blob: ee5ff7255090eef986b93753da38c90e0c9a2e64 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2009-2012 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "../efuse.h"
#include "../base.h"
#include "../regd.h"
#include "../cam.h"
#include "../ps.h"
#include "../pci.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "dm.h"
#include "fw.h"
#include "led.h"
#include "sw.h"
#include "hw.h"
u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 value;
rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
udelay(10);
value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
return value;
}
void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
u16 offset, u32 value, u8 direct)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
}
static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
u8 set_bits, u8 clear_bits)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpci->reg_bcn_ctrl_val |= set_bits;
rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
}
static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte &= ~(BIT(0));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte |= BIT(0);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
}
static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
}
void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
switch (variable) {
case HW_VAR_RCR:
*((u32 *) (val)) = rtlpci->receive_config;
break;
case HW_VAR_RF_STATE:
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
break;
case HW_VAR_FWLPS_RF_ON:{
enum rf_pwrstate rfState;
u32 val_rcr;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
(u8 *) (&rfState));
if (rfState == ERFOFF) {
*((bool *) (val)) = true;
} else {
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
val_rcr &= 0x00070000;
if (val_rcr)
*((bool *) (val)) = false;
else
*((bool *) (val)) = true;
}
break;
}
case HW_VAR_FW_PSMODE_STATUS:
*((bool *) (val)) = ppsc->fw_current_inpsmode;
break;
case HW_VAR_CORRECT_TSF:{
u64 tsf;
u32 *ptsf_low = (u32 *)&tsf;
u32 *ptsf_high = ((u32 *)&tsf) + 1;
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
*((u64 *) (val)) = tsf;
break;
}
case HW_VAR_INT_MIGRATION:
*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
break;
case HW_VAR_INT_AC:
*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
break;
case HAL_DEF_WOWLAN:
break;
default:
pr_err("switch case %#x not processed\n", variable);
break;
}
}
void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 idx;
switch (variable) {
case HW_VAR_ETHER_ADDR:
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_MACID + idx),
val[idx]);
}
break;
case HW_VAR_BASIC_RATE: {
u16 rate_cfg = ((u16 *) val)[0];
u8 rate_index = 0;
rate_cfg = rate_cfg & 0x15f;
if (mac->vendor == PEER_CISCO &&
((rate_cfg & 0x150) == 0))
rate_cfg |= 0x01;
rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
rtl_write_byte(rtlpriv, REG_RRSR + 1,
(rate_cfg >> 8) & 0xff);
while (rate_cfg > 0x1) {
rate_cfg = (rate_cfg >> 1);
rate_index++;
}
if (rtlhal->fw_version > 0xe)
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
rate_index);
break;
}
case HW_VAR_BSSID:
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_BSSID + idx),
val[idx]);
}
break;
case HW_VAR_SIFS:
rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
if (!mac->ht_enable)
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
0x0e0e);
else
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
*((u16 *) val));
break;
case HW_VAR_SLOT_TIME: {
u8 e_aci;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"HW_VAR_SLOT_TIME %x\n", val[0]);
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
for (e_aci = 0; e_aci < AC_MAX; e_aci++)
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_AC_PARAM,
(&e_aci));
break;
}
case HW_VAR_ACK_PREAMBLE: {
u8 reg_tmp;
u8 short_preamble = (bool) (*val);
reg_tmp = (mac->cur_40_prime_sc) << 5;
if (short_preamble)
reg_tmp |= 0x80;
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
break;
}
case HW_VAR_AMPDU_MIN_SPACE: {
u8 min_spacing_to_set;
u8 sec_min_space;
min_spacing_to_set = *val;
if (min_spacing_to_set <= 7) {
sec_min_space = 0;
if (min_spacing_to_set < sec_min_space)
min_spacing_to_set = sec_min_space;
mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
min_spacing_to_set);
*val = min_spacing_to_set;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
}
break;
}
case HW_VAR_SHORTGI_DENSITY: {
u8 density_to_set;
density_to_set = *val;
mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
mac->min_space_cfg |= (density_to_set << 3);
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
break;
}
case HW_VAR_AMPDU_FACTOR: {
u8 factor_toset;
u32 regtoSet;
u8 *ptmp_byte = NULL;
u8 index;
if (rtlhal->macphymode == DUALMAC_DUALPHY)
regtoSet = 0xb9726641;
else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
regtoSet = 0x66626641;
else
regtoSet = 0xb972a841;
factor_toset = *val;
if (factor_toset <= 3) {
factor_toset = (1 << (factor_toset + 2));
if (factor_toset > 0xf)
factor_toset = 0xf;
for (index = 0; index < 4; index++) {
ptmp_byte = (u8 *) (&regtoSet) + index;
if ((*ptmp_byte & 0xf0) >
(factor_toset << 4))
*ptmp_byte = (*ptmp_byte & 0x0f)
| (factor_toset << 4);
if ((*ptmp_byte & 0x0f) > factor_toset)
*ptmp_byte = (*ptmp_byte & 0xf0)
| (factor_toset);
}
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet);
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_FACTOR: %#x\n",
factor_toset);
}
break;
}
case HW_VAR_AC_PARAM: {
u8 e_aci = *val;
rtl92d_dm_init_edca_turbo(hw);
if (rtlpci->acm_method != EACMWAY2_SW)
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
&e_aci);
break;
}
case HW_VAR_ACM_CTRL: {
u8 e_aci = *val;
union aci_aifsn *p_aci_aifsn =
(union aci_aifsn *)(&(mac->ac[0].aifs));
u8 acm = p_aci_aifsn->f.acm;
u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
if (acm) {
switch (e_aci) {
case AC0_BE:
acm_ctrl |= ACMHW_BEQEN;
break;
case AC2_VI:
acm_ctrl |= ACMHW_VIQEN;
break;
case AC3_VO:
acm_ctrl |= ACMHW_VOQEN;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
acm);
break;
}
} else {
switch (e_aci) {
case AC0_BE:
acm_ctrl &= (~ACMHW_BEQEN);
break;
case AC2_VI:
acm_ctrl &= (~ACMHW_VIQEN);
break;
case AC3_VO:
acm_ctrl &= (~ACMHW_VOQEN);
break;
default:
pr_err("switch case %#x not processed\n",
e_aci);
break;
}
}
RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
acm_ctrl);
rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
break;
}
case HW_VAR_RCR:
rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
rtlpci->receive_config = ((u32 *) (val))[0];
break;
case HW_VAR_RETRY_LIMIT: {
u8 retry_limit = val[0];
rtl_write_word(rtlpriv, REG_RL,
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
retry_limit << RETRY_LIMIT_LONG_SHIFT);
break;
}
case HW_VAR_DUAL_TSF_RST:
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
break;
case HW_VAR_EFUSE_BYTES:
rtlefuse->efuse_usedbytes = *((u16 *) val);
break;
case HW_VAR_EFUSE_USAGE:
rtlefuse->efuse_usedpercentage = *val;
break;
case HW_VAR_IO_CMD:
rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
break;
case HW_VAR_WPA_CONFIG:
rtl_write_byte(rtlpriv, REG_SECCFG, *val);
break;
case HW_VAR_SET_RPWM:
rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
break;
case HW_VAR_H2C_FW_PWRMODE:
break;
case HW_VAR_FW_PSMODE_STATUS:
ppsc->fw_current_inpsmode = *((bool *) val);
break;
case HW_VAR_H2C_FW_JOINBSSRPT: {
u8 mstatus = (*val);
u8 tmp_regcr, tmp_reg422;
bool recover = false;
if (mstatus == RT_MEDIA_CONNECT) {
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_AID, NULL);
tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
rtl_write_byte(rtlpriv, REG_CR + 1,
(tmp_regcr | BIT(0)));
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
tmp_reg422 = rtl_read_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2);
if (tmp_reg422 & BIT(6))
recover = true;
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp_reg422 & (~BIT(6)));
rtl92d_set_fw_rsvdpagepkt(hw, 0);
_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
if (recover)
rtl_write_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2,
tmp_reg422);
rtl_write_byte(rtlpriv, REG_CR + 1,
(tmp_regcr & ~(BIT(0))));
}
rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
break;
}
case HW_VAR_AID: {
u16 u2btmp;
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
u2btmp &= 0xC000;
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
mac->assoc_id));
break;
}
case HW_VAR_CORRECT_TSF: {
u8 btype_ibss = val[0];
if (btype_ibss)
_rtl92de_stop_tx_beacon(hw);
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
rtl_write_dword(rtlpriv, REG_TSFTR,
(u32) (mac->tsf & 0xffffffff));
rtl_write_dword(rtlpriv, REG_TSFTR + 4,
(u32) ((mac->tsf >> 32) & 0xffffffff));
_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
if (btype_ibss)
_rtl92de_resume_tx_beacon(hw);
break;
}
case HW_VAR_INT_MIGRATION: {
bool int_migration = *(bool *) (val);
if (int_migration) {
/* Set interrupt migration timer and
* corresponding Tx/Rx counter.
* timer 25ns*0xfa0=100us for 0xf packets.
* 0x306:Rx, 0x307:Tx */
rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
rtlpriv->dm.interrupt_migration = int_migration;
} else {
/* Reset all interrupt migration settings. */
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
rtlpriv->dm.interrupt_migration = int_migration;
}
break;
}
case HW_VAR_INT_AC: {
bool disable_ac_int = *((bool *) val);
/* Disable four ACs interrupts. */
if (disable_ac_int) {
/* Disable VO, VI, BE and BK four AC interrupts
* to gain more efficient CPU utilization.
* When extremely highly Rx OK occurs,
* we will disable Tx interrupts.
*/
rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
RT_AC_INT_MASKS);
rtlpriv->dm.disable_tx_int = disable_ac_int;
/* Enable four ACs interrupts. */
} else {
rtlpriv->cfg->ops->update_interrupt_mask(hw,
RT_AC_INT_MASKS, 0);
rtlpriv->dm.disable_tx_int = disable_ac_int;
}
break;
}
default:
pr_err("switch case %#x not processed\n", variable);
break;
}
}
static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool status = true;
long count = 0;
u32 value = _LLT_INIT_ADDR(address) |
_LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
do {
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
if (count > POLLING_LLT_THRESHOLD) {
pr_err("Failed to polling write LLT done at address %d!\n",
address);
status = false;
break;
}
} while (++count);
return status;
}
static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
unsigned short i;
u8 txpktbuf_bndy;
u8 maxPage;
bool status;
u32 value32; /* High+low page number */
u8 value8; /* normal page number */
if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
maxPage = 255;
txpktbuf_bndy = 246;
value8 = 0;
value32 = 0x80bf0d29;
} else {
maxPage = 127;
txpktbuf_bndy = 123;
value8 = 0;
value32 = 0x80750005;
}
/* Set reserved page for each queue */
/* 11. RQPN 0x200[31:0] = 0x80BD1C1C */
/* load RQPN */
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
rtl_write_dword(rtlpriv, REG_RQPN, value32);
/* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
/* TXRKTBUG_PG_BNDY */
rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
txpktbuf_bndy));
/* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */
/* Beacon Head for TXDMA */
rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
/* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */
/* BCNQ_PGBNDY */
rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
/* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */
/* WMAC_LBK_BF_HD */
rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
/* Set Tx/Rx page size (Tx must be 128 Bytes, */
/* Rx can be 64,128,256,512,1024 bytes) */
/* 16. PBP [7:0] = 0x11 */
/* TRX page size */
rtl_write_byte(rtlpriv, REG_PBP, 0x11);
/* 17. DRV_INFO_SZ = 0x04 */
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
/* 18. LLT_table_init(Adapter); */
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _rtl92de_llt_write(hw, i, i + 1);
if (true != status)
return status;
}
/* end of list */
status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
if (true != status)
return status;
/* Make the other pages as ring buffer */
/* This ring buffer is used as beacon buffer if we */
/* config this MAC as two MAC transfer. */
/* Otherwise used as local loopback buffer. */
for (i = txpktbuf_bndy; i < maxPage; i++) {
status = _rtl92de_llt_write(hw, i, (i + 1));
if (true != status)
return status;
}
/* Let last entry point to the start entry of ring buffer */
status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy);
if (true != status)
return status;
return true;
}
static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
if (rtlpci->up_first_time)
return;
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
rtl92de_sw_led_on(hw, pled0);
else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
rtl92de_sw_led_on(hw, pled0);
else
rtl92de_sw_led_off(hw, pled0);
}
static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
unsigned char bytetmp;
unsigned short wordtmp;
u16 retry;
rtl92d_phy_set_poweron(hw);
/* Add for resume sequence of power domain according
* to power document V11. Chapter V.11.... */
/* 0. RSV_CTRL 0x1C[7:0] = 0x00 */
/* unlock ISO/CLK/Power control register */
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
/* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */
/* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */
/* 3. delay (1ms) this is not necessary when initially power on */
/* C. Resume Sequence */
/* a. SPS0_CTRL 0x11[7:0] = 0x2b */
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
/* b. AFE_XTAL_CTRL [7:0] = 0x0F */
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
/* c. DRV runs power on init flow */
/* auto enable WLAN */
/* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */
/* Power On Reset for MAC Block */
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
udelay(2);
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
udelay(2);
/* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
udelay(50);
retry = 0;
while ((bytetmp & BIT(0)) && retry < 1000) {
retry++;
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
udelay(50);
}
/* Enable Radio off, GPIO, and LED function */
/* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */
rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
/* release RF digital isolation */
/* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */
/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
udelay(2);
/* make sure that BB reset OK. */
/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
/* Disable REG_CR before enable it to assure reset */
rtl_write_word(rtlpriv, REG_CR, 0x0);
/* Release MAC IO register reset */
rtl_write_word(rtlpriv, REG_CR, 0x2ff);
/* clear stopping tx/rx dma */
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
/* System init */
/* 18. LLT_table_init(Adapter); */
if (!_rtl92de_llt_table_init(hw))
return false;
/* Clear interrupt and enable interrupt */
/* 19. HISR 0x124[31:0] = 0xffffffff; */
/* HISRE 0x12C[7:0] = 0xFF */
rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
/* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */
/* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */
/* The IMR should be enabled later after all init sequence
* is finished. */
/* 22. PCIE configuration space configuration */
/* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */
/* and PCIe gated clock function is enabled. */
/* PCIE configuration space will be written after
* all init sequence.(Or by BIOS) */
rtl92d_phy_config_maccoexist_rfpage(hw);
/* THe below section is not related to power document Vxx . */
/* This is only useful for driver and OS setting. */
/* -------------------Software Relative Setting---------------------- */
wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
wordtmp &= 0xf;
wordtmp |= 0xF771;
rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
/* Reported Tx status from HW for rate adaptive. */
/* This should be realtive to power on step 14. But in document V11 */
/* still not contain the description.!!! */
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
/* Set Tx/Rx page size (Tx must be 128 Bytes,
* Rx can be 64,128,256,512,1024 bytes) */
/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
/* Set RCR register */
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
/* Set TCR register */
rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
/* disable earlymode */
rtl_write_byte(rtlpriv, 0x4d0, 0x0);
/* Set TX/RX descriptor physical address(from OS API). */
rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
rtlpci->tx_ring[BEACON_QUEUE].dma);
rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
/* Set RX Desc Address */
rtl_write_dword(rtlpriv, REG_RX_DESA,
rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
/* if we want to support 64 bit DMA, we should set it here,
* but now we do not support 64 bit DMA*/
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
/* Reset interrupt migration setting when initialization */
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
/* Reconsider when to do this operation after asking HWSD. */
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
do {
retry++;
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
} while ((retry < 200) && !(bytetmp & BIT(7)));
/* After MACIO reset,we must refresh LED state. */
_rtl92de_gen_refresh_led_state(hw);
/* Reset H2C protection register */
rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
return true;
}
static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 reg_bw_opmode = BW_OPMODE_20MHZ;
u32 reg_rrsr;
reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
rtl_write_word(rtlpriv, REG_RL, 0x0707);
rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
/* Aggregation threshold */
if (rtlhal->macphymode == DUALMAC_DUALPHY)
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
else
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
rtlpci->reg_bcn_ctrl_val = 0x1f;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
/* For throughput */
rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
/* ACKTO for IOT issue. */
rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
/* Set Spec SIFS (used in NAV) */
rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
/* Set SIFS for CCK */
rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
/* Set SIFS for OFDM */
rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
/* Set Multicast Address. */
rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
switch (rtlpriv->phy.rf_type) {
case RF_1T2R:
case RF_1T1R:
rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
break;
case RF_2T2R:
case RF_2T2R_GREEN:
rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
break;
}
}
static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
rtl_write_byte(rtlpriv, 0x34b, 0x93);
rtl_write_word(rtlpriv, 0x350, 0x870c);
rtl_write_byte(rtlpriv, 0x352, 0x1);
if (ppsc->support_backdoor)
rtl_write_byte(rtlpriv, 0x349, 0x1b);
else
rtl_write_byte(rtlpriv, 0x349, 0x03);
rtl_write_word(rtlpriv, 0x350, 0x2718);
rtl_write_byte(rtlpriv, 0x352, 0x1);
}
void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 sec_reg_value;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
rtlpriv->sec.pairwise_enc_algorithm,
rtlpriv->sec.group_enc_algorithm);
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"not open hw encryption\n");
return;
}
sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
if (rtlpriv->sec.use_defaultkey) {
sec_reg_value |= SCR_TXUSEDK;
sec_reg_value |= SCR_RXUSEDK;
}
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
"The SECR-value %x\n", sec_reg_value);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}
int rtl92de_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
bool rtstatus = true;
u8 tmp_u1b;
int i;
int err;
unsigned long flags;
rtlpci->being_init_adapter = true;
rtlpci->init_ready = false;
spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
/* we should do iqk after disable/enable */
rtl92d_phy_reset_iqk_result(hw);
/* rtlpriv->intf_ops->disable_aspm(hw); */
rtstatus = _rtl92de_init_mac(hw);
if (!rtstatus) {
pr_err("Init MAC failed\n");
err = 1;
spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
return err;
}
err = rtl92d_download_fw(hw);
spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Failed to download FW. Init HW without FW..\n");
return 1;
}
rtlhal->last_hmeboxnum = 0;
rtlpriv->psc.fw_current_inpsmode = false;
tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
tmp_u1b = tmp_u1b | 0x30;
rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
if (rtlhal->earlymode_enable) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EarlyMode Enabled!!!\n");
tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
tmp_u1b = tmp_u1b | 0x1f;
rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
rtl_write_byte(rtlpriv, 0x4d3, 0x80);
tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
tmp_u1b = tmp_u1b | 0x40;
rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
}
if (mac->rdg_en) {
rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
}
rtl92d_phy_mac_config(hw);
/* because last function modify RCR, so we update
* rcr var here, or TP will unstable for receive_config
* is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
* RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
rtl92d_phy_bb_config(hw);
rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
/* set before initialize RF */
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
/* config RF */
rtl92d_phy_rf_config(hw);
/* After read predefined TXT, we must set BB/MAC/RF
* register as our requirement */
/* After load BB,RF params,we need do more for 92D. */
rtl92d_update_bbrf_configuration(hw);
/* set default value after initialize RF, */
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
RF_CHNLBW, RFREG_OFFSET_MASK);
/*---- Set CCK and OFDM Block "ON"----*/
if (rtlhal->current_bandtype == BAND_ON_2_4G)
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
if (rtlhal->interfaceindex == 0) {
/* RFPGA0_ANALOGPARAMETER2: cck clock select,
* set to 20MHz by default */
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
BIT(11), 3);
} else {
/* Mac1 */
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
BIT(10), 3);
}
_rtl92de_hw_configure(hw);
/* reset hw sec */
rtl_cam_reset_all_entry(hw);
rtl92de_enable_hw_security_config(hw);
/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
/* TX power index for different rate set. */
rtl92d_phy_get_hw_reg_originalvalue(hw);
rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
ppsc->rfpwr_state = ERFON;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
_rtl92de_enable_aspm_back_door(hw);
/* rtlpriv->intf_ops->enable_aspm(hw); */
rtl92d_dm_init(hw);
rtlpci->being_init_adapter = false;
if (ppsc->rfpwr_state == ERFON) {
rtl92d_phy_lc_calibrate(hw);
/* 5G and 2.4G must wait sometime to let RF LO ready */
if (rtlhal->macphymode == DUALMAC_DUALPHY) {
u32 tmp_rega;
for (i = 0; i < 10000; i++) {
udelay(MAX_STALL_TIME);
tmp_rega = rtl_get_rfreg(hw,
(enum radio_path)RF90_PATH_A,
0x2a, MASKDWORD);
if (((tmp_rega & BIT(11)) == BIT(11)))
break;
}
/* check that loop was successful. If not, exit now */
if (i == 10000) {
rtlpci->init_ready = false;
return 1;
}
}
}
rtlpci->init_ready = true;
return err;
}
static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
u32 value32;
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
if (!(value32 & 0x000f0000)) {
version = VERSION_TEST_CHIP_92D_SINGLEPHY;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
} else {
version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
}
return version;
}
static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
u8 bcnfunc_enable;
bt_msr &= 0xfc;
if (type == NL80211_IFTYPE_UNSPECIFIED ||
type == NL80211_IFTYPE_STATION) {
_rtl92de_stop_tx_beacon(hw);
_rtl92de_enable_bcn_sub_func(hw);
} else if (type == NL80211_IFTYPE_ADHOC ||
type == NL80211_IFTYPE_AP) {
_rtl92de_resume_tx_beacon(hw);
_rtl92de_disable_bcn_sub_func(hw);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
type);
}
bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
bt_msr |= MSR_NOLINK;
ledaction = LED_CTL_LINK;
bcnfunc_enable &= 0xF7;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to NO LINK!\n");
break;
case NL80211_IFTYPE_ADHOC:
bt_msr |= MSR_ADHOC;
bcnfunc_enable |= 0x08;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to Ad Hoc!\n");
break;
case NL80211_IFTYPE_STATION:
bt_msr |= MSR_INFRA;
ledaction = LED_CTL_LINK;
bcnfunc_enable &= 0xF7;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to STA!\n");
break;
case NL80211_IFTYPE_AP:
bt_msr |= MSR_AP;
bcnfunc_enable |= 0x08;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to AP!\n");
break;
default:
pr_err("Network type %d not supported!\n", type);
return 1;
}
rtl_write_byte(rtlpriv, MSR, bt_msr);
rtlpriv->cfg->ops->led_control(hw, ledaction);
if ((bt_msr & MSR_MASK) == MSR_AP)
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
else
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
return 0;
}
void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 reg_rcr;
if (rtlpriv->psc.rfpwr_state != ERFON)
return;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
if (check_bssid) {
reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
} else if (!check_bssid) {
reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
}
}
int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (_rtl92de_set_media_status(hw, type))
return -EOPNOTSUPP;
/* check bssid */
if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
if (type != NL80211_IFTYPE_AP)
rtl92de_set_check_bssid(hw, true);
} else {
rtl92de_set_check_bssid(hw, false);
}
return 0;
}
/* do iqk or reload iqk */
/* windows just rtl92d_phy_reload_iqk_setting in set channel,
* but it's very strict for time sequence so we add
* rtl92d_phy_reload_iqk_setting here */
void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u8 indexforchannel;
u8 channel = rtlphy->current_channel;
indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
"Do IQK for channel:%d\n", channel);
rtl92d_phy_iq_calibrate(hw);
}
}
/* don't set REG_EDCA_BE_PARAM here because
* mac80211 will send pkt when scan */
void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
{
rtl92d_dm_init_edca_turbo(hw);
}
void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
rtlpci->irq_enabled = true;
}
void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
rtlpci->irq_enabled = false;
}
static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 u1b_tmp;
unsigned long flags;
rtlpriv->intf_ops->enable_aspm(hw);
rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
/* 0x20:value 05-->04 */
rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
/* ==== Reset digital sequence ====== */
rtl92d_firmware_selfreset(hw);
/* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
/* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
/* ==== Pull GPIO PIN to balance level and LED control ====== */
/* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */
rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
/* i. Value = GPIO_PIN_CTRL[7:0] */
u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
/* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
/* write external PIN level */
rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
0x00FF0000 | (u1b_tmp << 8));
/* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
/* l. LEDCFG 0x4C[15:0] = 0x8080 */
rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
/* ==== Disable analog sequence === */
/* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */
rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
/* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
/* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
/* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
/* ==== interface into suspend === */
/* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
/* According to power document V11, we need to set this */
/* value as 0x18. Otherwise, we may not L0s sometimes. */
/* This indluences power consumption. Bases on SD1's test, */
/* set as 0x00 do not affect power current. And if it */
/* is set as 0x18, they had ever met auto load fail problem. */
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"In PowerOff,reg0x%x=%X\n",
REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
/* r. Note: for PCIe interface, PON will not turn */
/* off m-bias and BandGap in PCIe suspend mode. */
/* 0x17[7] 1b': power off in process 0b' : power off over */
if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
spin_lock_irqsave(&globalmutex_power, flags);
u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
u1b_tmp &= (~BIT(7));
rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
spin_unlock_irqrestore(&globalmutex_power, flags);
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
}
void rtl92de_card_disable(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
enum nl80211_iftype opmode;
mac->link_state = MAC80211_NOLINK;
opmode = NL80211_IFTYPE_UNSPECIFIED;
_rtl92de_set_media_status(hw, opmode);
if (rtlpci->driver_is_goingto_unload ||
ppsc->rfoff_reason > RF_CHANGE_BY_PS)
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
/* Power sequence for each MAC. */
/* a. stop tx DMA */
/* b. close RF */
/* c. clear rx buf */
/* d. stop rx DMA */
/* e. reset MAC */
/* a. stop tx DMA */
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
udelay(50);
/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
/* c. ========RF OFF sequence========== */
/* 0x88c[23:20] = 0xf. */
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
/* APSD_CTRL 0x600[7:0] = 0x40 */
rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
/* Close antenna 0,0xc04,0xd04 */
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0);
rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
/* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
/* Mac0 can not do Global reset. Mac1 can do. */
/* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */
if (rtlpriv->rtlhal.interfaceindex == 1)
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
udelay(50);
/* d. stop tx/rx dma before disable REG_CR (0x100) to fix */
/* dma hang issue when disable/enable device. */
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
udelay(50);
rtl_write_byte(rtlpriv, REG_CR, 0x0);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
if (rtl92d_phy_check_poweroff(hw))
_rtl92de_poweroff_adapter(hw);
return;
}
void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
struct rtl_int *intvec)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
rtl_write_dword(rtlpriv, ISR, intvec->inta);
}
void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval, atim_window;
bcn_interval = mac->beacon_interval;
atim_window = 2;
rtl92de_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
else
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
rtl_write_byte(rtlpriv, 0x606, 0x30);
}
void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval = mac->beacon_interval;
RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
"beacon_interval:%d\n", bcn_interval);
rtl92de_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl92de_enable_interrupt(hw);
}
void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
u32 add_msr, u32 rm_msr)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
add_msr, rm_msr);
if (add_msr)
rtlpci->irq_mask[0] |= add_msr;
if (rm_msr)
rtlpci->irq_mask[0] &= (~rm_msr);
rtl92de_disable_interrupt(hw);
rtl92de_enable_interrupt(hw);
}
static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
u8 *rom_content, bool autoLoadfail)
{
u32 rfpath, eeaddr, group, offset1, offset2;
u8 i;
memset(pwrinfo, 0, sizeof(struct txpower_info));
if (autoLoadfail) {
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
if (group < CHANNEL_GROUP_MAX_2G) {
pwrinfo->cck_index[rfpath][group] =
EEPROM_DEFAULT_TXPOWERLEVEL_2G;
pwrinfo->ht40_1sindex[rfpath][group] =
EEPROM_DEFAULT_TXPOWERLEVEL_2G;
} else {
pwrinfo->ht40_1sindex[rfpath][group] =
EEPROM_DEFAULT_TXPOWERLEVEL_5G;
}
pwrinfo->ht40_2sindexdiff[rfpath][group] =
EEPROM_DEFAULT_HT40_2SDIFF;
pwrinfo->ht20indexdiff[rfpath][group] =
EEPROM_DEFAULT_HT20_DIFF;
pwrinfo->ofdmindexdiff[rfpath][group] =
EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
pwrinfo->ht40maxoffset[rfpath][group] =
EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
pwrinfo->ht20maxoffset[rfpath][group] =
EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
}
}
for (i = 0; i < 3; i++) {
pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
}
return;
}
/* Maybe autoload OK,buf the tx power index value is not filled.
* If we find it, we set it to default value. */
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
+ group;
pwrinfo->cck_index[rfpath][group] =
(rom_content[eeaddr] == 0xFF) ?
(eeaddr > 0x7B ?
EEPROM_DEFAULT_TXPOWERLEVEL_5G :
EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
rom_content[eeaddr];
}
}
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
offset1 = group / 3;
offset2 = group % 3;
eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
offset2 + offset1 * 21;
pwrinfo->ht40_1sindex[rfpath][group] =
(rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
EEPROM_DEFAULT_TXPOWERLEVEL_5G :
EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
rom_content[eeaddr];
}
}
/* These just for 92D efuse offset. */
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
offset1 = group / 3;
offset2 = group % 3;
if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
pwrinfo->ht40_2sindexdiff[rfpath][group] =
(rom_content[base1 +
offset2 + offset1 * 21] >> (rfpath * 4))
& 0xF;
else
pwrinfo->ht40_2sindexdiff[rfpath][group] =
EEPROM_DEFAULT_HT40_2SDIFF;
if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
+ offset1 * 21] != 0xFF)
pwrinfo->ht20indexdiff[rfpath][group] =
(rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
+ offset2 + offset1 * 21] >> (rfpath * 4))
& 0xF;
else
pwrinfo->ht20indexdiff[rfpath][group] =
EEPROM_DEFAULT_HT20_DIFF;
if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
+ offset1 * 21] != 0xFF)
pwrinfo->ofdmindexdiff[rfpath][group] =
(rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
+ offset2 + offset1 * 21] >> (rfpath * 4))
& 0xF;
else
pwrinfo->ofdmindexdiff[rfpath][group] =
EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
+ offset1 * 21] != 0xFF)
pwrinfo->ht40maxoffset[rfpath][group] =
(rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
+ offset2 + offset1 * 21] >> (rfpath * 4))
& 0xF;
else
pwrinfo->ht40maxoffset[rfpath][group] =
EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
+ offset1 * 21] != 0xFF)
pwrinfo->ht20maxoffset[rfpath][group] =
(rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
offset2 + offset1 * 21] >> (rfpath * 4)) &
0xF;
else
pwrinfo->ht20maxoffset[rfpath][group] =
EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
}
}
if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
/* 5GL */
pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
/* 5GM */
pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
pwrinfo->tssi_b[1] =
(rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
(rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
/* 5GH */
pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
0xF0) >> 4 |
(rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
0xFC) >> 2;
} else {
for (i = 0; i < 3; i++) {
pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
}
}
}
static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
bool autoload_fail, u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct txpower_info pwrinfo;
u8 tempval[2], i, pwr, diff;
u32 ch, rfPath, group;
_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
if (!autoload_fail) {
/* bit0~2 */
rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
rtlefuse->eeprom_thermalmeter =
hwinfo[EEPROM_THERMAL_METER] & 0x1f;
rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
rtlefuse->txpwr_fromeprom = true;
if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
rtlefuse->internal_pa_5g[0] =
!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
rtlefuse->internal_pa_5g[1] =
!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"Is D cut,Internal PA0 %d Internal PA1 %d\n",
rtlefuse->internal_pa_5g[0],
rtlefuse->internal_pa_5g[1]);
}
rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
} else {
rtlefuse->eeprom_regulatory = 0;
rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
tempval[0] = tempval[1] = 3;
}
/* Use default value to fill parameters if
* efuse is not filled on some place. */
/* ThermalMeter from EEPROM */
if (rtlefuse->eeprom_thermalmeter < 0x06 ||
rtlefuse->eeprom_thermalmeter > 0x1c)
rtlefuse->eeprom_thermalmeter = 0x12;
rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
/* check XTAL_K */
if (rtlefuse->crystalcap == 0xFF)
rtlefuse->crystalcap = 0;
if (rtlefuse->eeprom_regulatory > 3)
rtlefuse->eeprom_regulatory = 0;
for (i = 0; i < 2; i++) {
switch (tempval[i]) {
case 0:
tempval[i] = 5;
break;
case 1:
tempval[i] = 4;
break;
case 2:
tempval[i] = 3;
break;
case 3:
default:
tempval[i] = 0;
break;
}
}
rtlefuse->delta_iqk = tempval[0];
if (tempval[1] > 0)
rtlefuse->delta_lck = tempval[1] - 1;
if (rtlefuse->eeprom_c9 == 0xFF)
rtlefuse->eeprom_c9 = 0x00;
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
"EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
"ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
"CrystalCap = 0x%x\n", rtlefuse->crystalcap);
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
"Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
rtlefuse->delta_iqk, rtlefuse->delta_lck);
for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) {
for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
group = rtl92d_get_chnlgroup_fromarray((u8) ch);
if (ch < CHANNEL_MAX_NUMBER_2G)
rtlefuse->txpwrlevel_cck[rfPath][ch] =
pwrinfo.cck_index[rfPath][group];
rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] =
pwrinfo.ht40_1sindex[rfPath][group];
rtlefuse->txpwr_ht20diff[rfPath][ch] =
pwrinfo.ht20indexdiff[rfPath][group];
rtlefuse->txpwr_legacyhtdiff[rfPath][ch] =
pwrinfo.ofdmindexdiff[rfPath][group];
rtlefuse->pwrgroup_ht20[rfPath][ch] =
pwrinfo.ht20maxoffset[rfPath][group];
rtlefuse->pwrgroup_ht40[rfPath][ch] =
pwrinfo.ht40maxoffset[rfPath][group];
pwr = pwrinfo.ht40_1sindex[rfPath][group];
diff = pwrinfo.ht40_2sindexdiff[rfPath][group];
rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] =
(pwr > diff) ? (pwr - diff) : 0;
}
}
}
static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
u8 *content)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
if (macphy_crvalue & BIT(3)) {
rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"MacPhyMode SINGLEMAC_SINGLEPHY\n");
} else {
rtlhal->macphymode = DUALMAC_DUALPHY;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"MacPhyMode DUALMAC_DUALPHY\n");
}
}
static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
u8 *content)
{
_rtl92de_read_macphymode_from_prom(hw, content);
rtl92d_phy_config_macphymode(hw);
rtl92d_phy_config_macphymode_info(hw);
}
static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
enum version_8192d chipver = rtlpriv->rtlhal.version;
u8 cutvalue[2];
u16 chipvalue;
rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
&cutvalue[1]);
rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
&cutvalue[0]);
chipvalue = (cutvalue[1] << 8) | cutvalue[0];
switch (chipvalue) {
case 0xAA55:
chipver |= CHIP_92D_C_CUT;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
break;
case 0x9966:
chipver |= CHIP_92D_D_CUT;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
break;
case 0xCC33:
chipver |= CHIP_92D_E_CUT;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
break;
default:
chipver |= CHIP_92D_D_CUT;
pr_err("Unknown CUT!\n");
break;
}
rtlpriv->rtlhal.version = chipver;
}
static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D,
EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
COUNTRY_CODE_WORLD_WIDE_13};
int i;
u16 usvalue;
u8 *hwinfo;
hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
if (!hwinfo)
return;
if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
goto exit;
_rtl92de_efuse_update_chip_version(hw);
_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
/* Read Permanent MAC address for 2nd interface */
if (rtlhal->interfaceindex != 0) {
for (i = 0; i < 6; i += 2) {
usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
}
}
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
rtlefuse->dev_addr);
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
/* Read Channel Plan */
switch (rtlhal->bandset) {
case BAND_ON_2_4G:
rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
break;
case BAND_ON_5G:
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
break;
case BAND_ON_BOTH:
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
break;
default:
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
break;
}
rtlefuse->txpwr_fromeprom = true;
exit:
kfree(hwinfo);
}
void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_u1b;
rtlhal->version = _rtl92de_read_chip_version(hw);
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
rtlefuse->autoload_status = tmp_u1b;
if (tmp_u1b & BIT(4)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
rtlefuse->epromtype = EEPROM_93C46;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
}
if (tmp_u1b & BIT(5)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
_rtl92de_read_adapter_info(hw);
} else {
pr_err("Autoload ERR!!\n");
}
return;
}
static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
struct ieee80211_sta *sta)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u32 ratr_value;
u8 ratr_index = 0;
u8 nmode = mac->ht_enable;
u8 mimo_ps = IEEE80211_SMPS_OFF;
u16 shortgi_rate;
u32 tmp_ratr_value;
u8 curtxbw_40mhz = mac->bw_40;
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = mac->mode;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_value = sta->supp_rates[1] << 4;
else
ratr_value = sta->supp_rates[0];
ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_A:
ratr_value &= 0x00000FF0;
break;
case WIRELESS_MODE_B:
if (ratr_value & 0x0000000c)
ratr_value &= 0x0000000d;
else
ratr_value &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_value &= 0x00000FF5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
nmode = 1;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
ratr_value &= 0x0007F005;
} else {
u32 ratr_mask;
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_1T1R) {
ratr_mask = 0x000ff005;
} else {
ratr_mask = 0x0f0ff005;
}
ratr_value &= ratr_mask;
}
break;
default:
if (rtlphy->rf_type == RF_1T2R)
ratr_value &= 0x000ff0ff;
else
ratr_value &= 0x0f0ff0ff;
break;
}
ratr_value &= 0x0FFFFFFF;
if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz))) {
ratr_value |= 0x10000000;
tmp_ratr_value = (ratr_value >> 12);
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
if ((1 << shortgi_rate) & tmp_ratr_value)
break;
}
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
(shortgi_rate << 4) | (shortgi_rate);
}
rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
rtl_read_dword(rtlpriv, REG_ARFR0));
}
static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u32 ratr_bitmap;
u8 ratr_index;
u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = 0;
bool shortgi = false;
u32 value[2];
u8 macid = 0;
u8 mimo_ps = IEEE80211_SMPS_OFF;
sta_entry = (struct rtl_sta_info *) sta->drv_priv;
mimo_ps = sta_entry->mimo_ps;
wirelessmode = sta_entry->wireless_mode;
if (mac->opmode == NL80211_IFTYPE_STATION)
curtxbw_40mhz = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC)
macid = sta->aid + 1;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_bitmap = sta->supp_rates[1] << 4;
else
ratr_bitmap = sta->supp_rates[0];
ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
ratr_index = RATR_INX_WIRELESS_B;
if (ratr_bitmap & 0x0000000c)
ratr_bitmap &= 0x0000000d;
else
ratr_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_index = RATR_INX_WIRELESS_GB;
if (rssi_level == 1)
ratr_bitmap &= 0x00000f00;
else if (rssi_level == 2)
ratr_bitmap &= 0x00000ff0;
else
ratr_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_A:
ratr_index = RATR_INX_WIRELESS_G;
ratr_bitmap &= 0x00000ff0;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
if (wirelessmode == WIRELESS_MODE_N_24G)
ratr_index = RATR_INX_WIRELESS_NGB;
else
ratr_index = RATR_INX_WIRELESS_NG;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
if (rssi_level == 1)
ratr_bitmap &= 0x00070000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0007f000;
else
ratr_bitmap &= 0x0007f005;
} else {
if (rtlphy->rf_type == RF_1T2R ||
rtlphy->rf_type == RF_1T1R) {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff005;
}
} else {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x0f0f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f0ff000;
else
ratr_bitmap &= 0x0f0ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x0f0f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f0ff000;
else
ratr_bitmap &= 0x0f0ff005;
}
}
}
if ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz)) {
if (macid == 0)
shortgi = true;
else if (macid == 1)
shortgi = false;
}
break;
default:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R)
ratr_bitmap &= 0x000ff0ff;
else
ratr_bitmap &= 0x0f0ff0ff;
break;
}
value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"ratr_bitmap :%x value0:%x value1:%x\n",
ratr_bitmap, value[0], value[1]);
rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
if (macid != 0)
sta_entry->ratr_index = ratr_index;
}
void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->dm.useramask)
rtl92de_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
else
rtl92de_update_hal_rate_table(hw, sta);
}
void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 sifs_timer;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
&mac->slot_time);
if (!mac->ht_enable)
sifs_timer = 0x0a0a;
else
sifs_timer = 0x1010;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}
bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
enum rf_pwrstate e_rfpowerstate_toset;
u8 u1tmp;
bool actuallyset = false;
unsigned long flag;
if (rtlpci->being_init_adapter)
return false;
if (ppsc->swrf_processing)
return false;
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
if (ppsc->rfchange_inprogress) {
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
return false;
} else {
ppsc->rfchange_inprogress = true;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
}
rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
REG_MAC_PINMUX_CFG) & ~(BIT(3)));
u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio ON, RF ON\n");
e_rfpowerstate_toset = ERFON;
ppsc->hwradiooff = false;
actuallyset = true;
} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio OFF, RF OFF\n");
e_rfpowerstate_toset = ERFOFF;
ppsc->hwradiooff = true;
actuallyset = true;
}
if (actuallyset) {
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
} else {
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
}
*valid = 1;
return !ppsc->hwradiooff;
}
void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
u8 *p_macaddr, bool is_group, u8 enc_algo,
bool is_wepkey, bool clear_all)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 *macaddr = p_macaddr;
u32 entry_id;
bool is_pairwise = false;
static u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (clear_all) {
u8 idx;
u8 cam_offset = 0;
u8 clear_number = 5;
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
} else {
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
pr_err("switch case %#x not processed\n",
enc_algo);
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key_index];
entry_id = key_index;
} else {
if (is_group) {
macaddr = cam_const_broad;
entry_id = key_index;
} else {
if (mac->opmode == NL80211_IFTYPE_AP) {
entry_id = rtl_cam_get_free_entry(hw,
p_macaddr);
if (entry_id >= TOTAL_CAM_ENTRY) {
pr_err("Can not find free hw security cam entry\n");
return;
}
} else {
entry_id = CAM_PAIRWISE_KEY_POSITION;
}
key_index = PAIRWISE_KEYIDX;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key_index] == 0) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry, entry_id is %d\n",
entry_id);
if (mac->opmode == NL80211_IFTYPE_AP)
rtl_cam_del_entry(hw, p_macaddr);
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
"The insert KEY length is %d\n",
rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
"The insert KEY is %x %x\n",
rtlpriv->sec.key_buf[0][0],
rtlpriv->sec.key_buf[0][1]);
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"add one entry\n");
if (is_pairwise) {
RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
"Pairwise Key content",
rtlpriv->sec.pairwise_key,
rtlpriv->
sec.key_len[PAIRWISE_KEYIDX]);
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set Pairwise key\n");
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->
sec.key_buf[key_index]);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw,
rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo, CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf
[entry_id]);
}
}
}
}
void rtl92de_suspend(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
REG_MAC_PHY_CTRL_NORMAL);
}
void rtl92de_resume(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
rtlpriv->rtlhal.macphyctl_reg);
}