| #ifndef __LINUX_PERCPU_H |
| #define __LINUX_PERCPU_H |
| |
| #include <linux/preempt.h> |
| #include <linux/smp.h> |
| #include <linux/cpumask.h> |
| #include <linux/pfn.h> |
| #include <linux/init.h> |
| |
| #include <asm/percpu.h> |
| |
| /* enough to cover all DEFINE_PER_CPUs in modules */ |
| #ifdef CONFIG_MODULES |
| #define PERCPU_MODULE_RESERVE (8 << 10) |
| #else |
| #define PERCPU_MODULE_RESERVE 0 |
| #endif |
| |
| #ifndef PERCPU_ENOUGH_ROOM |
| #define PERCPU_ENOUGH_ROOM \ |
| (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ |
| PERCPU_MODULE_RESERVE) |
| #endif |
| |
| /* |
| * Must be an lvalue. Since @var must be a simple identifier, |
| * we force a syntax error here if it isn't. |
| */ |
| #define get_cpu_var(var) (*({ \ |
| preempt_disable(); \ |
| &__get_cpu_var(var); })) |
| |
| /* |
| * The weird & is necessary because sparse considers (void)(var) to be |
| * a direct dereference of percpu variable (var). |
| */ |
| #define put_cpu_var(var) do { \ |
| (void)&(var); \ |
| preempt_enable(); \ |
| } while (0) |
| |
| #define get_cpu_ptr(var) ({ \ |
| preempt_disable(); \ |
| this_cpu_ptr(var); }) |
| |
| #define put_cpu_ptr(var) do { \ |
| (void)(var); \ |
| preempt_enable(); \ |
| } while (0) |
| |
| #ifdef CONFIG_SMP |
| |
| /* minimum unit size, also is the maximum supported allocation size */ |
| #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) |
| |
| /* |
| * Percpu allocator can serve percpu allocations before slab is |
| * initialized which allows slab to depend on the percpu allocator. |
| * The following two parameters decide how much resource to |
| * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or |
| * larger than PERCPU_DYNAMIC_EARLY_SIZE. |
| */ |
| #define PERCPU_DYNAMIC_EARLY_SLOTS 128 |
| #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) |
| |
| /* |
| * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy |
| * back on the first chunk for dynamic percpu allocation if arch is |
| * manually allocating and mapping it for faster access (as a part of |
| * large page mapping for example). |
| * |
| * The following values give between one and two pages of free space |
| * after typical minimal boot (2-way SMP, single disk and NIC) with |
| * both defconfig and a distro config on x86_64 and 32. More |
| * intelligent way to determine this would be nice. |
| */ |
| #if BITS_PER_LONG > 32 |
| #define PERCPU_DYNAMIC_RESERVE (20 << 10) |
| #else |
| #define PERCPU_DYNAMIC_RESERVE (12 << 10) |
| #endif |
| |
| extern void *pcpu_base_addr; |
| extern const unsigned long *pcpu_unit_offsets; |
| |
| struct pcpu_group_info { |
| int nr_units; /* aligned # of units */ |
| unsigned long base_offset; /* base address offset */ |
| unsigned int *cpu_map; /* unit->cpu map, empty |
| * entries contain NR_CPUS */ |
| }; |
| |
| struct pcpu_alloc_info { |
| size_t static_size; |
| size_t reserved_size; |
| size_t dyn_size; |
| size_t unit_size; |
| size_t atom_size; |
| size_t alloc_size; |
| size_t __ai_size; /* internal, don't use */ |
| int nr_groups; /* 0 if grouping unnecessary */ |
| struct pcpu_group_info groups[]; |
| }; |
| |
| enum pcpu_fc { |
| PCPU_FC_AUTO, |
| PCPU_FC_EMBED, |
| PCPU_FC_PAGE, |
| |
| PCPU_FC_NR, |
| }; |
| extern const char *pcpu_fc_names[PCPU_FC_NR]; |
| |
| extern enum pcpu_fc pcpu_chosen_fc; |
| |
| typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, |
| size_t align); |
| typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); |
| typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); |
| typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); |
| |
| extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, |
| int nr_units); |
| extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); |
| |
| extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
| void *base_addr); |
| |
| #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK |
| extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, |
| size_t atom_size, |
| pcpu_fc_cpu_distance_fn_t cpu_distance_fn, |
| pcpu_fc_alloc_fn_t alloc_fn, |
| pcpu_fc_free_fn_t free_fn); |
| #endif |
| |
| #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK |
| extern int __init pcpu_page_first_chunk(size_t reserved_size, |
| pcpu_fc_alloc_fn_t alloc_fn, |
| pcpu_fc_free_fn_t free_fn, |
| pcpu_fc_populate_pte_fn_t populate_pte_fn); |
| #endif |
| |
| /* |
| * Use this to get to a cpu's version of the per-cpu object |
| * dynamically allocated. Non-atomic access to the current CPU's |
| * version should probably be combined with get_cpu()/put_cpu(). |
| */ |
| #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) |
| |
| extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); |
| extern bool is_kernel_percpu_address(unsigned long addr); |
| |
| #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA |
| extern void __init setup_per_cpu_areas(void); |
| #endif |
| extern void __init percpu_init_late(void); |
| |
| #else /* CONFIG_SMP */ |
| |
| #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) |
| |
| /* can't distinguish from other static vars, always false */ |
| static inline bool is_kernel_percpu_address(unsigned long addr) |
| { |
| return false; |
| } |
| |
| static inline void __init setup_per_cpu_areas(void) { } |
| |
| static inline void __init percpu_init_late(void) { } |
| |
| static inline void *pcpu_lpage_remapped(void *kaddr) |
| { |
| return NULL; |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| extern void __percpu *__alloc_percpu(size_t size, size_t align); |
| extern void free_percpu(void __percpu *__pdata); |
| extern phys_addr_t per_cpu_ptr_to_phys(void *addr); |
| |
| #define alloc_percpu(type) \ |
| (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) |
| |
| /* |
| * Optional methods for optimized non-lvalue per-cpu variable access. |
| * |
| * @var can be a percpu variable or a field of it and its size should |
| * equal char, int or long. percpu_read() evaluates to a lvalue and |
| * all others to void. |
| * |
| * These operations are guaranteed to be atomic w.r.t. preemption. |
| * The generic versions use plain get/put_cpu_var(). Archs are |
| * encouraged to implement single-instruction alternatives which don't |
| * require preemption protection. |
| */ |
| #ifndef percpu_read |
| # define percpu_read(var) \ |
| ({ \ |
| typeof(var) *pr_ptr__ = &(var); \ |
| typeof(var) pr_ret__; \ |
| pr_ret__ = get_cpu_var(*pr_ptr__); \ |
| put_cpu_var(*pr_ptr__); \ |
| pr_ret__; \ |
| }) |
| #endif |
| |
| #define __percpu_generic_to_op(var, val, op) \ |
| do { \ |
| typeof(var) *pgto_ptr__ = &(var); \ |
| get_cpu_var(*pgto_ptr__) op val; \ |
| put_cpu_var(*pgto_ptr__); \ |
| } while (0) |
| |
| #ifndef percpu_write |
| # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) |
| #endif |
| |
| #ifndef percpu_add |
| # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) |
| #endif |
| |
| #ifndef percpu_sub |
| # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) |
| #endif |
| |
| #ifndef percpu_and |
| # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) |
| #endif |
| |
| #ifndef percpu_or |
| # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) |
| #endif |
| |
| #ifndef percpu_xor |
| # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) |
| #endif |
| |
| /* |
| * Branching function to split up a function into a set of functions that |
| * are called for different scalar sizes of the objects handled. |
| */ |
| |
| extern void __bad_size_call_parameter(void); |
| |
| #define __pcpu_size_call_return(stem, variable) \ |
| ({ typeof(variable) pscr_ret__; \ |
| __verify_pcpu_ptr(&(variable)); \ |
| switch(sizeof(variable)) { \ |
| case 1: pscr_ret__ = stem##1(variable);break; \ |
| case 2: pscr_ret__ = stem##2(variable);break; \ |
| case 4: pscr_ret__ = stem##4(variable);break; \ |
| case 8: pscr_ret__ = stem##8(variable);break; \ |
| default: \ |
| __bad_size_call_parameter();break; \ |
| } \ |
| pscr_ret__; \ |
| }) |
| |
| #define __pcpu_size_call(stem, variable, ...) \ |
| do { \ |
| __verify_pcpu_ptr(&(variable)); \ |
| switch(sizeof(variable)) { \ |
| case 1: stem##1(variable, __VA_ARGS__);break; \ |
| case 2: stem##2(variable, __VA_ARGS__);break; \ |
| case 4: stem##4(variable, __VA_ARGS__);break; \ |
| case 8: stem##8(variable, __VA_ARGS__);break; \ |
| default: \ |
| __bad_size_call_parameter();break; \ |
| } \ |
| } while (0) |
| |
| /* |
| * Optimized manipulation for memory allocated through the per cpu |
| * allocator or for addresses of per cpu variables. |
| * |
| * These operation guarantee exclusivity of access for other operations |
| * on the *same* processor. The assumption is that per cpu data is only |
| * accessed by a single processor instance (the current one). |
| * |
| * The first group is used for accesses that must be done in a |
| * preemption safe way since we know that the context is not preempt |
| * safe. Interrupts may occur. If the interrupt modifies the variable |
| * too then RMW actions will not be reliable. |
| * |
| * The arch code can provide optimized functions in two ways: |
| * |
| * 1. Override the function completely. F.e. define this_cpu_add(). |
| * The arch must then ensure that the various scalar format passed |
| * are handled correctly. |
| * |
| * 2. Provide functions for certain scalar sizes. F.e. provide |
| * this_cpu_add_2() to provide per cpu atomic operations for 2 byte |
| * sized RMW actions. If arch code does not provide operations for |
| * a scalar size then the fallback in the generic code will be |
| * used. |
| */ |
| |
| #define _this_cpu_generic_read(pcp) \ |
| ({ typeof(pcp) ret__; \ |
| preempt_disable(); \ |
| ret__ = *this_cpu_ptr(&(pcp)); \ |
| preempt_enable(); \ |
| ret__; \ |
| }) |
| |
| #ifndef this_cpu_read |
| # ifndef this_cpu_read_1 |
| # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) |
| # endif |
| # ifndef this_cpu_read_2 |
| # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) |
| # endif |
| # ifndef this_cpu_read_4 |
| # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) |
| # endif |
| # ifndef this_cpu_read_8 |
| # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) |
| # endif |
| # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) |
| #endif |
| |
| #define _this_cpu_generic_to_op(pcp, val, op) \ |
| do { \ |
| preempt_disable(); \ |
| *__this_cpu_ptr(&(pcp)) op val; \ |
| preempt_enable(); \ |
| } while (0) |
| |
| #ifndef this_cpu_write |
| # ifndef this_cpu_write_1 |
| # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef this_cpu_write_2 |
| # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef this_cpu_write_4 |
| # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef this_cpu_write_8 |
| # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) |
| #endif |
| |
| #ifndef this_cpu_add |
| # ifndef this_cpu_add_1 |
| # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef this_cpu_add_2 |
| # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef this_cpu_add_4 |
| # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef this_cpu_add_8 |
| # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) |
| #endif |
| |
| #ifndef this_cpu_sub |
| # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) |
| #endif |
| |
| #ifndef this_cpu_inc |
| # define this_cpu_inc(pcp) this_cpu_add((pcp), 1) |
| #endif |
| |
| #ifndef this_cpu_dec |
| # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) |
| #endif |
| |
| #ifndef this_cpu_and |
| # ifndef this_cpu_and_1 |
| # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef this_cpu_and_2 |
| # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef this_cpu_and_4 |
| # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef this_cpu_and_8 |
| # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) |
| #endif |
| |
| #ifndef this_cpu_or |
| # ifndef this_cpu_or_1 |
| # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef this_cpu_or_2 |
| # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef this_cpu_or_4 |
| # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef this_cpu_or_8 |
| # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) |
| #endif |
| |
| #ifndef this_cpu_xor |
| # ifndef this_cpu_xor_1 |
| # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # ifndef this_cpu_xor_2 |
| # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # ifndef this_cpu_xor_4 |
| # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # ifndef this_cpu_xor_8 |
| # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) |
| #endif |
| |
| /* |
| * Generic percpu operations that do not require preemption handling. |
| * Either we do not care about races or the caller has the |
| * responsibility of handling preemptions issues. Arch code can still |
| * override these instructions since the arch per cpu code may be more |
| * efficient and may actually get race freeness for free (that is the |
| * case for x86 for example). |
| * |
| * If there is no other protection through preempt disable and/or |
| * disabling interupts then one of these RMW operations can show unexpected |
| * behavior because the execution thread was rescheduled on another processor |
| * or an interrupt occurred and the same percpu variable was modified from |
| * the interrupt context. |
| */ |
| #ifndef __this_cpu_read |
| # ifndef __this_cpu_read_1 |
| # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) |
| # endif |
| # ifndef __this_cpu_read_2 |
| # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) |
| # endif |
| # ifndef __this_cpu_read_4 |
| # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) |
| # endif |
| # ifndef __this_cpu_read_8 |
| # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) |
| # endif |
| # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) |
| #endif |
| |
| #define __this_cpu_generic_to_op(pcp, val, op) \ |
| do { \ |
| *__this_cpu_ptr(&(pcp)) op val; \ |
| } while (0) |
| |
| #ifndef __this_cpu_write |
| # ifndef __this_cpu_write_1 |
| # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef __this_cpu_write_2 |
| # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef __this_cpu_write_4 |
| # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # ifndef __this_cpu_write_8 |
| # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) |
| # endif |
| # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) |
| #endif |
| |
| #ifndef __this_cpu_add |
| # ifndef __this_cpu_add_1 |
| # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef __this_cpu_add_2 |
| # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef __this_cpu_add_4 |
| # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef __this_cpu_add_8 |
| # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) |
| #endif |
| |
| #ifndef __this_cpu_sub |
| # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) |
| #endif |
| |
| #ifndef __this_cpu_inc |
| # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) |
| #endif |
| |
| #ifndef __this_cpu_dec |
| # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) |
| #endif |
| |
| #ifndef __this_cpu_and |
| # ifndef __this_cpu_and_1 |
| # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef __this_cpu_and_2 |
| # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef __this_cpu_and_4 |
| # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef __this_cpu_and_8 |
| # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) |
| #endif |
| |
| #ifndef __this_cpu_or |
| # ifndef __this_cpu_or_1 |
| # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef __this_cpu_or_2 |
| # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef __this_cpu_or_4 |
| # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef __this_cpu_or_8 |
| # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) |
| #endif |
| |
| #ifndef __this_cpu_xor |
| # ifndef __this_cpu_xor_1 |
| # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # ifndef __this_cpu_xor_2 |
| # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # ifndef __this_cpu_xor_4 |
| # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # ifndef __this_cpu_xor_8 |
| # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) |
| #endif |
| |
| /* |
| * IRQ safe versions of the per cpu RMW operations. Note that these operations |
| * are *not* safe against modification of the same variable from another |
| * processors (which one gets when using regular atomic operations) |
| . They are guaranteed to be atomic vs. local interrupts and |
| * preemption only. |
| */ |
| #define irqsafe_cpu_generic_to_op(pcp, val, op) \ |
| do { \ |
| unsigned long flags; \ |
| local_irq_save(flags); \ |
| *__this_cpu_ptr(&(pcp)) op val; \ |
| local_irq_restore(flags); \ |
| } while (0) |
| |
| #ifndef irqsafe_cpu_add |
| # ifndef irqsafe_cpu_add_1 |
| # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef irqsafe_cpu_add_2 |
| # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef irqsafe_cpu_add_4 |
| # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # ifndef irqsafe_cpu_add_8 |
| # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) |
| # endif |
| # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) |
| #endif |
| |
| #ifndef irqsafe_cpu_sub |
| # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) |
| #endif |
| |
| #ifndef irqsafe_cpu_inc |
| # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) |
| #endif |
| |
| #ifndef irqsafe_cpu_dec |
| # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) |
| #endif |
| |
| #ifndef irqsafe_cpu_and |
| # ifndef irqsafe_cpu_and_1 |
| # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef irqsafe_cpu_and_2 |
| # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef irqsafe_cpu_and_4 |
| # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # ifndef irqsafe_cpu_and_8 |
| # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) |
| # endif |
| # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) |
| #endif |
| |
| #ifndef irqsafe_cpu_or |
| # ifndef irqsafe_cpu_or_1 |
| # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef irqsafe_cpu_or_2 |
| # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef irqsafe_cpu_or_4 |
| # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # ifndef irqsafe_cpu_or_8 |
| # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) |
| # endif |
| # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) |
| #endif |
| |
| #ifndef irqsafe_cpu_xor |
| # ifndef irqsafe_cpu_xor_1 |
| # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # ifndef irqsafe_cpu_xor_2 |
| # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # ifndef irqsafe_cpu_xor_4 |
| # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # ifndef irqsafe_cpu_xor_8 |
| # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) |
| # endif |
| # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) |
| #endif |
| |
| #endif /* __LINUX_PERCPU_H */ |