| /* |
| * Broadcom Starfighter 2 DSA switch CFP support |
| * |
| * Copyright (C) 2016, Broadcom |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #include <linux/list.h> |
| #include <linux/ethtool.h> |
| #include <linux/if_ether.h> |
| #include <linux/in.h> |
| #include <linux/netdevice.h> |
| #include <net/dsa.h> |
| #include <linux/bitmap.h> |
| |
| #include "bcm_sf2.h" |
| #include "bcm_sf2_regs.h" |
| |
| struct cfp_udf_slice_layout { |
| u8 slices[UDFS_PER_SLICE]; |
| u32 mask_value; |
| u32 base_offset; |
| }; |
| |
| struct cfp_udf_layout { |
| struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES]; |
| }; |
| |
| static const u8 zero_slice[UDFS_PER_SLICE] = { }; |
| |
| /* UDF slices layout for a TCPv4/UDPv4 specification */ |
| static const struct cfp_udf_layout udf_tcpip4_layout = { |
| .udfs = { |
| [1] = { |
| .slices = { |
| /* End of L2, byte offset 12, src IP[0:15] */ |
| CFG_UDF_EOL2 | 6, |
| /* End of L2, byte offset 14, src IP[16:31] */ |
| CFG_UDF_EOL2 | 7, |
| /* End of L2, byte offset 16, dst IP[0:15] */ |
| CFG_UDF_EOL2 | 8, |
| /* End of L2, byte offset 18, dst IP[16:31] */ |
| CFG_UDF_EOL2 | 9, |
| /* End of L3, byte offset 0, src port */ |
| CFG_UDF_EOL3 | 0, |
| /* End of L3, byte offset 2, dst port */ |
| CFG_UDF_EOL3 | 1, |
| 0, 0, 0 |
| }, |
| .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, |
| .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET, |
| }, |
| }, |
| }; |
| |
| /* UDF slices layout for a TCPv6/UDPv6 specification */ |
| static const struct cfp_udf_layout udf_tcpip6_layout = { |
| .udfs = { |
| [0] = { |
| .slices = { |
| /* End of L2, byte offset 8, src IP[0:15] */ |
| CFG_UDF_EOL2 | 4, |
| /* End of L2, byte offset 10, src IP[16:31] */ |
| CFG_UDF_EOL2 | 5, |
| /* End of L2, byte offset 12, src IP[32:47] */ |
| CFG_UDF_EOL2 | 6, |
| /* End of L2, byte offset 14, src IP[48:63] */ |
| CFG_UDF_EOL2 | 7, |
| /* End of L2, byte offset 16, src IP[64:79] */ |
| CFG_UDF_EOL2 | 8, |
| /* End of L2, byte offset 18, src IP[80:95] */ |
| CFG_UDF_EOL2 | 9, |
| /* End of L2, byte offset 20, src IP[96:111] */ |
| CFG_UDF_EOL2 | 10, |
| /* End of L2, byte offset 22, src IP[112:127] */ |
| CFG_UDF_EOL2 | 11, |
| /* End of L3, byte offset 0, src port */ |
| CFG_UDF_EOL3 | 0, |
| }, |
| .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, |
| .base_offset = CORE_UDF_0_B_0_8_PORT_0, |
| }, |
| [3] = { |
| .slices = { |
| /* End of L2, byte offset 24, dst IP[0:15] */ |
| CFG_UDF_EOL2 | 12, |
| /* End of L2, byte offset 26, dst IP[16:31] */ |
| CFG_UDF_EOL2 | 13, |
| /* End of L2, byte offset 28, dst IP[32:47] */ |
| CFG_UDF_EOL2 | 14, |
| /* End of L2, byte offset 30, dst IP[48:63] */ |
| CFG_UDF_EOL2 | 15, |
| /* End of L2, byte offset 32, dst IP[64:79] */ |
| CFG_UDF_EOL2 | 16, |
| /* End of L2, byte offset 34, dst IP[80:95] */ |
| CFG_UDF_EOL2 | 17, |
| /* End of L2, byte offset 36, dst IP[96:111] */ |
| CFG_UDF_EOL2 | 18, |
| /* End of L2, byte offset 38, dst IP[112:127] */ |
| CFG_UDF_EOL2 | 19, |
| /* End of L3, byte offset 2, dst port */ |
| CFG_UDF_EOL3 | 1, |
| }, |
| .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, |
| .base_offset = CORE_UDF_0_D_0_11_PORT_0, |
| }, |
| }, |
| }; |
| |
| static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout) |
| { |
| unsigned int i, count = 0; |
| |
| for (i = 0; i < UDFS_PER_SLICE; i++) { |
| if (layout[i] != 0) |
| count++; |
| } |
| |
| return count; |
| } |
| |
| static inline u32 udf_upper_bits(unsigned int num_udf) |
| { |
| return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1); |
| } |
| |
| static inline u32 udf_lower_bits(unsigned int num_udf) |
| { |
| return (u8)GENMASK(num_udf - 1, 0); |
| } |
| |
| static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l, |
| unsigned int start) |
| { |
| const struct cfp_udf_slice_layout *slice_layout; |
| unsigned int slice_idx; |
| |
| for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) { |
| slice_layout = &l->udfs[slice_idx]; |
| if (memcmp(slice_layout->slices, zero_slice, |
| sizeof(zero_slice))) |
| break; |
| } |
| |
| return slice_idx; |
| } |
| |
| static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv, |
| const struct cfp_udf_layout *layout, |
| unsigned int slice_num) |
| { |
| u32 offset = layout->udfs[slice_num].base_offset; |
| unsigned int i; |
| |
| for (i = 0; i < UDFS_PER_SLICE; i++) |
| core_writel(priv, layout->udfs[slice_num].slices[i], |
| offset + i * 4); |
| } |
| |
| static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op) |
| { |
| unsigned int timeout = 1000; |
| u32 reg; |
| |
| reg = core_readl(priv, CORE_CFP_ACC); |
| reg &= ~(OP_SEL_MASK | RAM_SEL_MASK); |
| reg |= OP_STR_DONE | op; |
| core_writel(priv, reg, CORE_CFP_ACC); |
| |
| do { |
| reg = core_readl(priv, CORE_CFP_ACC); |
| if (!(reg & OP_STR_DONE)) |
| break; |
| |
| cpu_relax(); |
| } while (timeout--); |
| |
| if (!timeout) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv, |
| unsigned int addr) |
| { |
| u32 reg; |
| |
| WARN_ON(addr >= priv->num_cfp_rules); |
| |
| reg = core_readl(priv, CORE_CFP_ACC); |
| reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT); |
| reg |= addr << XCESS_ADDR_SHIFT; |
| core_writel(priv, reg, CORE_CFP_ACC); |
| } |
| |
| static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv) |
| { |
| /* Entry #0 is reserved */ |
| return priv->num_cfp_rules - 1; |
| } |
| |
| static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, |
| unsigned int rule_index, |
| unsigned int port_num, |
| unsigned int queue_num, |
| bool fwd_map_change) |
| { |
| int ret; |
| u32 reg; |
| |
| /* Replace ARL derived destination with DST_MAP derived, define |
| * which port and queue this should be forwarded to. |
| */ |
| if (fwd_map_change) |
| reg = CHANGE_FWRD_MAP_IB_REP_ARL | |
| BIT(port_num + DST_MAP_IB_SHIFT) | |
| CHANGE_TC | queue_num << NEW_TC_SHIFT; |
| else |
| reg = 0; |
| |
| core_writel(priv, reg, CORE_ACT_POL_DATA0); |
| |
| /* Set classification ID that needs to be put in Broadcom tag */ |
| core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1); |
| |
| core_writel(priv, 0, CORE_ACT_POL_DATA2); |
| |
| /* Configure policer RAM now */ |
| ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM); |
| if (ret) { |
| pr_err("Policer entry at %d failed\n", rule_index); |
| return ret; |
| } |
| |
| /* Disable the policer */ |
| core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0); |
| |
| /* Now the rate meter */ |
| ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM); |
| if (ret) { |
| pr_err("Meter entry at %d failed\n", rule_index); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv, |
| struct ethtool_tcpip4_spec *v4_spec, |
| unsigned int slice_num, |
| bool mask) |
| { |
| u32 reg, offset; |
| |
| /* C-Tag [31:24] |
| * UDF_n_A8 [23:8] |
| * UDF_n_A7 [7:0] |
| */ |
| reg = 0; |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(4); |
| else |
| offset = CORE_CFP_DATA_PORT(4); |
| core_writel(priv, reg, offset); |
| |
| /* UDF_n_A7 [31:24] |
| * UDF_n_A6 [23:8] |
| * UDF_n_A5 [7:0] |
| */ |
| reg = be16_to_cpu(v4_spec->pdst) >> 8; |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(3); |
| else |
| offset = CORE_CFP_DATA_PORT(3); |
| core_writel(priv, reg, offset); |
| |
| /* UDF_n_A5 [31:24] |
| * UDF_n_A4 [23:8] |
| * UDF_n_A3 [7:0] |
| */ |
| reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 | |
| (u32)be16_to_cpu(v4_spec->psrc) << 8 | |
| (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8; |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(2); |
| else |
| offset = CORE_CFP_DATA_PORT(2); |
| core_writel(priv, reg, offset); |
| |
| /* UDF_n_A3 [31:24] |
| * UDF_n_A2 [23:8] |
| * UDF_n_A1 [7:0] |
| */ |
| reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 | |
| (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 | |
| (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8; |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(1); |
| else |
| offset = CORE_CFP_DATA_PORT(1); |
| core_writel(priv, reg, offset); |
| |
| /* UDF_n_A1 [31:24] |
| * UDF_n_A0 [23:8] |
| * Reserved [7:4] |
| * Slice ID [3:2] |
| * Slice valid [1:0] |
| */ |
| reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 | |
| (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 | |
| SLICE_NUM(slice_num) | SLICE_VALID; |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(0); |
| else |
| offset = CORE_CFP_DATA_PORT(0); |
| core_writel(priv, reg, offset); |
| } |
| |
| static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, |
| unsigned int port_num, |
| unsigned int queue_num, |
| struct ethtool_rx_flow_spec *fs) |
| { |
| struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec; |
| const struct cfp_udf_layout *layout; |
| unsigned int slice_num, rule_index; |
| u8 ip_proto, ip_frag; |
| u8 num_udf; |
| u32 reg; |
| int ret; |
| |
| switch (fs->flow_type & ~FLOW_EXT) { |
| case TCP_V4_FLOW: |
| ip_proto = IPPROTO_TCP; |
| v4_spec = &fs->h_u.tcp_ip4_spec; |
| v4_m_spec = &fs->m_u.tcp_ip4_spec; |
| break; |
| case UDP_V4_FLOW: |
| ip_proto = IPPROTO_UDP; |
| v4_spec = &fs->h_u.udp_ip4_spec; |
| v4_m_spec = &fs->m_u.udp_ip4_spec; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ip_frag = be32_to_cpu(fs->m_ext.data[0]); |
| |
| /* Locate the first rule available */ |
| if (fs->location == RX_CLS_LOC_ANY) |
| rule_index = find_first_zero_bit(priv->cfp.used, |
| priv->num_cfp_rules); |
| else |
| rule_index = fs->location; |
| |
| if (rule_index > bcm_sf2_cfp_rule_size(priv)) |
| return -ENOSPC; |
| |
| layout = &udf_tcpip4_layout; |
| /* We only use one UDF slice for now */ |
| slice_num = bcm_sf2_get_slice_number(layout, 0); |
| if (slice_num == UDF_NUM_SLICES) |
| return -EINVAL; |
| |
| num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); |
| |
| /* Apply the UDF layout for this filter */ |
| bcm_sf2_cfp_udf_set(priv, layout, slice_num); |
| |
| /* Apply to all packets received through this port */ |
| core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); |
| |
| /* Source port map match */ |
| core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); |
| |
| /* S-Tag status [31:30] |
| * C-Tag status [29:28] |
| * L2 framing [27:26] |
| * L3 framing [25:24] |
| * IP ToS [23:16] |
| * IP proto [15:08] |
| * IP Fragm [7] |
| * Non 1st frag [6] |
| * IP Authen [5] |
| * TTL range [4:3] |
| * PPPoE session [2] |
| * Reserved [1] |
| * UDF_Valid[8] [0] |
| */ |
| core_writel(priv, v4_spec->tos << IPTOS_SHIFT | |
| ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT | |
| udf_upper_bits(num_udf), |
| CORE_CFP_DATA_PORT(6)); |
| |
| /* Mask with the specific layout for IPv4 packets */ |
| core_writel(priv, layout->udfs[slice_num].mask_value | |
| udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6)); |
| |
| /* UDF_Valid[7:0] [31:24] |
| * S-Tag [23:8] |
| * C-Tag [7:0] |
| */ |
| core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5)); |
| |
| /* Mask all but valid UDFs */ |
| core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5)); |
| |
| /* Program the match and the mask */ |
| bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false); |
| bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true); |
| |
| /* Insert into TCAM now */ |
| bcm_sf2_cfp_rule_addr_set(priv, rule_index); |
| |
| ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); |
| if (ret) { |
| pr_err("TCAM entry at addr %d failed\n", rule_index); |
| return ret; |
| } |
| |
| /* Insert into Action and policer RAMs now */ |
| ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num, |
| queue_num, true); |
| if (ret) |
| return ret; |
| |
| /* Turn on CFP for this rule now */ |
| reg = core_readl(priv, CORE_CFP_CTL_REG); |
| reg |= BIT(port); |
| core_writel(priv, reg, CORE_CFP_CTL_REG); |
| |
| /* Flag the rule as being used and return it */ |
| set_bit(rule_index, priv->cfp.used); |
| set_bit(rule_index, priv->cfp.unique); |
| fs->location = rule_index; |
| |
| return 0; |
| } |
| |
| static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv, |
| const __be32 *ip6_addr, const __be16 port, |
| unsigned int slice_num, |
| bool mask) |
| { |
| u32 reg, tmp, val, offset; |
| |
| /* C-Tag [31:24] |
| * UDF_n_B8 [23:8] (port) |
| * UDF_n_B7 (upper) [7:0] (addr[15:8]) |
| */ |
| reg = be32_to_cpu(ip6_addr[3]); |
| val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff); |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(4); |
| else |
| offset = CORE_CFP_DATA_PORT(4); |
| core_writel(priv, val, offset); |
| |
| /* UDF_n_B7 (lower) [31:24] (addr[7:0]) |
| * UDF_n_B6 [23:8] (addr[31:16]) |
| * UDF_n_B5 (upper) [7:0] (addr[47:40]) |
| */ |
| tmp = be32_to_cpu(ip6_addr[2]); |
| val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | |
| ((tmp >> 8) & 0xff); |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(3); |
| else |
| offset = CORE_CFP_DATA_PORT(3); |
| core_writel(priv, val, offset); |
| |
| /* UDF_n_B5 (lower) [31:24] (addr[39:32]) |
| * UDF_n_B4 [23:8] (addr[63:48]) |
| * UDF_n_B3 (upper) [7:0] (addr[79:72]) |
| */ |
| reg = be32_to_cpu(ip6_addr[1]); |
| val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | |
| ((reg >> 8) & 0xff); |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(2); |
| else |
| offset = CORE_CFP_DATA_PORT(2); |
| core_writel(priv, val, offset); |
| |
| /* UDF_n_B3 (lower) [31:24] (addr[71:64]) |
| * UDF_n_B2 [23:8] (addr[95:80]) |
| * UDF_n_B1 (upper) [7:0] (addr[111:104]) |
| */ |
| tmp = be32_to_cpu(ip6_addr[0]); |
| val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | |
| ((tmp >> 8) & 0xff); |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(1); |
| else |
| offset = CORE_CFP_DATA_PORT(1); |
| core_writel(priv, val, offset); |
| |
| /* UDF_n_B1 (lower) [31:24] (addr[103:96]) |
| * UDF_n_B0 [23:8] (addr[127:112]) |
| * Reserved [7:4] |
| * Slice ID [3:2] |
| * Slice valid [1:0] |
| */ |
| reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | |
| SLICE_NUM(slice_num) | SLICE_VALID; |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(0); |
| else |
| offset = CORE_CFP_DATA_PORT(0); |
| core_writel(priv, reg, offset); |
| } |
| |
| static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port, |
| unsigned int port_num, |
| unsigned int queue_num, |
| struct ethtool_rx_flow_spec *fs) |
| { |
| struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec; |
| unsigned int slice_num, rule_index[2]; |
| const struct cfp_udf_layout *layout; |
| u8 ip_proto, ip_frag; |
| int ret = 0; |
| u8 num_udf; |
| u32 reg; |
| |
| switch (fs->flow_type & ~FLOW_EXT) { |
| case TCP_V6_FLOW: |
| ip_proto = IPPROTO_TCP; |
| v6_spec = &fs->h_u.tcp_ip6_spec; |
| v6_m_spec = &fs->m_u.tcp_ip6_spec; |
| break; |
| case UDP_V6_FLOW: |
| ip_proto = IPPROTO_UDP; |
| v6_spec = &fs->h_u.udp_ip6_spec; |
| v6_m_spec = &fs->m_u.udp_ip6_spec; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ip_frag = be32_to_cpu(fs->m_ext.data[0]); |
| |
| layout = &udf_tcpip6_layout; |
| slice_num = bcm_sf2_get_slice_number(layout, 0); |
| if (slice_num == UDF_NUM_SLICES) |
| return -EINVAL; |
| |
| num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); |
| |
| /* Negotiate two indexes, one for the second half which we are chained |
| * from, which is what we will return to user-space, and a second one |
| * which is used to store its first half. That first half does not |
| * allow any choice of placement, so it just needs to find the next |
| * available bit. We return the second half as fs->location because |
| * that helps with the rule lookup later on since the second half is |
| * chained from its first half, we can easily identify IPv6 CFP rules |
| * by looking whether they carry a CHAIN_ID. |
| * |
| * We also want the second half to have a lower rule_index than its |
| * first half because the HW search is by incrementing addresses. |
| */ |
| if (fs->location == RX_CLS_LOC_ANY) |
| rule_index[1] = find_first_zero_bit(priv->cfp.used, |
| priv->num_cfp_rules); |
| else |
| rule_index[1] = fs->location; |
| if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) |
| return -ENOSPC; |
| |
| /* Flag it as used (cleared on error path) such that we can immediately |
| * obtain a second one to chain from. |
| */ |
| set_bit(rule_index[1], priv->cfp.used); |
| |
| rule_index[0] = find_first_zero_bit(priv->cfp.used, |
| priv->num_cfp_rules); |
| if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) { |
| ret = -ENOSPC; |
| goto out_err; |
| } |
| |
| /* Apply the UDF layout for this filter */ |
| bcm_sf2_cfp_udf_set(priv, layout, slice_num); |
| |
| /* Apply to all packets received through this port */ |
| core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); |
| |
| /* Source port map match */ |
| core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); |
| |
| /* S-Tag status [31:30] |
| * C-Tag status [29:28] |
| * L2 framing [27:26] |
| * L3 framing [25:24] |
| * IP ToS [23:16] |
| * IP proto [15:08] |
| * IP Fragm [7] |
| * Non 1st frag [6] |
| * IP Authen [5] |
| * TTL range [4:3] |
| * PPPoE session [2] |
| * Reserved [1] |
| * UDF_Valid[8] [0] |
| */ |
| reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT | |
| ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf); |
| core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); |
| |
| /* Mask with the specific layout for IPv6 packets including |
| * UDF_Valid[8] |
| */ |
| reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf); |
| core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); |
| |
| /* UDF_Valid[7:0] [31:24] |
| * S-Tag [23:8] |
| * C-Tag [7:0] |
| */ |
| core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5)); |
| |
| /* Mask all but valid UDFs */ |
| core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5)); |
| |
| /* Slice the IPv6 source address and port */ |
| bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc, |
| slice_num, false); |
| bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc, |
| SLICE_NUM_MASK, true); |
| |
| /* Insert into TCAM now because we need to insert a second rule */ |
| bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]); |
| |
| ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); |
| if (ret) { |
| pr_err("TCAM entry at addr %d failed\n", rule_index[0]); |
| goto out_err; |
| } |
| |
| /* Insert into Action and policer RAMs now */ |
| ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num, |
| queue_num, false); |
| if (ret) |
| goto out_err; |
| |
| /* Now deal with the second slice to chain this rule */ |
| slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1); |
| if (slice_num == UDF_NUM_SLICES) { |
| ret = -EINVAL; |
| goto out_err; |
| } |
| |
| num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); |
| |
| /* Apply the UDF layout for this filter */ |
| bcm_sf2_cfp_udf_set(priv, layout, slice_num); |
| |
| /* Chained rule, source port match is coming from the rule we are |
| * chained from. |
| */ |
| core_writel(priv, 0, CORE_CFP_DATA_PORT(7)); |
| core_writel(priv, 0, CORE_CFP_MASK_PORT(7)); |
| |
| /* |
| * CHAIN ID [31:24] chain to previous slice |
| * Reserved [23:20] |
| * UDF_Valid[11:8] [19:16] |
| * UDF_Valid[7:0] [15:8] |
| * UDF_n_D11 [7:0] |
| */ |
| reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 | |
| udf_lower_bits(num_udf) << 8; |
| core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); |
| |
| /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */ |
| reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 | |
| udf_lower_bits(num_udf) << 8; |
| core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); |
| |
| /* Don't care */ |
| core_writel(priv, 0, CORE_CFP_DATA_PORT(5)); |
| |
| /* Mask all */ |
| core_writel(priv, 0, CORE_CFP_MASK_PORT(5)); |
| |
| bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num, |
| false); |
| bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst, |
| SLICE_NUM_MASK, true); |
| |
| /* Insert into TCAM now */ |
| bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]); |
| |
| ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); |
| if (ret) { |
| pr_err("TCAM entry at addr %d failed\n", rule_index[1]); |
| goto out_err; |
| } |
| |
| /* Insert into Action and policer RAMs now, set chain ID to |
| * the one we are chained to |
| */ |
| ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num, |
| queue_num, true); |
| if (ret) |
| goto out_err; |
| |
| /* Turn on CFP for this rule now */ |
| reg = core_readl(priv, CORE_CFP_CTL_REG); |
| reg |= BIT(port); |
| core_writel(priv, reg, CORE_CFP_CTL_REG); |
| |
| /* Flag the second half rule as being used now, return it as the |
| * location, and flag it as unique while dumping rules |
| */ |
| set_bit(rule_index[0], priv->cfp.used); |
| set_bit(rule_index[1], priv->cfp.unique); |
| fs->location = rule_index[1]; |
| |
| return ret; |
| |
| out_err: |
| clear_bit(rule_index[1], priv->cfp.used); |
| return ret; |
| } |
| |
| static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, |
| struct ethtool_rx_flow_spec *fs) |
| { |
| struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| s8 cpu_port = ds->ports[port].cpu_dp->index; |
| __u64 ring_cookie = fs->ring_cookie; |
| unsigned int queue_num, port_num; |
| int ret = -EINVAL; |
| |
| /* Check for unsupported extensions */ |
| if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype || |
| fs->m_ext.data[1])) |
| return -EINVAL; |
| |
| if (fs->location != RX_CLS_LOC_ANY && |
| fs->location > bcm_sf2_cfp_rule_size(priv)) |
| return -EINVAL; |
| |
| if (fs->location != RX_CLS_LOC_ANY && |
| test_bit(fs->location, priv->cfp.used)) |
| return -EBUSY; |
| |
| /* This rule is a Wake-on-LAN filter and we must specifically |
| * target the CPU port in order for it to be working. |
| */ |
| if (ring_cookie == RX_CLS_FLOW_WAKE) |
| ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES; |
| |
| /* We do not support discarding packets, check that the |
| * destination port is enabled and that we are within the |
| * number of ports supported by the switch |
| */ |
| port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES; |
| |
| if (ring_cookie == RX_CLS_FLOW_DISC || |
| !(dsa_is_user_port(ds, port_num) || |
| dsa_is_cpu_port(ds, port_num)) || |
| port_num >= priv->hw_params.num_ports) |
| return -EINVAL; |
| /* |
| * We have a small oddity where Port 6 just does not have a |
| * valid bit here (so we substract by one). |
| */ |
| queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES; |
| if (port_num >= 7) |
| port_num -= 1; |
| |
| switch (fs->flow_type & ~FLOW_EXT) { |
| case TCP_V4_FLOW: |
| case UDP_V4_FLOW: |
| ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, |
| queue_num, fs); |
| break; |
| case TCP_V6_FLOW: |
| case UDP_V6_FLOW: |
| ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num, |
| queue_num, fs); |
| break; |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port, |
| u32 loc, u32 *next_loc) |
| { |
| int ret; |
| u32 reg; |
| |
| /* Indicate which rule we want to read */ |
| bcm_sf2_cfp_rule_addr_set(priv, loc); |
| |
| ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); |
| if (ret) |
| return ret; |
| |
| /* Check if this is possibly an IPv6 rule that would |
| * indicate we need to delete its companion rule |
| * as well |
| */ |
| reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); |
| if (next_loc) |
| *next_loc = (reg >> 24) & CHAIN_ID_MASK; |
| |
| /* Clear its valid bits */ |
| reg = core_readl(priv, CORE_CFP_DATA_PORT(0)); |
| reg &= ~SLICE_VALID; |
| core_writel(priv, reg, CORE_CFP_DATA_PORT(0)); |
| |
| /* Write back this entry into the TCAM now */ |
| ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); |
| if (ret) |
| return ret; |
| |
| clear_bit(loc, priv->cfp.used); |
| clear_bit(loc, priv->cfp.unique); |
| |
| return 0; |
| } |
| |
| static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, |
| u32 loc) |
| { |
| u32 next_loc = 0; |
| int ret; |
| |
| if (loc > bcm_sf2_cfp_rule_size(priv)) |
| return -EINVAL; |
| |
| /* Refuse deleting unused rules, and those that are not unique since |
| * that could leave IPv6 rules with one of the chained rule in the |
| * table. |
| */ |
| if (!test_bit(loc, priv->cfp.unique) || loc == 0) |
| return -EINVAL; |
| |
| ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc); |
| if (ret) |
| return ret; |
| |
| /* If this was an IPv6 rule, delete is companion rule too */ |
| if (next_loc) |
| ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL); |
| |
| return ret; |
| } |
| |
| static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sizeof(flow->m_u); i++) |
| flow->m_u.hdata[i] ^= 0xff; |
| |
| flow->m_ext.vlan_etype ^= cpu_to_be16(~0); |
| flow->m_ext.vlan_tci ^= cpu_to_be16(~0); |
| flow->m_ext.data[0] ^= cpu_to_be32(~0); |
| flow->m_ext.data[1] ^= cpu_to_be32(~0); |
| } |
| |
| static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv, |
| struct ethtool_tcpip4_spec *v4_spec, |
| bool mask) |
| { |
| u32 reg, offset, ipv4; |
| u16 src_dst_port; |
| |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(3); |
| else |
| offset = CORE_CFP_DATA_PORT(3); |
| |
| reg = core_readl(priv, offset); |
| /* src port [15:8] */ |
| src_dst_port = reg << 8; |
| |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(2); |
| else |
| offset = CORE_CFP_DATA_PORT(2); |
| |
| reg = core_readl(priv, offset); |
| /* src port [7:0] */ |
| src_dst_port |= (reg >> 24); |
| |
| v4_spec->pdst = cpu_to_be16(src_dst_port); |
| v4_spec->psrc = cpu_to_be16((u16)(reg >> 8)); |
| |
| /* IPv4 dst [15:8] */ |
| ipv4 = (reg & 0xff) << 8; |
| |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(1); |
| else |
| offset = CORE_CFP_DATA_PORT(1); |
| |
| reg = core_readl(priv, offset); |
| /* IPv4 dst [31:16] */ |
| ipv4 |= ((reg >> 8) & 0xffff) << 16; |
| /* IPv4 dst [7:0] */ |
| ipv4 |= (reg >> 24) & 0xff; |
| v4_spec->ip4dst = cpu_to_be32(ipv4); |
| |
| /* IPv4 src [15:8] */ |
| ipv4 = (reg & 0xff) << 8; |
| |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(0); |
| else |
| offset = CORE_CFP_DATA_PORT(0); |
| reg = core_readl(priv, offset); |
| |
| /* Once the TCAM is programmed, the mask reflects the slice number |
| * being matched, don't bother checking it when reading back the |
| * mask spec |
| */ |
| if (!mask && !(reg & SLICE_VALID)) |
| return -EINVAL; |
| |
| /* IPv4 src [7:0] */ |
| ipv4 |= (reg >> 24) & 0xff; |
| /* IPv4 src [31:16] */ |
| ipv4 |= ((reg >> 8) & 0xffff) << 16; |
| v4_spec->ip4src = cpu_to_be32(ipv4); |
| |
| return 0; |
| } |
| |
| static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port, |
| struct ethtool_rx_flow_spec *fs) |
| { |
| struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL; |
| u32 reg; |
| int ret; |
| |
| reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); |
| |
| switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) { |
| case IPPROTO_TCP: |
| fs->flow_type = TCP_V4_FLOW; |
| v4_spec = &fs->h_u.tcp_ip4_spec; |
| v4_m_spec = &fs->m_u.tcp_ip4_spec; |
| break; |
| case IPPROTO_UDP: |
| fs->flow_type = UDP_V4_FLOW; |
| v4_spec = &fs->h_u.udp_ip4_spec; |
| v4_m_spec = &fs->m_u.udp_ip4_spec; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1); |
| v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK; |
| |
| ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false); |
| if (ret) |
| return ret; |
| |
| return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true); |
| } |
| |
| static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv, |
| __be32 *ip6_addr, __be16 *port, |
| bool mask) |
| { |
| u32 reg, tmp, offset; |
| |
| /* C-Tag [31:24] |
| * UDF_n_B8 [23:8] (port) |
| * UDF_n_B7 (upper) [7:0] (addr[15:8]) |
| */ |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(4); |
| else |
| offset = CORE_CFP_DATA_PORT(4); |
| reg = core_readl(priv, offset); |
| *port = cpu_to_be32(reg) >> 8; |
| tmp = (u32)(reg & 0xff) << 8; |
| |
| /* UDF_n_B7 (lower) [31:24] (addr[7:0]) |
| * UDF_n_B6 [23:8] (addr[31:16]) |
| * UDF_n_B5 (upper) [7:0] (addr[47:40]) |
| */ |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(3); |
| else |
| offset = CORE_CFP_DATA_PORT(3); |
| reg = core_readl(priv, offset); |
| tmp |= (reg >> 24) & 0xff; |
| tmp |= (u32)((reg >> 8) << 16); |
| ip6_addr[3] = cpu_to_be32(tmp); |
| tmp = (u32)(reg & 0xff) << 8; |
| |
| /* UDF_n_B5 (lower) [31:24] (addr[39:32]) |
| * UDF_n_B4 [23:8] (addr[63:48]) |
| * UDF_n_B3 (upper) [7:0] (addr[79:72]) |
| */ |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(2); |
| else |
| offset = CORE_CFP_DATA_PORT(2); |
| reg = core_readl(priv, offset); |
| tmp |= (reg >> 24) & 0xff; |
| tmp |= (u32)((reg >> 8) << 16); |
| ip6_addr[2] = cpu_to_be32(tmp); |
| tmp = (u32)(reg & 0xff) << 8; |
| |
| /* UDF_n_B3 (lower) [31:24] (addr[71:64]) |
| * UDF_n_B2 [23:8] (addr[95:80]) |
| * UDF_n_B1 (upper) [7:0] (addr[111:104]) |
| */ |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(1); |
| else |
| offset = CORE_CFP_DATA_PORT(1); |
| reg = core_readl(priv, offset); |
| tmp |= (reg >> 24) & 0xff; |
| tmp |= (u32)((reg >> 8) << 16); |
| ip6_addr[1] = cpu_to_be32(tmp); |
| tmp = (u32)(reg & 0xff) << 8; |
| |
| /* UDF_n_B1 (lower) [31:24] (addr[103:96]) |
| * UDF_n_B0 [23:8] (addr[127:112]) |
| * Reserved [7:4] |
| * Slice ID [3:2] |
| * Slice valid [1:0] |
| */ |
| if (mask) |
| offset = CORE_CFP_MASK_PORT(0); |
| else |
| offset = CORE_CFP_DATA_PORT(0); |
| reg = core_readl(priv, offset); |
| tmp |= (reg >> 24) & 0xff; |
| tmp |= (u32)((reg >> 8) << 16); |
| ip6_addr[0] = cpu_to_be32(tmp); |
| |
| if (!mask && !(reg & SLICE_VALID)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port, |
| struct ethtool_rx_flow_spec *fs, |
| u32 next_loc) |
| { |
| struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL; |
| u32 reg; |
| int ret; |
| |
| /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine |
| * assuming tcp_ip6_spec here being an union. |
| */ |
| v6_spec = &fs->h_u.tcp_ip6_spec; |
| v6_m_spec = &fs->m_u.tcp_ip6_spec; |
| |
| /* Read the second half first */ |
| ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst, |
| false); |
| if (ret) |
| return ret; |
| |
| ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst, |
| &v6_m_spec->pdst, true); |
| if (ret) |
| return ret; |
| |
| /* Read last to avoid next entry clobbering the results during search |
| * operations. We would not have the port enabled for this rule, so |
| * don't bother checking it. |
| */ |
| (void)core_readl(priv, CORE_CFP_DATA_PORT(7)); |
| |
| /* The slice number is valid, so read the rule we are chained from now |
| * which is our first half. |
| */ |
| bcm_sf2_cfp_rule_addr_set(priv, next_loc); |
| ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); |
| if (ret) |
| return ret; |
| |
| reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); |
| |
| switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) { |
| case IPPROTO_TCP: |
| fs->flow_type = TCP_V6_FLOW; |
| break; |
| case IPPROTO_UDP: |
| fs->flow_type = UDP_V6_FLOW; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc, |
| false); |
| if (ret) |
| return ret; |
| |
| return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src, |
| &v6_m_spec->psrc, true); |
| } |
| |
| static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, |
| struct ethtool_rxnfc *nfc) |
| { |
| u32 reg, ipv4_or_chain_id; |
| unsigned int queue_num; |
| int ret; |
| |
| bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location); |
| |
| ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM); |
| if (ret) |
| return ret; |
| |
| reg = core_readl(priv, CORE_ACT_POL_DATA0); |
| |
| ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); |
| if (ret) |
| return ret; |
| |
| /* Extract the destination port */ |
| nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) & |
| DST_MAP_IB_MASK) - 1; |
| |
| /* There is no Port 6, so we compensate for that here */ |
| if (nfc->fs.ring_cookie >= 6) |
| nfc->fs.ring_cookie++; |
| nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES; |
| |
| /* Extract the destination queue */ |
| queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK; |
| nfc->fs.ring_cookie += queue_num; |
| |
| /* Extract the L3_FRAMING or CHAIN_ID */ |
| reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); |
| |
| /* With IPv6 rules this would contain a non-zero chain ID since |
| * we reserve entry 0 and it cannot be used. So if we read 0 here |
| * this means an IPv4 rule. |
| */ |
| ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff; |
| if (ipv4_or_chain_id == 0) |
| ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs); |
| else |
| ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs, |
| ipv4_or_chain_id); |
| if (ret) |
| return ret; |
| |
| /* Read last to avoid next entry clobbering the results during search |
| * operations |
| */ |
| reg = core_readl(priv, CORE_CFP_DATA_PORT(7)); |
| if (!(reg & 1 << port)) |
| return -EINVAL; |
| |
| bcm_sf2_invert_masks(&nfc->fs); |
| |
| /* Put the TCAM size here */ |
| nfc->data = bcm_sf2_cfp_rule_size(priv); |
| |
| return 0; |
| } |
| |
| /* We implement the search doing a TCAM search operation */ |
| static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv, |
| int port, struct ethtool_rxnfc *nfc, |
| u32 *rule_locs) |
| { |
| unsigned int index = 1, rules_cnt = 0; |
| |
| for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) { |
| rule_locs[rules_cnt] = index; |
| rules_cnt++; |
| } |
| |
| /* Put the TCAM size here */ |
| nfc->data = bcm_sf2_cfp_rule_size(priv); |
| nfc->rule_cnt = rules_cnt; |
| |
| return 0; |
| } |
| |
| int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port, |
| struct ethtool_rxnfc *nfc, u32 *rule_locs) |
| { |
| struct net_device *p = ds->ports[port].cpu_dp->master; |
| struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| int ret = 0; |
| |
| mutex_lock(&priv->cfp.lock); |
| |
| switch (nfc->cmd) { |
| case ETHTOOL_GRXCLSRLCNT: |
| /* Subtract the default, unusable rule */ |
| nfc->rule_cnt = bitmap_weight(priv->cfp.unique, |
| priv->num_cfp_rules) - 1; |
| /* We support specifying rule locations */ |
| nfc->data |= RX_CLS_LOC_SPECIAL; |
| break; |
| case ETHTOOL_GRXCLSRULE: |
| ret = bcm_sf2_cfp_rule_get(priv, port, nfc); |
| break; |
| case ETHTOOL_GRXCLSRLALL: |
| ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs); |
| break; |
| default: |
| ret = -EOPNOTSUPP; |
| break; |
| } |
| |
| mutex_unlock(&priv->cfp.lock); |
| |
| if (ret) |
| return ret; |
| |
| /* Pass up the commands to the attached master network device */ |
| if (p->ethtool_ops->get_rxnfc) { |
| ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs); |
| if (ret == -EOPNOTSUPP) |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port, |
| struct ethtool_rxnfc *nfc) |
| { |
| struct net_device *p = ds->ports[port].cpu_dp->master; |
| struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| int ret = 0; |
| |
| mutex_lock(&priv->cfp.lock); |
| |
| switch (nfc->cmd) { |
| case ETHTOOL_SRXCLSRLINS: |
| ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs); |
| break; |
| |
| case ETHTOOL_SRXCLSRLDEL: |
| ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); |
| break; |
| default: |
| ret = -EOPNOTSUPP; |
| break; |
| } |
| |
| mutex_unlock(&priv->cfp.lock); |
| |
| if (ret) |
| return ret; |
| |
| /* Pass up the commands to the attached master network device. |
| * This can fail, so rollback the operation if we need to. |
| */ |
| if (p->ethtool_ops->set_rxnfc) { |
| ret = p->ethtool_ops->set_rxnfc(p, nfc); |
| if (ret && ret != -EOPNOTSUPP) { |
| mutex_lock(&priv->cfp.lock); |
| bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); |
| mutex_unlock(&priv->cfp.lock); |
| } else { |
| ret = 0; |
| } |
| } |
| |
| return ret; |
| } |
| |
| int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv) |
| { |
| unsigned int timeout = 1000; |
| u32 reg; |
| |
| reg = core_readl(priv, CORE_CFP_ACC); |
| reg |= TCAM_RESET; |
| core_writel(priv, reg, CORE_CFP_ACC); |
| |
| do { |
| reg = core_readl(priv, CORE_CFP_ACC); |
| if (!(reg & TCAM_RESET)) |
| break; |
| |
| cpu_relax(); |
| } while (timeout--); |
| |
| if (!timeout) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |