|  | #ifndef _FIXP_ARITH_H | 
|  | #define _FIXP_ARITH_H | 
|  |  | 
|  | #include <linux/math64.h> | 
|  |  | 
|  | /* | 
|  | * Simplistic fixed-point arithmetics. | 
|  | * Hmm, I'm probably duplicating some code :( | 
|  | * | 
|  | * Copyright (c) 2002 Johann Deneux | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
|  | * | 
|  | * Should you need to contact me, the author, you can do so by | 
|  | * e-mail - mail your message to <johann.deneux@gmail.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  |  | 
|  | static const s32 sin_table[] = { | 
|  | 0x00000000, 0x023be165, 0x04779632, 0x06b2f1d2, 0x08edc7b6, 0x0b27eb5c, | 
|  | 0x0d61304d, 0x0f996a26, 0x11d06c96, 0x14060b67, 0x163a1a7d, 0x186c6ddd, | 
|  | 0x1a9cd9ac, 0x1ccb3236, 0x1ef74bf2, 0x2120fb82, 0x234815ba, 0x256c6f9e, | 
|  | 0x278dde6e, 0x29ac379f, 0x2bc750e8, 0x2ddf003f, 0x2ff31bdd, 0x32037a44, | 
|  | 0x340ff241, 0x36185aee, 0x381c8bb5, 0x3a1c5c56, 0x3c17a4e7, 0x3e0e3ddb, | 
|  | 0x3fffffff, 0x41ecc483, 0x43d464fa, 0x45b6bb5d, 0x4793a20f, 0x496af3e1, | 
|  | 0x4b3c8c11, 0x4d084650, 0x4ecdfec6, 0x508d9210, 0x5246dd48, 0x53f9be04, | 
|  | 0x55a6125a, 0x574bb8e5, 0x58ea90c2, 0x5a827999, 0x5c135399, 0x5d9cff82, | 
|  | 0x5f1f5ea0, 0x609a52d1, 0x620dbe8a, 0x637984d3, 0x64dd894f, 0x6639b039, | 
|  | 0x678dde6d, 0x68d9f963, 0x6a1de735, 0x6b598ea1, 0x6c8cd70a, 0x6db7a879, | 
|  | 0x6ed9eba0, 0x6ff389de, 0x71046d3c, 0x720c8074, 0x730baeec, 0x7401e4bf, | 
|  | 0x74ef0ebb, 0x75d31a5f, 0x76adf5e5, 0x777f903b, 0x7847d908, 0x7906c0af, | 
|  | 0x79bc384c, 0x7a6831b8, 0x7b0a9f8c, 0x7ba3751c, 0x7c32a67c, 0x7cb82884, | 
|  | 0x7d33f0c8, 0x7da5f5a3, 0x7e0e2e31, 0x7e6c924f, 0x7ec11aa3, 0x7f0bc095, | 
|  | 0x7f4c7e52, 0x7f834ecf, 0x7fb02dc4, 0x7fd317b3, 0x7fec09e1, 0x7ffb025e, | 
|  | 0x7fffffff | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * __fixp_sin32() returns the sin of an angle in degrees | 
|  | * | 
|  | * @degrees: angle, in degrees, from 0 to 360. | 
|  | * | 
|  | * The returned value ranges from -0x7fffffff to +0x7fffffff. | 
|  | */ | 
|  | static inline s32 __fixp_sin32(int degrees) | 
|  | { | 
|  | s32 ret; | 
|  | bool negative = false; | 
|  |  | 
|  | if (degrees > 180) { | 
|  | negative = true; | 
|  | degrees -= 180; | 
|  | } | 
|  | if (degrees > 90) | 
|  | degrees = 180 - degrees; | 
|  |  | 
|  | ret = sin_table[degrees]; | 
|  |  | 
|  | return negative ? -ret : ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fixp_sin32() returns the sin of an angle in degrees | 
|  | * | 
|  | * @degrees: angle, in degrees. The angle can be positive or negative | 
|  | * | 
|  | * The returned value ranges from -0x7fffffff to +0x7fffffff. | 
|  | */ | 
|  | static inline s32 fixp_sin32(int degrees) | 
|  | { | 
|  | degrees = (degrees % 360 + 360) % 360; | 
|  |  | 
|  | return __fixp_sin32(degrees); | 
|  | } | 
|  |  | 
|  | /* cos(x) = sin(x + 90 degrees) */ | 
|  | #define fixp_cos32(v) fixp_sin32((v) + 90) | 
|  |  | 
|  | /* | 
|  | * 16 bits variants | 
|  | * | 
|  | * The returned value ranges from -0x7fff to 0x7fff | 
|  | */ | 
|  |  | 
|  | #define fixp_sin16(v) (fixp_sin32(v) >> 16) | 
|  | #define fixp_cos16(v) (fixp_cos32(v) >> 16) | 
|  |  | 
|  | /** | 
|  | * fixp_sin32_rad() - calculates the sin of an angle in radians | 
|  | * | 
|  | * @radians: angle, in radians | 
|  | * @twopi: value to be used for 2*pi | 
|  | * | 
|  | * Provides a variant for the cases where just 360 | 
|  | * values is not enough. This function uses linear | 
|  | * interpolation to a wider range of values given by | 
|  | * twopi var. | 
|  | * | 
|  | * Experimental tests gave a maximum difference of | 
|  | * 0.000038 between the value calculated by sin() and | 
|  | * the one produced by this function, when twopi is | 
|  | * equal to 360000. That seems to be enough precision | 
|  | * for practical purposes. | 
|  | * | 
|  | * Please notice that two high numbers for twopi could cause | 
|  | * overflows, so the routine will not allow values of twopi | 
|  | * bigger than 1^18. | 
|  | */ | 
|  | static inline s32 fixp_sin32_rad(u32 radians, u32 twopi) | 
|  | { | 
|  | int degrees; | 
|  | s32 v1, v2, dx, dy; | 
|  | s64 tmp; | 
|  |  | 
|  | /* | 
|  | * Avoid too large values for twopi, as we don't want overflows. | 
|  | */ | 
|  | BUG_ON(twopi > 1 << 18); | 
|  |  | 
|  | degrees = (radians * 360) / twopi; | 
|  | tmp = radians - (degrees * twopi) / 360; | 
|  |  | 
|  | degrees = (degrees % 360 + 360) % 360; | 
|  | v1 = __fixp_sin32(degrees); | 
|  |  | 
|  | v2 = fixp_sin32(degrees + 1); | 
|  |  | 
|  | dx = twopi / 360; | 
|  | dy = v2 - v1; | 
|  |  | 
|  | tmp *= dy; | 
|  |  | 
|  | return v1 +  div_s64(tmp, dx); | 
|  | } | 
|  |  | 
|  | /* cos(x) = sin(x + pi/2 radians) */ | 
|  |  | 
|  | #define fixp_cos32_rad(rad, twopi)	\ | 
|  | fixp_sin32_rad(rad + twopi / 4, twopi) | 
|  |  | 
|  | #endif |