| /* | 
 |  * arch/sh/kernel/setup.c | 
 |  * | 
 |  * This file handles the architecture-dependent parts of initialization | 
 |  * | 
 |  *  Copyright (C) 1999  Niibe Yutaka | 
 |  *  Copyright (C) 2002 - 2007 Paul Mundt | 
 |  */ | 
 | #include <linux/screen_info.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/init.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/console.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/root_dev.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/module.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/err.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/crash_dump.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/platform_device.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/io.h> | 
 | #include <asm/page.h> | 
 | #include <asm/elf.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/clock.h> | 
 | #include <asm/mmu_context.h> | 
 |  | 
 | /* | 
 |  * Initialize loops_per_jiffy as 10000000 (1000MIPS). | 
 |  * This value will be used at the very early stage of serial setup. | 
 |  * The bigger value means no problem. | 
 |  */ | 
 | struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { | 
 | 	[0] = { | 
 | 		.type			= CPU_SH_NONE, | 
 | 		.loops_per_jiffy	= 10000000, | 
 | 	}, | 
 | }; | 
 | EXPORT_SYMBOL(cpu_data); | 
 |  | 
 | /* | 
 |  * The machine vector. First entry in .machvec.init, or clobbered by | 
 |  * sh_mv= on the command line, prior to .machvec.init teardown. | 
 |  */ | 
 | struct sh_machine_vector sh_mv = { .mv_name = "generic", }; | 
 | EXPORT_SYMBOL(sh_mv); | 
 |  | 
 | #ifdef CONFIG_VT | 
 | struct screen_info screen_info; | 
 | #endif | 
 |  | 
 | extern int root_mountflags; | 
 |  | 
 | #define RAMDISK_IMAGE_START_MASK	0x07FF | 
 | #define RAMDISK_PROMPT_FLAG		0x8000 | 
 | #define RAMDISK_LOAD_FLAG		0x4000 | 
 |  | 
 | static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; | 
 |  | 
 | static struct resource code_resource = { | 
 | 	.name = "Kernel code", | 
 | 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM, | 
 | }; | 
 |  | 
 | static struct resource data_resource = { | 
 | 	.name = "Kernel data", | 
 | 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM, | 
 | }; | 
 |  | 
 | static struct resource bss_resource = { | 
 | 	.name	= "Kernel bss", | 
 | 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM, | 
 | }; | 
 |  | 
 | unsigned long memory_start; | 
 | EXPORT_SYMBOL(memory_start); | 
 | unsigned long memory_end = 0; | 
 | EXPORT_SYMBOL(memory_end); | 
 |  | 
 | static struct resource mem_resources[MAX_NUMNODES]; | 
 |  | 
 | int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; | 
 |  | 
 | static int __init early_parse_mem(char *p) | 
 | { | 
 | 	unsigned long size; | 
 |  | 
 | 	memory_start = (unsigned long)__va(__MEMORY_START); | 
 | 	size = memparse(p, &p); | 
 |  | 
 | 	if (size > __MEMORY_SIZE) { | 
 | 		printk(KERN_ERR | 
 | 			"Using mem= to increase the size of kernel memory " | 
 | 			"is not allowed.\n" | 
 | 			"  Recompile the kernel with the correct value for " | 
 | 			"CONFIG_MEMORY_SIZE.\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	memory_end = memory_start + size; | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("mem", early_parse_mem); | 
 |  | 
 | /* | 
 |  * Register fully available low RAM pages with the bootmem allocator. | 
 |  */ | 
 | static void __init register_bootmem_low_pages(void) | 
 | { | 
 | 	unsigned long curr_pfn, last_pfn, pages; | 
 |  | 
 | 	/* | 
 | 	 * We are rounding up the start address of usable memory: | 
 | 	 */ | 
 | 	curr_pfn = PFN_UP(__MEMORY_START); | 
 |  | 
 | 	/* | 
 | 	 * ... and at the end of the usable range downwards: | 
 | 	 */ | 
 | 	last_pfn = PFN_DOWN(__pa(memory_end)); | 
 |  | 
 | 	if (last_pfn > max_low_pfn) | 
 | 		last_pfn = max_low_pfn; | 
 |  | 
 | 	pages = last_pfn - curr_pfn; | 
 | 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KEXEC | 
 | static void __init reserve_crashkernel(void) | 
 | { | 
 | 	unsigned long long free_mem; | 
 | 	unsigned long long crash_size, crash_base; | 
 | 	void *vp; | 
 | 	int ret; | 
 |  | 
 | 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; | 
 |  | 
 | 	ret = parse_crashkernel(boot_command_line, free_mem, | 
 | 			&crash_size, &crash_base); | 
 | 	if (ret == 0 && crash_size) { | 
 | 		if (crash_base <= 0) { | 
 | 			vp = alloc_bootmem_nopanic(crash_size); | 
 | 			if (!vp) { | 
 | 				printk(KERN_INFO "crashkernel allocation " | 
 | 				       "failed\n"); | 
 | 				return; | 
 | 			} | 
 | 			crash_base = __pa(vp); | 
 | 		} else if (reserve_bootmem(crash_base, crash_size, | 
 | 					BOOTMEM_EXCLUSIVE) < 0) { | 
 | 			printk(KERN_INFO "crashkernel reservation failed - " | 
 | 					"memory is in use\n"); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " | 
 | 				"for crashkernel (System RAM: %ldMB)\n", | 
 | 				(unsigned long)(crash_size >> 20), | 
 | 				(unsigned long)(crash_base >> 20), | 
 | 				(unsigned long)(free_mem >> 20)); | 
 | 		crashk_res.start = crash_base; | 
 | 		crashk_res.end   = crash_base + crash_size - 1; | 
 | 		insert_resource(&iomem_resource, &crashk_res); | 
 | 	} | 
 | } | 
 | #else | 
 | static inline void __init reserve_crashkernel(void) | 
 | {} | 
 | #endif | 
 |  | 
 | void __cpuinit calibrate_delay(void) | 
 | { | 
 | 	struct clk *clk = clk_get(NULL, "cpu_clk"); | 
 |  | 
 | 	if (IS_ERR(clk)) | 
 | 		panic("Need a sane CPU clock definition!"); | 
 |  | 
 | 	loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ; | 
 |  | 
 | 	printk(KERN_INFO "Calibrating delay loop (skipped)... " | 
 | 			 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n", | 
 | 			 loops_per_jiffy/(500000/HZ), | 
 | 			 (loops_per_jiffy/(5000/HZ)) % 100, | 
 | 			 loops_per_jiffy); | 
 | } | 
 |  | 
 | void __init __add_active_range(unsigned int nid, unsigned long start_pfn, | 
 | 						unsigned long end_pfn) | 
 | { | 
 | 	struct resource *res = &mem_resources[nid]; | 
 |  | 
 | 	WARN_ON(res->name); /* max one active range per node for now */ | 
 |  | 
 | 	res->name = "System RAM"; | 
 | 	res->start = start_pfn << PAGE_SHIFT; | 
 | 	res->end = (end_pfn << PAGE_SHIFT) - 1; | 
 | 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 
 | 	if (request_resource(&iomem_resource, res)) { | 
 | 		pr_err("unable to request memory_resource 0x%lx 0x%lx\n", | 
 | 		       start_pfn, end_pfn); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *  We don't know which RAM region contains kernel data, | 
 | 	 *  so we try it repeatedly and let the resource manager | 
 | 	 *  test it. | 
 | 	 */ | 
 | 	request_resource(res, &code_resource); | 
 | 	request_resource(res, &data_resource); | 
 | 	request_resource(res, &bss_resource); | 
 |  | 
 | 	add_active_range(nid, start_pfn, end_pfn); | 
 | } | 
 |  | 
 | void __init setup_bootmem_allocator(unsigned long free_pfn) | 
 | { | 
 | 	unsigned long bootmap_size; | 
 |  | 
 | 	/* | 
 | 	 * Find a proper area for the bootmem bitmap. After this | 
 | 	 * bootstrap step all allocations (until the page allocator | 
 | 	 * is intact) must be done via bootmem_alloc(). | 
 | 	 */ | 
 | 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, | 
 | 					 min_low_pfn, max_low_pfn); | 
 |  | 
 | 	__add_active_range(0, min_low_pfn, max_low_pfn); | 
 | 	register_bootmem_low_pages(); | 
 |  | 
 | 	node_set_online(0); | 
 |  | 
 | 	/* | 
 | 	 * Reserve the kernel text and | 
 | 	 * Reserve the bootmem bitmap. We do this in two steps (first step | 
 | 	 * was init_bootmem()), because this catches the (definitely buggy) | 
 | 	 * case of us accidentally initializing the bootmem allocator with | 
 | 	 * an invalid RAM area. | 
 | 	 */ | 
 | 	reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET, | 
 | 			(PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) - | 
 | 			(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET), | 
 | 			BOOTMEM_DEFAULT); | 
 |  | 
 | 	/* | 
 | 	 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET. | 
 | 	 */ | 
 | 	if (CONFIG_ZERO_PAGE_OFFSET != 0) | 
 | 		reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET, | 
 | 				BOOTMEM_DEFAULT); | 
 |  | 
 | 	sparse_memory_present_with_active_regions(0); | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	ROOT_DEV = Root_RAM0; | 
 |  | 
 | 	if (LOADER_TYPE && INITRD_START) { | 
 | 		unsigned long initrd_start_phys = INITRD_START + __MEMORY_START; | 
 |  | 
 | 		if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) { | 
 | 			reserve_bootmem(initrd_start_phys, INITRD_SIZE, | 
 | 					BOOTMEM_DEFAULT); | 
 | 			initrd_start = (unsigned long)__va(initrd_start_phys); | 
 | 			initrd_end = initrd_start + INITRD_SIZE; | 
 | 		} else { | 
 | 			printk("initrd extends beyond end of memory " | 
 | 			       "(0x%08lx > 0x%08lx)\ndisabling initrd\n", | 
 | 			       initrd_start_phys + INITRD_SIZE, | 
 | 			       (unsigned long)PFN_PHYS(max_low_pfn)); | 
 | 			initrd_start = 0; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	reserve_crashkernel(); | 
 | } | 
 |  | 
 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
 | static void __init setup_memory(void) | 
 | { | 
 | 	unsigned long start_pfn; | 
 |  | 
 | 	/* | 
 | 	 * Partially used pages are not usable - thus | 
 | 	 * we are rounding upwards: | 
 | 	 */ | 
 | 	start_pfn = PFN_UP(__pa(_end)); | 
 | 	setup_bootmem_allocator(start_pfn); | 
 | } | 
 | #else | 
 | extern void __init setup_memory(void); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by | 
 |  * is_kdump_kernel() to determine if we are booting after a panic. Hence | 
 |  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. | 
 |  */ | 
 | #ifdef CONFIG_CRASH_DUMP | 
 | /* elfcorehdr= specifies the location of elf core header | 
 |  * stored by the crashed kernel. | 
 |  */ | 
 | static int __init parse_elfcorehdr(char *arg) | 
 | { | 
 | 	if (!arg) | 
 | 		return -EINVAL; | 
 | 	elfcorehdr_addr = memparse(arg, &arg); | 
 | 	return 0; | 
 | } | 
 | early_param("elfcorehdr", parse_elfcorehdr); | 
 | #endif | 
 |  | 
 | void __init __attribute__ ((weak)) plat_early_device_setup(void) | 
 | { | 
 | } | 
 |  | 
 | void __init setup_arch(char **cmdline_p) | 
 | { | 
 | 	enable_mmu(); | 
 |  | 
 | 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); | 
 |  | 
 | 	printk(KERN_NOTICE "Boot params:\n" | 
 | 			   "... MOUNT_ROOT_RDONLY - %08lx\n" | 
 | 			   "... RAMDISK_FLAGS     - %08lx\n" | 
 | 			   "... ORIG_ROOT_DEV     - %08lx\n" | 
 | 			   "... LOADER_TYPE       - %08lx\n" | 
 | 			   "... INITRD_START      - %08lx\n" | 
 | 			   "... INITRD_SIZE       - %08lx\n", | 
 | 			   MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, | 
 | 			   ORIG_ROOT_DEV, LOADER_TYPE, | 
 | 			   INITRD_START, INITRD_SIZE); | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_RAM | 
 | 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; | 
 | 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); | 
 | 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); | 
 | #endif | 
 |  | 
 | 	if (!MOUNT_ROOT_RDONLY) | 
 | 		root_mountflags &= ~MS_RDONLY; | 
 | 	init_mm.start_code = (unsigned long) _text; | 
 | 	init_mm.end_code = (unsigned long) _etext; | 
 | 	init_mm.end_data = (unsigned long) _edata; | 
 | 	init_mm.brk = (unsigned long) _end; | 
 |  | 
 | 	code_resource.start = virt_to_phys(_text); | 
 | 	code_resource.end = virt_to_phys(_etext)-1; | 
 | 	data_resource.start = virt_to_phys(_etext); | 
 | 	data_resource.end = virt_to_phys(_edata)-1; | 
 | 	bss_resource.start = virt_to_phys(__bss_start); | 
 | 	bss_resource.end = virt_to_phys(_ebss)-1; | 
 |  | 
 | 	memory_start = (unsigned long)__va(__MEMORY_START); | 
 | 	if (!memory_end) | 
 | 		memory_end = memory_start + __MEMORY_SIZE; | 
 |  | 
 | #ifdef CONFIG_CMDLINE_BOOL | 
 | 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); | 
 | #else | 
 | 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); | 
 | #endif | 
 |  | 
 | 	/* Save unparsed command line copy for /proc/cmdline */ | 
 | 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); | 
 | 	*cmdline_p = command_line; | 
 |  | 
 | 	parse_early_param(); | 
 |  | 
 | 	plat_early_device_setup(); | 
 |  | 
 | 	sh_mv_setup(); | 
 |  | 
 | 	/* | 
 | 	 * Find the highest page frame number we have available | 
 | 	 */ | 
 | 	max_pfn = PFN_DOWN(__pa(memory_end)); | 
 |  | 
 | 	/* | 
 | 	 * Determine low and high memory ranges: | 
 | 	 */ | 
 | 	max_low_pfn = max_pfn; | 
 | 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT; | 
 |  | 
 | 	nodes_clear(node_online_map); | 
 |  | 
 | 	/* Setup bootmem with available RAM */ | 
 | 	setup_memory(); | 
 | 	sparse_init(); | 
 |  | 
 | #ifdef CONFIG_DUMMY_CONSOLE | 
 | 	conswitchp = &dummy_con; | 
 | #endif | 
 |  | 
 | 	/* Perform the machine specific initialisation */ | 
 | 	if (likely(sh_mv.mv_setup)) | 
 | 		sh_mv.mv_setup(cmdline_p); | 
 |  | 
 | 	paging_init(); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	plat_smp_setup(); | 
 | #endif | 
 | } | 
 |  | 
 | /* processor boot mode configuration */ | 
 | int generic_mode_pins(void) | 
 | { | 
 | 	pr_warning("generic_mode_pins(): missing mode pin configuration\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int test_mode_pin(int pin) | 
 | { | 
 | 	return sh_mv.mv_mode_pins() & pin; | 
 | } | 
 |  | 
 | static const char *cpu_name[] = { | 
 | 	[CPU_SH7201]	= "SH7201", | 
 | 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263", | 
 | 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619", | 
 | 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706", | 
 | 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708", | 
 | 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710", | 
 | 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720", | 
 | 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729", | 
 | 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S", | 
 | 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751", | 
 | 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760", | 
 | 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501", | 
 | 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770", | 
 | 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781", | 
 | 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785", | 
 | 	[CPU_SH7786]	= "SH7786", | 
 | 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3", | 
 | 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103", | 
 | 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723", | 
 | 	[CPU_SH7366]	= "SH7366",	[CPU_SH7724]	= "SH7724", | 
 | 	[CPU_SH_NONE]	= "Unknown" | 
 | }; | 
 |  | 
 | const char *get_cpu_subtype(struct sh_cpuinfo *c) | 
 | { | 
 | 	return cpu_name[c->type]; | 
 | } | 
 | EXPORT_SYMBOL(get_cpu_subtype); | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ | 
 | static const char *cpu_flags[] = { | 
 | 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", | 
 | 	"ptea", "llsc", "l2", "op32", "pteaex", NULL | 
 | }; | 
 |  | 
 | static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	seq_printf(m, "cpu flags\t:"); | 
 |  | 
 | 	if (!c->flags) { | 
 | 		seq_printf(m, " %s\n", cpu_flags[0]); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (i = 0; cpu_flags[i]; i++) | 
 | 		if ((c->flags & (1 << i))) | 
 | 			seq_printf(m, " %s", cpu_flags[i+1]); | 
 |  | 
 | 	seq_printf(m, "\n"); | 
 | } | 
 |  | 
 | static void show_cacheinfo(struct seq_file *m, const char *type, | 
 | 			   struct cache_info info) | 
 | { | 
 | 	unsigned int cache_size; | 
 |  | 
 | 	cache_size = info.ways * info.sets * info.linesz; | 
 |  | 
 | 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", | 
 | 		   type, cache_size >> 10, info.ways); | 
 | } | 
 |  | 
 | /* | 
 |  *	Get CPU information for use by the procfs. | 
 |  */ | 
 | static int show_cpuinfo(struct seq_file *m, void *v) | 
 | { | 
 | 	struct sh_cpuinfo *c = v; | 
 | 	unsigned int cpu = c - cpu_data; | 
 |  | 
 | 	if (!cpu_online(cpu)) | 
 | 		return 0; | 
 |  | 
 | 	if (cpu == 0) | 
 | 		seq_printf(m, "machine\t\t: %s\n", get_system_type()); | 
 |  | 
 | 	seq_printf(m, "processor\t: %d\n", cpu); | 
 | 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); | 
 | 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); | 
 | 	if (c->cut_major == -1) | 
 | 		seq_printf(m, "cut\t\t: unknown\n"); | 
 | 	else if (c->cut_minor == -1) | 
 | 		seq_printf(m, "cut\t\t: %d.x\n", c->cut_major); | 
 | 	else | 
 | 		seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor); | 
 |  | 
 | 	show_cpuflags(m, c); | 
 |  | 
 | 	seq_printf(m, "cache type\t: "); | 
 |  | 
 | 	/* | 
 | 	 * Check for what type of cache we have, we support both the | 
 | 	 * unified cache on the SH-2 and SH-3, as well as the harvard | 
 | 	 * style cache on the SH-4. | 
 | 	 */ | 
 | 	if (c->icache.flags & SH_CACHE_COMBINED) { | 
 | 		seq_printf(m, "unified\n"); | 
 | 		show_cacheinfo(m, "cache", c->icache); | 
 | 	} else { | 
 | 		seq_printf(m, "split (harvard)\n"); | 
 | 		show_cacheinfo(m, "icache", c->icache); | 
 | 		show_cacheinfo(m, "dcache", c->dcache); | 
 | 	} | 
 |  | 
 | 	/* Optional secondary cache */ | 
 | 	if (c->flags & CPU_HAS_L2_CACHE) | 
 | 		show_cacheinfo(m, "scache", c->scache); | 
 |  | 
 | 	seq_printf(m, "bogomips\t: %lu.%02lu\n", | 
 | 		     c->loops_per_jiffy/(500000/HZ), | 
 | 		     (c->loops_per_jiffy/(5000/HZ)) % 100); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *c_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	return *pos < NR_CPUS ? cpu_data + *pos : NULL; | 
 | } | 
 | static void *c_next(struct seq_file *m, void *v, loff_t *pos) | 
 | { | 
 | 	++*pos; | 
 | 	return c_start(m, pos); | 
 | } | 
 | static void c_stop(struct seq_file *m, void *v) | 
 | { | 
 | } | 
 | const struct seq_operations cpuinfo_op = { | 
 | 	.start	= c_start, | 
 | 	.next	= c_next, | 
 | 	.stop	= c_stop, | 
 | 	.show	= show_cpuinfo, | 
 | }; | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | struct dentry *sh_debugfs_root; | 
 |  | 
 | static int __init sh_debugfs_init(void) | 
 | { | 
 | 	sh_debugfs_root = debugfs_create_dir("sh", NULL); | 
 | 	if (!sh_debugfs_root) | 
 | 		return -ENOMEM; | 
 | 	if (IS_ERR(sh_debugfs_root)) | 
 | 		return PTR_ERR(sh_debugfs_root); | 
 |  | 
 | 	return 0; | 
 | } | 
 | arch_initcall(sh_debugfs_init); |