, |
| int session_reinstatement) |
| { |
| unsigned long flags; |
| |
| if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) |
| return; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| /* |
| * If we are already stopped due to an external event (ie: LUN shutdown) |
| * sleep until the connection can have the passed struct se_cmd back. |
| * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by |
| * transport_clear_lun_from_sessions() once the ConfigFS context caller |
| * has completed its operation on the struct se_cmd. |
| */ |
| if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) { |
| |
| DEBUG_TRANSPORT_S("wait_for_tasks: Stopping" |
| " wait_for_completion(&T_TASK(cmd)transport_lun_fe" |
| "_stop_comp); for ITT: 0x%08x\n", |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| /* |
| * There is a special case for WRITES where a FE exception + |
| * LUN shutdown means ConfigFS context is still sleeping on |
| * transport_lun_stop_comp in transport_lun_wait_for_tasks(). |
| * We go ahead and up transport_lun_stop_comp just to be sure |
| * here. |
| */ |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| complete(&T_TASK(cmd)->transport_lun_stop_comp); |
| wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp); |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| |
| transport_all_task_dev_remove_state(cmd); |
| /* |
| * At this point, the frontend who was the originator of this |
| * struct se_cmd, now owns the structure and can be released through |
| * normal means below. |
| */ |
| DEBUG_TRANSPORT_S("wait_for_tasks: Stopped" |
| " wait_for_completion(&T_TASK(cmd)transport_lun_fe_" |
| "stop_comp); for ITT: 0x%08x\n", |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| |
| atomic_set(&T_TASK(cmd)->transport_lun_stop, 0); |
| } |
| if (!atomic_read(&T_TASK(cmd)->t_transport_active) || |
| atomic_read(&T_TASK(cmd)->t_transport_aborted)) |
| goto remove; |
| |
| atomic_set(&T_TASK(cmd)->t_transport_stop, 1); |
| |
| DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x" |
| " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop" |
| " = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd), |
| CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state, |
| cmd->deferred_t_state); |
| |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq); |
| |
| wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp); |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| atomic_set(&T_TASK(cmd)->t_transport_active, 0); |
| atomic_set(&T_TASK(cmd)->t_transport_stop, 0); |
| |
| DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion(" |
| "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n", |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| remove: |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| if (!remove_cmd) |
| return; |
| |
| transport_generic_free_cmd(cmd, 0, 0, session_reinstatement); |
| } |
| |
| static int transport_get_sense_codes( |
| struct se_cmd *cmd, |
| u8 *asc, |
| u8 *ascq) |
| { |
| *asc = cmd->scsi_asc; |
| *ascq = cmd->scsi_ascq; |
| |
| return 0; |
| } |
| |
| static int transport_set_sense_codes( |
| struct se_cmd *cmd, |
| u8 asc, |
| u8 ascq) |
| { |
| cmd->scsi_asc = asc; |
| cmd->scsi_ascq = ascq; |
| |
| return 0; |
| } |
| |
| int transport_send_check_condition_and_sense( |
| struct se_cmd *cmd, |
| u8 reason, |
| int from_transport) |
| { |
| unsigned char *buffer = cmd->sense_buffer; |
| unsigned long flags; |
| int offset; |
| u8 asc = 0, ascq = 0; |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| return 0; |
| } |
| cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; |
| spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); |
| |
| if (!reason && from_transport) |
| goto after_reason; |
| |
| if (!from_transport) |
| cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; |
| /* |
| * Data Segment and SenseLength of the fabric response PDU. |
| * |
| * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE |
| * from include/scsi/scsi_cmnd.h |
| */ |
| offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd, |
| TRANSPORT_SENSE_BUFFER); |
| /* |
| * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses |
| * SENSE KEY values from include/scsi/scsi.h |
| */ |
| switch (reason) { |
| case TCM_NON_EXISTENT_LUN: |
| case TCM_UNSUPPORTED_SCSI_OPCODE: |
| case TCM_SECTOR_COUNT_TOO_MANY: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* ILLEGAL REQUEST */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; |
| /* INVALID COMMAND OPERATION CODE */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20; |
| break; |
| case TCM_UNKNOWN_MODE_PAGE: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* ILLEGAL REQUEST */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; |
| /* INVALID FIELD IN CDB */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; |
| break; |
| case TCM_CHECK_CONDITION_ABORT_CMD: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* ABORTED COMMAND */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; |
| /* BUS DEVICE RESET FUNCTION OCCURRED */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29; |
| buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03; |
| break; |
| case TCM_INCORRECT_AMOUNT_OF_DATA: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* ABORTED COMMAND */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; |
| /* WRITE ERROR */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; |
| /* NOT ENOUGH UNSOLICITED DATA */ |
| buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d; |
| break; |
| case TCM_INVALID_CDB_FIELD: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* ABORTED COMMAND */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; |
| /* INVALID FIELD IN CDB */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; |
| break; |
| case TCM_INVALID_PARAMETER_LIST: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* ABORTED COMMAND */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; |
| /* INVALID FIELD IN PARAMETER LIST */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26; |
| break; |
| case TCM_UNEXPECTED_UNSOLICITED_DATA: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* ABORTED COMMAND */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; |
| /* WRITE ERROR */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; |
| /* UNEXPECTED_UNSOLICITED_DATA */ |
| buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c; |
| break; |
| case TCM_SERVICE_CRC_ERROR: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* ABORTED COMMAND */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; |
| /* PROTOCOL SERVICE CRC ERROR */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47; |
| /* N/A */ |
| buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05; |
| break; |
| case TCM_SNACK_REJECTED: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* ABORTED COMMAND */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; |
| /* READ ERROR */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11; |
| /* FAILED RETRANSMISSION REQUEST */ |
| buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13; |
| break; |
| case TCM_WRITE_PROTECTED: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* DATA PROTECT */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; |
| /* WRITE PROTECTED */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27; |
| break; |
| case TCM_CHECK_CONDITION_UNIT_ATTENTION: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* UNIT ATTENTION */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; |
| core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); |
| buffer[offset+SPC_ASC_KEY_OFFSET] = asc; |
| buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; |
| break; |
| case TCM_CHECK_CONDITION_NOT_READY: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* Not Ready */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY; |
| transport_get_sense_codes(cmd, &asc, &ascq); |
| buffer[offset+SPC_ASC_KEY_OFFSET] = asc; |
| buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; |
| break; |
| case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: |
| default: |
| /* CURRENT ERROR */ |
| buffer[offset] = 0x70; |
| /* ILLEGAL REQUEST */ |
| buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; |
| /* LOGICAL UNIT COMMUNICATION FAILURE */ |
| buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80; |
| break; |
| } |
| /* |
| * This code uses linux/include/scsi/scsi.h SAM status codes! |
| */ |
| cmd->scsi_status = SAM_STAT_CHECK_CONDITION; |
| /* |
| * Automatically padded, this value is encoded in the fabric's |
| * data_length response PDU containing the SCSI defined sense data. |
| */ |
| cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset; |
| |
| after_reason: |
| CMD_TFO(cmd)->queue_status(cmd); |
| return 0; |
| } |
| EXPORT_SYMBOL(transport_send_check_condition_and_sense); |
| |
| int transport_check_aborted_status(struct se_cmd *cmd, int send_status) |
| { |
| int ret = 0; |
| |
| if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) { |
| if (!(send_status) || |
| (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) |
| return 1; |
| #if 0 |
| printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED" |
| " status for CDB: 0x%02x ITT: 0x%08x\n", |
| T_TASK(cmd)->t_task_cdb[0], |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| #endif |
| cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; |
| CMD_TFO(cmd)->queue_status(cmd); |
| ret = 1; |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(transport_check_aborted_status); |
| |
| void transport_send_task_abort(struct se_cmd *cmd) |
| { |
| /* |
| * If there are still expected incoming fabric WRITEs, we wait |
| * until until they have completed before sending a TASK_ABORTED |
| * response. This response with TASK_ABORTED status will be |
| * queued back to fabric module by transport_check_aborted_status(). |
| */ |
| if (cmd->data_direction == DMA_TO_DEVICE) { |
| if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) { |
| atomic_inc(&T_TASK(cmd)->t_transport_aborted); |
| smp_mb__after_atomic_inc(); |
| cmd->scsi_status = SAM_STAT_TASK_ABORTED; |
| transport_new_cmd_failure(cmd); |
| return; |
| } |
| } |
| cmd->scsi_status = SAM_STAT_TASK_ABORTED; |
| #if 0 |
| printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," |
| " ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0], |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| #endif |
| CMD_TFO(cmd)->queue_status(cmd); |
| } |
| |
| /* transport_generic_do_tmr(): |
| * |
| * |
| */ |
| int transport_generic_do_tmr(struct se_cmd *cmd) |
| { |
| struct se_cmd *ref_cmd; |
| struct se_device *dev = SE_DEV(cmd); |
| struct se_tmr_req *tmr = cmd->se_tmr_req; |
| int ret; |
| |
| switch (tmr->function) { |
| case TMR_ABORT_TASK: |
| ref_cmd = tmr->ref_cmd; |
| tmr->response = TMR_FUNCTION_REJECTED; |
| break; |
| case TMR_ABORT_TASK_SET: |
| case TMR_CLEAR_ACA: |
| case TMR_CLEAR_TASK_SET: |
| tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; |
| break; |
| case TMR_LUN_RESET: |
| ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); |
| tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : |
| TMR_FUNCTION_REJECTED; |
| break; |
| case TMR_TARGET_WARM_RESET: |
| tmr->response = TMR_FUNCTION_REJECTED; |
| break; |
| case TMR_TARGET_COLD_RESET: |
| tmr->response = TMR_FUNCTION_REJECTED; |
| break; |
| default: |
| printk(KERN_ERR "Uknown TMR function: 0x%02x.\n", |
| tmr->function); |
| tmr->response = TMR_FUNCTION_REJECTED; |
| break; |
| } |
| |
| cmd->t_state = TRANSPORT_ISTATE_PROCESSING; |
| CMD_TFO(cmd)->queue_tm_rsp(cmd); |
| |
| transport_cmd_check_stop(cmd, 2, 0); |
| return 0; |
| } |
| |
| /* |
| * Called with spin_lock_irq(&dev->execute_task_lock); held |
| * |
| */ |
| static struct se_task * |
| transport_get_task_from_state_list(struct se_device *dev) |
| { |
| struct se_task *task; |
| |
| if (list_empty(&dev->state_task_list)) |
| return NULL; |
| |
| list_for_each_entry(task, &dev->state_task_list, t_state_list) |
| break; |
| |
| list_del(&task->t_state_list); |
| atomic_set(&task->task_state_active, 0); |
| |
| return task; |
| } |
| |
| static void transport_processing_shutdown(struct se_device *dev) |
| { |
| struct se_cmd *cmd; |
| struct se_queue_req *qr; |
| struct se_task *task; |
| u8 state; |
| unsigned long flags; |
| /* |
| * Empty the struct se_device's struct se_task state list. |
| */ |
| spin_lock_irqsave(&dev->execute_task_lock, flags); |
| while ((task = transport_get_task_from_state_list(dev))) { |
| if (!(TASK_CMD(task))) { |
| printk(KERN_ERR "TASK_CMD(task) is NULL!\n"); |
| continue; |
| } |
| cmd = TASK_CMD(task); |
| |
| if (!T_TASK(cmd)) { |
| printk(KERN_ERR "T_TASK(cmd) is NULL for task: %p cmd:" |
| " %p ITT: 0x%08x\n", task, cmd, |
| CMD_TFO(cmd)->get_task_tag(cmd)); |
| continue; |
| } |
| spin_unlock_irqrestore(&dev->execute_task_lock, flags); |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| |
| DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x," |
| " i_state/def_i_state: %d/%d, t_state/def_t_state:" |
| " %d/%d cdb: 0x%02x\n", cmd, task, |
| CMD_TFO(cmd)->get_task_tag(cmd), cmd->cmd_sn, |
| CMD_TFO(cmd)->get_cmd_state(cmd), cmd->deferred_i_state, |
| cmd->t_state, cmd->deferred_t_state, |
| T_TASK(cmd)->t_task_cdb[0]); |
| DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:" |
| " %d t_task_cdbs_sent: %d -- t_transport_active: %d" |
| " t_transport_stop: %d t_transport_sent: %d\n", |
| CMD_TFO(cmd)->get_task_tag(cmd), |
| T_TASK(cmd)->t_task_cdbs, |
| atomic_read(&T_TASK(cmd)->t_task_cdbs_left), |
| atomic_read(&T_TASK(cmd)->t_task_cdbs_sent), |
| atomic_read(&T_TASK(cmd)->t_transport_active), |
| atomic_read(&T_TASK(cmd)->t_transport_stop), |
| atomic_read(&T_TASK(cmd)->t_transport_sent)); |
| |
| if (atomic_read(&task->task_active)) { |
| atomic_set(&task->task_stop, 1); |
| spin_unlock_irqrestore( |
| &T_TASK(cmd)->t_state_lock, flags); |
| |
| DEBUG_DO("Waiting for task: %p to shutdown for dev:" |
| " %p\n", task, dev); |
| wait_for_completion(&task->task_stop_comp); |
| DEBUG_DO("Completed task: %p shutdown for dev: %p\n", |
| task, dev); |
| |
| spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); |
| atomic_dec(&T_TASK(cmd)->t_task_cdbs_left); |
| |
| atomic_set(&task->task_active, 0); |
| atomic_set(&task->task_stop, 0); |
| } else { |
| if (atomic_read(&task->task_execute_queue) != 0) |
| transport_remove_task_from_execute_queue(task, dev); |
| } |
| __transport_stop_task_timer(task, &flags); |
| |
| if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_ex_left))) { |
| spin_unlock_irqrestore( |
| &T_TASK(cmd)->t_state_lock, flags); |
| |
| DEBUG_DO("Skipping task: %p, dev: %p for" |
| " t_task_cdbs_ex_left: %d\n", task, dev, |
| atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left)); |
| |
| spin_lock_irqsave(&dev->execute_task_lock, flags); |
| continue; |
| } |
| |
| if (atomic_read(&T_TASK(cmd)->t_transport_active)) { |
| DEBUG_DO("got t_transport_active = 1 for task: %p, dev:" |
| " %p\n", task, dev); |
| |
| if (atomic_read(&T_TASK(cmd)->t_fe_count)) { |
| spin_unlock_irqrestore( |
| &T_TASK(cmd)->t_state_lock, flags); |
| transport_send_check_condition_and_sense( |
| cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, |
| 0); |
| transport_remove_cmd_from_queue(cmd, |
| SE_DEV(cmd)->dev_queue_obj); |
| |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop(cmd, 1, 0); |
| } else { |
| spin_unlock_irqrestore( |
| &T_TASK(cmd)->t_state_lock, flags); |
| |
| transport_remove_cmd_from_queue(cmd, |
| SE_DEV(cmd)->dev_queue_obj); |
| |
| transport_lun_remove_cmd(cmd); |
| |
| if (transport_cmd_check_stop(cmd, 1, 0)) |
| transport_generic_remove(cmd, 0, 0); |
| } |
| |
| spin_lock_irqsave(&dev->execute_task_lock, flags); |
| continue; |
| } |
| DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n", |
| task, dev); |
| |
| if (atomic_read(&T_TASK(cmd)->t_fe_count)) { |
| spin_unlock_irqrestore( |
| &T_TASK(cmd)->t_state_lock, flags); |
| transport_send_check_condition_and_sense(cmd, |
| TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0); |
| transport_remove_cmd_from_queue(cmd, |
| SE_DEV(cmd)->dev_queue_obj); |
| |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop(cmd, 1, 0); |
| } else { |
| spin_unlock_irqrestore( |
| &T_TASK(cmd)->t_state_lock, flags); |
| |
| transport_remove_cmd_from_queue(cmd, |
| SE_DEV(cmd)->dev_queue_obj); |
| transport_lun_remove_cmd(cmd); |
| |
| if (transport_cmd_check_stop(cmd, 1, 0)) |
| transport_generic_remove(cmd, 0, 0); |
| } |
| |
| spin_lock_irqsave(&dev->execute_task_lock, flags); |
| } |
| spin_unlock_irqrestore(&dev->execute_task_lock, flags); |
| /* |
| * Empty the struct se_device's struct se_cmd list. |
| */ |
| spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); |
| while ((qr = __transport_get_qr_from_queue(dev->dev_queue_obj))) { |
| spin_unlock_irqrestore( |
| &dev->dev_queue_obj->cmd_queue_lock, flags); |
| cmd = (struct se_cmd *)qr->cmd; |
| state = qr->state; |
| kfree(qr); |
| |
| DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n", |
| cmd, state); |
| |
| if (atomic_read(&T_TASK(cmd)->t_fe_count)) { |
| transport_send_check_condition_and_sense(cmd, |
| TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0); |
| |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop(cmd, 1, 0); |
| } else { |
| transport_lun_remove_cmd(cmd); |
| if (transport_cmd_check_stop(cmd, 1, 0)) |
| transport_generic_remove(cmd, 0, 0); |
| } |
| spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); |
| } |
| spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags); |
| } |
| |
| /* transport_processing_thread(): |
| * |
| * |
| */ |
| static int transport_processing_thread(void *param) |
| { |
| int ret, t_state; |
| struct se_cmd *cmd; |
| struct se_device *dev = (struct se_device *) param; |
| struct se_queue_req *qr; |
| |
| set_user_nice(current, -20); |
| |
| while (!kthread_should_stop()) { |
| ret = wait_event_interruptible(dev->dev_queue_obj->thread_wq, |
| atomic_read(&dev->dev_queue_obj->queue_cnt) || |
| kthread_should_stop()); |
| if (ret < 0) |
| goto out; |
| |
| spin_lock_irq(&dev->dev_status_lock); |
| if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) { |
| spin_unlock_irq(&dev->dev_status_lock); |
| transport_processing_shutdown(dev); |
| continue; |
| } |
| spin_unlock_irq(&dev->dev_status_lock); |
| |
| get_cmd: |
| __transport_execute_tasks(dev); |
| |
| qr = transport_get_qr_from_queue(dev->dev_queue_obj); |
| if (!(qr)) |
| continue; |
| |
| cmd = (struct se_cmd *)qr->cmd; |
| t_state = qr->state; |
| kfree(qr); |
| |
| switch (t_state) { |
| case TRANSPORT_NEW_CMD_MAP: |
| if (!(CMD_TFO(cmd)->new_cmd_map)) { |
| printk(KERN_ERR "CMD_TFO(cmd)->new_cmd_map is" |
| " NULL for TRANSPORT_NEW_CMD_MAP\n"); |
| BUG(); |
| } |
| ret = CMD_TFO(cmd)->new_cmd_map(cmd); |
| if (ret < 0) { |
| cmd->transport_error_status = ret; |
| transport_generic_request_failure(cmd, NULL, |
| 0, (cmd->data_direction != |
| DMA_TO_DEVICE)); |
| break; |
| } |
| /* Fall through */ |
| case TRANSPORT_NEW_CMD: |
| ret = transport_generic_new_cmd(cmd); |
| if (ret < 0) { |
| cmd->transport_error_status = ret; |
| transport_generic_request_failure(cmd, NULL, |
| 0, (cmd->data_direction != |
| DMA_TO_DEVICE)); |
| } |
| break; |
| case TRANSPORT_PROCESS_WRITE: |
| transport_generic_process_write(cmd); |
| break; |
| case TRANSPORT_COMPLETE_OK: |
| transport_stop_all_task_timers(cmd); |
| transport_generic_complete_ok(cmd); |
| break; |
| case TRANSPORT_REMOVE: |
| transport_generic_remove(cmd, 1, 0); |
| break; |
| case TRANSPORT_FREE_CMD_INTR: |
| transport_generic_free_cmd(cmd, 0, 1, 0); |
| break; |
| case TRANSPORT_PROCESS_TMR: |
| transport_generic_do_tmr(cmd); |
| break; |
| case TRANSPORT_COMPLETE_FAILURE: |
| transport_generic_request_failure(cmd, NULL, 1, 1); |
| break; |
| case TRANSPORT_COMPLETE_TIMEOUT: |
| transport_stop_all_task_timers(cmd); |
| transport_generic_request_timeout(cmd); |
| break; |
| default: |
| printk(KERN_ERR "Unknown t_state: %d deferred_t_state:" |
| " %d for ITT: 0x%08x i_state: %d on SE LUN:" |
| " %u\n", t_state, cmd->deferred_t_state, |
| CMD_TFO(cmd)->get_task_tag(cmd), |
| CMD_TFO(cmd)->get_cmd_state(cmd), |
| SE_LUN(cmd)->unpacked_lun); |
| BUG(); |
| } |
| |
| goto get_cmd; |
| } |
| |
| out: |
| transport_release_all_cmds(dev); |
| dev->process_thread = NULL; |
| return 0; |
| } |