| /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| /* A BPF sock_map is used to store sock objects. This is primarly used |
| * for doing socket redirect with BPF helper routines. |
| * |
| * A sock map may have BPF programs attached to it, currently a program |
| * used to parse packets and a program to provide a verdict and redirect |
| * decision on the packet are supported. Any programs attached to a sock |
| * map are inherited by sock objects when they are added to the map. If |
| * no BPF programs are attached the sock object may only be used for sock |
| * redirect. |
| * |
| * A sock object may be in multiple maps, but can only inherit a single |
| * parse or verdict program. If adding a sock object to a map would result |
| * in having multiple parsing programs the update will return an EBUSY error. |
| * |
| * For reference this program is similar to devmap used in XDP context |
| * reviewing these together may be useful. For an example please review |
| * ./samples/bpf/sockmap/. |
| */ |
| #include <linux/bpf.h> |
| #include <net/sock.h> |
| #include <linux/filter.h> |
| #include <linux/errno.h> |
| #include <linux/file.h> |
| #include <linux/kernel.h> |
| #include <linux/net.h> |
| #include <linux/skbuff.h> |
| #include <linux/workqueue.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <net/strparser.h> |
| #include <net/tcp.h> |
| #include <linux/ptr_ring.h> |
| #include <net/inet_common.h> |
| #include <linux/sched/signal.h> |
| |
| #define SOCK_CREATE_FLAG_MASK \ |
| (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) |
| |
| struct bpf_sock_progs { |
| struct bpf_prog *bpf_tx_msg; |
| struct bpf_prog *bpf_parse; |
| struct bpf_prog *bpf_verdict; |
| }; |
| |
| struct bpf_stab { |
| struct bpf_map map; |
| struct sock **sock_map; |
| struct bpf_sock_progs progs; |
| raw_spinlock_t lock; |
| }; |
| |
| struct bucket { |
| struct hlist_head head; |
| raw_spinlock_t lock; |
| }; |
| |
| struct bpf_htab { |
| struct bpf_map map; |
| struct bucket *buckets; |
| atomic_t count; |
| u32 n_buckets; |
| u32 elem_size; |
| struct bpf_sock_progs progs; |
| struct rcu_head rcu; |
| }; |
| |
| struct htab_elem { |
| struct rcu_head rcu; |
| struct hlist_node hash_node; |
| u32 hash; |
| struct sock *sk; |
| char key[0]; |
| }; |
| |
| enum smap_psock_state { |
| SMAP_TX_RUNNING, |
| }; |
| |
| struct smap_psock_map_entry { |
| struct list_head list; |
| struct bpf_map *map; |
| struct sock **entry; |
| struct htab_elem __rcu *hash_link; |
| }; |
| |
| struct smap_psock { |
| struct rcu_head rcu; |
| refcount_t refcnt; |
| |
| /* datapath variables */ |
| struct sk_buff_head rxqueue; |
| bool strp_enabled; |
| |
| /* datapath error path cache across tx work invocations */ |
| int save_rem; |
| int save_off; |
| struct sk_buff *save_skb; |
| |
| /* datapath variables for tx_msg ULP */ |
| struct sock *sk_redir; |
| int apply_bytes; |
| int cork_bytes; |
| int sg_size; |
| int eval; |
| struct sk_msg_buff *cork; |
| struct list_head ingress; |
| |
| struct strparser strp; |
| struct bpf_prog *bpf_tx_msg; |
| struct bpf_prog *bpf_parse; |
| struct bpf_prog *bpf_verdict; |
| struct list_head maps; |
| spinlock_t maps_lock; |
| |
| /* Back reference used when sock callback trigger sockmap operations */ |
| struct sock *sock; |
| unsigned long state; |
| |
| struct work_struct tx_work; |
| struct work_struct gc_work; |
| |
| struct proto *sk_proto; |
| void (*save_unhash)(struct sock *sk); |
| void (*save_close)(struct sock *sk, long timeout); |
| void (*save_data_ready)(struct sock *sk); |
| void (*save_write_space)(struct sock *sk); |
| }; |
| |
| static void smap_release_sock(struct smap_psock *psock, struct sock *sock); |
| static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, |
| int nonblock, int flags, int *addr_len); |
| static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); |
| static int bpf_tcp_sendpage(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags); |
| static void bpf_tcp_unhash(struct sock *sk); |
| static void bpf_tcp_close(struct sock *sk, long timeout); |
| |
| static inline struct smap_psock *smap_psock_sk(const struct sock *sk) |
| { |
| return rcu_dereference_sk_user_data(sk); |
| } |
| |
| static bool bpf_tcp_stream_read(const struct sock *sk) |
| { |
| struct smap_psock *psock; |
| bool empty = true; |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) |
| goto out; |
| empty = list_empty(&psock->ingress); |
| out: |
| rcu_read_unlock(); |
| return !empty; |
| } |
| |
| enum { |
| SOCKMAP_IPV4, |
| SOCKMAP_IPV6, |
| SOCKMAP_NUM_PROTS, |
| }; |
| |
| enum { |
| SOCKMAP_BASE, |
| SOCKMAP_TX, |
| SOCKMAP_NUM_CONFIGS, |
| }; |
| |
| static struct proto *saved_tcpv6_prot __read_mostly; |
| static DEFINE_SPINLOCK(tcpv6_prot_lock); |
| static struct proto bpf_tcp_prots[SOCKMAP_NUM_PROTS][SOCKMAP_NUM_CONFIGS]; |
| static void build_protos(struct proto prot[SOCKMAP_NUM_CONFIGS], |
| struct proto *base) |
| { |
| prot[SOCKMAP_BASE] = *base; |
| prot[SOCKMAP_BASE].unhash = bpf_tcp_unhash; |
| prot[SOCKMAP_BASE].close = bpf_tcp_close; |
| prot[SOCKMAP_BASE].recvmsg = bpf_tcp_recvmsg; |
| prot[SOCKMAP_BASE].stream_memory_read = bpf_tcp_stream_read; |
| |
| prot[SOCKMAP_TX] = prot[SOCKMAP_BASE]; |
| prot[SOCKMAP_TX].sendmsg = bpf_tcp_sendmsg; |
| prot[SOCKMAP_TX].sendpage = bpf_tcp_sendpage; |
| } |
| |
| static void update_sk_prot(struct sock *sk, struct smap_psock *psock) |
| { |
| int family = sk->sk_family == AF_INET6 ? SOCKMAP_IPV6 : SOCKMAP_IPV4; |
| int conf = psock->bpf_tx_msg ? SOCKMAP_TX : SOCKMAP_BASE; |
| |
| sk->sk_prot = &bpf_tcp_prots[family][conf]; |
| } |
| |
| static int bpf_tcp_init(struct sock *sk) |
| { |
| struct smap_psock *psock; |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) { |
| rcu_read_unlock(); |
| return -EINVAL; |
| } |
| |
| if (unlikely(psock->sk_proto)) { |
| rcu_read_unlock(); |
| return -EBUSY; |
| } |
| |
| psock->save_unhash = sk->sk_prot->unhash; |
| psock->save_close = sk->sk_prot->close; |
| psock->sk_proto = sk->sk_prot; |
| |
| /* Build IPv6 sockmap whenever the address of tcpv6_prot changes */ |
| if (sk->sk_family == AF_INET6 && |
| unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { |
| spin_lock_bh(&tcpv6_prot_lock); |
| if (likely(sk->sk_prot != saved_tcpv6_prot)) { |
| build_protos(bpf_tcp_prots[SOCKMAP_IPV6], sk->sk_prot); |
| smp_store_release(&saved_tcpv6_prot, sk->sk_prot); |
| } |
| spin_unlock_bh(&tcpv6_prot_lock); |
| } |
| update_sk_prot(sk, psock); |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| static void smap_release_sock(struct smap_psock *psock, struct sock *sock); |
| static int free_start_sg(struct sock *sk, struct sk_msg_buff *md, bool charge); |
| |
| static void bpf_tcp_release(struct sock *sk) |
| { |
| struct smap_psock *psock; |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) |
| goto out; |
| |
| if (psock->cork) { |
| free_start_sg(psock->sock, psock->cork, true); |
| kfree(psock->cork); |
| psock->cork = NULL; |
| } |
| |
| if (psock->sk_proto) { |
| sk->sk_prot = psock->sk_proto; |
| psock->sk_proto = NULL; |
| } |
| out: |
| rcu_read_unlock(); |
| } |
| |
| static struct htab_elem *lookup_elem_raw(struct hlist_head *head, |
| u32 hash, void *key, u32 key_size) |
| { |
| struct htab_elem *l; |
| |
| hlist_for_each_entry_rcu(l, head, hash_node) { |
| if (l->hash == hash && !memcmp(&l->key, key, key_size)) |
| return l; |
| } |
| |
| return NULL; |
| } |
| |
| static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) |
| { |
| return &htab->buckets[hash & (htab->n_buckets - 1)]; |
| } |
| |
| static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash) |
| { |
| return &__select_bucket(htab, hash)->head; |
| } |
| |
| static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) |
| { |
| atomic_dec(&htab->count); |
| kfree_rcu(l, rcu); |
| } |
| |
| static struct smap_psock_map_entry *psock_map_pop(struct sock *sk, |
| struct smap_psock *psock) |
| { |
| struct smap_psock_map_entry *e; |
| |
| spin_lock_bh(&psock->maps_lock); |
| e = list_first_entry_or_null(&psock->maps, |
| struct smap_psock_map_entry, |
| list); |
| if (e) |
| list_del(&e->list); |
| spin_unlock_bh(&psock->maps_lock); |
| return e; |
| } |
| |
| static void bpf_tcp_remove(struct sock *sk, struct smap_psock *psock) |
| { |
| struct smap_psock_map_entry *e; |
| struct sk_msg_buff *md, *mtmp; |
| struct sock *osk; |
| |
| if (psock->cork) { |
| free_start_sg(psock->sock, psock->cork, true); |
| kfree(psock->cork); |
| psock->cork = NULL; |
| } |
| |
| list_for_each_entry_safe(md, mtmp, &psock->ingress, list) { |
| list_del(&md->list); |
| free_start_sg(psock->sock, md, true); |
| kfree(md); |
| } |
| |
| e = psock_map_pop(sk, psock); |
| while (e) { |
| if (e->entry) { |
| struct bpf_stab *stab = container_of(e->map, struct bpf_stab, map); |
| |
| raw_spin_lock_bh(&stab->lock); |
| osk = *e->entry; |
| if (osk == sk) { |
| *e->entry = NULL; |
| smap_release_sock(psock, sk); |
| } |
| raw_spin_unlock_bh(&stab->lock); |
| } else { |
| struct htab_elem *link = rcu_dereference(e->hash_link); |
| struct bpf_htab *htab = container_of(e->map, struct bpf_htab, map); |
| struct hlist_head *head; |
| struct htab_elem *l; |
| struct bucket *b; |
| |
| b = __select_bucket(htab, link->hash); |
| head = &b->head; |
| raw_spin_lock_bh(&b->lock); |
| l = lookup_elem_raw(head, |
| link->hash, link->key, |
| htab->map.key_size); |
| /* If another thread deleted this object skip deletion. |
| * The refcnt on psock may or may not be zero. |
| */ |
| if (l && l == link) { |
| hlist_del_rcu(&link->hash_node); |
| smap_release_sock(psock, link->sk); |
| free_htab_elem(htab, link); |
| } |
| raw_spin_unlock_bh(&b->lock); |
| } |
| kfree(e); |
| e = psock_map_pop(sk, psock); |
| } |
| } |
| |
| static void bpf_tcp_unhash(struct sock *sk) |
| { |
| void (*unhash_fun)(struct sock *sk); |
| struct smap_psock *psock; |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) { |
| rcu_read_unlock(); |
| if (sk->sk_prot->unhash) |
| sk->sk_prot->unhash(sk); |
| return; |
| } |
| unhash_fun = psock->save_unhash; |
| bpf_tcp_remove(sk, psock); |
| rcu_read_unlock(); |
| unhash_fun(sk); |
| } |
| |
| static void bpf_tcp_close(struct sock *sk, long timeout) |
| { |
| void (*close_fun)(struct sock *sk, long timeout); |
| struct smap_psock *psock; |
| |
| lock_sock(sk); |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) { |
| rcu_read_unlock(); |
| release_sock(sk); |
| return sk->sk_prot->close(sk, timeout); |
| } |
| close_fun = psock->save_close; |
| bpf_tcp_remove(sk, psock); |
| rcu_read_unlock(); |
| release_sock(sk); |
| close_fun(sk, timeout); |
| } |
| |
| enum __sk_action { |
| __SK_DROP = 0, |
| __SK_PASS, |
| __SK_REDIRECT, |
| __SK_NONE, |
| }; |
| |
| static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = { |
| .name = "bpf_tcp", |
| .uid = TCP_ULP_BPF, |
| .user_visible = false, |
| .owner = NULL, |
| .init = bpf_tcp_init, |
| .release = bpf_tcp_release, |
| }; |
| |
| static int memcopy_from_iter(struct sock *sk, |
| struct sk_msg_buff *md, |
| struct iov_iter *from, int bytes) |
| { |
| struct scatterlist *sg = md->sg_data; |
| int i = md->sg_curr, rc = -ENOSPC; |
| |
| do { |
| int copy; |
| char *to; |
| |
| if (md->sg_copybreak >= sg[i].length) { |
| md->sg_copybreak = 0; |
| |
| if (++i == MAX_SKB_FRAGS) |
| i = 0; |
| |
| if (i == md->sg_end) |
| break; |
| } |
| |
| copy = sg[i].length - md->sg_copybreak; |
| to = sg_virt(&sg[i]) + md->sg_copybreak; |
| md->sg_copybreak += copy; |
| |
| if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) |
| rc = copy_from_iter_nocache(to, copy, from); |
| else |
| rc = copy_from_iter(to, copy, from); |
| |
| if (rc != copy) { |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| bytes -= copy; |
| if (!bytes) |
| break; |
| |
| md->sg_copybreak = 0; |
| if (++i == MAX_SKB_FRAGS) |
| i = 0; |
| } while (i != md->sg_end); |
| out: |
| md->sg_curr = i; |
| return rc; |
| } |
| |
| static int bpf_tcp_push(struct sock *sk, int apply_bytes, |
| struct sk_msg_buff *md, |
| int flags, bool uncharge) |
| { |
| bool apply = apply_bytes; |
| struct scatterlist *sg; |
| int offset, ret = 0; |
| struct page *p; |
| size_t size; |
| |
| while (1) { |
| sg = md->sg_data + md->sg_start; |
| size = (apply && apply_bytes < sg->length) ? |
| apply_bytes : sg->length; |
| offset = sg->offset; |
| |
| tcp_rate_check_app_limited(sk); |
| p = sg_page(sg); |
| retry: |
| ret = do_tcp_sendpages(sk, p, offset, size, flags); |
| if (ret != size) { |
| if (ret > 0) { |
| if (apply) |
| apply_bytes -= ret; |
| |
| sg->offset += ret; |
| sg->length -= ret; |
| size -= ret; |
| offset += ret; |
| if (uncharge) |
| sk_mem_uncharge(sk, ret); |
| goto retry; |
| } |
| |
| return ret; |
| } |
| |
| if (apply) |
| apply_bytes -= ret; |
| sg->offset += ret; |
| sg->length -= ret; |
| if (uncharge) |
| sk_mem_uncharge(sk, ret); |
| |
| if (!sg->length) { |
| put_page(p); |
| md->sg_start++; |
| if (md->sg_start == MAX_SKB_FRAGS) |
| md->sg_start = 0; |
| sg_init_table(sg, 1); |
| |
| if (md->sg_start == md->sg_end) |
| break; |
| } |
| |
| if (apply && !apply_bytes) |
| break; |
| } |
| return 0; |
| } |
| |
| static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md) |
| { |
| struct scatterlist *sg = md->sg_data + md->sg_start; |
| |
| if (md->sg_copy[md->sg_start]) { |
| md->data = md->data_end = 0; |
| } else { |
| md->data = sg_virt(sg); |
| md->data_end = md->data + sg->length; |
| } |
| } |
| |
| static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md) |
| { |
| struct scatterlist *sg = md->sg_data; |
| int i = md->sg_start; |
| |
| do { |
| int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length; |
| |
| sk_mem_uncharge(sk, uncharge); |
| bytes -= uncharge; |
| if (!bytes) |
| break; |
| i++; |
| if (i == MAX_SKB_FRAGS) |
| i = 0; |
| } while (i != md->sg_end); |
| } |
| |
| static void free_bytes_sg(struct sock *sk, int bytes, |
| struct sk_msg_buff *md, bool charge) |
| { |
| struct scatterlist *sg = md->sg_data; |
| int i = md->sg_start, free; |
| |
| while (bytes && sg[i].length) { |
| free = sg[i].length; |
| if (bytes < free) { |
| sg[i].length -= bytes; |
| sg[i].offset += bytes; |
| if (charge) |
| sk_mem_uncharge(sk, bytes); |
| break; |
| } |
| |
| if (charge) |
| sk_mem_uncharge(sk, sg[i].length); |
| put_page(sg_page(&sg[i])); |
| bytes -= sg[i].length; |
| sg[i].length = 0; |
| sg[i].page_link = 0; |
| sg[i].offset = 0; |
| i++; |
| |
| if (i == MAX_SKB_FRAGS) |
| i = 0; |
| } |
| md->sg_start = i; |
| } |
| |
| static int free_sg(struct sock *sk, int start, |
| struct sk_msg_buff *md, bool charge) |
| { |
| struct scatterlist *sg = md->sg_data; |
| int i = start, free = 0; |
| |
| while (sg[i].length) { |
| free += sg[i].length; |
| if (charge) |
| sk_mem_uncharge(sk, sg[i].length); |
| if (!md->skb) |
| put_page(sg_page(&sg[i])); |
| sg[i].length = 0; |
| sg[i].page_link = 0; |
| sg[i].offset = 0; |
| i++; |
| |
| if (i == MAX_SKB_FRAGS) |
| i = 0; |
| } |
| if (md->skb) |
| consume_skb(md->skb); |
| |
| return free; |
| } |
| |
| static int free_start_sg(struct sock *sk, struct sk_msg_buff *md, bool charge) |
| { |
| int free = free_sg(sk, md->sg_start, md, charge); |
| |
| md->sg_start = md->sg_end; |
| return free; |
| } |
| |
| static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md) |
| { |
| return free_sg(sk, md->sg_curr, md, true); |
| } |
| |
| static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md) |
| { |
| return ((_rc == SK_PASS) ? |
| (md->sk_redir ? __SK_REDIRECT : __SK_PASS) : |
| __SK_DROP); |
| } |
| |
| static unsigned int smap_do_tx_msg(struct sock *sk, |
| struct smap_psock *psock, |
| struct sk_msg_buff *md) |
| { |
| struct bpf_prog *prog; |
| unsigned int rc, _rc; |
| |
| preempt_disable(); |
| rcu_read_lock(); |
| |
| /* If the policy was removed mid-send then default to 'accept' */ |
| prog = READ_ONCE(psock->bpf_tx_msg); |
| if (unlikely(!prog)) { |
| _rc = SK_PASS; |
| goto verdict; |
| } |
| |
| bpf_compute_data_pointers_sg(md); |
| md->sk = sk; |
| rc = (*prog->bpf_func)(md, prog->insnsi); |
| psock->apply_bytes = md->apply_bytes; |
| |
| /* Moving return codes from UAPI namespace into internal namespace */ |
| _rc = bpf_map_msg_verdict(rc, md); |
| |
| /* The psock has a refcount on the sock but not on the map and because |
| * we need to drop rcu read lock here its possible the map could be |
| * removed between here and when we need it to execute the sock |
| * redirect. So do the map lookup now for future use. |
| */ |
| if (_rc == __SK_REDIRECT) { |
| if (psock->sk_redir) |
| sock_put(psock->sk_redir); |
| psock->sk_redir = do_msg_redirect_map(md); |
| if (!psock->sk_redir) { |
| _rc = __SK_DROP; |
| goto verdict; |
| } |
| sock_hold(psock->sk_redir); |
| } |
| verdict: |
| rcu_read_unlock(); |
| preempt_enable(); |
| |
| return _rc; |
| } |
| |
| static int bpf_tcp_ingress(struct sock *sk, int apply_bytes, |
| struct smap_psock *psock, |
| struct sk_msg_buff *md, int flags) |
| { |
| bool apply = apply_bytes; |
| size_t size, copied = 0; |
| struct sk_msg_buff *r; |
| int err = 0, i; |
| |
| r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL); |
| if (unlikely(!r)) |
| return -ENOMEM; |
| |
| lock_sock(sk); |
| r->sg_start = md->sg_start; |
| i = md->sg_start; |
| |
| do { |
| size = (apply && apply_bytes < md->sg_data[i].length) ? |
| apply_bytes : md->sg_data[i].length; |
| |
| if (!sk_wmem_schedule(sk, size)) { |
| if (!copied) |
| err = -ENOMEM; |
| break; |
| } |
| |
| sk_mem_charge(sk, size); |
| r->sg_data[i] = md->sg_data[i]; |
| r->sg_data[i].length = size; |
| md->sg_data[i].length -= size; |
| md->sg_data[i].offset += size; |
| copied += size; |
| |
| if (md->sg_data[i].length) { |
| get_page(sg_page(&r->sg_data[i])); |
| r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1; |
| } else { |
| i++; |
| if (i == MAX_SKB_FRAGS) |
| i = 0; |
| r->sg_end = i; |
| } |
| |
| if (apply) { |
| apply_bytes -= size; |
| if (!apply_bytes) |
| break; |
| } |
| } while (i != md->sg_end); |
| |
| md->sg_start = i; |
| |
| if (!err) { |
| list_add_tail(&r->list, &psock->ingress); |
| sk->sk_data_ready(sk); |
| } else { |
| free_start_sg(sk, r, true); |
| kfree(r); |
| } |
| |
| release_sock(sk); |
| return err; |
| } |
| |
| static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send, |
| struct sk_msg_buff *md, |
| int flags) |
| { |
| bool ingress = !!(md->flags & BPF_F_INGRESS); |
| struct smap_psock *psock; |
| int err = 0; |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) |
| goto out_rcu; |
| |
| if (!refcount_inc_not_zero(&psock->refcnt)) |
| goto out_rcu; |
| |
| rcu_read_unlock(); |
| |
| if (ingress) { |
| err = bpf_tcp_ingress(sk, send, psock, md, flags); |
| } else { |
| lock_sock(sk); |
| err = bpf_tcp_push(sk, send, md, flags, false); |
| release_sock(sk); |
| } |
| smap_release_sock(psock, sk); |
| return err; |
| out_rcu: |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| static inline void bpf_md_init(struct smap_psock *psock) |
| { |
| if (!psock->apply_bytes) { |
| psock->eval = __SK_NONE; |
| if (psock->sk_redir) { |
| sock_put(psock->sk_redir); |
| psock->sk_redir = NULL; |
| } |
| } |
| } |
| |
| static void apply_bytes_dec(struct smap_psock *psock, int i) |
| { |
| if (psock->apply_bytes) { |
| if (psock->apply_bytes < i) |
| psock->apply_bytes = 0; |
| else |
| psock->apply_bytes -= i; |
| } |
| } |
| |
| static int bpf_exec_tx_verdict(struct smap_psock *psock, |
| struct sk_msg_buff *m, |
| struct sock *sk, |
| int *copied, int flags) |
| { |
| bool cork = false, enospc = (m->sg_start == m->sg_end); |
| struct sock *redir; |
| int err = 0; |
| int send; |
| |
| more_data: |
| if (psock->eval == __SK_NONE) |
| psock->eval = smap_do_tx_msg(sk, psock, m); |
| |
| if (m->cork_bytes && |
| m->cork_bytes > psock->sg_size && !enospc) { |
| psock->cork_bytes = m->cork_bytes - psock->sg_size; |
| if (!psock->cork) { |
| psock->cork = kcalloc(1, |
| sizeof(struct sk_msg_buff), |
| GFP_ATOMIC | __GFP_NOWARN); |
| |
| if (!psock->cork) { |
| err = -ENOMEM; |
| goto out_err; |
| } |
| } |
| memcpy(psock->cork, m, sizeof(*m)); |
| goto out_err; |
| } |
| |
| send = psock->sg_size; |
| if (psock->apply_bytes && psock->apply_bytes < send) |
| send = psock->apply_bytes; |
| |
| switch (psock->eval) { |
| case __SK_PASS: |
| err = bpf_tcp_push(sk, send, m, flags, true); |
| if (unlikely(err)) { |
| *copied -= free_start_sg(sk, m, true); |
| break; |
| } |
| |
| apply_bytes_dec(psock, send); |
| psock->sg_size -= send; |
| break; |
| case __SK_REDIRECT: |
| redir = psock->sk_redir; |
| apply_bytes_dec(psock, send); |
| |
| if (psock->cork) { |
| cork = true; |
| psock->cork = NULL; |
| } |
| |
| return_mem_sg(sk, send, m); |
| release_sock(sk); |
| |
| err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags); |
| lock_sock(sk); |
| |
| if (unlikely(err < 0)) { |
| int free = free_start_sg(sk, m, false); |
| |
| psock->sg_size = 0; |
| if (!cork) |
| *copied -= free; |
| } else { |
| psock->sg_size -= send; |
| } |
| |
| if (cork) { |
| free_start_sg(sk, m, true); |
| psock->sg_size = 0; |
| kfree(m); |
| m = NULL; |
| err = 0; |
| } |
| break; |
| case __SK_DROP: |
| default: |
| free_bytes_sg(sk, send, m, true); |
| apply_bytes_dec(psock, send); |
| *copied -= send; |
| psock->sg_size -= send; |
| err = -EACCES; |
| break; |
| } |
| |
| if (likely(!err)) { |
| bpf_md_init(psock); |
| if (m && |
| m->sg_data[m->sg_start].page_link && |
| m->sg_data[m->sg_start].length) |
| goto more_data; |
| } |
| |
| out_err: |
| return err; |
| } |
| |
| static int bpf_wait_data(struct sock *sk, |
| struct smap_psock *psk, int flags, |
| long timeo, int *err) |
| { |
| int rc; |
| |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| |
| add_wait_queue(sk_sleep(sk), &wait); |
| sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
| rc = sk_wait_event(sk, &timeo, |
| !list_empty(&psk->ingress) || |
| !skb_queue_empty(&sk->sk_receive_queue), |
| &wait); |
| sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
| remove_wait_queue(sk_sleep(sk), &wait); |
| |
| return rc; |
| } |
| |
| static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, |
| int nonblock, int flags, int *addr_len) |
| { |
| struct iov_iter *iter = &msg->msg_iter; |
| struct smap_psock *psock; |
| int copied = 0; |
| |
| if (unlikely(flags & MSG_ERRQUEUE)) |
| return inet_recv_error(sk, msg, len, addr_len); |
| if (!skb_queue_empty(&sk->sk_receive_queue)) |
| return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len); |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) |
| goto out; |
| |
| if (unlikely(!refcount_inc_not_zero(&psock->refcnt))) |
| goto out; |
| rcu_read_unlock(); |
| |
| lock_sock(sk); |
| bytes_ready: |
| while (copied != len) { |
| struct scatterlist *sg; |
| struct sk_msg_buff *md; |
| int i; |
| |
| md = list_first_entry_or_null(&psock->ingress, |
| struct sk_msg_buff, list); |
| if (unlikely(!md)) |
| break; |
| i = md->sg_start; |
| do { |
| struct page *page; |
| int n, copy; |
| |
| sg = &md->sg_data[i]; |
| copy = sg->length; |
| page = sg_page(sg); |
| |
| if (copied + copy > len) |
| copy = len - copied; |
| |
| n = copy_page_to_iter(page, sg->offset, copy, iter); |
| if (n != copy) { |
| md->sg_start = i; |
| release_sock(sk); |
| smap_release_sock(psock, sk); |
| return -EFAULT; |
| } |
| |
| copied += copy; |
| sg->offset += copy; |
| sg->length -= copy; |
| sk_mem_uncharge(sk, copy); |
| |
| if (!sg->length) { |
| i++; |
| if (i == MAX_SKB_FRAGS) |
| i = 0; |
| if (!md->skb) |
| put_page(page); |
| } |
| if (copied == len) |
| break; |
| } while (i != md->sg_end); |
| md->sg_start = i; |
| |
| if (!sg->length && md->sg_start == md->sg_end) { |
| list_del(&md->list); |
| if (md->skb) |
| consume_skb(md->skb); |
| kfree(md); |
| } |
| } |
| |
| if (!copied) { |
| long timeo; |
| int data; |
| int err = 0; |
| |
| timeo = sock_rcvtimeo(sk, nonblock); |
| data = bpf_wait_data(sk, psock, flags, timeo, &err); |
| |
| if (data) { |
| if (!skb_queue_empty(&sk->sk_receive_queue)) { |
| release_sock(sk); |
| smap_release_sock(psock, sk); |
| copied = tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len); |
| return copied; |
| } |
| goto bytes_ready; |
| } |
| |
| if (err) |
| copied = err; |
| } |
| |
| release_sock(sk); |
| smap_release_sock(psock, sk); |
| return copied; |
| out: |
| rcu_read_unlock(); |
| return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len); |
| } |
| |
| |
| static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) |
| { |
| int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS; |
| struct sk_msg_buff md = {0}; |
| unsigned int sg_copy = 0; |
| struct smap_psock *psock; |
| int copied = 0, err = 0; |
| struct scatterlist *sg; |
| long timeo; |
| |
| /* Its possible a sock event or user removed the psock _but_ the ops |
| * have not been reprogrammed yet so we get here. In this case fallback |
| * to tcp_sendmsg. Note this only works because we _only_ ever allow |
| * a single ULP there is no hierarchy here. |
| */ |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) { |
| rcu_read_unlock(); |
| return tcp_sendmsg(sk, msg, size); |
| } |
| |
| /* Increment the psock refcnt to ensure its not released while sending a |
| * message. Required because sk lookup and bpf programs are used in |
| * separate rcu critical sections. Its OK if we lose the map entry |
| * but we can't lose the sock reference. |
| */ |
| if (!refcount_inc_not_zero(&psock->refcnt)) { |
| rcu_read_unlock(); |
| return tcp_sendmsg(sk, msg, size); |
| } |
| |
| sg = md.sg_data; |
| sg_init_marker(sg, MAX_SKB_FRAGS); |
| rcu_read_unlock(); |
| |
| lock_sock(sk); |
| timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); |
| |
| while (msg_data_left(msg)) { |
| struct sk_msg_buff *m = NULL; |
| bool enospc = false; |
| int copy; |
| |
| if (sk->sk_err) { |
| err = -sk->sk_err; |
| goto out_err; |
| } |
| |
| copy = msg_data_left(msg); |
| if (!sk_stream_memory_free(sk)) |
| goto wait_for_sndbuf; |
| |
| m = psock->cork_bytes ? psock->cork : &md; |
| m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end; |
| err = sk_alloc_sg(sk, copy, m->sg_data, |
| m->sg_start, &m->sg_end, &sg_copy, |
| m->sg_end - 1); |
| if (err) { |
| if (err != -ENOSPC) |
| goto wait_for_memory; |
| enospc = true; |
| copy = sg_copy; |
| } |
| |
| err = memcopy_from_iter(sk, m, &msg->msg_iter, copy); |
| if (err < 0) { |
| free_curr_sg(sk, m); |
| goto out_err; |
| } |
| |
| psock->sg_size += copy; |
| copied += copy; |
| sg_copy = 0; |
| |
| /* When bytes are being corked skip running BPF program and |
| * applying verdict unless there is no more buffer space. In |
| * the ENOSPC case simply run BPF prorgram with currently |
| * accumulated data. We don't have much choice at this point |
| * we could try extending the page frags or chaining complex |
| * frags but even in these cases _eventually_ we will hit an |
| * OOM scenario. More complex recovery schemes may be |
| * implemented in the future, but BPF programs must handle |
| * the case where apply_cork requests are not honored. The |
| * canonical method to verify this is to check data length. |
| */ |
| if (psock->cork_bytes) { |
| if (copy > psock->cork_bytes) |
| psock->cork_bytes = 0; |
| else |
| psock->cork_bytes -= copy; |
| |
| if (psock->cork_bytes && !enospc) |
| goto out_cork; |
| |
| /* All cork bytes accounted for re-run filter */ |
| psock->eval = __SK_NONE; |
| psock->cork_bytes = 0; |
| } |
| |
| err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags); |
| if (unlikely(err < 0)) |
| goto out_err; |
| continue; |
| wait_for_sndbuf: |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| wait_for_memory: |
| err = sk_stream_wait_memory(sk, &timeo); |
| if (err) { |
| if (m && m != psock->cork) |
| free_start_sg(sk, m, true); |
| goto out_err; |
| } |
| } |
| out_err: |
| if (err < 0) |
| err = sk_stream_error(sk, msg->msg_flags, err); |
| out_cork: |
| release_sock(sk); |
| smap_release_sock(psock, sk); |
| return copied ? copied : err; |
| } |
| |
| static int bpf_tcp_sendpage(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags) |
| { |
| struct sk_msg_buff md = {0}, *m = NULL; |
| int err = 0, copied = 0; |
| struct smap_psock *psock; |
| struct scatterlist *sg; |
| bool enospc = false; |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) |
| goto accept; |
| |
| if (!refcount_inc_not_zero(&psock->refcnt)) |
| goto accept; |
| rcu_read_unlock(); |
| |
| lock_sock(sk); |
| |
| if (psock->cork_bytes) { |
| m = psock->cork; |
| sg = &m->sg_data[m->sg_end]; |
| } else { |
| m = &md; |
| sg = m->sg_data; |
| sg_init_marker(sg, MAX_SKB_FRAGS); |
| } |
| |
| /* Catch case where ring is full and sendpage is stalled. */ |
| if (unlikely(m->sg_end == m->sg_start && |
| m->sg_data[m->sg_end].length)) |
| goto out_err; |
| |
| psock->sg_size += size; |
| sg_set_page(sg, page, size, offset); |
| get_page(page); |
| m->sg_copy[m->sg_end] = true; |
| sk_mem_charge(sk, size); |
| m->sg_end++; |
| copied = size; |
| |
| if (m->sg_end == MAX_SKB_FRAGS) |
| m->sg_end = 0; |
| |
| if (m->sg_end == m->sg_start) |
| enospc = true; |
| |
| if (psock->cork_bytes) { |
| if (size > psock->cork_bytes) |
| psock->cork_bytes = 0; |
| else |
| psock->cork_bytes -= size; |
| |
| if (psock->cork_bytes && !enospc) |
| goto out_err; |
| |
| /* All cork bytes accounted for re-run filter */ |
| psock->eval = __SK_NONE; |
| psock->cork_bytes = 0; |
| } |
| |
| err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags); |
| out_err: |
| release_sock(sk); |
| smap_release_sock(psock, sk); |
| return copied ? copied : err; |
| accept: |
| rcu_read_unlock(); |
| return tcp_sendpage(sk, page, offset, size, flags); |
| } |
| |
| static void bpf_tcp_msg_add(struct smap_psock *psock, |
| struct sock *sk, |
| struct bpf_prog *tx_msg) |
| { |
| struct bpf_prog *orig_tx_msg; |
| |
| orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg); |
| if (orig_tx_msg) |
| bpf_prog_put(orig_tx_msg); |
| } |
| |
| static int bpf_tcp_ulp_register(void) |
| { |
| build_protos(bpf_tcp_prots[SOCKMAP_IPV4], &tcp_prot); |
| /* Once BPF TX ULP is registered it is never unregistered. It |
| * will be in the ULP list for the lifetime of the system. Doing |
| * duplicate registers is not a problem. |
| */ |
| return tcp_register_ulp(&bpf_tcp_ulp_ops); |
| } |
| |
| static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb) |
| { |
| struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict); |
| int rc; |
| |
| if (unlikely(!prog)) |
| return __SK_DROP; |
| |
| skb_orphan(skb); |
| /* We need to ensure that BPF metadata for maps is also cleared |
| * when we orphan the skb so that we don't have the possibility |
| * to reference a stale map. |
| */ |
| TCP_SKB_CB(skb)->bpf.sk_redir = NULL; |
| skb->sk = psock->sock; |
| bpf_compute_data_end_sk_skb(skb); |
| preempt_disable(); |
| rc = (*prog->bpf_func)(skb, prog->insnsi); |
| preempt_enable(); |
| skb->sk = NULL; |
| |
| /* Moving return codes from UAPI namespace into internal namespace */ |
| return rc == SK_PASS ? |
| (TCP_SKB_CB(skb)->bpf.sk_redir ? __SK_REDIRECT : __SK_PASS) : |
| __SK_DROP; |
| } |
| |
| static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb) |
| { |
| struct sock *sk = psock->sock; |
| int copied = 0, num_sg; |
| struct sk_msg_buff *r; |
| |
| r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC); |
| if (unlikely(!r)) |
| return -EAGAIN; |
| |
| if (!sk_rmem_schedule(sk, skb, skb->len)) { |
| kfree(r); |
| return -EAGAIN; |
| } |
| |
| sg_init_table(r->sg_data, MAX_SKB_FRAGS); |
| num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len); |
| if (unlikely(num_sg < 0)) { |
| kfree(r); |
| return num_sg; |
| } |
| sk_mem_charge(sk, skb->len); |
| copied = skb->len; |
| r->sg_start = 0; |
| r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg; |
| r->skb = skb; |
| list_add_tail(&r->list, &psock->ingress); |
| sk->sk_data_ready(sk); |
| return copied; |
| } |
| |
| static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb) |
| { |
| struct smap_psock *peer; |
| struct sock *sk; |
| __u32 in; |
| int rc; |
| |
| rc = smap_verdict_func(psock, skb); |
| switch (rc) { |
| case __SK_REDIRECT: |
| sk = do_sk_redirect_map(skb); |
| if (!sk) { |
| kfree_skb(skb); |
| break; |
| } |
| |
| peer = smap_psock_sk(sk); |
| in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS; |
| |
| if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) || |
| !test_bit(SMAP_TX_RUNNING, &peer->state))) { |
| kfree_skb(skb); |
| break; |
| } |
| |
| if (!in && sock_writeable(sk)) { |
| skb_set_owner_w(skb, sk); |
| skb_queue_tail(&peer->rxqueue, skb); |
| schedule_work(&peer->tx_work); |
| break; |
| } else if (in && |
| atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) { |
| skb_queue_tail(&peer->rxqueue, skb); |
| schedule_work(&peer->tx_work); |
| break; |
| } |
| /* Fall through and free skb otherwise */ |
| case __SK_DROP: |
| default: |
| kfree_skb(skb); |
| } |
| } |
| |
| static void smap_report_sk_error(struct smap_psock *psock, int err) |
| { |
| struct sock *sk = psock->sock; |
| |
| sk->sk_err = err; |
| sk->sk_error_report(sk); |
| } |
| |
| static void smap_read_sock_strparser(struct strparser *strp, |
| struct sk_buff *skb) |
| { |
| struct smap_psock *psock; |
| |
| rcu_read_lock(); |
| psock = container_of(strp, struct smap_psock, strp); |
| smap_do_verdict(psock, skb); |
| rcu_read_unlock(); |
| } |
| |
| /* Called with lock held on socket */ |
| static void smap_data_ready(struct sock *sk) |
| { |
| struct smap_psock *psock; |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (likely(psock)) { |
| write_lock_bh(&sk->sk_callback_lock); |
| strp_data_ready(&psock->strp); |
| write_unlock_bh(&sk->sk_callback_lock); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static void smap_tx_work(struct work_struct *w) |
| { |
| struct smap_psock *psock; |
| struct sk_buff *skb; |
| int rem, off, n; |
| |
| psock = container_of(w, struct smap_psock, tx_work); |
| |
| /* lock sock to avoid losing sk_socket at some point during loop */ |
| lock_sock(psock->sock); |
| if (psock->save_skb) { |
| skb = psock->save_skb; |
| rem = psock->save_rem; |
| off = psock->save_off; |
| psock->save_skb = NULL; |
| goto start; |
| } |
| |
| while ((skb = skb_dequeue(&psock->rxqueue))) { |
| __u32 flags; |
| |
| rem = skb->len; |
| off = 0; |
| start: |
| flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS; |
| do { |
| if (likely(psock->sock->sk_socket)) { |
| if (flags) |
| n = smap_do_ingress(psock, skb); |
| else |
| n = skb_send_sock_locked(psock->sock, |
| skb, off, rem); |
| } else { |
| n = -EINVAL; |
| } |
| |
| if (n <= 0) { |
| if (n == -EAGAIN) { |
| /* Retry when space is available */ |
| psock->save_skb = skb; |
| psock->save_rem = rem; |
| psock->save_off = off; |
| goto out; |
| } |
| /* Hard errors break pipe and stop xmit */ |
| smap_report_sk_error(psock, n ? -n : EPIPE); |
| clear_bit(SMAP_TX_RUNNING, &psock->state); |
| kfree_skb(skb); |
| goto out; |
| } |
| rem -= n; |
| off += n; |
| } while (rem); |
| |
| if (!flags) |
| kfree_skb(skb); |
| } |
| out: |
| release_sock(psock->sock); |
| } |
| |
| static void smap_write_space(struct sock *sk) |
| { |
| struct smap_psock *psock; |
| void (*write_space)(struct sock *sk); |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state))) |
| schedule_work(&psock->tx_work); |
| write_space = psock->save_write_space; |
| rcu_read_unlock(); |
| write_space(sk); |
| } |
| |
| static void smap_stop_sock(struct smap_psock *psock, struct sock *sk) |
| { |
| if (!psock->strp_enabled) |
| return; |
| sk->sk_data_ready = psock->save_data_ready; |
| sk->sk_write_space = psock->save_write_space; |
| psock->save_data_ready = NULL; |
| psock->save_write_space = NULL; |
| strp_stop(&psock->strp); |
| psock->strp_enabled = false; |
| } |
| |
| static void smap_destroy_psock(struct rcu_head *rcu) |
| { |
| struct smap_psock *psock = container_of(rcu, |
| struct smap_psock, rcu); |
| |
| /* Now that a grace period has passed there is no longer |
| * any reference to this sock in the sockmap so we can |
| * destroy the psock, strparser, and bpf programs. But, |
| * because we use workqueue sync operations we can not |
| * do it in rcu context |
| */ |
| schedule_work(&psock->gc_work); |
| } |
| |
| static bool psock_is_smap_sk(struct sock *sk) |
| { |
| return inet_csk(sk)->icsk_ulp_ops == &bpf_tcp_ulp_ops; |
| } |
| |
| static void smap_release_sock(struct smap_psock *psock, struct sock *sock) |
| { |
| if (refcount_dec_and_test(&psock->refcnt)) { |
| if (psock_is_smap_sk(sock)) |
| tcp_cleanup_ulp(sock); |
| write_lock_bh(&sock->sk_callback_lock); |
| smap_stop_sock(psock, sock); |
| write_unlock_bh(&sock->sk_callback_lock); |
| clear_bit(SMAP_TX_RUNNING, &psock->state); |
| rcu_assign_sk_user_data(sock, NULL); |
| call_rcu_sched(&psock->rcu, smap_destroy_psock); |
| } |
| } |
| |
| static int smap_parse_func_strparser(struct strparser *strp, |
| struct sk_buff *skb) |
| { |
| struct smap_psock *psock; |
| struct bpf_prog *prog; |
| int rc; |
| |
| rcu_read_lock(); |
| psock = container_of(strp, struct smap_psock, strp); |
| prog = READ_ONCE(psock->bpf_parse); |
| |
| if (unlikely(!prog)) { |
| rcu_read_unlock(); |
| return skb->len; |
| } |
| |
| /* Attach socket for bpf program to use if needed we can do this |
| * because strparser clones the skb before handing it to a upper |
| * layer, meaning skb_orphan has been called. We NULL sk on the |
| * way out to ensure we don't trigger a BUG_ON in skb/sk operations |
| * later and because we are not charging the memory of this skb to |
| * any socket yet. |
| */ |
| skb->sk = psock->sock; |
| bpf_compute_data_end_sk_skb(skb); |
| rc = (*prog->bpf_func)(skb, prog->insnsi); |
| skb->sk = NULL; |
| rcu_read_unlock(); |
| return rc; |
| } |
| |
| static int smap_read_sock_done(struct strparser *strp, int err) |
| { |
| return err; |
| } |
| |
| static int smap_init_sock(struct smap_psock *psock, |
| struct sock *sk) |
| { |
| static const struct strp_callbacks cb = { |
| .rcv_msg = smap_read_sock_strparser, |
| .parse_msg = smap_parse_func_strparser, |
| .read_sock_done = smap_read_sock_done, |
| }; |
| |
| return strp_init(&psock->strp, sk, &cb); |
| } |
| |
| static void smap_init_progs(struct smap_psock *psock, |
| struct bpf_prog *verdict, |
| struct bpf_prog *parse) |
| { |
| struct bpf_prog *orig_parse, *orig_verdict; |
| |
| orig_parse = xchg(&psock->bpf_parse, parse); |
| orig_verdict = xchg(&psock->bpf_verdict, verdict); |
| |
| if (orig_verdict) |
| bpf_prog_put(orig_verdict); |
| if (orig_parse) |
| bpf_prog_put(orig_parse); |
| } |
| |
| static void smap_start_sock(struct smap_psock *psock, struct sock *sk) |
| { |
| if (sk->sk_data_ready == smap_data_ready) |
| return; |
| psock->save_data_ready = sk->sk_data_ready; |
| psock->save_write_space = sk->sk_write_space; |
| sk->sk_data_ready = smap_data_ready; |
| sk->sk_write_space = smap_write_space; |
| psock->strp_enabled = true; |
| } |
| |
| static void sock_map_remove_complete(struct bpf_stab *stab) |
| { |
| bpf_map_area_free(stab->sock_map); |
| kfree(stab); |
| } |
| |
| static void smap_gc_work(struct work_struct *w) |
| { |
| struct smap_psock_map_entry *e, *tmp; |
| struct sk_msg_buff *md, *mtmp; |
| struct smap_psock *psock; |
| |
| psock = container_of(w, struct smap_psock, gc_work); |
| |
| /* no callback lock needed because we already detached sockmap ops */ |
| if (psock->strp_enabled) |
| strp_done(&psock->strp); |
| |
| cancel_work_sync(&psock->tx_work); |
| __skb_queue_purge(&psock->rxqueue); |
| |
| /* At this point all strparser and xmit work must be complete */ |
| if (psock->bpf_parse) |
| bpf_prog_put(psock->bpf_parse); |
| if (psock->bpf_verdict) |
| bpf_prog_put(psock->bpf_verdict); |
| if (psock->bpf_tx_msg) |
| bpf_prog_put(psock->bpf_tx_msg); |
| |
| if (psock->cork) { |
| free_start_sg(psock->sock, psock->cork, true); |
| kfree(psock->cork); |
| } |
| |
| list_for_each_entry_safe(md, mtmp, &psock->ingress, list) { |
| list_del(&md->list); |
| free_start_sg(psock->sock, md, true); |
| kfree(md); |
| } |
| |
| list_for_each_entry_safe(e, tmp, &psock->maps, list) { |
| list_del(&e->list); |
| kfree(e); |
| } |
| |
| if (psock->sk_redir) |
| sock_put(psock->sk_redir); |
| |
| sock_put(psock->sock); |
| kfree(psock); |
| } |
| |
| static struct smap_psock *smap_init_psock(struct sock *sock, int node) |
| { |
| struct smap_psock *psock; |
| |
| psock = kzalloc_node(sizeof(struct smap_psock), |
| GFP_ATOMIC | __GFP_NOWARN, |
| node); |
| if (!psock) |
| return ERR_PTR(-ENOMEM); |
| |
| psock->eval = __SK_NONE; |
| psock->sock = sock; |
| skb_queue_head_init(&psock->rxqueue); |
| INIT_WORK(&psock->tx_work, smap_tx_work); |
| INIT_WORK(&psock->gc_work, smap_gc_work); |
| INIT_LIST_HEAD(&psock->maps); |
| INIT_LIST_HEAD(&psock->ingress); |
| refcount_set(&psock->refcnt, 1); |
| spin_lock_init(&psock->maps_lock); |
| |
| rcu_assign_sk_user_data(sock, psock); |
| sock_hold(sock); |
| return psock; |
| } |
| |
| static struct bpf_map *sock_map_alloc(union bpf_attr *attr) |
| { |
| struct bpf_stab *stab; |
| u64 cost; |
| int err; |
| |
| if (!capable(CAP_NET_ADMIN)) |
| return ERR_PTR(-EPERM); |
| |
| /* check sanity of attributes */ |
| if (attr->max_entries == 0 || attr->key_size != 4 || |
| attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK) |
| return ERR_PTR(-EINVAL); |
| |
| err = bpf_tcp_ulp_register(); |
| if (err && err != -EEXIST) |
| return ERR_PTR(err); |
| |
| stab = kzalloc(sizeof(*stab), GFP_USER); |
| if (!stab) |
| return ERR_PTR(-ENOMEM); |
| |
| bpf_map_init_from_attr(&stab->map, attr); |
| raw_spin_lock_init(&stab->lock); |
| |
| /* make sure page count doesn't overflow */ |
| cost = (u64) stab->map.max_entries * sizeof(struct sock *); |
| err = -EINVAL; |
| if (cost >= U32_MAX - PAGE_SIZE) |
| goto free_stab; |
| |
| stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; |
| |
| /* if map size is larger than memlock limit, reject it early */ |
| err = bpf_map_precharge_memlock(stab->map.pages); |
| if (err) |
| goto free_stab; |
| |
| err = -ENOMEM; |
| stab->sock_map = bpf_map_area_alloc(stab->map.max_entries * |
| sizeof(struct sock *), |
| stab->map.numa_node); |
| if (!stab->sock_map) |
| goto free_stab; |
| |
| return &stab->map; |
| free_stab: |
| kfree(stab); |
| return ERR_PTR(err); |
| } |
| |
| static void smap_list_map_remove(struct smap_psock *psock, |
| struct sock **entry) |
| { |
| struct smap_psock_map_entry *e, *tmp; |
| |
| spin_lock_bh(&psock->maps_lock); |
| list_for_each_entry_safe(e, tmp, &psock->maps, list) { |
| if (e->entry == entry) { |
| list_del(&e->list); |
| kfree(e); |
| } |
| } |
| spin_unlock_bh(&psock->maps_lock); |
| } |
| |
| static void smap_list_hash_remove(struct smap_psock *psock, |
| struct htab_elem *hash_link) |
| { |
| struct smap_psock_map_entry *e, *tmp; |
| |
| spin_lock_bh(&psock->maps_lock); |
| list_for_each_entry_safe(e, tmp, &psock->maps, list) { |
| struct htab_elem *c = rcu_dereference(e->hash_link); |
| |
| if (c == hash_link) { |
| list_del(&e->list); |
| kfree(e); |
| } |
| } |
| spin_unlock_bh(&psock->maps_lock); |
| } |
| |
| static void sock_map_free(struct bpf_map *map) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| int i; |
| |
| synchronize_rcu(); |
| |
| /* At this point no update, lookup or delete operations can happen. |
| * However, be aware we can still get a socket state event updates, |
| * and data ready callabacks that reference the psock from sk_user_data |
| * Also psock worker threads are still in-flight. So smap_release_sock |
| * will only free the psock after cancel_sync on the worker threads |
| * and a grace period expire to ensure psock is really safe to remove. |
| */ |
| rcu_read_lock(); |
| raw_spin_lock_bh(&stab->lock); |
| for (i = 0; i < stab->map.max_entries; i++) { |
| struct smap_psock *psock; |
| struct sock *sock; |
| |
| sock = stab->sock_map[i]; |
| if (!sock) |
| continue; |
| stab->sock_map[i] = NULL; |
| psock = smap_psock_sk(sock); |
| /* This check handles a racing sock event that can get the |
| * sk_callback_lock before this case but after xchg happens |
| * causing the refcnt to hit zero and sock user data (psock) |
| * to be null and queued for garbage collection. |
| */ |
| if (likely(psock)) { |
| smap_list_map_remove(psock, &stab->sock_map[i]); |
| smap_release_sock(psock, sock); |
| } |
| } |
| raw_spin_unlock_bh(&stab->lock); |
| rcu_read_unlock(); |
| |
| sock_map_remove_complete(stab); |
| } |
| |
| static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| u32 i = key ? *(u32 *)key : U32_MAX; |
| u32 *next = (u32 *)next_key; |
| |
| if (i >= stab->map.max_entries) { |
| *next = 0; |
| return 0; |
| } |
| |
| if (i == stab->map.max_entries - 1) |
| return -ENOENT; |
| |
| *next = i + 1; |
| return 0; |
| } |
| |
| struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| |
| if (key >= map->max_entries) |
| return NULL; |
| |
| return READ_ONCE(stab->sock_map[key]); |
| } |
| |
| static int sock_map_delete_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| struct smap_psock *psock; |
| int k = *(u32 *)key; |
| struct sock *sock; |
| |
| if (k >= map->max_entries) |
| return -EINVAL; |
| |
| raw_spin_lock_bh(&stab->lock); |
| sock = stab->sock_map[k]; |
| stab->sock_map[k] = NULL; |
| raw_spin_unlock_bh(&stab->lock); |
| if (!sock) |
| return -EINVAL; |
| |
| psock = smap_psock_sk(sock); |
| if (!psock) |
| return 0; |
| if (psock->bpf_parse) { |
| write_lock_bh(&sock->sk_callback_lock); |
| smap_stop_sock(psock, sock); |
| write_unlock_bh(&sock->sk_callback_lock); |
| } |
| smap_list_map_remove(psock, &stab->sock_map[k]); |
| smap_release_sock(psock, sock); |
| return 0; |
| } |
| |
| /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are |
| * done inside rcu critical sections. This ensures on updates that the psock |
| * will not be released via smap_release_sock() until concurrent updates/deletes |
| * complete. All operations operate on sock_map using cmpxchg and xchg |
| * operations to ensure we do not get stale references. Any reads into the |
| * map must be done with READ_ONCE() because of this. |
| * |
| * A psock is destroyed via call_rcu and after any worker threads are cancelled |
| * and syncd so we are certain all references from the update/lookup/delete |
| * operations as well as references in the data path are no longer in use. |
| * |
| * Psocks may exist in multiple maps, but only a single set of parse/verdict |
| * programs may be inherited from the maps it belongs to. A reference count |
| * is kept with the total number of references to the psock from all maps. The |
| * psock will not be released until this reaches zero. The psock and sock |
| * user data data use the sk_callback_lock to protect critical data structures |
| * from concurrent access. This allows us to avoid two updates from modifying |
| * the user data in sock and the lock is required anyways for modifying |
| * callbacks, we simply increase its scope slightly. |
| * |
| * Rules to follow, |
| * - psock must always be read inside RCU critical section |
| * - sk_user_data must only be modified inside sk_callback_lock and read |
| * inside RCU critical section. |
| * - psock->maps list must only be read & modified inside sk_callback_lock |
| * - sock_map must use READ_ONCE and (cmp)xchg operations |
| * - BPF verdict/parse programs must use READ_ONCE and xchg operations |
| */ |
| |
| static int __sock_map_ctx_update_elem(struct bpf_map *map, |
| struct bpf_sock_progs *progs, |
| struct sock *sock, |
| void *key) |
| { |
| struct bpf_prog *verdict, *parse, *tx_msg; |
| struct smap_psock *psock; |
| bool new = false; |
| int err = 0; |
| |
| /* 1. If sock map has BPF programs those will be inherited by the |
| * sock being added. If the sock is already attached to BPF programs |
| * this results in an error. |
| */ |
| verdict = READ_ONCE(progs->bpf_verdict); |
| parse = READ_ONCE(progs->bpf_parse); |
| tx_msg = READ_ONCE(progs->bpf_tx_msg); |
| |
| if (parse && verdict) { |
| /* bpf prog refcnt may be zero if a concurrent attach operation |
| * removes the program after the above READ_ONCE() but before |
| * we increment the refcnt. If this is the case abort with an |
| * error. |
| */ |
| verdict = bpf_prog_inc_not_zero(verdict); |
| if (IS_ERR(verdict)) |
| return PTR_ERR(verdict); |
| |
| parse = bpf_prog_inc_not_zero(parse); |
| if (IS_ERR(parse)) { |
| bpf_prog_put(verdict); |
| return PTR_ERR(parse); |
| } |
| } |
| |
| if (tx_msg) { |
| tx_msg = bpf_prog_inc_not_zero(tx_msg); |
| if (IS_ERR(tx_msg)) { |
| if (parse && verdict) { |
| bpf_prog_put(parse); |
| bpf_prog_put(verdict); |
| } |
| return PTR_ERR(tx_msg); |
| } |
| } |
| |
| psock = smap_psock_sk(sock); |
| |
| /* 2. Do not allow inheriting programs if psock exists and has |
| * already inherited programs. This would create confusion on |
| * which parser/verdict program is running. If no psock exists |
| * create one. Inside sk_callback_lock to ensure concurrent create |
| * doesn't update user data. |
| */ |
| if (psock) { |
| if (!psock_is_smap_sk(sock)) { |
| err = -EBUSY; |
| goto out_progs; |
| } |
| if (READ_ONCE(psock->bpf_parse) && parse) { |
| err = -EBUSY; |
| goto out_progs; |
| } |
| if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) { |
| err = -EBUSY; |
| goto out_progs; |
| } |
| if (!refcount_inc_not_zero(&psock->refcnt)) { |
| err = -EAGAIN; |
| goto out_progs; |
| } |
| } else { |
| psock = smap_init_psock(sock, map->numa_node); |
| if (IS_ERR(psock)) { |
| err = PTR_ERR(psock); |
| goto out_progs; |
| } |
| |
| set_bit(SMAP_TX_RUNNING, &psock->state); |
| new = true; |
| } |
| |
| /* 3. At this point we have a reference to a valid psock that is |
| * running. Attach any BPF programs needed. |
| */ |
| if (tx_msg) |
| bpf_tcp_msg_add(psock, sock, tx_msg); |
| if (new) { |
| err = tcp_set_ulp_id(sock, TCP_ULP_BPF); |
| if (err) |
| goto out_free; |
| } |
| |
| if (parse && verdict && !psock->strp_enabled) { |
| err = smap_init_sock(psock, sock); |
| if (err) |
| goto out_free; |
| smap_init_progs(psock, verdict, parse); |
| write_lock_bh(&sock->sk_callback_lock); |
| smap_start_sock(psock, sock); |
| write_unlock_bh(&sock->sk_callback_lock); |
| } |
| |
| return err; |
| out_free: |
| smap_release_sock(psock, sock); |
| out_progs: |
| if (parse && verdict) { |
| bpf_prog_put(parse); |
| bpf_prog_put(verdict); |
| } |
| if (tx_msg) |
| bpf_prog_put(tx_msg); |
| return err; |
| } |
| |
| static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops, |
| struct bpf_map *map, |
| void *key, u64 flags) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| struct bpf_sock_progs *progs = &stab->progs; |
| struct sock *osock, *sock = skops->sk; |
| struct smap_psock_map_entry *e; |
| struct smap_psock *psock; |
| u32 i = *(u32 *)key; |
| int err; |
| |
| if (unlikely(flags > BPF_EXIST)) |
| return -EINVAL; |
| if (unlikely(i >= stab->map.max_entries)) |
| return -E2BIG; |
| |
| e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN); |
| if (!e) |
| return -ENOMEM; |
| |
| err = __sock_map_ctx_update_elem(map, progs, sock, key); |
| if (err) |
| goto out; |
| |
| /* psock guaranteed to be present. */ |
| psock = smap_psock_sk(sock); |
| raw_spin_lock_bh(&stab->lock); |
| osock = stab->sock_map[i]; |
| if (osock && flags == BPF_NOEXIST) { |
| err = -EEXIST; |
| goto out_unlock; |
| } |
| if (!osock && flags == BPF_EXIST) { |
| err = -ENOENT; |
| goto out_unlock; |
| } |
| |
| e->entry = &stab->sock_map[i]; |
| e->map = map; |
| spin_lock_bh(&psock->maps_lock); |
| list_add_tail(&e->list, &psock->maps); |
| spin_unlock_bh(&psock->maps_lock); |
| |
| stab->sock_map[i] = sock; |
| if (osock) { |
| psock = smap_psock_sk(osock); |
| smap_list_map_remove(psock, &stab->sock_map[i]); |
| smap_release_sock(psock, osock); |
| } |
| raw_spin_unlock_bh(&stab->lock); |
| return 0; |
| out_unlock: |
| smap_release_sock(psock, sock); |
| raw_spin_unlock_bh(&stab->lock); |
| out: |
| kfree(e); |
| return err; |
| } |
| |
| int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type) |
| { |
| struct bpf_sock_progs *progs; |
| struct bpf_prog *orig; |
| |
| if (map->map_type == BPF_MAP_TYPE_SOCKMAP) { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| |
| progs = &stab->progs; |
| } else if (map->map_type == BPF_MAP_TYPE_SOCKHASH) { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| |
| progs = &htab->progs; |
| } else { |
| return -EINVAL; |
| } |
| |
| switch (type) { |
| case BPF_SK_MSG_VERDICT: |
| orig = xchg(&progs->bpf_tx_msg, prog); |
| break; |
| case BPF_SK_SKB_STREAM_PARSER: |
| orig = xchg(&progs->bpf_parse, prog); |
| break; |
| case BPF_SK_SKB_STREAM_VERDICT: |
| orig = xchg(&progs->bpf_verdict, prog); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| if (orig) |
| bpf_prog_put(orig); |
| |
| return 0; |
| } |
| |
| int sockmap_get_from_fd(const union bpf_attr *attr, int type, |
| struct bpf_prog *prog) |
| { |
| int ufd = attr->target_fd; |
| struct bpf_map *map; |
| struct fd f; |
| int err; |
| |
| f = fdget(ufd); |
| map = __bpf_map_get(f); |
| if (IS_ERR(map)) |
| return PTR_ERR(map); |
| |
| err = sock_map_prog(map, prog, attr->attach_type); |
| fdput(f); |
| return err; |
| } |
| |
| static void *sock_map_lookup(struct bpf_map *map, void *key) |
| { |
| return NULL; |
| } |
| |
| static int sock_map_update_elem(struct bpf_map *map, |
| void *key, void *value, u64 flags) |
| { |
| struct bpf_sock_ops_kern skops; |
| u32 fd = *(u32 *)value; |
| struct socket *socket; |
| int err; |
| |
| socket = sockfd_lookup(fd, &err); |
| if (!socket) |
| return err; |
| |
| skops.sk = socket->sk; |
| if (!skops.sk) { |
| fput(socket->file); |
| return -EINVAL; |
| } |
| |
| /* ULPs are currently supported only for TCP sockets in ESTABLISHED |
| * state. |
| */ |
| if (skops.sk->sk_type != SOCK_STREAM || |
| skops.sk->sk_protocol != IPPROTO_TCP || |
| skops.sk->sk_state != TCP_ESTABLISHED) { |
| fput(socket->file); |
| return -EOPNOTSUPP; |
| } |
| |
| lock_sock(skops.sk); |
| preempt_disable(); |
| rcu_read_lock(); |
| err = sock_map_ctx_update_elem(&skops, map, key, flags); |
| rcu_read_unlock(); |
| preempt_enable(); |
| release_sock(skops.sk); |
| fput(socket->file); |
| return err; |
| } |
| |
| static void sock_map_release(struct bpf_map *map) |
| { |
| struct bpf_sock_progs *progs; |
| struct bpf_prog *orig; |
| |
| if (map->map_type == BPF_MAP_TYPE_SOCKMAP) { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| |
| progs = &stab->progs; |
| } else { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| |
| progs = &htab->progs; |
| } |
| |
| orig = xchg(&progs->bpf_parse, NULL); |
| if (orig) |
| bpf_prog_put(orig); |
| orig = xchg(&progs->bpf_verdict, NULL); |
| if (orig) |
| bpf_prog_put(orig); |
| |
| orig = xchg(&progs->bpf_tx_msg, NULL); |
| if (orig) |
| bpf_prog_put(orig); |
| } |
| |
| static struct bpf_map *sock_hash_alloc(union bpf_attr *attr) |
| { |
| struct bpf_htab *htab; |
| int i, err; |
| u64 cost; |
| |
| if (!capable(CAP_NET_ADMIN)) |
| return ERR_PTR(-EPERM); |
| |
| /* check sanity of attributes */ |
| if (attr->max_entries == 0 || |
| attr->key_size == 0 || |
| attr->value_size != 4 || |
| attr->map_flags & ~SOCK_CREATE_FLAG_MASK) |
| return ERR_PTR(-EINVAL); |
| |
| if (attr->key_size > MAX_BPF_STACK) |
| /* eBPF programs initialize keys on stack, so they cannot be |
| * larger than max stack size |
| */ |
| return ERR_PTR(-E2BIG); |
| |
| err = bpf_tcp_ulp_register(); |
| if (err && err != -EEXIST) |
| return ERR_PTR(err); |
| |
| htab = kzalloc(sizeof(*htab), GFP_USER); |
| if (!htab) |
| return ERR_PTR(-ENOMEM); |
| |
| bpf_map_init_from_attr(&htab->map, attr); |
| |
| htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); |
| htab->elem_size = sizeof(struct htab_elem) + |
| round_up(htab->map.key_size, 8); |
| err = -EINVAL; |
| if (htab->n_buckets == 0 || |
| htab->n_buckets > U32_MAX / sizeof(struct bucket)) |
| goto free_htab; |
| |
| cost = (u64) htab->n_buckets * sizeof(struct bucket) + |
| (u64) htab->elem_size * htab->map.max_entries; |
| |
| if (cost >= U32_MAX - PAGE_SIZE) |
| goto free_htab; |
| |
| htab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; |
| err = bpf_map_precharge_memlock(htab->map.pages); |
| if (err) |
| goto free_htab; |
| |
| err = -ENOMEM; |
| htab->buckets = bpf_map_area_alloc( |
| htab->n_buckets * sizeof(struct bucket), |
| htab->map.numa_node); |
| if (!htab->buckets) |
| goto free_htab; |
| |
| for (i = 0; i < htab->n_buckets; i++) { |
| INIT_HLIST_HEAD(&htab->buckets[i].head); |
| raw_spin_lock_init(&htab->buckets[i].lock); |
| } |
| |
| return &htab->map; |
| free_htab: |
| kfree(htab); |
| return ERR_PTR(err); |
| } |
| |
| static void __bpf_htab_free(struct rcu_head *rcu) |
| { |
| struct bpf_htab *htab; |
| |
| htab = container_of(rcu, struct bpf_htab, rcu); |
| bpf_map_area_free(htab->buckets); |
| kfree(htab); |
| } |
| |
| static void sock_hash_free(struct bpf_map *map) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| int i; |
| |
| synchronize_rcu(); |
| |
| /* At this point no update, lookup or delete operations can happen. |
| * However, be aware we can still get a socket state event updates, |
| * and data ready callabacks that reference the psock from sk_user_data |
| * Also psock worker threads are still in-flight. So smap_release_sock |
| * will only free the psock after cancel_sync on the worker threads |
| * and a grace period expire to ensure psock is really safe to remove. |
| */ |
| rcu_read_lock(); |
| for (i = 0; i < htab->n_buckets; i++) { |
| struct bucket *b = __select_bucket(htab, i); |
| struct hlist_head *head; |
| struct hlist_node *n; |
| struct htab_elem *l; |
| |
| raw_spin_lock_bh(&b->lock); |
| head = &b->head; |
| hlist_for_each_entry_safe(l, n, head, hash_node) { |
| struct sock *sock = l->sk; |
| struct smap_psock *psock; |
| |
| hlist_del_rcu(&l->hash_node); |
| psock = smap_psock_sk(sock); |
| /* This check handles a racing sock event that can get |
| * the sk_callback_lock before this case but after xchg |
| * causing the refcnt to hit zero and sock user data |
| * (psock) to be null and queued for garbage collection. |
| */ |
| if (likely(psock)) { |
| smap_list_hash_remove(psock, l); |
| smap_release_sock(psock, sock); |
| } |
| free_htab_elem(htab, l); |
| } |
| raw_spin_unlock_bh(&b->lock); |
| } |
| rcu_read_unlock(); |
| call_rcu(&htab->rcu, __bpf_htab_free); |
| } |
| |
| static struct htab_elem *alloc_sock_hash_elem(struct bpf_htab *htab, |
| void *key, u32 key_size, u32 hash, |
| struct sock *sk, |
| struct htab_elem *old_elem) |
| { |
| struct htab_elem *l_new; |
| |
| if (atomic_inc_return(&htab->count) > htab->map.max_entries) { |
| if (!old_elem) { |
| atomic_dec(&htab->count); |
| return ERR_PTR(-E2BIG); |
| } |
| } |
| l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN, |
| htab->map.numa_node); |
| if (!l_new) { |
| atomic_dec(&htab->count); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| memcpy(l_new->key, key, key_size); |
| l_new->sk = sk; |
| l_new->hash = hash; |
| return l_new; |
| } |
| |
| static inline u32 htab_map_hash(const void *key, u32 key_len) |
| { |
| return jhash(key, key_len, 0); |
| } |
| |
| static int sock_hash_get_next_key(struct bpf_map *map, |
| void *key, void *next_key) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct htab_elem *l, *next_l; |
| struct hlist_head *h; |
| u32 hash, key_size; |
| int i = 0; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| key_size = map->key_size; |
| if (!key) |
| goto find_first_elem; |
| hash = htab_map_hash(key, key_size); |
| h = select_bucket(htab, hash); |
| |
| l = lookup_elem_raw(h, hash, key, key_size); |
| if (!l) |
| goto find_first_elem; |
| next_l = hlist_entry_safe( |
| rcu_dereference_raw(hlist_next_rcu(&l->hash_node)), |
| struct htab_elem, hash_node); |
| if (next_l) { |
| memcpy(next_key, next_l->key, key_size); |
| return 0; |
| } |
| |
| /* no more elements in this hash list, go to the next bucket */ |
| i = hash & (htab->n_buckets - 1); |
| i++; |
| |
| find_first_elem: |
| /* iterate over buckets */ |
| for (; i < htab->n_buckets; i++) { |
| h = select_bucket(htab, i); |
| |
| /* pick first element in the bucket */ |
| next_l = hlist_entry_safe( |
| rcu_dereference_raw(hlist_first_rcu(h)), |
| struct htab_elem, hash_node); |
| if (next_l) { |
| /* if it's not empty, just return it */ |
| memcpy(next_key, next_l->key, key_size); |
| return 0; |
| } |
| } |
| |
| /* iterated over all buckets and all elements */ |
| return -ENOENT; |
| } |
| |
| static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops, |
| struct bpf_map *map, |
| void *key, u64 map_flags) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct bpf_sock_progs *progs = &htab->progs; |
| struct htab_elem *l_new = NULL, *l_old; |
| struct smap_psock_map_entry *e = NULL; |
| struct hlist_head *head; |
| struct smap_psock *psock; |
| u32 key_size, hash; |
| struct sock *sock; |
| struct bucket *b; |
| int err; |
| |
| sock = skops->sk; |
| |
| if (sock->sk_type != SOCK_STREAM || |
| sock->sk_protocol != IPPROTO_TCP) |
| return -EOPNOTSUPP; |
| |
| if (unlikely(map_flags > BPF_EXIST)) |
| return -EINVAL; |
| |
| e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN); |
| if (!e) |
| return -ENOMEM; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| key_size = map->key_size; |
| hash = htab_map_hash(key, key_size); |
| b = __select_bucket(htab, hash); |
| head = &b->head; |
| |
| err = __sock_map_ctx_update_elem(map, progs, sock, key); |
| if (err) |
| goto err; |
| |
| /* psock is valid here because otherwise above *ctx_update_elem would |
| * have thrown an error. It is safe to skip error check. |
| */ |
| psock = smap_psock_sk(sock); |
| raw_spin_lock_bh(&b->lock); |
| l_old = lookup_elem_raw(head, hash, key, key_size); |
| if (l_old && map_flags == BPF_NOEXIST) { |
| err = -EEXIST; |
| goto bucket_err; |
| } |
| if (!l_old && map_flags == BPF_EXIST) { |
| err = -ENOENT; |
| goto bucket_err; |
| } |
| |
| l_new = alloc_sock_hash_elem(htab, key, key_size, hash, sock, l_old); |
| if (IS_ERR(l_new)) { |
| err = PTR_ERR(l_new); |
| goto bucket_err; |
| } |
| |
| rcu_assign_pointer(e->hash_link, l_new); |
| e->map = map; |
| spin_lock_bh(&psock->maps_lock); |
| list_add_tail(&e->list, &psock->maps); |
| spin_unlock_bh(&psock->maps_lock); |
| |
| /* add new element to the head of the list, so that |
| * concurrent search will find it before old elem |
| */ |
| hlist_add_head_rcu(&l_new->hash_node, head); |
| if (l_old) { |
| psock = smap_psock_sk(l_old->sk); |
| |
| hlist_del_rcu(&l_old->hash_node); |
| smap_list_hash_remove(psock, l_old); |
| smap_release_sock(psock, l_old->sk); |
| free_htab_elem(htab, l_old); |
| } |
| raw_spin_unlock_bh(&b->lock); |
| return 0; |
| bucket_err: |
| smap_release_sock(psock, sock); |
| raw_spin_unlock_bh(&b->lock); |
| err: |
| kfree(e); |
| return err; |
| } |
| |
| static int sock_hash_update_elem(struct bpf_map *map, |
| void *key, void *value, u64 flags) |
| { |
| struct bpf_sock_ops_kern skops; |
| u32 fd = *(u32 *)value; |
| struct socket *socket; |
| int err; |
| |
| socket = sockfd_lookup(fd, &err); |
| if (!socket) |
| return err; |
| |
| skops.sk = socket->sk; |
| if (!skops.sk) { |
| fput(socket->file); |
| return -EINVAL; |
| } |
| |
| /* ULPs are currently supported only for TCP sockets in ESTABLISHED |
| * state. |
| */ |
| if (skops.sk->sk_type != SOCK_STREAM || |
| skops.sk->sk_protocol != IPPROTO_TCP || |
| skops.sk->sk_state != TCP_ESTABLISHED) { |
| fput(socket->file); |
| return -EOPNOTSUPP; |
| } |
| |
| lock_sock(skops.sk); |
| preempt_disable(); |
| rcu_read_lock(); |
| err = sock_hash_ctx_update_elem(&skops, map, key, flags); |
| rcu_read_unlock(); |
| preempt_enable(); |
| release_sock(skops.sk); |
| fput(socket->file); |
| return err; |
| } |
| |
| static int sock_hash_delete_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct hlist_head *head; |
| struct bucket *b; |
| struct htab_elem *l; |
| u32 hash, key_size; |
| int ret = -ENOENT; |
| |
| key_size = map->key_size; |
| hash = htab_map_hash(key, key_size); |
| b = __select_bucket(htab, hash); |
| head = &b->head; |
| |
| raw_spin_lock_bh(&b->lock); |
| l = lookup_elem_raw(head, hash, key, key_size); |
| if (l) { |
| struct sock *sock = l->sk; |
| struct smap_psock *psock; |
| |
| hlist_del_rcu(&l->hash_node); |
| psock = smap_psock_sk(sock); |
| /* This check handles a racing sock event that can get the |
| * sk_callback_lock before this case but after xchg happens |
| * causing the refcnt to hit zero and sock user data (psock) |
| * to be null and queued for garbage collection. |
| */ |
| if (likely(psock)) { |
| smap_list_hash_remove(psock, l); |
| smap_release_sock(psock, sock); |
| } |
| free_htab_elem(htab, l); |
| ret = 0; |
| } |
| raw_spin_unlock_bh(&b->lock); |
| return ret; |
| } |
| |
| struct sock *__sock_hash_lookup_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_htab *htab = container_of(map, struct bpf_htab, map); |
| struct hlist_head *head; |
| struct htab_elem *l; |
| u32 key_size, hash; |
| struct bucket *b; |
| struct sock *sk; |
| |
| key_size = map->key_size; |
| hash = htab_map_hash(key, key_size); |
| b = __select_bucket(htab, hash); |
| head = &b->head; |
| |
| l = lookup_elem_raw(head, hash, key, key_size); |
| sk = l ? l->sk : NULL; |
| return sk; |
| } |
| |
| const struct bpf_map_ops sock_map_ops = { |
| .map_alloc = sock_map_alloc, |
| .map_free = sock_map_free, |
| .map_lookup_elem = sock_map_lookup, |
| .map_get_next_key = sock_map_get_next_key, |
| .map_update_elem = sock_map_update_elem, |
| .map_delete_elem = sock_map_delete_elem, |
| .map_release_uref = sock_map_release, |
| .map_check_btf = map_check_no_btf, |
| }; |
| |
| const struct bpf_map_ops sock_hash_ops = { |
| .map_alloc = sock_hash_alloc, |
| .map_free = sock_hash_free, |
| .map_lookup_elem = sock_map_lookup, |
| .map_get_next_key = sock_hash_get_next_key, |
| .map_update_elem = sock_hash_update_elem, |
| .map_delete_elem = sock_hash_delete_elem, |
| .map_release_uref = sock_map_release, |
| .map_check_btf = map_check_no_btf, |
| }; |
| |
| static bool bpf_is_valid_sock_op(struct bpf_sock_ops_kern *ops) |
| { |
| return ops->op == BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB || |
| ops->op == BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB; |
| } |
| BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock, |
| struct bpf_map *, map, void *, key, u64, flags) |
| { |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| /* ULPs are currently supported only for TCP sockets in ESTABLISHED |
| * state. This checks that the sock ops triggering the update is |
| * one indicating we are (or will be soon) in an ESTABLISHED state. |
| */ |
| if (!bpf_is_valid_sock_op(bpf_sock)) |
| return -EOPNOTSUPP; |
| return sock_map_ctx_update_elem(bpf_sock, map, key, flags); |
| } |
| |
| const struct bpf_func_proto bpf_sock_map_update_proto = { |
| .func = bpf_sock_map_update, |
| .gpl_only = false, |
| .pkt_access = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_CTX, |
| .arg2_type = ARG_CONST_MAP_PTR, |
| .arg3_type = ARG_PTR_TO_MAP_KEY, |
| .arg4_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_4(bpf_sock_hash_update, struct bpf_sock_ops_kern *, bpf_sock, |
| struct bpf_map *, map, void *, key, u64, flags) |
| { |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| if (!bpf_is_valid_sock_op(bpf_sock)) |
| return -EOPNOTSUPP; |
| return sock_hash_ctx_update_elem(bpf_sock, map, key, flags); |
| } |
| |
| const struct bpf_func_proto bpf_sock_hash_update_proto = { |
| .func = bpf_sock_hash_update, |
| .gpl_only = false, |
| .pkt_access = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_CTX, |
| .arg2_type = ARG_CONST_MAP_PTR, |
| .arg3_type = ARG_PTR_TO_MAP_KEY, |
| .arg4_type = ARG_ANYTHING, |
| }; |