|  | /* | 
|  | *  Generic process-grouping system. | 
|  | * | 
|  | *  Based originally on the cpuset system, extracted by Paul Menage | 
|  | *  Copyright (C) 2006 Google, Inc | 
|  | * | 
|  | *  Notifications support | 
|  | *  Copyright (C) 2009 Nokia Corporation | 
|  | *  Author: Kirill A. Shutemov | 
|  | * | 
|  | *  Copyright notices from the original cpuset code: | 
|  | *  -------------------------------------------------- | 
|  | *  Copyright (C) 2003 BULL SA. | 
|  | *  Copyright (C) 2004-2006 Silicon Graphics, Inc. | 
|  | * | 
|  | *  Portions derived from Patrick Mochel's sysfs code. | 
|  | *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
|  | * | 
|  | *  2003-10-10 Written by Simon Derr. | 
|  | *  2003-10-22 Updates by Stephen Hemminger. | 
|  | *  2004 May-July Rework by Paul Jackson. | 
|  | *  --------------------------------------------------- | 
|  | * | 
|  | *  This file is subject to the terms and conditions of the GNU General Public | 
|  | *  License.  See the file COPYING in the main directory of the Linux | 
|  | *  distribution for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/cred.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init_task.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/cgroupstats.h> | 
|  | #include <linux/hashtable.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ | 
|  | #include <linux/eventfd.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/flex_array.h> /* used in cgroup_attach_task */ | 
|  | #include <linux/kthread.h> | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  |  | 
|  | /* | 
|  | * cgroup_mutex is the master lock.  Any modification to cgroup or its | 
|  | * hierarchy must be performed while holding it. | 
|  | * | 
|  | * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify | 
|  | * cgroupfs_root of any cgroup hierarchy - subsys list, flags, | 
|  | * release_agent_path and so on.  Modifying requires both cgroup_mutex and | 
|  | * cgroup_root_mutex.  Readers can acquire either of the two.  This is to | 
|  | * break the following locking order cycle. | 
|  | * | 
|  | *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem | 
|  | *  B. namespace_sem -> cgroup_mutex | 
|  | * | 
|  | * B happens only through cgroup_show_options() and using cgroup_root_mutex | 
|  | * breaks it. | 
|  | */ | 
|  | #ifdef CONFIG_PROVE_RCU | 
|  | DEFINE_MUTEX(cgroup_mutex); | 
|  | EXPORT_SYMBOL_GPL(cgroup_mutex);	/* only for task_subsys_state_check() */ | 
|  | #else | 
|  | static DEFINE_MUTEX(cgroup_mutex); | 
|  | #endif | 
|  |  | 
|  | static DEFINE_MUTEX(cgroup_root_mutex); | 
|  |  | 
|  | /* | 
|  | * Generate an array of cgroup subsystem pointers. At boot time, this is | 
|  | * populated with the built in subsystems, and modular subsystems are | 
|  | * registered after that. The mutable section of this array is protected by | 
|  | * cgroup_mutex. | 
|  | */ | 
|  | #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys, | 
|  | #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option) | 
|  | static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = { | 
|  | #include <linux/cgroup_subsys.h> | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The dummy hierarchy, reserved for the subsystems that are otherwise | 
|  | * unattached - it never has more than a single cgroup, and all tasks are | 
|  | * part of that cgroup. | 
|  | */ | 
|  | static struct cgroupfs_root cgroup_dummy_root; | 
|  |  | 
|  | /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */ | 
|  | static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup; | 
|  |  | 
|  | /* | 
|  | * cgroupfs file entry, pointed to from leaf dentry->d_fsdata. | 
|  | */ | 
|  | struct cfent { | 
|  | struct list_head		node; | 
|  | struct dentry			*dentry; | 
|  | struct cftype			*type; | 
|  |  | 
|  | /* file xattrs */ | 
|  | struct simple_xattrs		xattrs; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when | 
|  | * cgroup_subsys->use_id != 0. | 
|  | */ | 
|  | #define CSS_ID_MAX	(65535) | 
|  | struct css_id { | 
|  | /* | 
|  | * The css to which this ID points. This pointer is set to valid value | 
|  | * after cgroup is populated. If cgroup is removed, this will be NULL. | 
|  | * This pointer is expected to be RCU-safe because destroy() | 
|  | * is called after synchronize_rcu(). But for safe use, css_tryget() | 
|  | * should be used for avoiding race. | 
|  | */ | 
|  | struct cgroup_subsys_state __rcu *css; | 
|  | /* | 
|  | * ID of this css. | 
|  | */ | 
|  | unsigned short id; | 
|  | /* | 
|  | * Depth in hierarchy which this ID belongs to. | 
|  | */ | 
|  | unsigned short depth; | 
|  | /* | 
|  | * ID is freed by RCU. (and lookup routine is RCU safe.) | 
|  | */ | 
|  | struct rcu_head rcu_head; | 
|  | /* | 
|  | * Hierarchy of CSS ID belongs to. | 
|  | */ | 
|  | unsigned short stack[0]; /* Array of Length (depth+1) */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * cgroup_event represents events which userspace want to receive. | 
|  | */ | 
|  | struct cgroup_event { | 
|  | /* | 
|  | * Cgroup which the event belongs to. | 
|  | */ | 
|  | struct cgroup *cgrp; | 
|  | /* | 
|  | * Control file which the event associated. | 
|  | */ | 
|  | struct cftype *cft; | 
|  | /* | 
|  | * eventfd to signal userspace about the event. | 
|  | */ | 
|  | struct eventfd_ctx *eventfd; | 
|  | /* | 
|  | * Each of these stored in a list by the cgroup. | 
|  | */ | 
|  | struct list_head list; | 
|  | /* | 
|  | * All fields below needed to unregister event when | 
|  | * userspace closes eventfd. | 
|  | */ | 
|  | poll_table pt; | 
|  | wait_queue_head_t *wqh; | 
|  | wait_queue_t wait; | 
|  | struct work_struct remove; | 
|  | }; | 
|  |  | 
|  | /* The list of hierarchy roots */ | 
|  |  | 
|  | static LIST_HEAD(cgroup_roots); | 
|  | static int cgroup_root_count; | 
|  |  | 
|  | /* | 
|  | * Hierarchy ID allocation and mapping.  It follows the same exclusion | 
|  | * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for | 
|  | * writes, either for reads. | 
|  | */ | 
|  | static DEFINE_IDR(cgroup_hierarchy_idr); | 
|  |  | 
|  | static struct cgroup_name root_cgroup_name = { .name = "/" }; | 
|  |  | 
|  | /* | 
|  | * Assign a monotonically increasing serial number to cgroups.  It | 
|  | * guarantees cgroups with bigger numbers are newer than those with smaller | 
|  | * numbers.  Also, as cgroups are always appended to the parent's | 
|  | * ->children list, it guarantees that sibling cgroups are always sorted in | 
|  | * the ascending serial number order on the list.  Protected by | 
|  | * cgroup_mutex. | 
|  | */ | 
|  | static u64 cgroup_serial_nr_next = 1; | 
|  |  | 
|  | /* This flag indicates whether tasks in the fork and exit paths should | 
|  | * check for fork/exit handlers to call. This avoids us having to do | 
|  | * extra work in the fork/exit path if none of the subsystems need to | 
|  | * be called. | 
|  | */ | 
|  | static int need_forkexit_callback __read_mostly; | 
|  |  | 
|  | static void cgroup_offline_fn(struct work_struct *work); | 
|  | static int cgroup_destroy_locked(struct cgroup *cgrp); | 
|  | static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys, | 
|  | struct cftype cfts[], bool is_add); | 
|  |  | 
|  | /* convenient tests for these bits */ | 
|  | static inline bool cgroup_is_dead(const struct cgroup *cgrp) | 
|  | { | 
|  | return test_bit(CGRP_DEAD, &cgrp->flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_is_descendant - test ancestry | 
|  | * @cgrp: the cgroup to be tested | 
|  | * @ancestor: possible ancestor of @cgrp | 
|  | * | 
|  | * Test whether @cgrp is a descendant of @ancestor.  It also returns %true | 
|  | * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp | 
|  | * and @ancestor are accessible. | 
|  | */ | 
|  | bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor) | 
|  | { | 
|  | while (cgrp) { | 
|  | if (cgrp == ancestor) | 
|  | return true; | 
|  | cgrp = cgrp->parent; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_is_descendant); | 
|  |  | 
|  | static int cgroup_is_releasable(const struct cgroup *cgrp) | 
|  | { | 
|  | const int bits = | 
|  | (1 << CGRP_RELEASABLE) | | 
|  | (1 << CGRP_NOTIFY_ON_RELEASE); | 
|  | return (cgrp->flags & bits) == bits; | 
|  | } | 
|  |  | 
|  | static int notify_on_release(const struct cgroup *cgrp) | 
|  | { | 
|  | return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * for_each_subsys - iterate all loaded cgroup subsystems | 
|  | * @ss: the iteration cursor | 
|  | * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end | 
|  | * | 
|  | * Should be called under cgroup_mutex. | 
|  | */ | 
|  | #define for_each_subsys(ss, i)						\ | 
|  | for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++)			\ | 
|  | if (({ lockdep_assert_held(&cgroup_mutex);		\ | 
|  | !((ss) = cgroup_subsys[i]); })) { }		\ | 
|  | else | 
|  |  | 
|  | /** | 
|  | * for_each_builtin_subsys - iterate all built-in cgroup subsystems | 
|  | * @ss: the iteration cursor | 
|  | * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end | 
|  | * | 
|  | * Bulit-in subsystems are always present and iteration itself doesn't | 
|  | * require any synchronization. | 
|  | */ | 
|  | #define for_each_builtin_subsys(ss, i)					\ | 
|  | for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT &&		\ | 
|  | (((ss) = cgroup_subsys[i]) || true); (i)++) | 
|  |  | 
|  | /* iterate each subsystem attached to a hierarchy */ | 
|  | #define for_each_root_subsys(root, ss)					\ | 
|  | list_for_each_entry((ss), &(root)->subsys_list, sibling) | 
|  |  | 
|  | /* iterate across the active hierarchies */ | 
|  | #define for_each_active_root(root)					\ | 
|  | list_for_each_entry((root), &cgroup_roots, root_list) | 
|  |  | 
|  | static inline struct cgroup *__d_cgrp(struct dentry *dentry) | 
|  | { | 
|  | return dentry->d_fsdata; | 
|  | } | 
|  |  | 
|  | static inline struct cfent *__d_cfe(struct dentry *dentry) | 
|  | { | 
|  | return dentry->d_fsdata; | 
|  | } | 
|  |  | 
|  | static inline struct cftype *__d_cft(struct dentry *dentry) | 
|  | { | 
|  | return __d_cfe(dentry)->type; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. | 
|  | * @cgrp: the cgroup to be checked for liveness | 
|  | * | 
|  | * On success, returns true; the mutex should be later unlocked.  On | 
|  | * failure returns false with no lock held. | 
|  | */ | 
|  | static bool cgroup_lock_live_group(struct cgroup *cgrp) | 
|  | { | 
|  | mutex_lock(&cgroup_mutex); | 
|  | if (cgroup_is_dead(cgrp)) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* the list of cgroups eligible for automatic release. Protected by | 
|  | * release_list_lock */ | 
|  | static LIST_HEAD(release_list); | 
|  | static DEFINE_RAW_SPINLOCK(release_list_lock); | 
|  | static void cgroup_release_agent(struct work_struct *work); | 
|  | static DECLARE_WORK(release_agent_work, cgroup_release_agent); | 
|  | static void check_for_release(struct cgroup *cgrp); | 
|  |  | 
|  | /* | 
|  | * A cgroup can be associated with multiple css_sets as different tasks may | 
|  | * belong to different cgroups on different hierarchies.  In the other | 
|  | * direction, a css_set is naturally associated with multiple cgroups. | 
|  | * This M:N relationship is represented by the following link structure | 
|  | * which exists for each association and allows traversing the associations | 
|  | * from both sides. | 
|  | */ | 
|  | struct cgrp_cset_link { | 
|  | /* the cgroup and css_set this link associates */ | 
|  | struct cgroup		*cgrp; | 
|  | struct css_set		*cset; | 
|  |  | 
|  | /* list of cgrp_cset_links anchored at cgrp->cset_links */ | 
|  | struct list_head	cset_link; | 
|  |  | 
|  | /* list of cgrp_cset_links anchored at css_set->cgrp_links */ | 
|  | struct list_head	cgrp_link; | 
|  | }; | 
|  |  | 
|  | /* The default css_set - used by init and its children prior to any | 
|  | * hierarchies being mounted. It contains a pointer to the root state | 
|  | * for each subsystem. Also used to anchor the list of css_sets. Not | 
|  | * reference-counted, to improve performance when child cgroups | 
|  | * haven't been created. | 
|  | */ | 
|  |  | 
|  | static struct css_set init_css_set; | 
|  | static struct cgrp_cset_link init_cgrp_cset_link; | 
|  |  | 
|  | static int cgroup_init_idr(struct cgroup_subsys *ss, | 
|  | struct cgroup_subsys_state *css); | 
|  |  | 
|  | /* css_set_lock protects the list of css_set objects, and the | 
|  | * chain of tasks off each css_set.  Nests outside task->alloc_lock | 
|  | * due to cgroup_iter_start() */ | 
|  | static DEFINE_RWLOCK(css_set_lock); | 
|  | static int css_set_count; | 
|  |  | 
|  | /* | 
|  | * hash table for cgroup groups. This improves the performance to find | 
|  | * an existing css_set. This hash doesn't (currently) take into | 
|  | * account cgroups in empty hierarchies. | 
|  | */ | 
|  | #define CSS_SET_HASH_BITS	7 | 
|  | static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); | 
|  |  | 
|  | static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) | 
|  | { | 
|  | unsigned long key = 0UL; | 
|  | struct cgroup_subsys *ss; | 
|  | int i; | 
|  |  | 
|  | for_each_subsys(ss, i) | 
|  | key += (unsigned long)css[i]; | 
|  | key = (key >> 16) ^ key; | 
|  |  | 
|  | return key; | 
|  | } | 
|  |  | 
|  | /* We don't maintain the lists running through each css_set to its | 
|  | * task until after the first call to cgroup_iter_start(). This | 
|  | * reduces the fork()/exit() overhead for people who have cgroups | 
|  | * compiled into their kernel but not actually in use */ | 
|  | static int use_task_css_set_links __read_mostly; | 
|  |  | 
|  | static void __put_css_set(struct css_set *cset, int taskexit) | 
|  | { | 
|  | struct cgrp_cset_link *link, *tmp_link; | 
|  |  | 
|  | /* | 
|  | * Ensure that the refcount doesn't hit zero while any readers | 
|  | * can see it. Similar to atomic_dec_and_lock(), but for an | 
|  | * rwlock | 
|  | */ | 
|  | if (atomic_add_unless(&cset->refcount, -1, 1)) | 
|  | return; | 
|  | write_lock(&css_set_lock); | 
|  | if (!atomic_dec_and_test(&cset->refcount)) { | 
|  | write_unlock(&css_set_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* This css_set is dead. unlink it and release cgroup refcounts */ | 
|  | hash_del(&cset->hlist); | 
|  | css_set_count--; | 
|  |  | 
|  | list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { | 
|  | struct cgroup *cgrp = link->cgrp; | 
|  |  | 
|  | list_del(&link->cset_link); | 
|  | list_del(&link->cgrp_link); | 
|  |  | 
|  | /* @cgrp can't go away while we're holding css_set_lock */ | 
|  | if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) { | 
|  | if (taskexit) | 
|  | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 
|  | check_for_release(cgrp); | 
|  | } | 
|  |  | 
|  | kfree(link); | 
|  | } | 
|  |  | 
|  | write_unlock(&css_set_lock); | 
|  | kfree_rcu(cset, rcu_head); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * refcounted get/put for css_set objects | 
|  | */ | 
|  | static inline void get_css_set(struct css_set *cset) | 
|  | { | 
|  | atomic_inc(&cset->refcount); | 
|  | } | 
|  |  | 
|  | static inline void put_css_set(struct css_set *cset) | 
|  | { | 
|  | __put_css_set(cset, 0); | 
|  | } | 
|  |  | 
|  | static inline void put_css_set_taskexit(struct css_set *cset) | 
|  | { | 
|  | __put_css_set(cset, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * compare_css_sets - helper function for find_existing_css_set(). | 
|  | * @cset: candidate css_set being tested | 
|  | * @old_cset: existing css_set for a task | 
|  | * @new_cgrp: cgroup that's being entered by the task | 
|  | * @template: desired set of css pointers in css_set (pre-calculated) | 
|  | * | 
|  | * Returns true if "cg" matches "old_cg" except for the hierarchy | 
|  | * which "new_cgrp" belongs to, for which it should match "new_cgrp". | 
|  | */ | 
|  | static bool compare_css_sets(struct css_set *cset, | 
|  | struct css_set *old_cset, | 
|  | struct cgroup *new_cgrp, | 
|  | struct cgroup_subsys_state *template[]) | 
|  | { | 
|  | struct list_head *l1, *l2; | 
|  |  | 
|  | if (memcmp(template, cset->subsys, sizeof(cset->subsys))) { | 
|  | /* Not all subsystems matched */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare cgroup pointers in order to distinguish between | 
|  | * different cgroups in heirarchies with no subsystems. We | 
|  | * could get by with just this check alone (and skip the | 
|  | * memcmp above) but on most setups the memcmp check will | 
|  | * avoid the need for this more expensive check on almost all | 
|  | * candidates. | 
|  | */ | 
|  |  | 
|  | l1 = &cset->cgrp_links; | 
|  | l2 = &old_cset->cgrp_links; | 
|  | while (1) { | 
|  | struct cgrp_cset_link *link1, *link2; | 
|  | struct cgroup *cgrp1, *cgrp2; | 
|  |  | 
|  | l1 = l1->next; | 
|  | l2 = l2->next; | 
|  | /* See if we reached the end - both lists are equal length. */ | 
|  | if (l1 == &cset->cgrp_links) { | 
|  | BUG_ON(l2 != &old_cset->cgrp_links); | 
|  | break; | 
|  | } else { | 
|  | BUG_ON(l2 == &old_cset->cgrp_links); | 
|  | } | 
|  | /* Locate the cgroups associated with these links. */ | 
|  | link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); | 
|  | link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); | 
|  | cgrp1 = link1->cgrp; | 
|  | cgrp2 = link2->cgrp; | 
|  | /* Hierarchies should be linked in the same order. */ | 
|  | BUG_ON(cgrp1->root != cgrp2->root); | 
|  |  | 
|  | /* | 
|  | * If this hierarchy is the hierarchy of the cgroup | 
|  | * that's changing, then we need to check that this | 
|  | * css_set points to the new cgroup; if it's any other | 
|  | * hierarchy, then this css_set should point to the | 
|  | * same cgroup as the old css_set. | 
|  | */ | 
|  | if (cgrp1->root == new_cgrp->root) { | 
|  | if (cgrp1 != new_cgrp) | 
|  | return false; | 
|  | } else { | 
|  | if (cgrp1 != cgrp2) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_existing_css_set - init css array and find the matching css_set | 
|  | * @old_cset: the css_set that we're using before the cgroup transition | 
|  | * @cgrp: the cgroup that we're moving into | 
|  | * @template: out param for the new set of csses, should be clear on entry | 
|  | */ | 
|  | static struct css_set *find_existing_css_set(struct css_set *old_cset, | 
|  | struct cgroup *cgrp, | 
|  | struct cgroup_subsys_state *template[]) | 
|  | { | 
|  | struct cgroupfs_root *root = cgrp->root; | 
|  | struct cgroup_subsys *ss; | 
|  | struct css_set *cset; | 
|  | unsigned long key; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Build the set of subsystem state objects that we want to see in the | 
|  | * new css_set. while subsystems can change globally, the entries here | 
|  | * won't change, so no need for locking. | 
|  | */ | 
|  | for_each_subsys(ss, i) { | 
|  | if (root->subsys_mask & (1UL << i)) { | 
|  | /* Subsystem is in this hierarchy. So we want | 
|  | * the subsystem state from the new | 
|  | * cgroup */ | 
|  | template[i] = cgrp->subsys[i]; | 
|  | } else { | 
|  | /* Subsystem is not in this hierarchy, so we | 
|  | * don't want to change the subsystem state */ | 
|  | template[i] = old_cset->subsys[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | key = css_set_hash(template); | 
|  | hash_for_each_possible(css_set_table, cset, hlist, key) { | 
|  | if (!compare_css_sets(cset, old_cset, cgrp, template)) | 
|  | continue; | 
|  |  | 
|  | /* This css_set matches what we need */ | 
|  | return cset; | 
|  | } | 
|  |  | 
|  | /* No existing cgroup group matched */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void free_cgrp_cset_links(struct list_head *links_to_free) | 
|  | { | 
|  | struct cgrp_cset_link *link, *tmp_link; | 
|  |  | 
|  | list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { | 
|  | list_del(&link->cset_link); | 
|  | kfree(link); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * allocate_cgrp_cset_links - allocate cgrp_cset_links | 
|  | * @count: the number of links to allocate | 
|  | * @tmp_links: list_head the allocated links are put on | 
|  | * | 
|  | * Allocate @count cgrp_cset_link structures and chain them on @tmp_links | 
|  | * through ->cset_link.  Returns 0 on success or -errno. | 
|  | */ | 
|  | static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) | 
|  | { | 
|  | struct cgrp_cset_link *link; | 
|  | int i; | 
|  |  | 
|  | INIT_LIST_HEAD(tmp_links); | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | link = kzalloc(sizeof(*link), GFP_KERNEL); | 
|  | if (!link) { | 
|  | free_cgrp_cset_links(tmp_links); | 
|  | return -ENOMEM; | 
|  | } | 
|  | list_add(&link->cset_link, tmp_links); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * link_css_set - a helper function to link a css_set to a cgroup | 
|  | * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() | 
|  | * @cset: the css_set to be linked | 
|  | * @cgrp: the destination cgroup | 
|  | */ | 
|  | static void link_css_set(struct list_head *tmp_links, struct css_set *cset, | 
|  | struct cgroup *cgrp) | 
|  | { | 
|  | struct cgrp_cset_link *link; | 
|  |  | 
|  | BUG_ON(list_empty(tmp_links)); | 
|  | link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); | 
|  | link->cset = cset; | 
|  | link->cgrp = cgrp; | 
|  | list_move(&link->cset_link, &cgrp->cset_links); | 
|  | /* | 
|  | * Always add links to the tail of the list so that the list | 
|  | * is sorted by order of hierarchy creation | 
|  | */ | 
|  | list_add_tail(&link->cgrp_link, &cset->cgrp_links); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_css_set - return a new css_set with one cgroup updated | 
|  | * @old_cset: the baseline css_set | 
|  | * @cgrp: the cgroup to be updated | 
|  | * | 
|  | * Return a new css_set that's equivalent to @old_cset, but with @cgrp | 
|  | * substituted into the appropriate hierarchy. | 
|  | */ | 
|  | static struct css_set *find_css_set(struct css_set *old_cset, | 
|  | struct cgroup *cgrp) | 
|  | { | 
|  | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; | 
|  | struct css_set *cset; | 
|  | struct list_head tmp_links; | 
|  | struct cgrp_cset_link *link; | 
|  | unsigned long key; | 
|  |  | 
|  | lockdep_assert_held(&cgroup_mutex); | 
|  |  | 
|  | /* First see if we already have a cgroup group that matches | 
|  | * the desired set */ | 
|  | read_lock(&css_set_lock); | 
|  | cset = find_existing_css_set(old_cset, cgrp, template); | 
|  | if (cset) | 
|  | get_css_set(cset); | 
|  | read_unlock(&css_set_lock); | 
|  |  | 
|  | if (cset) | 
|  | return cset; | 
|  |  | 
|  | cset = kzalloc(sizeof(*cset), GFP_KERNEL); | 
|  | if (!cset) | 
|  | return NULL; | 
|  |  | 
|  | /* Allocate all the cgrp_cset_link objects that we'll need */ | 
|  | if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { | 
|  | kfree(cset); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | atomic_set(&cset->refcount, 1); | 
|  | INIT_LIST_HEAD(&cset->cgrp_links); | 
|  | INIT_LIST_HEAD(&cset->tasks); | 
|  | INIT_HLIST_NODE(&cset->hlist); | 
|  |  | 
|  | /* Copy the set of subsystem state objects generated in | 
|  | * find_existing_css_set() */ | 
|  | memcpy(cset->subsys, template, sizeof(cset->subsys)); | 
|  |  | 
|  | write_lock(&css_set_lock); | 
|  | /* Add reference counts and links from the new css_set. */ | 
|  | list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { | 
|  | struct cgroup *c = link->cgrp; | 
|  |  | 
|  | if (c->root == cgrp->root) | 
|  | c = cgrp; | 
|  | link_css_set(&tmp_links, cset, c); | 
|  | } | 
|  |  | 
|  | BUG_ON(!list_empty(&tmp_links)); | 
|  |  | 
|  | css_set_count++; | 
|  |  | 
|  | /* Add this cgroup group to the hash table */ | 
|  | key = css_set_hash(cset->subsys); | 
|  | hash_add(css_set_table, &cset->hlist, key); | 
|  |  | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | return cset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the cgroup for "task" from the given hierarchy. Must be | 
|  | * called with cgroup_mutex held. | 
|  | */ | 
|  | static struct cgroup *task_cgroup_from_root(struct task_struct *task, | 
|  | struct cgroupfs_root *root) | 
|  | { | 
|  | struct css_set *cset; | 
|  | struct cgroup *res = NULL; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | 
|  | read_lock(&css_set_lock); | 
|  | /* | 
|  | * No need to lock the task - since we hold cgroup_mutex the | 
|  | * task can't change groups, so the only thing that can happen | 
|  | * is that it exits and its css is set back to init_css_set. | 
|  | */ | 
|  | cset = task_css_set(task); | 
|  | if (cset == &init_css_set) { | 
|  | res = &root->top_cgroup; | 
|  | } else { | 
|  | struct cgrp_cset_link *link; | 
|  |  | 
|  | list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { | 
|  | struct cgroup *c = link->cgrp; | 
|  |  | 
|  | if (c->root == root) { | 
|  | res = c; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | read_unlock(&css_set_lock); | 
|  | BUG_ON(!res); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is one global cgroup mutex. We also require taking | 
|  | * task_lock() when dereferencing a task's cgroup subsys pointers. | 
|  | * See "The task_lock() exception", at the end of this comment. | 
|  | * | 
|  | * A task must hold cgroup_mutex to modify cgroups. | 
|  | * | 
|  | * Any task can increment and decrement the count field without lock. | 
|  | * So in general, code holding cgroup_mutex can't rely on the count | 
|  | * field not changing.  However, if the count goes to zero, then only | 
|  | * cgroup_attach_task() can increment it again.  Because a count of zero | 
|  | * means that no tasks are currently attached, therefore there is no | 
|  | * way a task attached to that cgroup can fork (the other way to | 
|  | * increment the count).  So code holding cgroup_mutex can safely | 
|  | * assume that if the count is zero, it will stay zero. Similarly, if | 
|  | * a task holds cgroup_mutex on a cgroup with zero count, it | 
|  | * knows that the cgroup won't be removed, as cgroup_rmdir() | 
|  | * needs that mutex. | 
|  | * | 
|  | * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't | 
|  | * (usually) take cgroup_mutex.  These are the two most performance | 
|  | * critical pieces of code here.  The exception occurs on cgroup_exit(), | 
|  | * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex | 
|  | * is taken, and if the cgroup count is zero, a usermode call made | 
|  | * to the release agent with the name of the cgroup (path relative to | 
|  | * the root of cgroup file system) as the argument. | 
|  | * | 
|  | * A cgroup can only be deleted if both its 'count' of using tasks | 
|  | * is zero, and its list of 'children' cgroups is empty.  Since all | 
|  | * tasks in the system use _some_ cgroup, and since there is always at | 
|  | * least one task in the system (init, pid == 1), therefore, top_cgroup | 
|  | * always has either children cgroups and/or using tasks.  So we don't | 
|  | * need a special hack to ensure that top_cgroup cannot be deleted. | 
|  | * | 
|  | *	The task_lock() exception | 
|  | * | 
|  | * The need for this exception arises from the action of | 
|  | * cgroup_attach_task(), which overwrites one task's cgroup pointer with | 
|  | * another.  It does so using cgroup_mutex, however there are | 
|  | * several performance critical places that need to reference | 
|  | * task->cgroup without the expense of grabbing a system global | 
|  | * mutex.  Therefore except as noted below, when dereferencing or, as | 
|  | * in cgroup_attach_task(), modifying a task's cgroup pointer we use | 
|  | * task_lock(), which acts on a spinlock (task->alloc_lock) already in | 
|  | * the task_struct routinely used for such matters. | 
|  | * | 
|  | * P.S.  One more locking exception.  RCU is used to guard the | 
|  | * update of a tasks cgroup pointer by cgroup_attach_task() | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * A couple of forward declarations required, due to cyclic reference loop: | 
|  | * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> | 
|  | * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations | 
|  | * -> cgroup_mkdir. | 
|  | */ | 
|  |  | 
|  | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode); | 
|  | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 
|  | static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files, | 
|  | unsigned long subsys_mask); | 
|  | static const struct inode_operations cgroup_dir_inode_operations; | 
|  | static const struct file_operations proc_cgroupstats_operations; | 
|  |  | 
|  | static struct backing_dev_info cgroup_backing_dev_info = { | 
|  | .name		= "cgroup", | 
|  | .capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK, | 
|  | }; | 
|  |  | 
|  | static int alloc_css_id(struct cgroup_subsys *ss, | 
|  | struct cgroup *parent, struct cgroup *child); | 
|  |  | 
|  | static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb) | 
|  | { | 
|  | struct inode *inode = new_inode(sb); | 
|  |  | 
|  | if (inode) { | 
|  | inode->i_ino = get_next_ino(); | 
|  | inode->i_mode = mode; | 
|  | inode->i_uid = current_fsuid(); | 
|  | inode->i_gid = current_fsgid(); | 
|  | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 
|  | inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; | 
|  | } | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry) | 
|  | { | 
|  | struct cgroup_name *name; | 
|  |  | 
|  | name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL); | 
|  | if (!name) | 
|  | return NULL; | 
|  | strcpy(name->name, dentry->d_name.name); | 
|  | return name; | 
|  | } | 
|  |  | 
|  | static void cgroup_free_fn(struct work_struct *work) | 
|  | { | 
|  | struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work); | 
|  | struct cgroup_subsys *ss; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | /* | 
|  | * Release the subsystem state objects. | 
|  | */ | 
|  | for_each_root_subsys(cgrp->root, ss) | 
|  | ss->css_free(cgrp); | 
|  |  | 
|  | cgrp->root->number_of_cgroups--; | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | /* | 
|  | * We get a ref to the parent's dentry, and put the ref when | 
|  | * this cgroup is being freed, so it's guaranteed that the | 
|  | * parent won't be destroyed before its children. | 
|  | */ | 
|  | dput(cgrp->parent->dentry); | 
|  |  | 
|  | ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id); | 
|  |  | 
|  | /* | 
|  | * Drop the active superblock reference that we took when we | 
|  | * created the cgroup. This will free cgrp->root, if we are | 
|  | * holding the last reference to @sb. | 
|  | */ | 
|  | deactivate_super(cgrp->root->sb); | 
|  |  | 
|  | /* | 
|  | * if we're getting rid of the cgroup, refcount should ensure | 
|  | * that there are no pidlists left. | 
|  | */ | 
|  | BUG_ON(!list_empty(&cgrp->pidlists)); | 
|  |  | 
|  | simple_xattrs_free(&cgrp->xattrs); | 
|  |  | 
|  | kfree(rcu_dereference_raw(cgrp->name)); | 
|  | kfree(cgrp); | 
|  | } | 
|  |  | 
|  | static void cgroup_free_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head); | 
|  |  | 
|  | INIT_WORK(&cgrp->destroy_work, cgroup_free_fn); | 
|  | schedule_work(&cgrp->destroy_work); | 
|  | } | 
|  |  | 
|  | static void cgroup_diput(struct dentry *dentry, struct inode *inode) | 
|  | { | 
|  | /* is dentry a directory ? if so, kfree() associated cgroup */ | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | struct cgroup *cgrp = dentry->d_fsdata; | 
|  |  | 
|  | BUG_ON(!(cgroup_is_dead(cgrp))); | 
|  | call_rcu(&cgrp->rcu_head, cgroup_free_rcu); | 
|  | } else { | 
|  | struct cfent *cfe = __d_cfe(dentry); | 
|  | struct cgroup *cgrp = dentry->d_parent->d_fsdata; | 
|  |  | 
|  | WARN_ONCE(!list_empty(&cfe->node) && | 
|  | cgrp != &cgrp->root->top_cgroup, | 
|  | "cfe still linked for %s\n", cfe->type->name); | 
|  | simple_xattrs_free(&cfe->xattrs); | 
|  | kfree(cfe); | 
|  | } | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | static int cgroup_delete(const struct dentry *d) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void remove_dir(struct dentry *d) | 
|  | { | 
|  | struct dentry *parent = dget(d->d_parent); | 
|  |  | 
|  | d_delete(d); | 
|  | simple_rmdir(parent->d_inode, d); | 
|  | dput(parent); | 
|  | } | 
|  |  | 
|  | static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) | 
|  | { | 
|  | struct cfent *cfe; | 
|  |  | 
|  | lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex); | 
|  | lockdep_assert_held(&cgroup_mutex); | 
|  |  | 
|  | /* | 
|  | * If we're doing cleanup due to failure of cgroup_create(), | 
|  | * the corresponding @cfe may not exist. | 
|  | */ | 
|  | list_for_each_entry(cfe, &cgrp->files, node) { | 
|  | struct dentry *d = cfe->dentry; | 
|  |  | 
|  | if (cft && cfe->type != cft) | 
|  | continue; | 
|  |  | 
|  | dget(d); | 
|  | d_delete(d); | 
|  | simple_unlink(cgrp->dentry->d_inode, d); | 
|  | list_del_init(&cfe->node); | 
|  | dput(d); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_clear_directory - selective removal of base and subsystem files | 
|  | * @dir: directory containing the files | 
|  | * @base_files: true if the base files should be removed | 
|  | * @subsys_mask: mask of the subsystem ids whose files should be removed | 
|  | */ | 
|  | static void cgroup_clear_directory(struct dentry *dir, bool base_files, | 
|  | unsigned long subsys_mask) | 
|  | { | 
|  | struct cgroup *cgrp = __d_cgrp(dir); | 
|  | struct cgroup_subsys *ss; | 
|  |  | 
|  | for_each_root_subsys(cgrp->root, ss) { | 
|  | struct cftype_set *set; | 
|  | if (!test_bit(ss->subsys_id, &subsys_mask)) | 
|  | continue; | 
|  | list_for_each_entry(set, &ss->cftsets, node) | 
|  | cgroup_addrm_files(cgrp, NULL, set->cfts, false); | 
|  | } | 
|  | if (base_files) { | 
|  | while (!list_empty(&cgrp->files)) | 
|  | cgroup_rm_file(cgrp, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE : the dentry must have been dget()'ed | 
|  | */ | 
|  | static void cgroup_d_remove_dir(struct dentry *dentry) | 
|  | { | 
|  | struct dentry *parent; | 
|  | struct cgroupfs_root *root = dentry->d_sb->s_fs_info; | 
|  |  | 
|  | cgroup_clear_directory(dentry, true, root->subsys_mask); | 
|  |  | 
|  | parent = dentry->d_parent; | 
|  | spin_lock(&parent->d_lock); | 
|  | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | 
|  | list_del_init(&dentry->d_u.d_child); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&parent->d_lock); | 
|  | remove_dir(dentry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call with cgroup_mutex held. Drops reference counts on modules, including | 
|  | * any duplicate ones that parse_cgroupfs_options took. If this function | 
|  | * returns an error, no reference counts are touched. | 
|  | */ | 
|  | static int rebind_subsystems(struct cgroupfs_root *root, | 
|  | unsigned long added_mask, unsigned removed_mask) | 
|  | { | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | struct cgroup_subsys *ss; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | 
|  | BUG_ON(!mutex_is_locked(&cgroup_root_mutex)); | 
|  |  | 
|  | /* Check that any added subsystems are currently free */ | 
|  | for_each_subsys(ss, i) { | 
|  | unsigned long bit = 1UL << i; | 
|  |  | 
|  | if (!(bit & added_mask)) | 
|  | continue; | 
|  |  | 
|  | if (ss->root != &cgroup_dummy_root) { | 
|  | /* Subsystem isn't free */ | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Currently we don't handle adding/removing subsystems when | 
|  | * any child cgroups exist. This is theoretically supportable | 
|  | * but involves complex error handling, so it's being left until | 
|  | * later */ | 
|  | if (root->number_of_cgroups > 1) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Process each subsystem */ | 
|  | for_each_subsys(ss, i) { | 
|  | unsigned long bit = 1UL << i; | 
|  |  | 
|  | if (bit & added_mask) { | 
|  | /* We're binding this subsystem to this hierarchy */ | 
|  | BUG_ON(cgrp->subsys[i]); | 
|  | BUG_ON(!cgroup_dummy_top->subsys[i]); | 
|  | BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top); | 
|  |  | 
|  | cgrp->subsys[i] = cgroup_dummy_top->subsys[i]; | 
|  | cgrp->subsys[i]->cgroup = cgrp; | 
|  | list_move(&ss->sibling, &root->subsys_list); | 
|  | ss->root = root; | 
|  | if (ss->bind) | 
|  | ss->bind(cgrp); | 
|  |  | 
|  | /* refcount was already taken, and we're keeping it */ | 
|  | root->subsys_mask |= bit; | 
|  | } else if (bit & removed_mask) { | 
|  | /* We're removing this subsystem */ | 
|  | BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]); | 
|  | BUG_ON(cgrp->subsys[i]->cgroup != cgrp); | 
|  |  | 
|  | if (ss->bind) | 
|  | ss->bind(cgroup_dummy_top); | 
|  | cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top; | 
|  | cgrp->subsys[i] = NULL; | 
|  | cgroup_subsys[i]->root = &cgroup_dummy_root; | 
|  | list_move(&ss->sibling, &cgroup_dummy_root.subsys_list); | 
|  |  | 
|  | /* subsystem is now free - drop reference on module */ | 
|  | module_put(ss->module); | 
|  | root->subsys_mask &= ~bit; | 
|  | } else if (bit & root->subsys_mask) { | 
|  | /* Subsystem state should already exist */ | 
|  | BUG_ON(!cgrp->subsys[i]); | 
|  | /* | 
|  | * a refcount was taken, but we already had one, so | 
|  | * drop the extra reference. | 
|  | */ | 
|  | module_put(ss->module); | 
|  | #ifdef CONFIG_MODULE_UNLOAD | 
|  | BUG_ON(ss->module && !module_refcount(ss->module)); | 
|  | #endif | 
|  | } else { | 
|  | /* Subsystem state shouldn't exist */ | 
|  | BUG_ON(cgrp->subsys[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark @root has finished binding subsystems.  @root->subsys_mask | 
|  | * now matches the bound subsystems. | 
|  | */ | 
|  | root->flags |= CGRP_ROOT_SUBSYS_BOUND; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry) | 
|  | { | 
|  | struct cgroupfs_root *root = dentry->d_sb->s_fs_info; | 
|  | struct cgroup_subsys *ss; | 
|  |  | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  | for_each_root_subsys(root, ss) | 
|  | seq_printf(seq, ",%s", ss->name); | 
|  | if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) | 
|  | seq_puts(seq, ",sane_behavior"); | 
|  | if (root->flags & CGRP_ROOT_NOPREFIX) | 
|  | seq_puts(seq, ",noprefix"); | 
|  | if (root->flags & CGRP_ROOT_XATTR) | 
|  | seq_puts(seq, ",xattr"); | 
|  | if (strlen(root->release_agent_path)) | 
|  | seq_printf(seq, ",release_agent=%s", root->release_agent_path); | 
|  | if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags)) | 
|  | seq_puts(seq, ",clone_children"); | 
|  | if (strlen(root->name)) | 
|  | seq_printf(seq, ",name=%s", root->name); | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct cgroup_sb_opts { | 
|  | unsigned long subsys_mask; | 
|  | unsigned long flags; | 
|  | char *release_agent; | 
|  | bool cpuset_clone_children; | 
|  | char *name; | 
|  | /* User explicitly requested empty subsystem */ | 
|  | bool none; | 
|  |  | 
|  | struct cgroupfs_root *new_root; | 
|  |  | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Convert a hierarchy specifier into a bitmask of subsystems and | 
|  | * flags. Call with cgroup_mutex held to protect the cgroup_subsys[] | 
|  | * array. This function takes refcounts on subsystems to be used, unless it | 
|  | * returns error, in which case no refcounts are taken. | 
|  | */ | 
|  | static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) | 
|  | { | 
|  | char *token, *o = data; | 
|  | bool all_ss = false, one_ss = false; | 
|  | unsigned long mask = (unsigned long)-1; | 
|  | bool module_pin_failed = false; | 
|  | struct cgroup_subsys *ss; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | 
|  |  | 
|  | #ifdef CONFIG_CPUSETS | 
|  | mask = ~(1UL << cpuset_subsys_id); | 
|  | #endif | 
|  |  | 
|  | memset(opts, 0, sizeof(*opts)); | 
|  |  | 
|  | while ((token = strsep(&o, ",")) != NULL) { | 
|  | if (!*token) | 
|  | return -EINVAL; | 
|  | if (!strcmp(token, "none")) { | 
|  | /* Explicitly have no subsystems */ | 
|  | opts->none = true; | 
|  | continue; | 
|  | } | 
|  | if (!strcmp(token, "all")) { | 
|  | /* Mutually exclusive option 'all' + subsystem name */ | 
|  | if (one_ss) | 
|  | return -EINVAL; | 
|  | all_ss = true; | 
|  | continue; | 
|  | } | 
|  | if (!strcmp(token, "__DEVEL__sane_behavior")) { | 
|  | opts->flags |= CGRP_ROOT_SANE_BEHAVIOR; | 
|  | continue; | 
|  | } | 
|  | if (!strcmp(token, "noprefix")) { | 
|  | opts->flags |= CGRP_ROOT_NOPREFIX; | 
|  | continue; | 
|  | } | 
|  | if (!strcmp(token, "clone_children")) { | 
|  | opts->cpuset_clone_children = true; | 
|  | continue; | 
|  | } | 
|  | if (!strcmp(token, "xattr")) { | 
|  | opts->flags |= CGRP_ROOT_XATTR; | 
|  | continue; | 
|  | } | 
|  | if (!strncmp(token, "release_agent=", 14)) { | 
|  | /* Specifying two release agents is forbidden */ | 
|  | if (opts->release_agent) | 
|  | return -EINVAL; | 
|  | opts->release_agent = | 
|  | kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); | 
|  | if (!opts->release_agent) | 
|  | return -ENOMEM; | 
|  | continue; | 
|  | } | 
|  | if (!strncmp(token, "name=", 5)) { | 
|  | const char *name = token + 5; | 
|  | /* Can't specify an empty name */ | 
|  | if (!strlen(name)) | 
|  | return -EINVAL; | 
|  | /* Must match [\w.-]+ */ | 
|  | for (i = 0; i < strlen(name); i++) { | 
|  | char c = name[i]; | 
|  | if (isalnum(c)) | 
|  | continue; | 
|  | if ((c == '.') || (c == '-') || (c == '_')) | 
|  | continue; | 
|  | return -EINVAL; | 
|  | } | 
|  | /* Specifying two names is forbidden */ | 
|  | if (opts->name) | 
|  | return -EINVAL; | 
|  | opts->name = kstrndup(name, | 
|  | MAX_CGROUP_ROOT_NAMELEN - 1, | 
|  | GFP_KERNEL); | 
|  | if (!opts->name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for_each_subsys(ss, i) { | 
|  | if (strcmp(token, ss->name)) | 
|  | continue; | 
|  | if (ss->disabled) | 
|  | continue; | 
|  |  | 
|  | /* Mutually exclusive option 'all' + subsystem name */ | 
|  | if (all_ss) | 
|  | return -EINVAL; | 
|  | set_bit(i, &opts->subsys_mask); | 
|  | one_ss = true; | 
|  |  | 
|  | break; | 
|  | } | 
|  | if (i == CGROUP_SUBSYS_COUNT) | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the 'all' option was specified select all the subsystems, | 
|  | * otherwise if 'none', 'name=' and a subsystem name options | 
|  | * were not specified, let's default to 'all' | 
|  | */ | 
|  | if (all_ss || (!one_ss && !opts->none && !opts->name)) | 
|  | for_each_subsys(ss, i) | 
|  | if (!ss->disabled) | 
|  | set_bit(i, &opts->subsys_mask); | 
|  |  | 
|  | /* Consistency checks */ | 
|  |  | 
|  | if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) { | 
|  | pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n"); | 
|  |  | 
|  | if (opts->flags & CGRP_ROOT_NOPREFIX) { | 
|  | pr_err("cgroup: sane_behavior: noprefix is not allowed\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (opts->cpuset_clone_children) { | 
|  | pr_err("cgroup: sane_behavior: clone_children is not allowed\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Option noprefix was introduced just for backward compatibility | 
|  | * with the old cpuset, so we allow noprefix only if mounting just | 
|  | * the cpuset subsystem. | 
|  | */ | 
|  | if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) | 
|  | return -EINVAL; | 
|  |  | 
|  |  | 
|  | /* Can't specify "none" and some subsystems */ | 
|  | if (opts->subsys_mask && opts->none) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * We either have to specify by name or by subsystems. (So all | 
|  | * empty hierarchies must have a name). | 
|  | */ | 
|  | if (!opts->subsys_mask && !opts->name) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Grab references on all the modules we'll need, so the subsystems | 
|  | * don't dance around before rebind_subsystems attaches them. This may | 
|  | * take duplicate reference counts on a subsystem that's already used, | 
|  | * but rebind_subsystems handles this case. | 
|  | */ | 
|  | for_each_subsys(ss, i) { | 
|  | if (!(opts->subsys_mask & (1UL << i))) | 
|  | continue; | 
|  | if (!try_module_get(cgroup_subsys[i]->module)) { | 
|  | module_pin_failed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (module_pin_failed) { | 
|  | /* | 
|  | * oops, one of the modules was going away. this means that we | 
|  | * raced with a module_delete call, and to the user this is | 
|  | * essentially a "subsystem doesn't exist" case. | 
|  | */ | 
|  | for (i--; i >= 0; i--) { | 
|  | /* drop refcounts only on the ones we took */ | 
|  | unsigned long bit = 1UL << i; | 
|  |  | 
|  | if (!(bit & opts->subsys_mask)) | 
|  | continue; | 
|  | module_put(cgroup_subsys[i]->module); | 
|  | } | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void drop_parsed_module_refcounts(unsigned long subsys_mask) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | for_each_subsys(ss, i) | 
|  | if (subsys_mask & (1UL << i)) | 
|  | module_put(cgroup_subsys[i]->module); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  |  | 
|  | static int cgroup_remount(struct super_block *sb, int *flags, char *data) | 
|  | { | 
|  | int ret = 0; | 
|  | struct cgroupfs_root *root = sb->s_fs_info; | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | struct cgroup_sb_opts opts; | 
|  | unsigned long added_mask, removed_mask; | 
|  |  | 
|  | if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) { | 
|  | pr_err("cgroup: sane_behavior: remount is not allowed\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mutex_lock(&cgrp->dentry->d_inode->i_mutex); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  |  | 
|  | /* See what subsystems are wanted */ | 
|  | ret = parse_cgroupfs_options(data, &opts); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (opts.subsys_mask != root->subsys_mask || opts.release_agent) | 
|  | pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n", | 
|  | task_tgid_nr(current), current->comm); | 
|  |  | 
|  | added_mask = opts.subsys_mask & ~root->subsys_mask; | 
|  | removed_mask = root->subsys_mask & ~opts.subsys_mask; | 
|  |  | 
|  | /* Don't allow flags or name to change at remount */ | 
|  | if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) || | 
|  | (opts.name && strcmp(opts.name, root->name))) { | 
|  | pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n", | 
|  | opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "", | 
|  | root->flags & CGRP_ROOT_OPTION_MASK, root->name); | 
|  | ret = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear out the files of subsystems that should be removed, do | 
|  | * this before rebind_subsystems, since rebind_subsystems may | 
|  | * change this hierarchy's subsys_list. | 
|  | */ | 
|  | cgroup_clear_directory(cgrp->dentry, false, removed_mask); | 
|  |  | 
|  | ret = rebind_subsystems(root, added_mask, removed_mask); | 
|  | if (ret) { | 
|  | /* rebind_subsystems failed, re-populate the removed files */ | 
|  | cgroup_populate_dir(cgrp, false, removed_mask); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* re-populate subsystem files */ | 
|  | cgroup_populate_dir(cgrp, false, added_mask); | 
|  |  | 
|  | if (opts.release_agent) | 
|  | strcpy(root->release_agent_path, opts.release_agent); | 
|  | out_unlock: | 
|  | kfree(opts.release_agent); | 
|  | kfree(opts.name); | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 
|  | if (ret) | 
|  | drop_parsed_module_refcounts(opts.subsys_mask); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct super_operations cgroup_ops = { | 
|  | .statfs = simple_statfs, | 
|  | .drop_inode = generic_delete_inode, | 
|  | .show_options = cgroup_show_options, | 
|  | .remount_fs = cgroup_remount, | 
|  | }; | 
|  |  | 
|  | static void init_cgroup_housekeeping(struct cgroup *cgrp) | 
|  | { | 
|  | INIT_LIST_HEAD(&cgrp->sibling); | 
|  | INIT_LIST_HEAD(&cgrp->children); | 
|  | INIT_LIST_HEAD(&cgrp->files); | 
|  | INIT_LIST_HEAD(&cgrp->cset_links); | 
|  | INIT_LIST_HEAD(&cgrp->release_list); | 
|  | INIT_LIST_HEAD(&cgrp->pidlists); | 
|  | mutex_init(&cgrp->pidlist_mutex); | 
|  | INIT_LIST_HEAD(&cgrp->event_list); | 
|  | spin_lock_init(&cgrp->event_list_lock); | 
|  | simple_xattrs_init(&cgrp->xattrs); | 
|  | } | 
|  |  | 
|  | static void init_cgroup_root(struct cgroupfs_root *root) | 
|  | { | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  |  | 
|  | INIT_LIST_HEAD(&root->subsys_list); | 
|  | INIT_LIST_HEAD(&root->root_list); | 
|  | root->number_of_cgroups = 1; | 
|  | cgrp->root = root; | 
|  | RCU_INIT_POINTER(cgrp->name, &root_cgroup_name); | 
|  | init_cgroup_housekeeping(cgrp); | 
|  | } | 
|  |  | 
|  | static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end) | 
|  | { | 
|  | int id; | 
|  |  | 
|  | lockdep_assert_held(&cgroup_mutex); | 
|  | lockdep_assert_held(&cgroup_root_mutex); | 
|  |  | 
|  | id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end, | 
|  | GFP_KERNEL); | 
|  | if (id < 0) | 
|  | return id; | 
|  |  | 
|  | root->hierarchy_id = id; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cgroup_exit_root_id(struct cgroupfs_root *root) | 
|  | { | 
|  | lockdep_assert_held(&cgroup_mutex); | 
|  | lockdep_assert_held(&cgroup_root_mutex); | 
|  |  | 
|  | if (root->hierarchy_id) { | 
|  | idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); | 
|  | root->hierarchy_id = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cgroup_test_super(struct super_block *sb, void *data) | 
|  | { | 
|  | struct cgroup_sb_opts *opts = data; | 
|  | struct cgroupfs_root *root = sb->s_fs_info; | 
|  |  | 
|  | /* If we asked for a name then it must match */ | 
|  | if (opts->name && strcmp(opts->name, root->name)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we asked for subsystems (or explicitly for no | 
|  | * subsystems) then they must match | 
|  | */ | 
|  | if ((opts->subsys_mask || opts->none) | 
|  | && (opts->subsys_mask != root->subsys_mask)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) | 
|  | { | 
|  | struct cgroupfs_root *root; | 
|  |  | 
|  | if (!opts->subsys_mask && !opts->none) | 
|  | return NULL; | 
|  |  | 
|  | root = kzalloc(sizeof(*root), GFP_KERNEL); | 
|  | if (!root) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | init_cgroup_root(root); | 
|  |  | 
|  | /* | 
|  | * We need to set @root->subsys_mask now so that @root can be | 
|  | * matched by cgroup_test_super() before it finishes | 
|  | * initialization; otherwise, competing mounts with the same | 
|  | * options may try to bind the same subsystems instead of waiting | 
|  | * for the first one leading to unexpected mount errors. | 
|  | * SUBSYS_BOUND will be set once actual binding is complete. | 
|  | */ | 
|  | root->subsys_mask = opts->subsys_mask; | 
|  | root->flags = opts->flags; | 
|  | ida_init(&root->cgroup_ida); | 
|  | if (opts->release_agent) | 
|  | strcpy(root->release_agent_path, opts->release_agent); | 
|  | if (opts->name) | 
|  | strcpy(root->name, opts->name); | 
|  | if (opts->cpuset_clone_children) | 
|  | set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags); | 
|  | return root; | 
|  | } | 
|  |  | 
|  | static void cgroup_free_root(struct cgroupfs_root *root) | 
|  | { | 
|  | if (root) { | 
|  | /* hierarhcy ID shoulid already have been released */ | 
|  | WARN_ON_ONCE(root->hierarchy_id); | 
|  |  | 
|  | ida_destroy(&root->cgroup_ida); | 
|  | kfree(root); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cgroup_set_super(struct super_block *sb, void *data) | 
|  | { | 
|  | int ret; | 
|  | struct cgroup_sb_opts *opts = data; | 
|  |  | 
|  | /* If we don't have a new root, we can't set up a new sb */ | 
|  | if (!opts->new_root) | 
|  | return -EINVAL; | 
|  |  | 
|  | BUG_ON(!opts->subsys_mask && !opts->none); | 
|  |  | 
|  | ret = set_anon_super(sb, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | sb->s_fs_info = opts->new_root; | 
|  | opts->new_root->sb = sb; | 
|  |  | 
|  | sb->s_blocksize = PAGE_CACHE_SIZE; | 
|  | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 
|  | sb->s_magic = CGROUP_SUPER_MAGIC; | 
|  | sb->s_op = &cgroup_ops; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_get_rootdir(struct super_block *sb) | 
|  | { | 
|  | static const struct dentry_operations cgroup_dops = { | 
|  | .d_iput = cgroup_diput, | 
|  | .d_delete = cgroup_delete, | 
|  | }; | 
|  |  | 
|  | struct inode *inode = | 
|  | cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); | 
|  |  | 
|  | if (!inode) | 
|  | return -ENOMEM; | 
|  |  | 
|  | inode->i_fop = &simple_dir_operations; | 
|  | inode->i_op = &cgroup_dir_inode_operations; | 
|  | /* directories start off with i_nlink == 2 (for "." entry) */ | 
|  | inc_nlink(inode); | 
|  | sb->s_root = d_make_root(inode); | 
|  | if (!sb->s_root) | 
|  | return -ENOMEM; | 
|  | /* for everything else we want ->d_op set */ | 
|  | sb->s_d_op = &cgroup_dops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct dentry *cgroup_mount(struct file_system_type *fs_type, | 
|  | int flags, const char *unused_dev_name, | 
|  | void *data) | 
|  | { | 
|  | struct cgroup_sb_opts opts; | 
|  | struct cgroupfs_root *root; | 
|  | int ret = 0; | 
|  | struct super_block *sb; | 
|  | struct cgroupfs_root *new_root; | 
|  | struct inode *inode; | 
|  |  | 
|  | /* First find the desired set of subsystems */ | 
|  | mutex_lock(&cgroup_mutex); | 
|  | ret = parse_cgroupfs_options(data, &opts); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | if (ret) | 
|  | goto out_err; | 
|  |  | 
|  | /* | 
|  | * Allocate a new cgroup root. We may not need it if we're | 
|  | * reusing an existing hierarchy. | 
|  | */ | 
|  | new_root = cgroup_root_from_opts(&opts); | 
|  | if (IS_ERR(new_root)) { | 
|  | ret = PTR_ERR(new_root); | 
|  | goto drop_modules; | 
|  | } | 
|  | opts.new_root = new_root; | 
|  |  | 
|  | /* Locate an existing or new sb for this hierarchy */ | 
|  | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts); | 
|  | if (IS_ERR(sb)) { | 
|  | ret = PTR_ERR(sb); | 
|  | cgroup_free_root(opts.new_root); | 
|  | goto drop_modules; | 
|  | } | 
|  |  | 
|  | root = sb->s_fs_info; | 
|  | BUG_ON(!root); | 
|  | if (root == opts.new_root) { | 
|  | /* We used the new root structure, so this is a new hierarchy */ | 
|  | struct list_head tmp_links; | 
|  | struct cgroup *root_cgrp = &root->top_cgroup; | 
|  | struct cgroupfs_root *existing_root; | 
|  | const struct cred *cred; | 
|  | int i; | 
|  | struct css_set *cset; | 
|  |  | 
|  | BUG_ON(sb->s_root != NULL); | 
|  |  | 
|  | ret = cgroup_get_rootdir(sb); | 
|  | if (ret) | 
|  | goto drop_new_super; | 
|  | inode = sb->s_root->d_inode; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  |  | 
|  | /* Check for name clashes with existing mounts */ | 
|  | ret = -EBUSY; | 
|  | if (strlen(root->name)) | 
|  | for_each_active_root(existing_root) | 
|  | if (!strcmp(existing_root->name, root->name)) | 
|  | goto unlock_drop; | 
|  |  | 
|  | /* | 
|  | * We're accessing css_set_count without locking | 
|  | * css_set_lock here, but that's OK - it can only be | 
|  | * increased by someone holding cgroup_lock, and | 
|  | * that's us. The worst that can happen is that we | 
|  | * have some link structures left over | 
|  | */ | 
|  | ret = allocate_cgrp_cset_links(css_set_count, &tmp_links); | 
|  | if (ret) | 
|  | goto unlock_drop; | 
|  |  | 
|  | /* ID 0 is reserved for dummy root, 1 for unified hierarchy */ | 
|  | ret = cgroup_init_root_id(root, 2, 0); | 
|  | if (ret) | 
|  | goto unlock_drop; | 
|  |  | 
|  | ret = rebind_subsystems(root, root->subsys_mask, 0); | 
|  | if (ret == -EBUSY) { | 
|  | free_cgrp_cset_links(&tmp_links); | 
|  | goto unlock_drop; | 
|  | } | 
|  | /* | 
|  | * There must be no failure case after here, since rebinding | 
|  | * takes care of subsystems' refcounts, which are explicitly | 
|  | * dropped in the failure exit path. | 
|  | */ | 
|  |  | 
|  | /* EBUSY should be the only error here */ | 
|  | BUG_ON(ret); | 
|  |  | 
|  | list_add(&root->root_list, &cgroup_roots); | 
|  | cgroup_root_count++; | 
|  |  | 
|  | sb->s_root->d_fsdata = root_cgrp; | 
|  | root->top_cgroup.dentry = sb->s_root; | 
|  |  | 
|  | /* Link the top cgroup in this hierarchy into all | 
|  | * the css_set objects */ | 
|  | write_lock(&css_set_lock); | 
|  | hash_for_each(css_set_table, i, cset, hlist) | 
|  | link_css_set(&tmp_links, cset, root_cgrp); | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | free_cgrp_cset_links(&tmp_links); | 
|  |  | 
|  | BUG_ON(!list_empty(&root_cgrp->children)); | 
|  | BUG_ON(root->number_of_cgroups != 1); | 
|  |  | 
|  | cred = override_creds(&init_cred); | 
|  | cgroup_populate_dir(root_cgrp, true, root->subsys_mask); | 
|  | revert_creds(cred); | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | } else { | 
|  | /* | 
|  | * We re-used an existing hierarchy - the new root (if | 
|  | * any) is not needed | 
|  | */ | 
|  | cgroup_free_root(opts.new_root); | 
|  |  | 
|  | if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) { | 
|  | if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) { | 
|  | pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n"); | 
|  | ret = -EINVAL; | 
|  | goto drop_new_super; | 
|  | } else { | 
|  | pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* no subsys rebinding, so refcounts don't change */ | 
|  | drop_parsed_module_refcounts(opts.subsys_mask); | 
|  | } | 
|  |  | 
|  | kfree(opts.release_agent); | 
|  | kfree(opts.name); | 
|  | return dget(sb->s_root); | 
|  |  | 
|  | unlock_drop: | 
|  | cgroup_exit_root_id(root); | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | drop_new_super: | 
|  | deactivate_locked_super(sb); | 
|  | drop_modules: | 
|  | drop_parsed_module_refcounts(opts.subsys_mask); | 
|  | out_err: | 
|  | kfree(opts.release_agent); | 
|  | kfree(opts.name); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static void cgroup_kill_sb(struct super_block *sb) { | 
|  | struct cgroupfs_root *root = sb->s_fs_info; | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | struct cgrp_cset_link *link, *tmp_link; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!root); | 
|  |  | 
|  | BUG_ON(root->number_of_cgroups != 1); | 
|  | BUG_ON(!list_empty(&cgrp->children)); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  |  | 
|  | /* Rebind all subsystems back to the default hierarchy */ | 
|  | if (root->flags & CGRP_ROOT_SUBSYS_BOUND) { | 
|  | ret = rebind_subsystems(root, 0, root->subsys_mask); | 
|  | /* Shouldn't be able to fail ... */ | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release all the links from cset_links to this hierarchy's | 
|  | * root cgroup | 
|  | */ | 
|  | write_lock(&css_set_lock); | 
|  |  | 
|  | list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { | 
|  | list_del(&link->cset_link); | 
|  | list_del(&link->cgrp_link); | 
|  | kfree(link); | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | if (!list_empty(&root->root_list)) { | 
|  | list_del(&root->root_list); | 
|  | cgroup_root_count--; | 
|  | } | 
|  |  | 
|  | cgroup_exit_root_id(root); | 
|  |  | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | simple_xattrs_free(&cgrp->xattrs); | 
|  |  | 
|  | kill_litter_super(sb); | 
|  | cgroup_free_root(root); | 
|  | } | 
|  |  | 
|  | static struct file_system_type cgroup_fs_type = { | 
|  | .name = "cgroup", | 
|  | .mount = cgroup_mount, | 
|  | .kill_sb = cgroup_kill_sb, | 
|  | }; | 
|  |  | 
|  | static struct kobject *cgroup_kobj; | 
|  |  | 
|  | /** | 
|  | * cgroup_path - generate the path of a cgroup | 
|  | * @cgrp: the cgroup in question | 
|  | * @buf: the buffer to write the path into | 
|  | * @buflen: the length of the buffer | 
|  | * | 
|  | * Writes path of cgroup into buf.  Returns 0 on success, -errno on error. | 
|  | * | 
|  | * We can't generate cgroup path using dentry->d_name, as accessing | 
|  | * dentry->name must be protected by irq-unsafe dentry->d_lock or parent | 
|  | * inode's i_mutex, while on the other hand cgroup_path() can be called | 
|  | * with some irq-safe spinlocks held. | 
|  | */ | 
|  | int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) | 
|  | { | 
|  | int ret = -ENAMETOOLONG; | 
|  | char *start; | 
|  |  | 
|  | if (!cgrp->parent) { | 
|  | if (strlcpy(buf, "/", buflen) >= buflen) | 
|  | return -ENAMETOOLONG; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | start = buf + buflen - 1; | 
|  | *start = '\0'; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | const char *name = cgroup_name(cgrp); | 
|  | int len; | 
|  |  | 
|  | len = strlen(name); | 
|  | if ((start -= len) < buf) | 
|  | goto out; | 
|  | memcpy(start, name, len); | 
|  |  | 
|  | if (--start < buf) | 
|  | goto out; | 
|  | *start = '/'; | 
|  |  | 
|  | cgrp = cgrp->parent; | 
|  | } while (cgrp->parent); | 
|  | ret = 0; | 
|  | memmove(buf, start, buf + buflen - start); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_path); | 
|  |  | 
|  | /** | 
|  | * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy | 
|  | * @task: target task | 
|  | * @hierarchy_id: the hierarchy to look up @task's cgroup from | 
|  | * @buf: the buffer to write the path into | 
|  | * @buflen: the length of the buffer | 
|  | * | 
|  | * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and | 
|  | * copy its path into @buf.  This function grabs cgroup_mutex and shouldn't | 
|  | * be used inside locks used by cgroup controller callbacks. | 
|  | */ | 
|  | int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id, | 
|  | char *buf, size_t buflen) | 
|  | { | 
|  | struct cgroupfs_root *root; | 
|  | struct cgroup *cgrp = NULL; | 
|  | int ret = -ENOENT; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | root = idr_find(&cgroup_hierarchy_idr, hierarchy_id); | 
|  | if (root) { | 
|  | cgrp = task_cgroup_from_root(task, root); | 
|  | ret = cgroup_path(cgrp, buf, buflen); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy); | 
|  |  | 
|  | /* | 
|  | * Control Group taskset | 
|  | */ | 
|  | struct task_and_cgroup { | 
|  | struct task_struct	*task; | 
|  | struct cgroup		*cgrp; | 
|  | struct css_set		*cg; | 
|  | }; | 
|  |  | 
|  | struct cgroup_taskset { | 
|  | struct task_and_cgroup	single; | 
|  | struct flex_array	*tc_array; | 
|  | int			tc_array_len; | 
|  | int			idx; | 
|  | struct cgroup		*cur_cgrp; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cgroup_taskset_first - reset taskset and return the first task | 
|  | * @tset: taskset of interest | 
|  | * | 
|  | * @tset iteration is initialized and the first task is returned. | 
|  | */ | 
|  | struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset) | 
|  | { | 
|  | if (tset->tc_array) { | 
|  | tset->idx = 0; | 
|  | return cgroup_taskset_next(tset); | 
|  | } else { | 
|  | tset->cur_cgrp = tset->single.cgrp; | 
|  | return tset->single.task; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_taskset_first); | 
|  |  | 
|  | /** | 
|  | * cgroup_taskset_next - iterate to the next task in taskset | 
|  | * @tset: taskset of interest | 
|  | * | 
|  | * Return the next task in @tset.  Iteration must have been initialized | 
|  | * with cgroup_taskset_first(). | 
|  | */ | 
|  | struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct task_and_cgroup *tc; | 
|  |  | 
|  | if (!tset->tc_array || tset->idx >= tset->tc_array_len) | 
|  | return NULL; | 
|  |  | 
|  | tc = flex_array_get(tset->tc_array, tset->idx++); | 
|  | tset->cur_cgrp = tc->cgrp; | 
|  | return tc->task; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_taskset_next); | 
|  |  | 
|  | /** | 
|  | * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task | 
|  | * @tset: taskset of interest | 
|  | * | 
|  | * Return the cgroup for the current (last returned) task of @tset.  This | 
|  | * function must be preceded by either cgroup_taskset_first() or | 
|  | * cgroup_taskset_next(). | 
|  | */ | 
|  | struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset) | 
|  | { | 
|  | return tset->cur_cgrp; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup); | 
|  |  | 
|  | /** | 
|  | * cgroup_taskset_size - return the number of tasks in taskset | 
|  | * @tset: taskset of interest | 
|  | */ | 
|  | int cgroup_taskset_size(struct cgroup_taskset *tset) | 
|  | { | 
|  | return tset->tc_array ? tset->tc_array_len : 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_taskset_size); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cgroup_task_migrate - move a task from one cgroup to another. | 
|  | * | 
|  | * Must be called with cgroup_mutex and threadgroup locked. | 
|  | */ | 
|  | static void cgroup_task_migrate(struct cgroup *old_cgrp, | 
|  | struct task_struct *tsk, | 
|  | struct css_set *new_cset) | 
|  | { | 
|  | struct css_set *old_cset; | 
|  |  | 
|  | /* | 
|  | * We are synchronized through threadgroup_lock() against PF_EXITING | 
|  | * setting such that we can't race against cgroup_exit() changing the | 
|  | * css_set to init_css_set and dropping the old one. | 
|  | */ | 
|  | WARN_ON_ONCE(tsk->flags & PF_EXITING); | 
|  | old_cset = task_css_set(tsk); | 
|  |  | 
|  | task_lock(tsk); | 
|  | rcu_assign_pointer(tsk->cgroups, new_cset); | 
|  | task_unlock(tsk); | 
|  |  | 
|  | /* Update the css_set linked lists if we're using them */ | 
|  | write_lock(&css_set_lock); | 
|  | if (!list_empty(&tsk->cg_list)) | 
|  | list_move(&tsk->cg_list, &new_cset->tasks); | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | /* | 
|  | * We just gained a reference on old_cset by taking it from the | 
|  | * task. As trading it for new_cset is protected by cgroup_mutex, | 
|  | * we're safe to drop it here; it will be freed under RCU. | 
|  | */ | 
|  | set_bit(CGRP_RELEASABLE, &old_cgrp->flags); | 
|  | put_css_set(old_cset); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup | 
|  | * @cgrp: the cgroup to attach to | 
|  | * @tsk: the task or the leader of the threadgroup to be attached | 
|  | * @threadgroup: attach the whole threadgroup? | 
|  | * | 
|  | * Call holding cgroup_mutex and the group_rwsem of the leader. Will take | 
|  | * task_lock of @tsk or each thread in the threadgroup individually in turn. | 
|  | */ | 
|  | static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk, | 
|  | bool threadgroup) | 
|  | { | 
|  | int retval, i, group_size; | 
|  | struct cgroup_subsys *ss, *failed_ss = NULL; | 
|  | struct cgroupfs_root *root = cgrp->root; | 
|  | /* threadgroup list cursor and array */ | 
|  | struct task_struct *leader = tsk; | 
|  | struct task_and_cgroup *tc; | 
|  | struct flex_array *group; | 
|  | struct cgroup_taskset tset = { }; | 
|  |  | 
|  | /* | 
|  | * step 0: in order to do expensive, possibly blocking operations for | 
|  | * every thread, we cannot iterate the thread group list, since it needs | 
|  | * rcu or tasklist locked. instead, build an array of all threads in the | 
|  | * group - group_rwsem prevents new threads from appearing, and if | 
|  | * threads exit, this will just be an over-estimate. | 
|  | */ | 
|  | if (threadgroup) | 
|  | group_size = get_nr_threads(tsk); | 
|  | else | 
|  | group_size = 1; | 
|  | /* flex_array supports very large thread-groups better than kmalloc. */ | 
|  | group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL); | 
|  | if (!group) | 
|  | return -ENOMEM; | 
|  | /* pre-allocate to guarantee space while iterating in rcu read-side. */ | 
|  | retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL); | 
|  | if (retval) | 
|  | goto out_free_group_list; | 
|  |  | 
|  | i = 0; | 
|  | /* | 
|  | * Prevent freeing of tasks while we take a snapshot. Tasks that are | 
|  | * already PF_EXITING could be freed from underneath us unless we | 
|  | * take an rcu_read_lock. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | struct task_and_cgroup ent; | 
|  |  | 
|  | /* @tsk either already exited or can't exit until the end */ | 
|  | if (tsk->flags & PF_EXITING) | 
|  | continue; | 
|  |  | 
|  | /* as per above, nr_threads may decrease, but not increase. */ | 
|  | BUG_ON(i >= group_size); | 
|  | ent.task = tsk; | 
|  | ent.cgrp = task_cgroup_from_root(tsk, root); | 
|  | /* nothing to do if this task is already in the cgroup */ | 
|  | if (ent.cgrp == cgrp) | 
|  | continue; | 
|  | /* | 
|  | * saying GFP_ATOMIC has no effect here because we did prealloc | 
|  | * earlier, but it's good form to communicate our expectations. | 
|  | */ | 
|  | retval = flex_array_put(group, i, &ent, GFP_ATOMIC); | 
|  | BUG_ON(retval != 0); | 
|  | i++; | 
|  |  | 
|  | if (!threadgroup) | 
|  | break; | 
|  | } while_each_thread(leader, tsk); | 
|  | rcu_read_unlock(); | 
|  | /* remember the number of threads in the array for later. */ | 
|  | group_size = i; | 
|  | tset.tc_array = group; | 
|  | tset.tc_array_len = group_size; | 
|  |  | 
|  | /* methods shouldn't be called if no task is actually migrating */ | 
|  | retval = 0; | 
|  | if (!group_size) | 
|  | goto out_free_group_list; | 
|  |  | 
|  | /* | 
|  | * step 1: check that we can legitimately attach to the cgroup. | 
|  | */ | 
|  | for_each_root_subsys(root, ss) { | 
|  | if (ss->can_attach) { | 
|  | retval = ss->can_attach(cgrp, &tset); | 
|  | if (retval) { | 
|  | failed_ss = ss; | 
|  | goto out_cancel_attach; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * step 2: make sure css_sets exist for all threads to be migrated. | 
|  | * we use find_css_set, which allocates a new one if necessary. | 
|  | */ | 
|  | for (i = 0; i < group_size; i++) { | 
|  | struct css_set *old_cset; | 
|  |  | 
|  | tc = flex_array_get(group, i); | 
|  | old_cset = task_css_set(tc->task); | 
|  | tc->cg = find_css_set(old_cset, cgrp); | 
|  | if (!tc->cg) { | 
|  | retval = -ENOMEM; | 
|  | goto out_put_css_set_refs; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * step 3: now that we're guaranteed success wrt the css_sets, | 
|  | * proceed to move all tasks to the new cgroup.  There are no | 
|  | * failure cases after here, so this is the commit point. | 
|  | */ | 
|  | for (i = 0; i < group_size; i++) { | 
|  | tc = flex_array_get(group, i); | 
|  | cgroup_task_migrate(tc->cgrp, tc->task, tc->cg); | 
|  | } | 
|  | /* nothing is sensitive to fork() after this point. */ | 
|  |  | 
|  | /* | 
|  | * step 4: do subsystem attach callbacks. | 
|  | */ | 
|  | for_each_root_subsys(root, ss) { | 
|  | if (ss->attach) | 
|  | ss->attach(cgrp, &tset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * step 5: success! and cleanup | 
|  | */ | 
|  | retval = 0; | 
|  | out_put_css_set_refs: | 
|  | if (retval) { | 
|  | for (i = 0; i < group_size; i++) { | 
|  | tc = flex_array_get(group, i); | 
|  | if (!tc->cg) | 
|  | break; | 
|  | put_css_set(tc->cg); | 
|  | } | 
|  | } | 
|  | out_cancel_attach: | 
|  | if (retval) { | 
|  | for_each_root_subsys(root, ss) { | 
|  | if (ss == failed_ss) | 
|  | break; | 
|  | if (ss->cancel_attach) | 
|  | ss->cancel_attach(cgrp, &tset); | 
|  | } | 
|  | } | 
|  | out_free_group_list: | 
|  | flex_array_free(group); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the task_struct of the task to attach by vpid and pass it along to the | 
|  | * function to attach either it or all tasks in its threadgroup. Will lock | 
|  | * cgroup_mutex and threadgroup; may take task_lock of task. | 
|  | */ | 
|  | static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | const struct cred *cred = current_cred(), *tcred; | 
|  | int ret; | 
|  |  | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  |  | 
|  | retry_find_task: | 
|  | rcu_read_lock(); | 
|  | if (pid) { | 
|  | tsk = find_task_by_vpid(pid); | 
|  | if (!tsk) { | 
|  | rcu_read_unlock(); | 
|  | ret= -ESRCH; | 
|  | goto out_unlock_cgroup; | 
|  | } | 
|  | /* | 
|  | * even if we're attaching all tasks in the thread group, we | 
|  | * only need to check permissions on one of them. | 
|  | */ | 
|  | tcred = __task_cred(tsk); | 
|  | if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && | 
|  | !uid_eq(cred->euid, tcred->uid) && | 
|  | !uid_eq(cred->euid, tcred->suid)) { | 
|  | rcu_read_unlock(); | 
|  | ret = -EACCES; | 
|  | goto out_unlock_cgroup; | 
|  | } | 
|  | } else | 
|  | tsk = current; | 
|  |  | 
|  | if (threadgroup) | 
|  | tsk = tsk->group_leader; | 
|  |  | 
|  | /* | 
|  | * Workqueue threads may acquire PF_NO_SETAFFINITY and become | 
|  | * trapped in a cpuset, or RT worker may be born in a cgroup | 
|  | * with no rt_runtime allocated.  Just say no. | 
|  | */ | 
|  | if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { | 
|  | ret = -EINVAL; | 
|  | rcu_read_unlock(); | 
|  | goto out_unlock_cgroup; | 
|  | } | 
|  |  | 
|  | get_task_struct(tsk); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | threadgroup_lock(tsk); | 
|  | if (threadgroup) { | 
|  | if (!thread_group_leader(tsk)) { | 
|  | /* | 
|  | * a race with de_thread from another thread's exec() | 
|  | * may strip us of our leadership, if this happens, | 
|  | * there is no choice but to throw this task away and | 
|  | * try again; this is | 
|  | * "double-double-toil-and-trouble-check locking". | 
|  | */ | 
|  | threadgroup_unlock(tsk); | 
|  | put_task_struct(tsk); | 
|  | goto retry_find_task; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = cgroup_attach_task(cgrp, tsk, threadgroup); | 
|  |  | 
|  | threadgroup_unlock(tsk); | 
|  |  | 
|  | put_task_struct(tsk); | 
|  | out_unlock_cgroup: | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' | 
|  | * @from: attach to all cgroups of a given task | 
|  | * @tsk: the task to be attached | 
|  | */ | 
|  | int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) | 
|  | { | 
|  | struct cgroupfs_root *root; | 
|  | int retval = 0; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | for_each_active_root(root) { | 
|  | struct cgroup *from_cg = task_cgroup_from_root(from, root); | 
|  |  | 
|  | retval = cgroup_attach_task(from_cg, tsk, false); | 
|  | if (retval) | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_attach_task_all); | 
|  |  | 
|  | static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) | 
|  | { | 
|  | return attach_task_by_pid(cgrp, pid, false); | 
|  | } | 
|  |  | 
|  | static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid) | 
|  | { | 
|  | return attach_task_by_pid(cgrp, tgid, true); | 
|  | } | 
|  |  | 
|  | static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft, | 
|  | const char *buffer) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); | 
|  | if (strlen(buffer) >= PATH_MAX) | 
|  | return -EINVAL; | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  | strcpy(cgrp->root->release_agent_path, buffer); | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct seq_file *seq) | 
|  | { | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  | seq_puts(seq, cgrp->root->release_agent_path); | 
|  | seq_putc(seq, '\n'); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct seq_file *seq) | 
|  | { | 
|  | seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* A buffer size big enough for numbers or short strings */ | 
|  | #define CGROUP_LOCAL_BUFFER_SIZE 64 | 
|  |  | 
|  | static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | const char __user *userbuf, | 
|  | size_t nbytes, loff_t *unused_ppos) | 
|  | { | 
|  | char buffer[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | int retval = 0; | 
|  | char *end; | 
|  |  | 
|  | if (!nbytes) | 
|  | return -EINVAL; | 
|  | if (nbytes >= sizeof(buffer)) | 
|  | return -E2BIG; | 
|  | if (copy_from_user(buffer, userbuf, nbytes)) | 
|  | return -EFAULT; | 
|  |  | 
|  | buffer[nbytes] = 0;     /* nul-terminate */ | 
|  | if (cft->write_u64) { | 
|  | u64 val = simple_strtoull(strstrip(buffer), &end, 0); | 
|  | if (*end) | 
|  | return -EINVAL; | 
|  | retval = cft->write_u64(cgrp, cft, val); | 
|  | } else { | 
|  | s64 val = simple_strtoll(strstrip(buffer), &end, 0); | 
|  | if (*end) | 
|  | return -EINVAL; | 
|  | retval = cft->write_s64(cgrp, cft, val); | 
|  | } | 
|  | if (!retval) | 
|  | retval = nbytes; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | const char __user *userbuf, | 
|  | size_t nbytes, loff_t *unused_ppos) | 
|  | { | 
|  | char local_buffer[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | int retval = 0; | 
|  | size_t max_bytes = cft->max_write_len; | 
|  | char *buffer = local_buffer; | 
|  |  | 
|  | if (!max_bytes) | 
|  | max_bytes = sizeof(local_buffer) - 1; | 
|  | if (nbytes >= max_bytes) | 
|  | return -E2BIG; | 
|  | /* Allocate a dynamic buffer if we need one */ | 
|  | if (nbytes >= sizeof(local_buffer)) { | 
|  | buffer = kmalloc(nbytes + 1, GFP_KERNEL); | 
|  | if (buffer == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (nbytes && copy_from_user(buffer, userbuf, nbytes)) { | 
|  | retval = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | buffer[nbytes] = 0;     /* nul-terminate */ | 
|  | retval = cft->write_string(cgrp, cft, strstrip(buffer)); | 
|  | if (!retval) | 
|  | retval = nbytes; | 
|  | out: | 
|  | if (buffer != local_buffer) | 
|  | kfree(buffer); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_file_write(struct file *file, const char __user *buf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
|  |  | 
|  | if (cgroup_is_dead(cgrp)) | 
|  | return -ENODEV; | 
|  | if (cft->write) | 
|  | return cft->write(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->write_u64 || cft->write_s64) | 
|  | return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->write_string) | 
|  | return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->trigger) { | 
|  | int ret = cft->trigger(cgrp, (unsigned int)cft->private); | 
|  | return ret ? ret : nbytes; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | char __user *buf, size_t nbytes, | 
|  | loff_t *ppos) | 
|  | { | 
|  | char tmp[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | u64 val = cft->read_u64(cgrp, cft); | 
|  | int len = sprintf(tmp, "%llu\n", (unsigned long long) val); | 
|  |  | 
|  | return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | char __user *buf, size_t nbytes, | 
|  | loff_t *ppos) | 
|  | { | 
|  | char tmp[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | s64 val = cft->read_s64(cgrp, cft); | 
|  | int len = sprintf(tmp, "%lld\n", (long long) val); | 
|  |  | 
|  | return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_file_read(struct file *file, char __user *buf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
|  |  | 
|  | if (cgroup_is_dead(cgrp)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (cft->read) | 
|  | return cft->read(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->read_u64) | 
|  | return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->read_s64) | 
|  | return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * seqfile ops/methods for returning structured data. Currently just | 
|  | * supports string->u64 maps, but can be extended in future. | 
|  | */ | 
|  |  | 
|  | struct cgroup_seqfile_state { | 
|  | struct cftype *cft; | 
|  | struct cgroup *cgroup; | 
|  | }; | 
|  |  | 
|  | static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value) | 
|  | { | 
|  | struct seq_file *sf = cb->state; | 
|  | return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value); | 
|  | } | 
|  |  | 
|  | static int cgroup_seqfile_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | struct cgroup_seqfile_state *state = m->private; | 
|  | struct cftype *cft = state->cft; | 
|  | if (cft->read_map) { | 
|  | struct cgroup_map_cb cb = { | 
|  | .fill = cgroup_map_add, | 
|  | .state = m, | 
|  | }; | 
|  | return cft->read_map(state->cgroup, cft, &cb); | 
|  | } | 
|  | return cft->read_seq_string(state->cgroup, cft, m); | 
|  | } | 
|  |  | 
|  | static int cgroup_seqfile_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct seq_file *seq = file->private_data; | 
|  | kfree(seq->private); | 
|  | return single_release(inode, file); | 
|  | } | 
|  |  | 
|  | static const struct file_operations cgroup_seqfile_operations = { | 
|  | .read = seq_read, | 
|  | .write = cgroup_file_write, | 
|  | .llseek = seq_lseek, | 
|  | .release = cgroup_seqfile_release, | 
|  | }; | 
|  |  | 
|  | static int cgroup_file_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | int err; | 
|  | struct cftype *cft; | 
|  |  | 
|  | err = generic_file_open(inode, file); | 
|  | if (err) | 
|  | return err; | 
|  | cft = __d_cft(file->f_dentry); | 
|  |  | 
|  | if (cft->read_map || cft->read_seq_string) { | 
|  | struct cgroup_seqfile_state *state; | 
|  |  | 
|  | state = kzalloc(sizeof(*state), GFP_USER); | 
|  | if (!state) | 
|  | return -ENOMEM; | 
|  |  | 
|  | state->cft = cft; | 
|  | state->cgroup = __d_cgrp(file->f_dentry->d_parent); | 
|  | file->f_op = &cgroup_seqfile_operations; | 
|  | err = single_open(file, cgroup_seqfile_show, state); | 
|  | if (err < 0) | 
|  | kfree(state); | 
|  | } else if (cft->open) | 
|  | err = cft->open(inode, file); | 
|  | else | 
|  | err = 0; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cgroup_file_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | if (cft->release) | 
|  | return cft->release(inode, file); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cgroup_rename - Only allow simple rename of directories in place. | 
|  | */ | 
|  | static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, | 
|  | struct inode *new_dir, struct dentry *new_dentry) | 
|  | { | 
|  | int ret; | 
|  | struct cgroup_name *name, *old_name; | 
|  | struct cgroup *cgrp; | 
|  |  | 
|  | /* | 
|  | * It's convinient to use parent dir's i_mutex to protected | 
|  | * cgrp->name. | 
|  | */ | 
|  | lockdep_assert_held(&old_dir->i_mutex); | 
|  |  | 
|  | if (!S_ISDIR(old_dentry->d_inode->i_mode)) | 
|  | return -ENOTDIR; | 
|  | if (new_dentry->d_inode) | 
|  | return -EEXIST; | 
|  | if (old_dir != new_dir) | 
|  | return -EIO; | 
|  |  | 
|  | cgrp = __d_cgrp(old_dentry); | 
|  |  | 
|  | /* | 
|  | * This isn't a proper migration and its usefulness is very | 
|  | * limited.  Disallow if sane_behavior. | 
|  | */ | 
|  | if (cgroup_sane_behavior(cgrp)) | 
|  | return -EPERM; | 
|  |  | 
|  | name = cgroup_alloc_name(new_dentry); | 
|  | if (!name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry); | 
|  | if (ret) { | 
|  | kfree(name); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | old_name = rcu_dereference_protected(cgrp->name, true); | 
|  | rcu_assign_pointer(cgrp->name, name); | 
|  |  | 
|  | kfree_rcu(old_name, rcu_head); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct simple_xattrs *__d_xattrs(struct dentry *dentry) | 
|  | { | 
|  | if (S_ISDIR(dentry->d_inode->i_mode)) | 
|  | return &__d_cgrp(dentry)->xattrs; | 
|  | else | 
|  | return &__d_cfe(dentry)->xattrs; | 
|  | } | 
|  |  | 
|  | static inline int xattr_enabled(struct dentry *dentry) | 
|  | { | 
|  | struct cgroupfs_root *root = dentry->d_sb->s_fs_info; | 
|  | return root->flags & CGRP_ROOT_XATTR; | 
|  | } | 
|  |  | 
|  | static bool is_valid_xattr(const char *name) | 
|  | { | 
|  | if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) || | 
|  | !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int cgroup_setxattr(struct dentry *dentry, const char *name, | 
|  | const void *val, size_t size, int flags) | 
|  | { | 
|  | if (!xattr_enabled(dentry)) | 
|  | return -EOPNOTSUPP; | 
|  | if (!is_valid_xattr(name)) | 
|  | return -EINVAL; | 
|  | return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags); | 
|  | } | 
|  |  | 
|  | static int cgroup_removexattr(struct dentry *dentry, const char *name) | 
|  | { | 
|  | if (!xattr_enabled(dentry)) | 
|  | return -EOPNOTSUPP; | 
|  | if (!is_valid_xattr(name)) | 
|  | return -EINVAL; | 
|  | return simple_xattr_remove(__d_xattrs(dentry), name); | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name, | 
|  | void *buf, size_t size) | 
|  | { | 
|  | if (!xattr_enabled(dentry)) | 
|  | return -EOPNOTSUPP; | 
|  | if (!is_valid_xattr(name)) | 
|  | return -EINVAL; | 
|  | return simple_xattr_get(__d_xattrs(dentry), name, buf, size); | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size) | 
|  | { | 
|  | if (!xattr_enabled(dentry)) | 
|  | return -EOPNOTSUPP; | 
|  | return simple_xattr_list(__d_xattrs(dentry), buf, size); | 
|  | } | 
|  |  | 
|  | static const struct file_operations cgroup_file_operations = { | 
|  | .read = cgroup_file_read, | 
|  | .write = cgroup_file_write, | 
|  | .llseek = generic_file_llseek, | 
|  | .open = cgroup_file_open, | 
|  | .release = cgroup_file_release, | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations cgroup_file_inode_operations = { | 
|  | .setxattr = cgroup_setxattr, | 
|  | .getxattr = cgroup_getxattr, | 
|  | .listxattr = cgroup_listxattr, | 
|  | .removexattr = cgroup_removexattr, | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations cgroup_dir_inode_operations = { | 
|  | .lookup = simple_lookup, | 
|  | .mkdir = cgroup_mkdir, | 
|  | .rmdir = cgroup_rmdir, | 
|  | .rename = cgroup_rename, | 
|  | .setxattr = cgroup_setxattr, | 
|  | .getxattr = cgroup_getxattr, | 
|  | .listxattr = cgroup_listxattr, | 
|  | .removexattr = cgroup_removexattr, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Check if a file is a control file | 
|  | */ | 
|  | static inline struct cftype *__file_cft(struct file *file) | 
|  | { | 
|  | if (file_inode(file)->i_fop != &cgroup_file_operations) | 
|  | return ERR_PTR(-EINVAL); | 
|  | return __d_cft(file->f_dentry); | 
|  | } | 
|  |  | 
|  | static int cgroup_create_file(struct dentry *dentry, umode_t mode, | 
|  | struct super_block *sb) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | if (!dentry) | 
|  | return -ENOENT; | 
|  | if (dentry->d_inode) | 
|  | return -EEXIST; | 
|  |  | 
|  | inode = cgroup_new_inode(mode, sb); | 
|  | if (!inode) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (S_ISDIR(mode)) { | 
|  | inode->i_op = &cgroup_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  |  | 
|  | /* start off with i_nlink == 2 (for "." entry) */ | 
|  | inc_nlink(inode); | 
|  | inc_nlink(dentry->d_parent->d_inode); | 
|  |  | 
|  | /* | 
|  | * Control reaches here with cgroup_mutex held. | 
|  | * @inode->i_mutex should nest outside cgroup_mutex but we | 
|  | * want to populate it immediately without releasing | 
|  | * cgroup_mutex.  As @inode isn't visible to anyone else | 
|  | * yet, trylock will always succeed without affecting | 
|  | * lockdep checks. | 
|  | */ | 
|  | WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex)); | 
|  | } else if (S_ISREG(mode)) { | 
|  | inode->i_size = 0; | 
|  | inode->i_fop = &cgroup_file_operations; | 
|  | inode->i_op = &cgroup_file_inode_operations; | 
|  | } | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry);	/* Extra count - pin the dentry in core */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_file_mode - deduce file mode of a control file | 
|  | * @cft: the control file in question | 
|  | * | 
|  | * returns cft->mode if ->mode is not 0 | 
|  | * returns S_IRUGO|S_IWUSR if it has both a read and a write handler | 
|  | * returns S_IRUGO if it has only a read handler | 
|  | * returns S_IWUSR if it has only a write hander | 
|  | */ | 
|  | static umode_t cgroup_file_mode(const struct cftype *cft) | 
|  | { | 
|  | umode_t mode = 0; | 
|  |  | 
|  | if (cft->mode) | 
|  | return cft->mode; | 
|  |  | 
|  | if (cft->read || cft->read_u64 || cft->read_s64 || | 
|  | cft->read_map || cft->read_seq_string) | 
|  | mode |= S_IRUGO; | 
|  |  | 
|  | if (cft->write || cft->write_u64 || cft->write_s64 || | 
|  | cft->write_string || cft->trigger) | 
|  | mode |= S_IWUSR; | 
|  |  | 
|  | return mode; | 
|  | } | 
|  |  | 
|  | static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct dentry *dir = cgrp->dentry; | 
|  | struct cgroup *parent = __d_cgrp(dir); | 
|  | struct dentry *dentry; | 
|  | struct cfent *cfe; | 
|  | int error; | 
|  | umode_t mode; | 
|  | char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; | 
|  |  | 
|  | if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { | 
|  | strcpy(name, subsys->name); | 
|  | strcat(name, "."); | 
|  | } | 
|  | strcat(name, cft->name); | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); | 
|  |  | 
|  | cfe = kzalloc(sizeof(*cfe), GFP_KERNEL); | 
|  | if (!cfe) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dentry = lookup_one_len(name, dir, strlen(name)); | 
|  | if (IS_ERR(dentry)) { | 
|  | error = PTR_ERR(dentry); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cfe->type = (void *)cft; | 
|  | cfe->dentry = dentry; | 
|  | dentry->d_fsdata = cfe; | 
|  | simple_xattrs_init(&cfe->xattrs); | 
|  |  | 
|  | mode = cgroup_file_mode(cft); | 
|  | error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb); | 
|  | if (!error) { | 
|  | list_add_tail(&cfe->node, &parent->files); | 
|  | cfe = NULL; | 
|  | } | 
|  | dput(dentry); | 
|  | out: | 
|  | kfree(cfe); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys, | 
|  | struct cftype cfts[], bool is_add) | 
|  | { | 
|  | struct cftype *cft; | 
|  | int err, ret = 0; | 
|  |  | 
|  | for (cft = cfts; cft->name[0] != '\0'; cft++) { | 
|  | /* does cft->flags tell us to skip this file on @cgrp? */ | 
|  | if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp)) | 
|  | continue; | 
|  | if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent) | 
|  | continue; | 
|  | if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent) | 
|  | continue; | 
|  |  | 
|  | if (is_add) { | 
|  | err = cgroup_add_file(cgrp, subsys, cft); | 
|  | if (err) | 
|  | pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n", | 
|  | cft->name, err); | 
|  | ret = err; | 
|  | } else { | 
|  | cgroup_rm_file(cgrp, cft); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cgroup_cfts_prepare(void) | 
|  | __acquires(&cgroup_mutex) | 
|  | { | 
|  | /* | 
|  | * Thanks to the entanglement with vfs inode locking, we can't walk | 
|  | * the existing cgroups under cgroup_mutex and create files. | 
|  | * Instead, we use cgroup_for_each_descendant_pre() and drop RCU | 
|  | * read lock before calling cgroup_addrm_files(). | 
|  | */ | 
|  | mutex_lock(&cgroup_mutex); | 
|  | } | 
|  |  | 
|  | static void cgroup_cfts_commit(struct cgroup_subsys *ss, | 
|  | struct cftype *cfts, bool is_add) | 
|  | __releases(&cgroup_mutex) | 
|  | { | 
|  | LIST_HEAD(pending); | 
|  | struct cgroup *cgrp, *root = &ss->root->top_cgroup; | 
|  | struct super_block *sb = ss->root->sb; | 
|  | struct dentry *prev = NULL; | 
|  | struct inode *inode; | 
|  | u64 update_before; | 
|  |  | 
|  | /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */ | 
|  | if (!cfts || ss->root == &cgroup_dummy_root || | 
|  | !atomic_inc_not_zero(&sb->s_active)) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All cgroups which are created after we drop cgroup_mutex will | 
|  | * have the updated set of files, so we only need to update the | 
|  | * cgroups created before the current @cgroup_serial_nr_next. | 
|  | */ | 
|  | update_before = cgroup_serial_nr_next; | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | /* @root always needs to be updated */ | 
|  | inode = root->dentry->d_inode; | 
|  | mutex_lock(&inode->i_mutex); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | cgroup_addrm_files(root, ss, cfts, is_add); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | /* add/rm files for all cgroups created before */ | 
|  | rcu_read_lock(); | 
|  | cgroup_for_each_descendant_pre(cgrp, root) { | 
|  | if (cgroup_is_dead(cgrp)) | 
|  | continue; | 
|  |  | 
|  | inode = cgrp->dentry->d_inode; | 
|  | dget(cgrp->dentry); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | dput(prev); | 
|  | prev = cgrp->dentry; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp)) | 
|  | cgroup_addrm_files(cgrp, ss, cfts, is_add); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | dput(prev); | 
|  | deactivate_super(sb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_add_cftypes - add an array of cftypes to a subsystem | 
|  | * @ss: target cgroup subsystem | 
|  | * @cfts: zero-length name terminated array of cftypes | 
|  | * | 
|  | * Register @cfts to @ss.  Files described by @cfts are created for all | 
|  | * existing cgroups to which @ss is attached and all future cgroups will | 
|  | * have them too.  This function can be called anytime whether @ss is | 
|  | * attached or not. | 
|  | * | 
|  | * Returns 0 on successful registration, -errno on failure.  Note that this | 
|  | * function currently returns 0 as long as @cfts registration is successful | 
|  | * even if some file creation attempts on existing cgroups fail. | 
|  | */ | 
|  | int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) | 
|  | { | 
|  | struct cftype_set *set; | 
|  |  | 
|  | set = kzalloc(sizeof(*set), GFP_KERNEL); | 
|  | if (!set) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cgroup_cfts_prepare(); | 
|  | set->cfts = cfts; | 
|  | list_add_tail(&set->node, &ss->cftsets); | 
|  | cgroup_cfts_commit(ss, cfts, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_add_cftypes); | 
|  |  | 
|  | /** | 
|  | * cgroup_rm_cftypes - remove an array of cftypes from a subsystem | 
|  | * @ss: target cgroup subsystem | 
|  | * @cfts: zero-length name terminated array of cftypes | 
|  | * | 
|  | * Unregister @cfts from @ss.  Files described by @cfts are removed from | 
|  | * all existing cgroups to which @ss is attached and all future cgroups | 
|  | * won't have them either.  This function can be called anytime whether @ss | 
|  | * is attached or not. | 
|  | * | 
|  | * Returns 0 on successful unregistration, -ENOENT if @cfts is not | 
|  | * registered with @ss. | 
|  | */ | 
|  | int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) | 
|  | { | 
|  | struct cftype_set *set; | 
|  |  | 
|  | cgroup_cfts_prepare(); | 
|  |  | 
|  | list_for_each_entry(set, &ss->cftsets, node) { | 
|  | if (set->cfts == cfts) { | 
|  | list_del(&set->node); | 
|  | kfree(set); | 
|  | cgroup_cfts_commit(ss, cfts, false); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | cgroup_cfts_commit(ss, NULL, false); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_task_count - count the number of tasks in a cgroup. | 
|  | * @cgrp: the cgroup in question | 
|  | * | 
|  | * Return the number of tasks in the cgroup. | 
|  | */ | 
|  | int cgroup_task_count(const struct cgroup *cgrp) | 
|  | { | 
|  | int count = 0; | 
|  | struct cgrp_cset_link *link; | 
|  |  | 
|  | read_lock(&css_set_lock); | 
|  | list_for_each_entry(link, &cgrp->cset_links, cset_link) | 
|  | count += atomic_read(&link->cset->refcount); | 
|  | read_unlock(&css_set_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advance a list_head iterator.  The iterator should be positioned at | 
|  | * the start of a css_set | 
|  | */ | 
|  | static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it) | 
|  | { | 
|  | struct list_head *l = it->cset_link; | 
|  | struct cgrp_cset_link *link; | 
|  | struct css_set *cset; | 
|  |  | 
|  | /* Advance to the next non-empty css_set */ | 
|  | do { | 
|  | l = l->next; | 
|  | if (l == &cgrp->cset_links) { | 
|  | it->cset_link = NULL; | 
|  | return; | 
|  | } | 
|  | link = list_entry(l, struct cgrp_cset_link, cset_link); | 
|  | cset = link->cset; | 
|  | } while (list_empty(&cset->tasks)); | 
|  | it->cset_link = l; | 
|  | it->task = cset->tasks.next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To reduce the fork() overhead for systems that are not actually | 
|  | * using their cgroups capability, we don't maintain the lists running | 
|  | * through each css_set to its tasks until we see the list actually | 
|  | * used - in other words after the first call to cgroup_iter_start(). | 
|  | */ | 
|  | static void cgroup_enable_task_cg_lists(void) | 
|  | { | 
|  | struct task_struct *p, *g; | 
|  | write_lock(&css_set_lock); | 
|  | use_task_css_set_links = 1; | 
|  | /* | 
|  | * We need tasklist_lock because RCU is not safe against | 
|  | * while_each_thread(). Besides, a forking task that has passed | 
|  | * cgroup_post_fork() without seeing use_task_css_set_links = 1 | 
|  | * is not guaranteed to have its child immediately visible in the | 
|  | * tasklist if we walk through it with RCU. | 
|  | */ | 
|  | read_lock(&tasklist_lock); | 
|  | do_each_thread(g, p) { | 
|  | task_lock(p); | 
|  | /* | 
|  | * We should check if the process is exiting, otherwise | 
|  | * it will race with cgroup_exit() in that the list | 
|  | * entry won't be deleted though the process has exited. | 
|  | */ | 
|  | if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) | 
|  | list_add(&p->cg_list, &task_css_set(p)->tasks); | 
|  | task_unlock(p); | 
|  | } while_each_thread(g, p); | 
|  | read_unlock(&tasklist_lock); | 
|  | write_unlock(&css_set_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_next_sibling - find the next sibling of a given cgroup | 
|  | * @pos: the current cgroup | 
|  | * | 
|  | * This function returns the next sibling of @pos and should be called | 
|  | * under RCU read lock.  The only requirement is that @pos is accessible. | 
|  | * The next sibling is guaranteed to be returned regardless of @pos's | 
|  | * state. | 
|  | */ | 
|  | struct cgroup *cgroup_next_sibling(struct cgroup *pos) | 
|  | { | 
|  | struct cgroup *next; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  |  | 
|  | /* | 
|  | * @pos could already have been removed.  Once a cgroup is removed, | 
|  | * its ->sibling.next is no longer updated when its next sibling | 
|  | * changes.  As CGRP_DEAD assertion is serialized and happens | 
|  | * before the cgroup is taken off the ->sibling list, if we see it | 
|  | * unasserted, it's guaranteed that the next sibling hasn't | 
|  | * finished its grace period even if it's already removed, and thus | 
|  | * safe to dereference from this RCU critical section.  If | 
|  | * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed | 
|  | * to be visible as %true here. | 
|  | */ | 
|  | if (likely(!cgroup_is_dead(pos))) { | 
|  | next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling); | 
|  | if (&next->sibling != &pos->parent->children) | 
|  | return next; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can't dereference the next pointer.  Each cgroup is given a | 
|  | * monotonically increasing unique serial number and always | 
|  | * appended to the sibling list, so the next one can be found by | 
|  | * walking the parent's children until we see a cgroup with higher | 
|  | * serial number than @pos's. | 
|  | * | 
|  | * While this path can be slow, it's taken only when either the | 
|  | * current cgroup is removed or iteration and removal race. | 
|  | */ | 
|  | list_for_each_entry_rcu(next, &pos->parent->children, sibling) | 
|  | if (next->serial_nr > pos->serial_nr) | 
|  | return next; | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_next_sibling); | 
|  |  | 
|  | /** | 
|  | * cgroup_next_descendant_pre - find the next descendant for pre-order walk | 
|  | * @pos: the current position (%NULL to initiate traversal) | 
|  | * @cgroup: cgroup whose descendants to walk | 
|  | * | 
|  | * To be used by cgroup_for_each_descendant_pre().  Find the next | 
|  | * descendant to visit for pre-order traversal of @cgroup's descendants. | 
|  | * | 
|  | * While this function requires RCU read locking, it doesn't require the | 
|  | * whole traversal to be contained in a single RCU critical section.  This | 
|  | * function will return the correct next descendant as long as both @pos | 
|  | * and @cgroup are accessible and @pos is a descendant of @cgroup. | 
|  | */ | 
|  | struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos, | 
|  | struct cgroup *cgroup) | 
|  | { | 
|  | struct cgroup *next; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  |  | 
|  | /* if first iteration, pretend we just visited @cgroup */ | 
|  | if (!pos) | 
|  | pos = cgroup; | 
|  |  | 
|  | /* visit the first child if exists */ | 
|  | next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling); | 
|  | if (next) | 
|  | return next; | 
|  |  | 
|  | /* no child, visit my or the closest ancestor's next sibling */ | 
|  | while (pos != cgroup) { | 
|  | next = cgroup_next_sibling(pos); | 
|  | if (next) | 
|  | return next; | 
|  | pos = pos->parent; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre); | 
|  |  | 
|  | /** | 
|  | * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup | 
|  | * @pos: cgroup of interest | 
|  | * | 
|  | * Return the rightmost descendant of @pos.  If there's no descendant, | 
|  | * @pos is returned.  This can be used during pre-order traversal to skip | 
|  | * subtree of @pos. | 
|  | * | 
|  | * While this function requires RCU read locking, it doesn't require the | 
|  | * whole traversal to be contained in a single RCU critical section.  This | 
|  | * function will return the correct rightmost descendant as long as @pos is | 
|  | * accessible. | 
|  | */ | 
|  | struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos) | 
|  | { | 
|  | struct cgroup *last, *tmp; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  |  | 
|  | do { | 
|  | last = pos; | 
|  | /* ->prev isn't RCU safe, walk ->next till the end */ | 
|  | pos = NULL; | 
|  | list_for_each_entry_rcu(tmp, &last->children, sibling) | 
|  | pos = tmp; | 
|  | } while (pos); | 
|  |  | 
|  | return last; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant); | 
|  |  | 
|  | static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos) | 
|  | { | 
|  | struct cgroup *last; | 
|  |  | 
|  | do { | 
|  | last = pos; | 
|  | pos = list_first_or_null_rcu(&pos->children, struct cgroup, | 
|  | sibling); | 
|  | } while (pos); | 
|  |  | 
|  | return last; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_next_descendant_post - find the next descendant for post-order walk | 
|  | * @pos: the current position (%NULL to initiate traversal) | 
|  | * @cgroup: cgroup whose descendants to walk | 
|  | * | 
|  | * To be used by cgroup_for_each_descendant_post().  Find the next | 
|  | * descendant to visit for post-order traversal of @cgroup's descendants. | 
|  | * | 
|  | * While this function requires RCU read locking, it doesn't require the | 
|  | * whole traversal to be contained in a single RCU critical section.  This | 
|  | * function will return the correct next descendant as long as both @pos | 
|  | * and @cgroup are accessible and @pos is a descendant of @cgroup. | 
|  | */ | 
|  | struct cgroup *cgroup_next_descendant_post(struct cgroup *pos, | 
|  | struct cgroup *cgroup) | 
|  | { | 
|  | struct cgroup *next; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  |  | 
|  | /* if first iteration, visit the leftmost descendant */ | 
|  | if (!pos) { | 
|  | next = cgroup_leftmost_descendant(cgroup); | 
|  | return next != cgroup ? next : NULL; | 
|  | } | 
|  |  | 
|  | /* if there's an unvisited sibling, visit its leftmost descendant */ | 
|  | next = cgroup_next_sibling(pos); | 
|  | if (next) | 
|  | return cgroup_leftmost_descendant(next); | 
|  |  | 
|  | /* no sibling left, visit parent */ | 
|  | next = pos->parent; | 
|  | return next != cgroup ? next : NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_next_descendant_post); | 
|  |  | 
|  | void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it) | 
|  | __acquires(css_set_lock) | 
|  | { | 
|  | /* | 
|  | * The first time anyone tries to iterate across a cgroup, | 
|  | * we need to enable the list linking each css_set to its | 
|  | * tasks, and fix up all existing tasks. | 
|  | */ | 
|  | if (!use_task_css_set_links) | 
|  | cgroup_enable_task_cg_lists(); | 
|  |  | 
|  | read_lock(&css_set_lock); | 
|  | it->cset_link = &cgrp->cset_links; | 
|  | cgroup_advance_iter(cgrp, it); | 
|  | } | 
|  |  | 
|  | struct task_struct *cgroup_iter_next(struct cgroup *cgrp, | 
|  | struct cgroup_iter *it) | 
|  | { | 
|  | struct task_struct *res; | 
|  | struct list_head *l = it->task; | 
|  | struct cgrp_cset_link *link; | 
|  |  | 
|  | /* If the iterator cg is NULL, we have no tasks */ | 
|  | if (!it->cset_link) | 
|  | return NULL; | 
|  | res = list_entry(l, struct task_struct, cg_list); | 
|  | /* Advance iterator to find next entry */ | 
|  | l = l->next; | 
|  | link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link); | 
|  | if (l == &link->cset->tasks) { | 
|  | /* We reached the end of this task list - move on to | 
|  | * the next cg_cgroup_link */ | 
|  | cgroup_advance_iter(cgrp, it); | 
|  | } else { | 
|  | it->task = l; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it) | 
|  | __releases(css_set_lock) | 
|  | { | 
|  | read_unlock(&css_set_lock); | 
|  | } | 
|  |  | 
|  | static inline int started_after_time(struct task_struct *t1, | 
|  | struct timespec *time, | 
|  | struct task_struct *t2) | 
|  | { | 
|  | int start_diff = timespec_compare(&t1->start_time, time); | 
|  | if (start_diff > 0) { | 
|  | return 1; | 
|  | } else if (start_diff < 0) { | 
|  | return 0; | 
|  | } else { | 
|  | /* | 
|  | * Arbitrarily, if two processes started at the same | 
|  | * time, we'll say that the lower pointer value | 
|  | * started first. Note that t2 may have exited by now | 
|  | * so this may not be a valid pointer any longer, but | 
|  | * that's fine - it still serves to distinguish | 
|  | * between two tasks started (effectively) simultaneously. | 
|  | */ | 
|  | return t1 > t2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is a callback from heap_insert() and is used to order | 
|  | * the heap. | 
|  | * In this case we order the heap in descending task start time. | 
|  | */ | 
|  | static inline int started_after(void *p1, void *p2) | 
|  | { | 
|  | struct task_struct *t1 = p1; | 
|  | struct task_struct *t2 = p2; | 
|  | return started_after_time(t1, &t2->start_time, t2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_scan_tasks - iterate though all the tasks in a cgroup | 
|  | * @scan: struct cgroup_scanner containing arguments for the scan | 
|  | * | 
|  | * Arguments include pointers to callback functions test_task() and | 
|  | * process_task(). | 
|  | * Iterate through all the tasks in a cgroup, calling test_task() for each, | 
|  | * and if it returns true, call process_task() for it also. | 
|  | * The test_task pointer may be NULL, meaning always true (select all tasks). | 
|  | * Effectively duplicates cgroup_iter_{start,next,end}() | 
|  | * but does not lock css_set_lock for the call to process_task(). | 
|  | * The struct cgroup_scanner may be embedded in any structure of the caller's | 
|  | * creation. | 
|  | * It is guaranteed that process_task() will act on every task that | 
|  | * is a member of the cgroup for the duration of this call. This | 
|  | * function may or may not call process_task() for tasks that exit | 
|  | * or move to a different cgroup during the call, or are forked or | 
|  | * move into the cgroup during the call. | 
|  | * | 
|  | * Note that test_task() may be called with locks held, and may in some | 
|  | * situations be called multiple times for the same task, so it should | 
|  | * be cheap. | 
|  | * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been | 
|  | * pre-allocated and will be used for heap operations (and its "gt" member will | 
|  | * be overwritten), else a temporary heap will be used (allocation of which | 
|  | * may cause this function to fail). | 
|  | */ | 
|  | int cgroup_scan_tasks(struct cgroup_scanner *scan) | 
|  | { | 
|  | int retval, i; | 
|  | struct cgroup_iter it; | 
|  | struct task_struct *p, *dropped; | 
|  | /* Never dereference latest_task, since it's not refcounted */ | 
|  | struct task_struct *latest_task = NULL; | 
|  | struct ptr_heap tmp_heap; | 
|  | struct ptr_heap *heap; | 
|  | struct timespec latest_time = { 0, 0 }; | 
|  |  | 
|  | if (scan->heap) { | 
|  | /* The caller supplied our heap and pre-allocated its memory */ | 
|  | heap = scan->heap; | 
|  | heap->gt = &started_after; | 
|  | } else { | 
|  | /* We need to allocate our own heap memory */ | 
|  | heap = &tmp_heap; | 
|  | retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); | 
|  | if (retval) | 
|  | /* cannot allocate the heap */ | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | again: | 
|  | /* | 
|  | * Scan tasks in the cgroup, using the scanner's "test_task" callback | 
|  | * to determine which are of interest, and using the scanner's | 
|  | * "process_task" callback to process any of them that need an update. | 
|  | * Since we don't want to hold any locks during the task updates, | 
|  | * gather tasks to be processed in a heap structure. | 
|  | * The heap is sorted by descending task start time. | 
|  | * If the statically-sized heap fills up, we overflow tasks that | 
|  | * started later, and in future iterations only consider tasks that | 
|  | * started after the latest task in the previous pass. This | 
|  | * guarantees forward progress and that we don't miss any tasks. | 
|  | */ | 
|  | heap->size = 0; | 
|  | cgroup_iter_start(scan->cg, &it); | 
|  | while ((p = cgroup_iter_next(scan->cg, &it))) { | 
|  | /* | 
|  | * Only affect tasks that qualify per the caller's callback, | 
|  | * if he provided one | 
|  | */ | 
|  | if (scan->test_task && !scan->test_task(p, scan)) | 
|  | continue; | 
|  | /* | 
|  | * Only process tasks that started after the last task | 
|  | * we processed | 
|  | */ | 
|  | if (!started_after_time(p, &latest_time, latest_task)) | 
|  | continue; | 
|  | dropped = heap_insert(heap, p); | 
|  | if (dropped == NULL) { | 
|  | /* | 
|  | * The new task was inserted; the heap wasn't | 
|  | * previously full | 
|  | */ | 
|  | get_task_struct(p); | 
|  | } else if (dropped != p) { | 
|  | /* | 
|  | * The new task was inserted, and pushed out a | 
|  | * different task | 
|  | */ | 
|  | get_task_struct(p); | 
|  | put_task_struct(dropped); | 
|  | } | 
|  | /* | 
|  | * Else the new task was newer than anything already in | 
|  | * the heap and wasn't inserted | 
|  | */ | 
|  | } | 
|  | cgroup_iter_end(scan->cg, &it); | 
|  |  | 
|  | if (heap->size) { | 
|  | for (i = 0; i < heap->size; i++) { | 
|  | struct task_struct *q = heap->ptrs[i]; | 
|  | if (i == 0) { | 
|  | latest_time = q->start_time; | 
|  | latest_task = q; | 
|  | } | 
|  | /* Process the task per the caller's callback */ | 
|  | scan->process_task(q, scan); | 
|  | put_task_struct(q); | 
|  | } | 
|  | /* | 
|  | * If we had to process any tasks at all, scan again | 
|  | * in case some of them were in the middle of forking | 
|  | * children that didn't get processed. | 
|  | * Not the most efficient way to do it, but it avoids | 
|  | * having to take callback_mutex in the fork path | 
|  | */ | 
|  | goto again; | 
|  | } | 
|  | if (heap == &tmp_heap) | 
|  | heap_free(&tmp_heap); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cgroup_transfer_one_task(struct task_struct *task, | 
|  | struct cgroup_scanner *scan) | 
|  | { | 
|  | struct cgroup *new_cgroup = scan->data; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | cgroup_attach_task(new_cgroup, task, false); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_trasnsfer_tasks - move tasks from one cgroup to another | 
|  | * @to: cgroup to which the tasks will be moved | 
|  | * @from: cgroup in which the tasks currently reside | 
|  | */ | 
|  | int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) | 
|  | { | 
|  | struct cgroup_scanner scan; | 
|  |  | 
|  | scan.cg = from; | 
|  | scan.test_task = NULL; /* select all tasks in cgroup */ | 
|  | scan.process_task = cgroup_transfer_one_task; | 
|  | scan.heap = NULL; | 
|  | scan.data = to; | 
|  |  | 
|  | return cgroup_scan_tasks(&scan); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stuff for reading the 'tasks'/'procs' files. | 
|  | * | 
|  | * Reading this file can return large amounts of data if a cgroup has | 
|  | * *lots* of attached tasks. So it may need several calls to read(), | 
|  | * but we cannot guarantee that the information we produce is correct | 
|  | * unless we produce it entirely atomically. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* which pidlist file are we talking about? */ | 
|  | enum cgroup_filetype { | 
|  | CGROUP_FILE_PROCS, | 
|  | CGROUP_FILE_TASKS, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * A pidlist is a list of pids that virtually represents the contents of one | 
|  | * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, | 
|  | * a pair (one each for procs, tasks) for each pid namespace that's relevant | 
|  | * to the cgroup. | 
|  | */ | 
|  | struct cgroup_pidlist { | 
|  | /* | 
|  | * used to find which pidlist is wanted. doesn't change as long as | 
|  | * this particular list stays in the list. | 
|  | */ | 
|  | struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; | 
|  | /* array of xids */ | 
|  | pid_t *list; | 
|  | /* how many elements the above list has */ | 
|  | int length; | 
|  | /* how many files are using the current array */ | 
|  | int use_count; | 
|  | /* each of these stored in a list by its cgroup */ | 
|  | struct list_head links; | 
|  | /* pointer to the cgroup we belong to, for list removal purposes */ | 
|  | struct cgroup *owner; | 
|  | /* protects the other fields */ | 
|  | struct rw_semaphore mutex; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The following two functions "fix" the issue where there are more pids | 
|  | * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. | 
|  | * TODO: replace with a kernel-wide solution to this problem | 
|  | */ | 
|  | #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) | 
|  | static void *pidlist_allocate(int count) | 
|  | { | 
|  | if (PIDLIST_TOO_LARGE(count)) | 
|  | return vmalloc(count * sizeof(pid_t)); | 
|  | else | 
|  | return kmalloc(count * sizeof(pid_t), GFP_KERNEL); | 
|  | } | 
|  | static void pidlist_free(void *p) | 
|  | { | 
|  | if (is_vmalloc_addr(p)) | 
|  | vfree(p); | 
|  | else | 
|  | kfree(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries | 
|  | * Returns the number of unique elements. | 
|  | */ | 
|  | static int pidlist_uniq(pid_t *list, int length) | 
|  | { | 
|  | int src, dest = 1; | 
|  |  | 
|  | /* | 
|  | * we presume the 0th element is unique, so i starts at 1. trivial | 
|  | * edge cases first; no work needs to be done for either | 
|  | */ | 
|  | if (length == 0 || length == 1) | 
|  | return length; | 
|  | /* src and dest walk down the list; dest counts unique elements */ | 
|  | for (src = 1; src < length; src++) { | 
|  | /* find next unique element */ | 
|  | while (list[src] == list[src-1]) { | 
|  | src++; | 
|  | if (src == length) | 
|  | goto after; | 
|  | } | 
|  | /* dest always points to where the next unique element goes */ | 
|  | list[dest] = list[src]; | 
|  | dest++; | 
|  | } | 
|  | after: | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | static int cmppid(const void *a, const void *b) | 
|  | { | 
|  | return *(pid_t *)a - *(pid_t *)b; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find the appropriate pidlist for our purpose (given procs vs tasks) | 
|  | * returns with the lock on that pidlist already held, and takes care | 
|  | * of the use count, or returns NULL with no locks held if we're out of | 
|  | * memory. | 
|  | */ | 
|  | static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, | 
|  | enum cgroup_filetype type) | 
|  | { | 
|  | struct cgroup_pidlist *l; | 
|  | /* don't need task_nsproxy() if we're looking at ourself */ | 
|  | struct pid_namespace *ns = task_active_pid_ns(current); | 
|  |  | 
|  | /* | 
|  | * We can't drop the pidlist_mutex before taking the l->mutex in case | 
|  | * the last ref-holder is trying to remove l from the list at the same | 
|  | * time. Holding the pidlist_mutex precludes somebody taking whichever | 
|  | * list we find out from under us - compare release_pid_array(). | 
|  | */ | 
|  | mutex_lock(&cgrp->pidlist_mutex); | 
|  | list_for_each_entry(l, &cgrp->pidlists, links) { | 
|  | if (l->key.type == type && l->key.ns == ns) { | 
|  | /* make sure l doesn't vanish out from under us */ | 
|  | down_write(&l->mutex); | 
|  | mutex_unlock(&cgrp->pidlist_mutex); | 
|  | return l; | 
|  | } | 
|  | } | 
|  | /* entry not found; create a new one */ | 
|  | l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); | 
|  | if (!l) { | 
|  | mutex_unlock(&cgrp->pidlist_mutex); | 
|  | return l; | 
|  | } | 
|  | init_rwsem(&l->mutex); | 
|  | down_write(&l->mutex); | 
|  | l->key.type = type; | 
|  | l->key.ns = get_pid_ns(ns); | 
|  | l->owner = cgrp; | 
|  | list_add(&l->links, &cgrp->pidlists); | 
|  | mutex_unlock(&cgrp->pidlist_mutex); | 
|  | return l; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load a cgroup's pidarray with either procs' tgids or tasks' pids | 
|  | */ | 
|  | static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, | 
|  | struct cgroup_pidlist **lp) | 
|  | { | 
|  | pid_t *array; | 
|  | int length; | 
|  | int pid, n = 0; /* used for populating the array */ | 
|  | struct cgroup_iter it; | 
|  | struct task_struct *tsk; | 
|  | struct cgroup_pidlist *l; | 
|  |  | 
|  | /* | 
|  | * If cgroup gets more users after we read count, we won't have | 
|  | * enough space - tough.  This race is indistinguishable to the | 
|  | * caller from the case that the additional cgroup users didn't | 
|  | * show up until sometime later on. | 
|  | */ | 
|  | length = cgroup_task_count(cgrp); | 
|  | array = pidlist_allocate(length); | 
|  | if (!array) | 
|  | return -ENOMEM; | 
|  | /* now, populate the array */ | 
|  | cgroup_iter_start(cgrp, &it); | 
|  | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 
|  | if (unlikely(n == length)) | 
|  | break; | 
|  | /* get tgid or pid for procs or tasks file respectively */ | 
|  | if (type == CGROUP_FILE_PROCS) | 
|  | pid = task_tgid_vnr(tsk); | 
|  | else | 
|  | pid = task_pid_vnr(tsk); | 
|  | if (pid > 0) /* make sure to only use valid results */ | 
|  | array[n++] = pid; | 
|  | } | 
|  | cgroup_iter_end(cgrp, &it); | 
|  | length = n; | 
|  | /* now sort & (if procs) strip out duplicates */ | 
|  | sort(array, length, sizeof(pid_t), cmppid, NULL); | 
|  | if (type == CGROUP_FILE_PROCS) | 
|  | length = pidlist_uniq(array, length); | 
|  | l = cgroup_pidlist_find(cgrp, type); | 
|  | if (!l) { | 
|  | pidlist_free(array); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* store array, freeing old if necessary - lock already held */ | 
|  | pidlist_free(l->list); | 
|  | l->list = array; | 
|  | l->length = length; | 
|  | l->use_count++; | 
|  | up_write(&l->mutex); | 
|  | *lp = l; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroupstats_build - build and fill cgroupstats | 
|  | * @stats: cgroupstats to fill information into | 
|  | * @dentry: A dentry entry belonging to the cgroup for which stats have | 
|  | * been requested. | 
|  | * | 
|  | * Build and fill cgroupstats so that taskstats can export it to user | 
|  | * space. | 
|  | */ | 
|  | int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | struct cgroup *cgrp; | 
|  | struct cgroup_iter it; | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | /* | 
|  | * Validate dentry by checking the superblock operations, | 
|  | * and make sure it's a directory. | 
|  | */ | 
|  | if (dentry->d_sb->s_op != &cgroup_ops || | 
|  | !S_ISDIR(dentry->d_inode->i_mode)) | 
|  | goto err; | 
|  |  | 
|  | ret = 0; | 
|  | cgrp = dentry->d_fsdata; | 
|  |  | 
|  | cgroup_iter_start(cgrp, &it); | 
|  | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 
|  | switch (tsk->state) { | 
|  | case TASK_RUNNING: | 
|  | stats->nr_running++; | 
|  | break; | 
|  | case TASK_INTERRUPTIBLE: | 
|  | stats->nr_sleeping++; | 
|  | break; | 
|  | case TASK_UNINTERRUPTIBLE: | 
|  | stats->nr_uninterruptible++; | 
|  | break; | 
|  | case TASK_STOPPED: | 
|  | stats->nr_stopped++; | 
|  | break; | 
|  | default: | 
|  | if (delayacct_is_task_waiting_on_io(tsk)) | 
|  | stats->nr_io_wait++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | cgroup_iter_end(cgrp, &it); | 
|  |  | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * seq_file methods for the tasks/procs files. The seq_file position is the | 
|  | * next pid to display; the seq_file iterator is a pointer to the pid | 
|  | * in the cgroup->l->list array. | 
|  | */ | 
|  |  | 
|  | static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) | 
|  | { | 
|  | /* | 
|  | * Initially we receive a position value that corresponds to | 
|  | * one more than the last pid shown (or 0 on the first call or | 
|  | * after a seek to the start). Use a binary-search to find the | 
|  | * next pid to display, if any | 
|  | */ | 
|  | struct cgroup_pidlist *l = s->private; | 
|  | int index = 0, pid = *pos; | 
|  | int *iter; | 
|  |  | 
|  | down_read(&l->mutex); | 
|  | if (pid) { | 
|  | int end = l->length; | 
|  |  | 
|  | while (index < end) { | 
|  | int mid = (index + end) / 2; | 
|  | if (l->list[mid] == pid) { | 
|  | index = mid; | 
|  | break; | 
|  | } else if (l->list[mid] <= pid) | 
|  | index = mid + 1; | 
|  | else | 
|  | end = mid; | 
|  | } | 
|  | } | 
|  | /* If we're off the end of the array, we're done */ | 
|  | if (index >= l->length) | 
|  | return NULL; | 
|  | /* Update the abstract position to be the actual pid that we found */ | 
|  | iter = l->list + index; | 
|  | *pos = *iter; | 
|  | return iter; | 
|  | } | 
|  |  | 
|  | static void cgroup_pidlist_stop(struct seq_file *s, void *v) | 
|  | { | 
|  | struct cgroup_pidlist *l = s->private; | 
|  | up_read(&l->mutex); | 
|  | } | 
|  |  | 
|  | static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) | 
|  | { | 
|  | struct cgroup_pidlist *l = s->private; | 
|  | pid_t *p = v; | 
|  | pid_t *end = l->list + l->length; | 
|  | /* | 
|  | * Advance to the next pid in the array. If this goes off the | 
|  | * end, we're done | 
|  | */ | 
|  | p++; | 
|  | if (p >= end) { | 
|  | return NULL; | 
|  | } else { | 
|  | *pos = *p; | 
|  | return p; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cgroup_pidlist_show(struct seq_file *s, void *v) | 
|  | { | 
|  | return seq_printf(s, "%d\n", *(int *)v); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * seq_operations functions for iterating on pidlists through seq_file - | 
|  | * independent of whether it's tasks or procs | 
|  | */ | 
|  | static const struct seq_operations cgroup_pidlist_seq_operations = { | 
|  | .start = cgroup_pidlist_start, | 
|  | .stop = cgroup_pidlist_stop, | 
|  | .next = cgroup_pidlist_next, | 
|  | .show = cgroup_pidlist_show, | 
|  | }; | 
|  |  | 
|  | static void cgroup_release_pid_array(struct cgroup_pidlist *l) | 
|  | { | 
|  | /* | 
|  | * the case where we're the last user of this particular pidlist will | 
|  | * have us remove it from the cgroup's list, which entails taking the | 
|  | * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> | 
|  | * pidlist_mutex, we have to take pidlist_mutex first. | 
|  | */ | 
|  | mutex_lock(&l->owner->pidlist_mutex); | 
|  | down_write(&l->mutex); | 
|  | BUG_ON(!l->use_count); | 
|  | if (!--l->use_count) { | 
|  | /* we're the last user if refcount is 0; remove and free */ | 
|  | list_del(&l->links); | 
|  | mutex_unlock(&l->owner->pidlist_mutex); | 
|  | pidlist_free(l->list); | 
|  | put_pid_ns(l->key.ns); | 
|  | up_write(&l->mutex); | 
|  | kfree(l); | 
|  | return; | 
|  | } | 
|  | mutex_unlock(&l->owner->pidlist_mutex); | 
|  | up_write(&l->mutex); | 
|  | } | 
|  |  | 
|  | static int cgroup_pidlist_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct cgroup_pidlist *l; | 
|  | if (!(file->f_mode & FMODE_READ)) | 
|  | return 0; | 
|  | /* | 
|  | * the seq_file will only be initialized if the file was opened for | 
|  | * reading; hence we check if it's not null only in that case. | 
|  | */ | 
|  | l = ((struct seq_file *)file->private_data)->private; | 
|  | cgroup_release_pid_array(l); | 
|  | return seq_release(inode, file); | 
|  | } | 
|  |  | 
|  | static const struct file_operations cgroup_pidlist_operations = { | 
|  | .read = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .write = cgroup_file_write, | 
|  | .release = cgroup_pidlist_release, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The following functions handle opens on a file that displays a pidlist | 
|  | * (tasks or procs). Prepare an array of the process/thread IDs of whoever's | 
|  | * in the cgroup. | 
|  | */ | 
|  | /* helper function for the two below it */ | 
|  | static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) | 
|  | { | 
|  | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
|  | struct cgroup_pidlist *l; | 
|  | int retval; | 
|  |  | 
|  | /* Nothing to do for write-only files */ | 
|  | if (!(file->f_mode & FMODE_READ)) | 
|  | return 0; | 
|  |  | 
|  | /* have the array populated */ | 
|  | retval = pidlist_array_load(cgrp, type, &l); | 
|  | if (retval) | 
|  | return retval; | 
|  | /* configure file information */ | 
|  | file->f_op = &cgroup_pidlist_operations; | 
|  |  | 
|  | retval = seq_open(file, &cgroup_pidlist_seq_operations); | 
|  | if (retval) { | 
|  | cgroup_release_pid_array(l); | 
|  | return retval; | 
|  | } | 
|  | ((struct seq_file *)file->private_data)->private = l; | 
|  | return 0; | 
|  | } | 
|  | static int cgroup_tasks_open(struct inode *unused, struct file *file) | 
|  | { | 
|  | return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); | 
|  | } | 
|  | static int cgroup_procs_open(struct inode *unused, struct file *file) | 
|  | { | 
|  | return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); | 
|  | } | 
|  |  | 
|  | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return notify_on_release(cgrp); | 
|  | } | 
|  |  | 
|  | static int cgroup_write_notify_on_release(struct cgroup *cgrp, | 
|  | struct cftype *cft, | 
|  | u64 val) | 
|  | { | 
|  | clear_bit(CGRP_RELEASABLE, &cgrp->flags); | 
|  | if (val) | 
|  | set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  | else | 
|  | clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When dput() is called asynchronously, if umount has been done and | 
|  | * then deactivate_super() in cgroup_free_fn() kills the superblock, | 
|  | * there's a small window that vfs will see the root dentry with non-zero | 
|  | * refcnt and trigger BUG(). | 
|  | * | 
|  | * That's why we hold a reference before dput() and drop it right after. | 
|  | */ | 
|  | static void cgroup_dput(struct cgroup *cgrp) | 
|  | { | 
|  | struct super_block *sb = cgrp->root->sb; | 
|  |  | 
|  | atomic_inc(&sb->s_active); | 
|  | dput(cgrp->dentry); | 
|  | deactivate_super(sb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unregister event and free resources. | 
|  | * | 
|  | * Gets called from workqueue. | 
|  | */ | 
|  | static void cgroup_event_remove(struct work_struct *work) | 
|  | { | 
|  | struct cgroup_event *event = container_of(work, struct cgroup_event, | 
|  | remove); | 
|  | struct cgroup *cgrp = event->cgrp; | 
|  |  | 
|  | remove_wait_queue(event->wqh, &event->wait); | 
|  |  | 
|  | event->cft->unregister_event(cgrp, event->cft, event->eventfd); | 
|  |  | 
|  | /* Notify userspace the event is going away. */ | 
|  | eventfd_signal(event->eventfd, 1); | 
|  |  | 
|  | eventfd_ctx_put(event->eventfd); | 
|  | kfree(event); | 
|  | cgroup_dput(cgrp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gets called on POLLHUP on eventfd when user closes it. | 
|  | * | 
|  | * Called with wqh->lock held and interrupts disabled. | 
|  | */ | 
|  | static int cgroup_event_wake(wait_queue_t *wait, unsigned mode, | 
|  | int sync, void *key) | 
|  | { | 
|  | struct cgroup_event *event = container_of(wait, | 
|  | struct cgroup_event, wait); | 
|  | struct cgroup *cgrp = event->cgrp; | 
|  | unsigned long flags = (unsigned long)key; | 
|  |  | 
|  | if (flags & POLLHUP) { | 
|  | /* | 
|  | * If the event has been detached at cgroup removal, we | 
|  | * can simply return knowing the other side will cleanup | 
|  | * for us. | 
|  | * | 
|  | * We can't race against event freeing since the other | 
|  | * side will require wqh->lock via remove_wait_queue(), | 
|  | * which we hold. | 
|  | */ | 
|  | spin_lock(&cgrp->event_list_lock); | 
|  | if (!list_empty(&event->list)) { | 
|  | list_del_init(&event->list); | 
|  | /* | 
|  | * We are in atomic context, but cgroup_event_remove() | 
|  | * may sleep, so we have to call it in workqueue. | 
|  | */ | 
|  | schedule_work(&event->remove); | 
|  | } | 
|  | spin_unlock(&cgrp->event_list_lock); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cgroup_event_ptable_queue_proc(struct file *file, | 
|  | wait_queue_head_t *wqh, poll_table *pt) | 
|  | { | 
|  | struct cgroup_event *event = container_of(pt, | 
|  | struct cgroup_event, pt); | 
|  |  | 
|  | event->wqh = wqh; | 
|  | add_wait_queue(wqh, &event->wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse input and register new cgroup event handler. | 
|  | * | 
|  | * Input must be in format '<event_fd> <control_fd> <args>'. | 
|  | * Interpretation of args is defined by control file implementation. | 
|  | */ | 
|  | static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft, | 
|  | const char *buffer) | 
|  | { | 
|  | struct cgroup_event *event = NULL; | 
|  | struct cgroup *cgrp_cfile; | 
|  | unsigned int efd, cfd; | 
|  | struct file *efile = NULL; | 
|  | struct file *cfile = NULL; | 
|  | char *endp; | 
|  | int ret; | 
|  |  | 
|  | efd = simple_strtoul(buffer, &endp, 10); | 
|  | if (*endp != ' ') | 
|  | return -EINVAL; | 
|  | buffer = endp + 1; | 
|  |  | 
|  | cfd = simple_strtoul(buffer, &endp, 10); | 
|  | if ((*endp != ' ') && (*endp != '\0')) | 
|  | return -EINVAL; | 
|  | buffer = endp + 1; | 
|  |  | 
|  | event = kzalloc(sizeof(*event), GFP_KERNEL); | 
|  | if (!event) | 
|  | return -ENOMEM; | 
|  | event->cgrp = cgrp; | 
|  | INIT_LIST_HEAD(&event->list); | 
|  | init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc); | 
|  | init_waitqueue_func_entry(&event->wait, cgroup_event_wake); | 
|  | INIT_WORK(&event->remove, cgroup_event_remove); | 
|  |  | 
|  | efile = eventfd_fget(efd); | 
|  | if (IS_ERR(efile)) { | 
|  | ret = PTR_ERR(efile); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | event->eventfd = eventfd_ctx_fileget(efile); | 
|  | if (IS_ERR(event->eventfd)) { | 
|  | ret = PTR_ERR(event->eventfd); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | cfile = fget(cfd); | 
|  | if (!cfile) { | 
|  | ret = -EBADF; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* the process need read permission on control file */ | 
|  | /* AV: shouldn't we check that it's been opened for read instead? */ | 
|  | ret = inode_permission(file_inode(cfile), MAY_READ); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  |  | 
|  | event->cft = __file_cft(cfile); | 
|  | if (IS_ERR(event->cft)) { | 
|  | ret = PTR_ERR(event->cft); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The file to be monitored must be in the same cgroup as | 
|  | * cgroup.event_control is. | 
|  | */ | 
|  | cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent); | 
|  | if (cgrp_cfile != cgrp) { | 
|  | ret = -EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (!event->cft->register_event || !event->cft->unregister_event) { | 
|  | ret = -EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = event->cft->register_event(cgrp, event->cft, | 
|  | event->eventfd, buffer); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | efile->f_op->poll(efile, &event->pt); | 
|  |  | 
|  | /* | 
|  | * Events should be removed after rmdir of cgroup directory, but before | 
|  | * destroying subsystem state objects. Let's take reference to cgroup | 
|  | * directory dentry to do that. | 
|  | */ | 
|  | dget(cgrp->dentry); | 
|  |  | 
|  | spin_lock(&cgrp->event_list_lock); | 
|  | list_add(&event->list, &cgrp->event_list); | 
|  | spin_unlock(&cgrp->event_list_lock); | 
|  |  | 
|  | fput(cfile); | 
|  | fput(efile); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | if (cfile) | 
|  | fput(cfile); | 
|  |  | 
|  | if (event && event->eventfd && !IS_ERR(event->eventfd)) | 
|  | eventfd_ctx_put(event->eventfd); | 
|  |  | 
|  | if (!IS_ERR_OR_NULL(efile)) | 
|  | fput(efile); | 
|  |  | 
|  | kfree(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 cgroup_clone_children_read(struct cgroup *cgrp, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); | 
|  | } | 
|  |  | 
|  | static int cgroup_clone_children_write(struct cgroup *cgrp, | 
|  | struct cftype *cft, | 
|  | u64 val) | 
|  | { | 
|  | if (val) | 
|  | set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); | 
|  | else | 
|  | clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cftype cgroup_base_files[] = { | 
|  | { | 
|  | .name = "cgroup.procs", | 
|  | .open = cgroup_procs_open, | 
|  | .write_u64 = cgroup_procs_write, | 
|  | .release = cgroup_pidlist_release, | 
|  | .mode = S_IRUGO | S_IWUSR, | 
|  | }, | 
|  | { | 
|  | .name = "cgroup.event_control", | 
|  | .write_string = cgroup_write_event_control, | 
|  | .mode = S_IWUGO, | 
|  | }, | 
|  | { | 
|  | .name = "cgroup.clone_children", | 
|  | .flags = CFTYPE_INSANE, | 
|  | .read_u64 = cgroup_clone_children_read, | 
|  | .write_u64 = cgroup_clone_children_write, | 
|  | }, | 
|  | { | 
|  | .name = "cgroup.sane_behavior", | 
|  | .flags = CFTYPE_ONLY_ON_ROOT, | 
|  | .read_seq_string = cgroup_sane_behavior_show, | 
|  | }, | 
|  |  | 
|  | /* | 
|  | * Historical crazy stuff.  These don't have "cgroup."  prefix and | 
|  | * don't exist if sane_behavior.  If you're depending on these, be | 
|  | * prepared to be burned. | 
|  | */ | 
|  | { | 
|  | .name = "tasks", | 
|  | .flags = CFTYPE_INSANE,		/* use "procs" instead */ | 
|  | .open = cgroup_tasks_open, | 
|  | .write_u64 = cgroup_tasks_write, | 
|  | .release = cgroup_pidlist_release, | 
|  | .mode = S_IRUGO | S_IWUSR, | 
|  | }, | 
|  | { | 
|  | .name = "notify_on_release", | 
|  | .flags = CFTYPE_INSANE, | 
|  | .read_u64 = cgroup_read_notify_on_release, | 
|  | .write_u64 = cgroup_write_notify_on_release, | 
|  | }, | 
|  | { | 
|  | .name = "release_agent", | 
|  | .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT, | 
|  | .read_seq_string = cgroup_release_agent_show, | 
|  | .write_string = cgroup_release_agent_write, | 
|  | .max_write_len = PATH_MAX, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cgroup_populate_dir - selectively creation of files in a directory | 
|  | * @cgrp: target cgroup | 
|  | * @base_files: true if the base files should be added | 
|  | * @subsys_mask: mask of the subsystem ids whose files should be added | 
|  | */ | 
|  | static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files, | 
|  | unsigned long subsys_mask) | 
|  | { | 
|  | int err; | 
|  | struct cgroup_subsys *ss; | 
|  |  | 
|  | if (base_files) { | 
|  | err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* process cftsets of each subsystem */ | 
|  | for_each_root_subsys(cgrp->root, ss) { | 
|  | struct cftype_set *set; | 
|  | if (!test_bit(ss->subsys_id, &subsys_mask)) | 
|  | continue; | 
|  |  | 
|  | list_for_each_entry(set, &ss->cftsets, node) | 
|  | cgroup_addrm_files(cgrp, ss, set->cfts, true); | 
|  | } | 
|  |  | 
|  | /* This cgroup is ready now */ | 
|  | for_each_root_subsys(cgrp->root, ss) { | 
|  | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | 
|  | struct css_id *id = rcu_dereference_protected(css->id, true); | 
|  |  | 
|  | /* | 
|  | * Update id->css pointer and make this css visible from | 
|  | * CSS ID functions. This pointer will be dereferened | 
|  | * from RCU-read-side without locks. | 
|  | */ | 
|  | if (id) | 
|  | rcu_assign_pointer(id->css, css); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void css_dput_fn(struct work_struct *work) | 
|  | { | 
|  | struct cgroup_subsys_state *css = | 
|  | container_of(work, struct cgroup_subsys_state, dput_work); | 
|  |  | 
|  | cgroup_dput(css->cgroup); | 
|  | } | 
|  |  | 
|  | static void css_release(struct percpu_ref *ref) | 
|  | { | 
|  | struct cgroup_subsys_state *css = | 
|  | container_of(ref, struct cgroup_subsys_state, refcnt); | 
|  |  | 
|  | schedule_work(&css->dput_work); | 
|  | } | 
|  |  | 
|  | static void init_cgroup_css(struct cgroup_subsys_state *css, | 
|  | struct cgroup_subsys *ss, | 
|  | struct cgroup *cgrp) | 
|  | { | 
|  | css->cgroup = cgrp; | 
|  | css->flags = 0; | 
|  | css->id = NULL; | 
|  | if (cgrp == cgroup_dummy_top) | 
|  | css->flags |= CSS_ROOT; | 
|  | BUG_ON(cgrp->subsys[ss->subsys_id]); | 
|  | cgrp->subsys[ss->subsys_id] = css; | 
|  |  | 
|  | /* | 
|  | * css holds an extra ref to @cgrp->dentry which is put on the last | 
|  | * css_put().  dput() requires process context, which css_put() may | 
|  | * be called without.  @css->dput_work will be used to invoke | 
|  | * dput() asynchronously from css_put(). | 
|  | */ | 
|  | INIT_WORK(&css->dput_work, css_dput_fn); | 
|  | } | 
|  |  | 
|  | /* invoke ->post_create() on a new CSS and mark it online if successful */ | 
|  | static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | lockdep_assert_held(&cgroup_mutex); | 
|  |  | 
|  | if (ss->css_online) | 
|  | ret = ss->css_online(cgrp); | 
|  | if (!ret) | 
|  | cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */ | 
|  | static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp) | 
|  | __releases(&cgroup_mutex) __acquires(&cgroup_mutex) | 
|  | { | 
|  | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | 
|  |  | 
|  | lockdep_assert_held(&cgroup_mutex); | 
|  |  | 
|  | if (!(css->flags & CSS_ONLINE)) | 
|  | return; | 
|  |  | 
|  | if (ss->css_offline) | 
|  | ss->css_offline(cgrp); | 
|  |  | 
|  | cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cgroup_create - create a cgroup | 
|  | * @parent: cgroup that will be parent of the new cgroup | 
|  | * @dentry: dentry of the new cgroup | 
|  | * @mode: mode to set on new inode | 
|  | * | 
|  | * Must be called with the mutex on the parent inode held | 
|  | */ | 
|  | static long cgroup_create(struct cgroup *parent, struct dentry *dentry, | 
|  | umode_t mode) | 
|  | { | 
|  | struct cgroup *cgrp; | 
|  | struct cgroup_name *name; | 
|  | struct cgroupfs_root *root = parent->root; | 
|  | int err = 0; | 
|  | struct cgroup_subsys *ss; | 
|  | struct super_block *sb = root->sb; | 
|  |  | 
|  | /* allocate the cgroup and its ID, 0 is reserved for the root */ | 
|  | cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); | 
|  | if (!cgrp) | 
|  | return -ENOMEM; | 
|  |  | 
|  | name = cgroup_alloc_name(dentry); | 
|  | if (!name) | 
|  | goto err_free_cgrp; | 
|  | rcu_assign_pointer(cgrp->name, name); | 
|  |  | 
|  | cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL); | 
|  | if (cgrp->id < 0) | 
|  | goto err_free_name; | 
|  |  | 
|  | /* | 
|  | * Only live parents can have children.  Note that the liveliness | 
|  | * check isn't strictly necessary because cgroup_mkdir() and | 
|  | * cgroup_rmdir() are fully synchronized by i_mutex; however, do it | 
|  | * anyway so that locking is contained inside cgroup proper and we | 
|  | * don't get nasty surprises if we ever grow another caller. | 
|  | */ | 
|  | if (!cgroup_lock_live_group(parent)) { | 
|  | err = -ENODEV; | 
|  | goto err_free_id; | 
|  | } | 
|  |  | 
|  | /* Grab a reference on the superblock so the hierarchy doesn't | 
|  | * get deleted on unmount if there are child cgroups.  This | 
|  | * can be done outside cgroup_mutex, since the sb can't | 
|  | * disappear while someone has an open control file on the | 
|  | * fs */ | 
|  | atomic_inc(&sb->s_active); | 
|  |  | 
|  | init_cgroup_housekeeping(cgrp); | 
|  |  | 
|  | dentry->d_fsdata = cgrp; | 
|  | cgrp->dentry = dentry; | 
|  |  | 
|  | cgrp->parent = parent; | 
|  | cgrp->root = parent->root; | 
|  |  | 
|  | if (notify_on_release(parent)) | 
|  | set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  |  | 
|  | if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) | 
|  | set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); | 
|  |  | 
|  | for_each_root_subsys(root, ss) { | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | css = ss->css_alloc(cgrp); | 
|  | if (IS_ERR(css)) { | 
|  | err = PTR_ERR(css); | 
|  | goto err_free_all; | 
|  | } | 
|  |  | 
|  | err = percpu_ref_init(&css->refcnt, css_release); | 
|  | if (err) | 
|  | goto err_free_all; | 
|  |  | 
|  | init_cgroup_css(css, ss, cgrp); | 
|  |  | 
|  | if (ss->use_id) { | 
|  | err = alloc_css_id(ss, parent, cgrp); | 
|  | if (err) | 
|  | goto err_free_all; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create directory.  cgroup_create_file() returns with the new | 
|  | * directory locked on success so that it can be populated without | 
|  | * dropping cgroup_mutex. | 
|  | */ | 
|  | err = cgroup_create_file(dentry, S_IFDIR | mode, sb); | 
|  | if (err < 0) | 
|  | goto err_free_all; | 
|  | lockdep_assert_held(&dentry->d_inode->i_mutex); | 
|  |  | 
|  | cgrp->serial_nr = cgroup_serial_nr_next++; | 
|  |  | 
|  | /* allocation complete, commit to creation */ | 
|  | list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children); | 
|  | root->number_of_cgroups++; | 
|  |  | 
|  | /* each css holds a ref to the cgroup's dentry */ | 
|  | for_each_root_subsys(root, ss) | 
|  | dget(dentry); | 
|  |  | 
|  | /* hold a ref to the parent's dentry */ | 
|  | dget(parent->dentry); | 
|  |  | 
|  | /* creation succeeded, notify subsystems */ | 
|  | for_each_root_subsys(root, ss) { | 
|  | err = online_css(ss, cgrp); | 
|  | if (err) | 
|  | goto err_destroy; | 
|  |  | 
|  | if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && | 
|  | parent->parent) { | 
|  | pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", | 
|  | current->comm, current->pid, ss->name); | 
|  | if (!strcmp(ss->name, "memory")) | 
|  | pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n"); | 
|  | ss->warned_broken_hierarchy = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = cgroup_populate_dir(cgrp, true, root->subsys_mask); | 
|  | if (err) | 
|  | goto err_destroy; | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_free_all: | 
|  | for_each_root_subsys(root, ss) { | 
|  | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | 
|  |  | 
|  | if (css) { | 
|  | percpu_ref_cancel_init(&css->refcnt); | 
|  | ss->css_free(cgrp); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | /* Release the reference count that we took on the superblock */ | 
|  | deactivate_super(sb); | 
|  | err_free_id: | 
|  | ida_simple_remove(&root->cgroup_ida, cgrp->id); | 
|  | err_free_name: | 
|  | kfree(rcu_dereference_raw(cgrp->name)); | 
|  | err_free_cgrp: | 
|  | kfree(cgrp); | 
|  | return err; | 
|  |  | 
|  | err_destroy: | 
|  | cgroup_destroy_locked(cgrp); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&dentry->d_inode->i_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | struct cgroup *c_parent = dentry->d_parent->d_fsdata; | 
|  |  | 
|  | /* the vfs holds inode->i_mutex already */ | 
|  | return cgroup_create(c_parent, dentry, mode | S_IFDIR); | 
|  | } | 
|  |  | 
|  | static void cgroup_css_killed(struct cgroup *cgrp) | 
|  | { | 
|  | if (!atomic_dec_and_test(&cgrp->css_kill_cnt)) | 
|  | return; | 
|  |  | 
|  | /* percpu ref's of all css's are killed, kick off the next step */ | 
|  | INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn); | 
|  | schedule_work(&cgrp->destroy_work); | 
|  | } | 
|  |  | 
|  | static void css_ref_killed_fn(struct percpu_ref *ref) | 
|  | { | 
|  | struct cgroup_subsys_state *css = | 
|  | container_of(ref, struct cgroup_subsys_state, refcnt); | 
|  |  | 
|  | cgroup_css_killed(css->cgroup); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_destroy_locked - the first stage of cgroup destruction | 
|  | * @cgrp: cgroup to be destroyed | 
|  | * | 
|  | * css's make use of percpu refcnts whose killing latency shouldn't be | 
|  | * exposed to userland and are RCU protected.  Also, cgroup core needs to | 
|  | * guarantee that css_tryget() won't succeed by the time ->css_offline() is | 
|  | * invoked.  To satisfy all the requirements, destruction is implemented in | 
|  | * the following two steps. | 
|  | * | 
|  | * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all | 
|  | *     userland visible parts and start killing the percpu refcnts of | 
|  | *     css's.  Set up so that the next stage will be kicked off once all | 
|  | *     the percpu refcnts are confirmed to be killed. | 
|  | * | 
|  | * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the | 
|  | *     rest of destruction.  Once all cgroup references are gone, the | 
|  | *     cgroup is RCU-freed. | 
|  | * | 
|  | * This function implements s1.  After this step, @cgrp is gone as far as | 
|  | * the userland is concerned and a new cgroup with the same name may be | 
|  | * created.  As cgroup doesn't care about the names internally, this | 
|  | * doesn't cause any problem. | 
|  | */ | 
|  | static int cgroup_destroy_locked(struct cgroup *cgrp) | 
|  | __releases(&cgroup_mutex) __acquires(&cgroup_mutex) | 
|  | { | 
|  | struct dentry *d = cgrp->dentry; | 
|  | struct cgroup_event *event, *tmp; | 
|  | struct cgroup_subsys *ss; | 
|  | bool empty; | 
|  |  | 
|  | lockdep_assert_held(&d->d_inode->i_mutex); | 
|  | lockdep_assert_held(&cgroup_mutex); | 
|  |  | 
|  | /* | 
|  | * css_set_lock synchronizes access to ->cset_links and prevents | 
|  | * @cgrp from being removed while __put_css_set() is in progress. | 
|  | */ | 
|  | read_lock(&css_set_lock); | 
|  | empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children); | 
|  | read_unlock(&css_set_lock); | 
|  | if (!empty) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* | 
|  | * Block new css_tryget() by killing css refcnts.  cgroup core | 
|  | * guarantees that, by the time ->css_offline() is invoked, no new | 
|  | * css reference will be given out via css_tryget().  We can't | 
|  | * simply call percpu_ref_kill() and proceed to offlining css's | 
|  | * because percpu_ref_kill() doesn't guarantee that the ref is seen | 
|  | * as killed on all CPUs on return. | 
|  | * | 
|  | * Use percpu_ref_kill_and_confirm() to get notifications as each | 
|  | * css is confirmed to be seen as killed on all CPUs.  The | 
|  | * notification callback keeps track of the number of css's to be | 
|  | * killed and schedules cgroup_offline_fn() to perform the rest of | 
|  | * destruction once the percpu refs of all css's are confirmed to | 
|  | * be killed. | 
|  | */ | 
|  | atomic_set(&cgrp->css_kill_cnt, 1); | 
|  | for_each_root_subsys(cgrp->root, ss) { | 
|  | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | 
|  |  | 
|  | /* | 
|  | * Killing would put the base ref, but we need to keep it | 
|  | * alive until after ->css_offline. | 
|  | */ | 
|  | percpu_ref_get(&css->refcnt); | 
|  |  | 
|  | atomic_inc(&cgrp->css_kill_cnt); | 
|  | percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn); | 
|  | } | 
|  | cgroup_css_killed(cgrp); | 
|  |  | 
|  | /* | 
|  | * Mark @cgrp dead.  This prevents further task migration and child | 
|  | * creation by disabling cgroup_lock_live_group().  Note that | 
|  | * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to | 
|  | * resume iteration after dropping RCU read lock.  See | 
|  | * cgroup_next_sibling() for details. | 
|  | */ | 
|  | set_bit(CGRP_DEAD, &cgrp->flags); | 
|  |  | 
|  | /* CGRP_DEAD is set, remove from ->release_list for the last time */ | 
|  | raw_spin_lock(&release_list_lock); | 
|  | if (!list_empty(&cgrp->release_list)) | 
|  | list_del_init(&cgrp->release_list); | 
|  | raw_spin_unlock(&release_list_lock); | 
|  |  | 
|  | /* | 
|  | * Remove @cgrp directory.  The removal puts the base ref but we | 
|  | * aren't quite done with @cgrp yet, so hold onto it. | 
|  | */ | 
|  | dget(d); | 
|  | cgroup_d_remove_dir(d); | 
|  |  | 
|  | /* | 
|  | * Unregister events and notify userspace. | 
|  | * Notify userspace about cgroup removing only after rmdir of cgroup | 
|  | * directory to avoid race between userspace and kernelspace. | 
|  | */ | 
|  | spin_lock(&cgrp->event_list_lock); | 
|  | list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) { | 
|  | list_del_init(&event->list); | 
|  | schedule_work(&event->remove); | 
|  | } | 
|  | spin_unlock(&cgrp->event_list_lock); | 
|  |  | 
|  | return 0; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cgroup_offline_fn - the second step of cgroup destruction | 
|  | * @work: cgroup->destroy_free_work | 
|  | * | 
|  | * This function is invoked from a work item for a cgroup which is being | 
|  | * destroyed after the percpu refcnts of all css's are guaranteed to be | 
|  | * seen as killed on all CPUs, and performs the rest of destruction.  This | 
|  | * is the second step of destruction described in the comment above | 
|  | * cgroup_destroy_locked(). | 
|  | */ | 
|  | static void cgroup_offline_fn(struct work_struct *work) | 
|  | { | 
|  | struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work); | 
|  | struct cgroup *parent = cgrp->parent; | 
|  | struct dentry *d = cgrp->dentry; | 
|  | struct cgroup_subsys *ss; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | /* | 
|  | * css_tryget() is guaranteed to fail now.  Tell subsystems to | 
|  | * initate destruction. | 
|  | */ | 
|  | for_each_root_subsys(cgrp->root, ss) | 
|  | offline_css(ss, cgrp); | 
|  |  | 
|  | /* | 
|  | * Put the css refs from cgroup_destroy_locked().  Each css holds | 
|  | * an extra reference to the cgroup's dentry and cgroup removal | 
|  | * proceeds regardless of css refs.  On the last put of each css, | 
|  | * whenever that may be, the extra dentry ref is put so that dentry | 
|  | * destruction happens only after all css's are released. | 
|  | */ | 
|  | for_each_root_subsys(cgrp->root, ss) | 
|  | css_put(cgrp->subsys[ss->subsys_id]); | 
|  |  | 
|  | /* delete this cgroup from parent->children */ | 
|  | list_del_rcu(&cgrp->sibling); | 
|  |  | 
|  | dput(d); | 
|  |  | 
|  | set_bit(CGRP_RELEASABLE, &parent->flags); | 
|  | check_for_release(parent); | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  |  | 
|  | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | ret = cgroup_destroy_locked(dentry->d_fsdata); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss) | 
|  | { | 
|  | INIT_LIST_HEAD(&ss->cftsets); | 
|  |  | 
|  | /* | 
|  | * base_cftset is embedded in subsys itself, no need to worry about | 
|  | * deregistration. | 
|  | */ | 
|  | if (ss->base_cftypes) { | 
|  | ss->base_cftset.cfts = ss->base_cftypes; | 
|  | list_add_tail(&ss->base_cftset.node, &ss->cftsets); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init cgroup_init_subsys(struct cgroup_subsys *ss) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | /* init base cftset */ | 
|  | cgroup_init_cftsets(ss); | 
|  |  | 
|  | /* Create the top cgroup state for this subsystem */ | 
|  | list_add(&ss->sibling, &cgroup_dummy_root.subsys_list); | 
|  | ss->root = &cgroup_dummy_root; | 
|  | css = ss->css_alloc(cgroup_dummy_top); | 
|  | /* We don't handle early failures gracefully */ | 
|  | BUG_ON(IS_ERR(css)); | 
|  | init_cgroup_css(css, ss, cgroup_dummy_top); | 
|  |  | 
|  | /* Update the init_css_set to contain a subsys | 
|  | * pointer to this state - since the subsystem is | 
|  | * newly registered, all tasks and hence the | 
|  | * init_css_set is in the subsystem's top cgroup. */ | 
|  | init_css_set.subsys[ss->subsys_id] = css; | 
|  |  | 
|  | need_forkexit_callback |= ss->fork || ss->exit; | 
|  |  | 
|  | /* At system boot, before all subsystems have been | 
|  | * registered, no tasks have been forked, so we don't | 
|  | * need to invoke fork callbacks here. */ | 
|  | BUG_ON(!list_empty(&init_task.tasks)); | 
|  |  | 
|  | BUG_ON(online_css(ss, cgroup_dummy_top)); | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | /* this function shouldn't be used with modular subsystems, since they | 
|  | * need to register a subsys_id, among other things */ | 
|  | BUG_ON(ss->module); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_load_subsys: load and register a modular subsystem at runtime | 
|  | * @ss: the subsystem to load | 
|  | * | 
|  | * This function should be called in a modular subsystem's initcall. If the | 
|  | * subsystem is built as a module, it will be assigned a new subsys_id and set | 
|  | * up for use. If the subsystem is built-in anyway, work is delegated to the | 
|  | * simpler cgroup_init_subsys. | 
|  | */ | 
|  | int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  | int i, ret; | 
|  | struct hlist_node *tmp; | 
|  | struct css_set *cset; | 
|  | unsigned long key; | 
|  |  | 
|  | /* check name and function validity */ | 
|  | if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN || | 
|  | ss->css_alloc == NULL || ss->css_free == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * we don't support callbacks in modular subsystems. this check is | 
|  | * before the ss->module check for consistency; a subsystem that could | 
|  | * be a module should still have no callbacks even if the user isn't | 
|  | * compiling it as one. | 
|  | */ | 
|  | if (ss->fork || ss->exit) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * an optionally modular subsystem is built-in: we want to do nothing, | 
|  | * since cgroup_init_subsys will have already taken care of it. | 
|  | */ | 
|  | if (ss->module == NULL) { | 
|  | /* a sanity check */ | 
|  | BUG_ON(cgroup_subsys[ss->subsys_id] != ss); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* init base cftset */ | 
|  | cgroup_init_cftsets(ss); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | cgroup_subsys[ss->subsys_id] = ss; | 
|  |  | 
|  | /* | 
|  | * no ss->css_alloc seems to need anything important in the ss | 
|  | * struct, so this can happen first (i.e. before the dummy root | 
|  | * attachment). | 
|  | */ | 
|  | css = ss->css_alloc(cgroup_dummy_top); | 
|  | if (IS_ERR(css)) { | 
|  | /* failure case - need to deassign the cgroup_subsys[] slot. */ | 
|  | cgroup_subsys[ss->subsys_id] = NULL; | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return PTR_ERR(css); | 
|  | } | 
|  |  | 
|  | list_add(&ss->sibling, &cgroup_dummy_root.subsys_list); | 
|  | ss->root = &cgroup_dummy_root; | 
|  |  | 
|  | /* our new subsystem will be attached to the dummy hierarchy. */ | 
|  | init_cgroup_css(css, ss, cgroup_dummy_top); | 
|  | /* init_idr must be after init_cgroup_css because it sets css->id. */ | 
|  | if (ss->use_id) { | 
|  | ret = cgroup_init_idr(ss, css); | 
|  | if (ret) | 
|  | goto err_unload; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we need to entangle the css into the existing css_sets. unlike | 
|  | * in cgroup_init_subsys, there are now multiple css_sets, so each one | 
|  | * will need a new pointer to it; done by iterating the css_set_table. | 
|  | * furthermore, modifying the existing css_sets will corrupt the hash | 
|  | * table state, so each changed css_set will need its hash recomputed. | 
|  | * this is all done under the css_set_lock. | 
|  | */ | 
|  | write_lock(&css_set_lock); | 
|  | hash_for_each_safe(css_set_table, i, tmp, cset, hlist) { | 
|  | /* skip entries that we already rehashed */ | 
|  | if (cset->subsys[ss->subsys_id]) | 
|  | continue; | 
|  | /* remove existing entry */ | 
|  | hash_del(&cset->hlist); | 
|  | /* set new value */ | 
|  | cset->subsys[ss->subsys_id] = css; | 
|  | /* recompute hash and restore entry */ | 
|  | key = css_set_hash(cset->subsys); | 
|  | hash_add(css_set_table, &cset->hlist, key); | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | ret = online_css(ss, cgroup_dummy_top); | 
|  | if (ret) | 
|  | goto err_unload; | 
|  |  | 
|  | /* success! */ | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  |  | 
|  | err_unload: | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | /* @ss can't be mounted here as try_module_get() would fail */ | 
|  | cgroup_unload_subsys(ss); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_load_subsys); | 
|  |  | 
|  | /** | 
|  | * cgroup_unload_subsys: unload a modular subsystem | 
|  | * @ss: the subsystem to unload | 
|  | * | 
|  | * This function should be called in a modular subsystem's exitcall. When this | 
|  | * function is invoked, the refcount on the subsystem's module will be 0, so | 
|  | * the subsystem will not be attached to any hierarchy. | 
|  | */ | 
|  | void cgroup_unload_subsys(struct cgroup_subsys *ss) | 
|  | { | 
|  | struct cgrp_cset_link *link; | 
|  |  | 
|  | BUG_ON(ss->module == NULL); | 
|  |  | 
|  | /* | 
|  | * we shouldn't be called if the subsystem is in use, and the use of | 
|  | * try_module_get in parse_cgroupfs_options should ensure that it | 
|  | * doesn't start being used while we're killing it off. | 
|  | */ | 
|  | BUG_ON(ss->root != &cgroup_dummy_root); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | offline_css(ss, cgroup_dummy_top); | 
|  |  | 
|  | if (ss->use_id) | 
|  | idr_destroy(&ss->idr); | 
|  |  | 
|  | /* deassign the subsys_id */ | 
|  | cgroup_subsys[ss->subsys_id] = NULL; | 
|  |  | 
|  | /* remove subsystem from the dummy root's list of subsystems */ | 
|  | list_del_init(&ss->sibling); | 
|  |  | 
|  | /* | 
|  | * disentangle the css from all css_sets attached to the dummy | 
|  | * top. as in loading, we need to pay our respects to the hashtable | 
|  | * gods. | 
|  | */ | 
|  | write_lock(&css_set_lock); | 
|  | list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) { | 
|  | struct css_set *cset = link->cset; | 
|  | unsigned long key; | 
|  |  | 
|  | hash_del(&cset->hlist); | 
|  | cset->subsys[ss->subsys_id] = NULL; | 
|  | key = css_set_hash(cset->subsys); | 
|  | hash_add(css_set_table, &cset->hlist, key); | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | /* | 
|  | * remove subsystem's css from the cgroup_dummy_top and free it - | 
|  | * need to free before marking as null because ss->css_free needs | 
|  | * the cgrp->subsys pointer to find their state. note that this | 
|  | * also takes care of freeing the css_id. | 
|  | */ | 
|  | ss->css_free(cgroup_dummy_top); | 
|  | cgroup_dummy_top->subsys[ss->subsys_id] = NULL; | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_unload_subsys); | 
|  |  | 
|  | /** | 
|  | * cgroup_init_early - cgroup initialization at system boot | 
|  | * | 
|  | * Initialize cgroups at system boot, and initialize any | 
|  | * subsystems that request early init. | 
|  | */ | 
|  | int __init cgroup_init_early(void) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | int i; | 
|  |  | 
|  | atomic_set(&init_css_set.refcount, 1); | 
|  | INIT_LIST_HEAD(&init_css_set.cgrp_links); | 
|  | INIT_LIST_HEAD(&init_css_set.tasks); | 
|  | INIT_HLIST_NODE(&init_css_set.hlist); | 
|  | css_set_count = 1; | 
|  | init_cgroup_root(&cgroup_dummy_root); | 
|  | cgroup_root_count = 1; | 
|  | RCU_INIT_POINTER(init_task.cgroups, &init_css_set); | 
|  |  | 
|  | init_cgrp_cset_link.cset = &init_css_set; | 
|  | init_cgrp_cset_link.cgrp = cgroup_dummy_top; | 
|  | list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links); | 
|  | list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links); | 
|  |  | 
|  | /* at bootup time, we don't worry about modular subsystems */ | 
|  | for_each_builtin_subsys(ss, i) { | 
|  | BUG_ON(!ss->name); | 
|  | BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN); | 
|  | BUG_ON(!ss->css_alloc); | 
|  | BUG_ON(!ss->css_free); | 
|  | if (ss->subsys_id != i) { | 
|  | printk(KERN_ERR "cgroup: Subsys %s id == %d\n", | 
|  | ss->name, ss->subsys_id); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (ss->early_init) | 
|  | cgroup_init_subsys(ss); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_init - cgroup initialization | 
|  | * | 
|  | * Register cgroup filesystem and /proc file, and initialize | 
|  | * any subsystems that didn't request early init. | 
|  | */ | 
|  | int __init cgroup_init(void) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | unsigned long key; | 
|  | int i, err; | 
|  |  | 
|  | err = bdi_init(&cgroup_backing_dev_info); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for_each_builtin_subsys(ss, i) { | 
|  | if (!ss->early_init) | 
|  | cgroup_init_subsys(ss); | 
|  | if (ss->use_id) | 
|  | cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]); | 
|  | } | 
|  |  | 
|  | /* allocate id for the dummy hierarchy */ | 
|  | mutex_lock(&cgroup_mutex); | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  |  | 
|  | /* Add init_css_set to the hash table */ | 
|  | key = css_set_hash(init_css_set.subsys); | 
|  | hash_add(css_set_table, &init_css_set.hlist, key); | 
|  |  | 
|  | BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1)); | 
|  |  | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj); | 
|  | if (!cgroup_kobj) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = register_filesystem(&cgroup_fs_type); | 
|  | if (err < 0) { | 
|  | kobject_put(cgroup_kobj); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); | 
|  |  | 
|  | out: | 
|  | if (err) | 
|  | bdi_destroy(&cgroup_backing_dev_info); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * proc_cgroup_show() | 
|  | *  - Print task's cgroup paths into seq_file, one line for each hierarchy | 
|  | *  - Used for /proc/<pid>/cgroup. | 
|  | *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it | 
|  | *    doesn't really matter if tsk->cgroup changes after we read it, | 
|  | *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it | 
|  | *    anyway.  No need to check that tsk->cgroup != NULL, thanks to | 
|  | *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks | 
|  | *    cgroup to top_cgroup. | 
|  | */ | 
|  |  | 
|  | /* TODO: Use a proper seq_file iterator */ | 
|  | int proc_cgroup_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct pid *pid; | 
|  | struct task_struct *tsk; | 
|  | char *buf; | 
|  | int retval; | 
|  | struct cgroupfs_root *root; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!buf) | 
|  | goto out; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | pid = m->private; | 
|  | tsk = get_pid_task(pid, PIDTYPE_PID); | 
|  | if (!tsk) | 
|  | goto out_free; | 
|  |  | 
|  | retval = 0; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | for_each_active_root(root) { | 
|  | struct cgroup_subsys *ss; | 
|  | struct cgroup *cgrp; | 
|  | int count = 0; | 
|  |  | 
|  | seq_printf(m, "%d:", root->hierarchy_id); | 
|  | for_each_root_subsys(root, ss) | 
|  | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); | 
|  | if (strlen(root->name)) | 
|  | seq_printf(m, "%sname=%s", count ? "," : "", | 
|  | root->name); | 
|  | seq_putc(m, ':'); | 
|  | cgrp = task_cgroup_from_root(tsk, root); | 
|  | retval = cgroup_path(cgrp, buf, PAGE_SIZE); | 
|  | if (retval < 0) | 
|  | goto out_unlock; | 
|  | seq_puts(m, buf); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | put_task_struct(tsk); | 
|  | out_free: | 
|  | kfree(buf); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Display information about each subsystem and each hierarchy */ | 
|  | static int proc_cgroupstats_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | int i; | 
|  |  | 
|  | seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); | 
|  | /* | 
|  | * ideally we don't want subsystems moving around while we do this. | 
|  | * cgroup_mutex is also necessary to guarantee an atomic snapshot of | 
|  | * subsys/hierarchy state. | 
|  | */ | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | for_each_subsys(ss, i) | 
|  | seq_printf(m, "%s\t%d\t%d\t%d\n", | 
|  | ss->name, ss->root->hierarchy_id, | 
|  | ss->root->number_of_cgroups, !ss->disabled); | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroupstats_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, proc_cgroupstats_show, NULL); | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_cgroupstats_operations = { | 
|  | .open = cgroupstats_open, | 
|  | .read = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .release = single_release, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cgroup_fork - attach newly forked task to its parents cgroup. | 
|  | * @child: pointer to task_struct of forking parent process. | 
|  | * | 
|  | * Description: A task inherits its parent's cgroup at fork(). | 
|  | * | 
|  | * A pointer to the shared css_set was automatically copied in | 
|  | * fork.c by dup_task_struct().  However, we ignore that copy, since | 
|  | * it was not made under the protection of RCU or cgroup_mutex, so | 
|  | * might no longer be a valid cgroup pointer.  cgroup_attach_task() might | 
|  | * have already changed current->cgroups, allowing the previously | 
|  | * referenced cgroup group to be removed and freed. | 
|  | * | 
|  | * At the point that cgroup_fork() is called, 'current' is the parent | 
|  | * task, and the passed argument 'child' points to the child task. | 
|  | */ | 
|  | void cgroup_fork(struct task_struct *child) | 
|  | { | 
|  | task_lock(current); | 
|  | get_css_set(task_css_set(current)); | 
|  | child->cgroups = current->cgroups; | 
|  | task_unlock(current); | 
|  | INIT_LIST_HEAD(&child->cg_list); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_post_fork - called on a new task after adding it to the task list | 
|  | * @child: the task in question | 
|  | * | 
|  | * Adds the task to the list running through its css_set if necessary and | 
|  | * call the subsystem fork() callbacks.  Has to be after the task is | 
|  | * visible on the task list in case we race with the first call to | 
|  | * cgroup_iter_start() - to guarantee that the new task ends up on its | 
|  | * list. | 
|  | */ | 
|  | void cgroup_post_fork(struct task_struct *child) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * use_task_css_set_links is set to 1 before we walk the tasklist | 
|  | * under the tasklist_lock and we read it here after we added the child | 
|  | * to the tasklist under the tasklist_lock as well. If the child wasn't | 
|  | * yet in the tasklist when we walked through it from | 
|  | * cgroup_enable_task_cg_lists(), then use_task_css_set_links value | 
|  | * should be visible now due to the paired locking and barriers implied | 
|  | * by LOCK/UNLOCK: it is written before the tasklist_lock unlock | 
|  | * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock | 
|  | * lock on fork. | 
|  | */ | 
|  | if (use_task_css_set_links) { | 
|  | write_lock(&css_set_lock); | 
|  | task_lock(child); | 
|  | if (list_empty(&child->cg_list)) | 
|  | list_add(&child->cg_list, &task_css_set(child)->tasks); | 
|  | task_unlock(child); | 
|  | write_unlock(&css_set_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call ss->fork().  This must happen after @child is linked on | 
|  | * css_set; otherwise, @child might change state between ->fork() | 
|  | * and addition to css_set. | 
|  | */ | 
|  | if (need_forkexit_callback) { | 
|  | /* | 
|  | * fork/exit callbacks are supported only for builtin | 
|  | * subsystems, and the builtin section of the subsys | 
|  | * array is immutable, so we don't need to lock the | 
|  | * subsys array here. On the other hand, modular section | 
|  | * of the array can be freed at module unload, so we | 
|  | * can't touch that. | 
|  | */ | 
|  | for_each_builtin_subsys(ss, i) | 
|  | if (ss->fork) | 
|  | ss->fork(child); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_exit - detach cgroup from exiting task | 
|  | * @tsk: pointer to task_struct of exiting process | 
|  | * @run_callback: run exit callbacks? | 
|  | * | 
|  | * Description: Detach cgroup from @tsk and release it. | 
|  | * | 
|  | * Note that cgroups marked notify_on_release force every task in | 
|  | * them to take the global cgroup_mutex mutex when exiting. | 
|  | * This could impact scaling on very large systems.  Be reluctant to | 
|  | * use notify_on_release cgroups where very high task exit scaling | 
|  | * is required on large systems. | 
|  | * | 
|  | * the_top_cgroup_hack: | 
|  | * | 
|  | *    Set the exiting tasks cgroup to the root cgroup (top_cgroup). | 
|  | * | 
|  | *    We call cgroup_exit() while the task is still competent to | 
|  | *    handle notify_on_release(), then leave the task attached to the | 
|  | *    root cgroup in each hierarchy for the remainder of its exit. | 
|  | * | 
|  | *    To do this properly, we would increment the reference count on | 
|  | *    top_cgroup, and near the very end of the kernel/exit.c do_exit() | 
|  | *    code we would add a second cgroup function call, to drop that | 
|  | *    reference.  This would just create an unnecessary hot spot on | 
|  | *    the top_cgroup reference count, to no avail. | 
|  | * | 
|  | *    Normally, holding a reference to a cgroup without bumping its | 
|  | *    count is unsafe.   The cgroup could go away, or someone could | 
|  | *    attach us to a different cgroup, decrementing the count on | 
|  | *    the first cgroup that we never incremented.  But in this case, | 
|  | *    top_cgroup isn't going away, and either task has PF_EXITING set, | 
|  | *    which wards off any cgroup_attach_task() attempts, or task is a failed | 
|  | *    fork, never visible to cgroup_attach_task. | 
|  | */ | 
|  | void cgroup_exit(struct task_struct *tsk, int run_callbacks) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | struct css_set *cset; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Unlink from the css_set task list if necessary. | 
|  | * Optimistically check cg_list before taking | 
|  | * css_set_lock | 
|  | */ | 
|  | if (!list_empty(&tsk->cg_list)) { | 
|  | write_lock(&css_set_lock); | 
|  | if (!list_empty(&tsk->cg_list)) | 
|  | list_del_init(&tsk->cg_list); | 
|  | write_unlock(&css_set_lock); | 
|  | } | 
|  |  | 
|  | /* Reassign the task to the init_css_set. */ | 
|  | task_lock(tsk); | 
|  | cset = task_css_set(tsk); | 
|  | RCU_INIT_POINTER(tsk->cgroups, &init_css_set); | 
|  |  | 
|  | if (run_callbacks && need_forkexit_callback) { | 
|  | /* | 
|  | * fork/exit callbacks are supported only for builtin | 
|  | * subsystems, see cgroup_post_fork() for details. | 
|  | */ | 
|  | for_each_builtin_subsys(ss, i) { | 
|  | if (ss->exit) { | 
|  | struct cgroup *old_cgrp = cset->subsys[i]->cgroup; | 
|  | struct cgroup *cgrp = task_cgroup(tsk, i); | 
|  |  | 
|  | ss->exit(cgrp, old_cgrp, tsk); | 
|  | } | 
|  | } | 
|  | } | 
|  | task_unlock(tsk); | 
|  |  | 
|  | put_css_set_taskexit(cset); | 
|  | } | 
|  |  | 
|  | static void check_for_release(struct cgroup *cgrp) | 
|  | { | 
|  | if (cgroup_is_releasable(cgrp) && | 
|  | list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) { | 
|  | /* | 
|  | * Control Group is currently removeable. If it's not | 
|  | * already queued for a userspace notification, queue | 
|  | * it now | 
|  | */ | 
|  | int need_schedule_work = 0; | 
|  |  | 
|  | raw_spin_lock(&release_list_lock); | 
|  | if (!cgroup_is_dead(cgrp) && | 
|  | list_empty(&cgrp->release_list)) { | 
|  | list_add(&cgrp->release_list, &release_list); | 
|  | need_schedule_work = 1; | 
|  | } | 
|  | raw_spin_unlock(&release_list_lock); | 
|  | if (need_schedule_work) | 
|  | schedule_work(&release_agent_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Notify userspace when a cgroup is released, by running the | 
|  | * configured release agent with the name of the cgroup (path | 
|  | * relative to the root of cgroup file system) as the argument. | 
|  | * | 
|  | * Most likely, this user command will try to rmdir this cgroup. | 
|  | * | 
|  | * This races with the possibility that some other task will be | 
|  | * attached to this cgroup before it is removed, or that some other | 
|  | * user task will 'mkdir' a child cgroup of this cgroup.  That's ok. | 
|  | * The presumed 'rmdir' will fail quietly if this cgroup is no longer | 
|  | * unused, and this cgroup will be reprieved from its death sentence, | 
|  | * to continue to serve a useful existence.  Next time it's released, | 
|  | * we will get notified again, if it still has 'notify_on_release' set. | 
|  | * | 
|  | * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which | 
|  | * means only wait until the task is successfully execve()'d.  The | 
|  | * separate release agent task is forked by call_usermodehelper(), | 
|  | * then control in this thread returns here, without waiting for the | 
|  | * release agent task.  We don't bother to wait because the caller of | 
|  | * this routine has no use for the exit status of the release agent | 
|  | * task, so no sense holding our caller up for that. | 
|  | */ | 
|  | static void cgroup_release_agent(struct work_struct *work) | 
|  | { | 
|  | BUG_ON(work != &release_agent_work); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | raw_spin_lock(&release_list_lock); | 
|  | while (!list_empty(&release_list)) { | 
|  | char *argv[3], *envp[3]; | 
|  | int i; | 
|  | char *pathbuf = NULL, *agentbuf = NULL; | 
|  | struct cgroup *cgrp = list_entry(release_list.next, | 
|  | struct cgroup, | 
|  | release_list); | 
|  | list_del_init(&cgrp->release_list); | 
|  | raw_spin_unlock(&release_list_lock); | 
|  | pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!pathbuf) | 
|  | goto continue_free; | 
|  | if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) | 
|  | goto continue_free; | 
|  | agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); | 
|  | if (!agentbuf) | 
|  | goto continue_free; | 
|  |  | 
|  | i = 0; | 
|  | argv[i++] = agentbuf; | 
|  | argv[i++] = pathbuf; | 
|  | argv[i] = NULL; | 
|  |  | 
|  | i = 0; | 
|  | /* minimal command environment */ | 
|  | envp[i++] = "HOME=/"; | 
|  | envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; | 
|  | envp[i] = NULL; | 
|  |  | 
|  | /* Drop the lock while we invoke the usermode helper, | 
|  | * since the exec could involve hitting disk and hence | 
|  | * be a slow process */ | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | continue_free: | 
|  | kfree(pathbuf); | 
|  | kfree(agentbuf); | 
|  | raw_spin_lock(&release_list_lock); | 
|  | } | 
|  | raw_spin_unlock(&release_list_lock); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  |  | 
|  | static int __init cgroup_disable(char *str) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | char *token; | 
|  | int i; | 
|  |  | 
|  | while ((token = strsep(&str, ",")) != NULL) { | 
|  | if (!*token) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * cgroup_disable, being at boot time, can't know about | 
|  | * module subsystems, so we don't worry about them. | 
|  | */ | 
|  | for_each_builtin_subsys(ss, i) { | 
|  | if (!strcmp(token, ss->name)) { | 
|  | ss->disabled = 1; | 
|  | printk(KERN_INFO "Disabling %s control group" | 
|  | " subsystem\n", ss->name); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | __setup("cgroup_disable=", cgroup_disable); | 
|  |  | 
|  | /* | 
|  | * Functons for CSS ID. | 
|  | */ | 
|  |  | 
|  | /* to get ID other than 0, this should be called when !cgroup_is_dead() */ | 
|  | unsigned short css_id(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct css_id *cssid; | 
|  |  | 
|  | /* | 
|  | * This css_id() can return correct value when somone has refcnt | 
|  | * on this or this is under rcu_read_lock(). Once css->id is allocated, | 
|  | * it's unchanged until freed. | 
|  | */ | 
|  | cssid = rcu_dereference_raw(css->id); | 
|  |  | 
|  | if (cssid) | 
|  | return cssid->id; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(css_id); | 
|  |  | 
|  | /** | 
|  | *  css_is_ancestor - test "root" css is an ancestor of "child" | 
|  | * @child: the css to be tested. | 
|  | * @root: the css supporsed to be an ancestor of the child. | 
|  | * | 
|  | * Returns true if "root" is an ancestor of "child" in its hierarchy. Because | 
|  | * this function reads css->id, the caller must hold rcu_read_lock(). | 
|  | * But, considering usual usage, the csses should be valid objects after test. | 
|  | * Assuming that the caller will do some action to the child if this returns | 
|  | * returns true, the caller must take "child";s reference count. | 
|  | * If "child" is valid object and this returns true, "root" is valid, too. | 
|  | */ | 
|  |  | 
|  | bool css_is_ancestor(struct cgroup_subsys_state *child, | 
|  | const struct cgroup_subsys_state *root) | 
|  | { | 
|  | struct css_id *child_id; | 
|  | struct css_id *root_id; | 
|  |  | 
|  | child_id  = rcu_dereference(child->id); | 
|  | if (!child_id) | 
|  | return false; | 
|  | root_id = rcu_dereference(root->id); | 
|  | if (!root_id) | 
|  | return false; | 
|  | if (child_id->depth < root_id->depth) | 
|  | return false; | 
|  | if (child_id->stack[root_id->depth] != root_id->id) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct css_id *id = rcu_dereference_protected(css->id, true); | 
|  |  | 
|  | /* When this is called before css_id initialization, id can be NULL */ | 
|  | if (!id) | 
|  | return; | 
|  |  | 
|  | BUG_ON(!ss->use_id); | 
|  |  | 
|  | rcu_assign_pointer(id->css, NULL); | 
|  | rcu_assign_pointer(css->id, NULL); | 
|  | spin_lock(&ss->id_lock); | 
|  | idr_remove(&ss->idr, id->id); | 
|  | spin_unlock(&ss->id_lock); | 
|  | kfree_rcu(id, rcu_head); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(free_css_id); | 
|  |  | 
|  | /* | 
|  | * This is called by init or create(). Then, calls to this function are | 
|  | * always serialized (By cgroup_mutex() at create()). | 
|  | */ | 
|  |  | 
|  | static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth) | 
|  | { | 
|  | struct css_id *newid; | 
|  | int ret, size; | 
|  |  | 
|  | BUG_ON(!ss->use_id); | 
|  |  | 
|  | size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1); | 
|  | newid = kzalloc(size, GFP_KERNEL); | 
|  | if (!newid) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | idr_preload(GFP_KERNEL); | 
|  | spin_lock(&ss->id_lock); | 
|  | /* Don't use 0. allocates an ID of 1-65535 */ | 
|  | ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT); | 
|  | spin_unlock(&ss->id_lock); | 
|  | idr_preload_end(); | 
|  |  | 
|  | /* Returns error when there are no free spaces for new ID.*/ | 
|  | if (ret < 0) | 
|  | goto err_out; | 
|  |  | 
|  | newid->id = ret; | 
|  | newid->depth = depth; | 
|  | return newid; | 
|  | err_out: | 
|  | kfree(newid); | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | } | 
|  |  | 
|  | static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss, | 
|  | struct cgroup_subsys_state *rootcss) | 
|  | { | 
|  | struct css_id *newid; | 
|  |  | 
|  | spin_lock_init(&ss->id_lock); | 
|  | idr_init(&ss->idr); | 
|  |  | 
|  | newid = get_new_cssid(ss, 0); | 
|  | if (IS_ERR(newid)) | 
|  | return PTR_ERR(newid); | 
|  |  | 
|  | newid->stack[0] = newid->id; | 
|  | RCU_INIT_POINTER(newid->css, rootcss); | 
|  | RCU_INIT_POINTER(rootcss->id, newid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent, | 
|  | struct cgroup *child) | 
|  | { | 
|  | int subsys_id, i, depth = 0; | 
|  | struct cgroup_subsys_state *parent_css, *child_css; | 
|  | struct css_id *child_id, *parent_id; | 
|  |  | 
|  | subsys_id = ss->subsys_id; | 
|  | parent_css = parent->subsys[subsys_id]; | 
|  | child_css = child->subsys[subsys_id]; | 
|  | parent_id = rcu_dereference_protected(parent_css->id, true); | 
|  | depth = parent_id->depth + 1; | 
|  |  | 
|  | child_id = get_new_cssid(ss, depth); | 
|  | if (IS_ERR(child_id)) | 
|  | return PTR_ERR(child_id); | 
|  |  | 
|  | for (i = 0; i < depth; i++) | 
|  | child_id->stack[i] = parent_id->stack[i]; | 
|  | child_id->stack[depth] = child_id->id; | 
|  | /* | 
|  | * child_id->css pointer will be set after this cgroup is available | 
|  | * see cgroup_populate_dir() | 
|  | */ | 
|  | rcu_assign_pointer(child_css->id, child_id); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * css_lookup - lookup css by id | 
|  | * @ss: cgroup subsys to be looked into. | 
|  | * @id: the id | 
|  | * | 
|  | * Returns pointer to cgroup_subsys_state if there is valid one with id. | 
|  | * NULL if not. Should be called under rcu_read_lock() | 
|  | */ | 
|  | struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id) | 
|  | { | 
|  | struct css_id *cssid = NULL; | 
|  |  | 
|  | BUG_ON(!ss->use_id); | 
|  | cssid = idr_find(&ss->idr, id); | 
|  |  | 
|  | if (unlikely(!cssid)) | 
|  | return NULL; | 
|  |  | 
|  | return rcu_dereference(cssid->css); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(css_lookup); | 
|  |  | 
|  | /* | 
|  | * get corresponding css from file open on cgroupfs directory | 
|  | */ | 
|  | struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id) | 
|  | { | 
|  | struct cgroup *cgrp; | 
|  | struct inode *inode; | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | inode = file_inode(f); | 
|  | /* check in cgroup filesystem dir */ | 
|  | if (inode->i_op != &cgroup_dir_inode_operations) | 
|  | return ERR_PTR(-EBADF); | 
|  |  | 
|  | if (id < 0 || id >= CGROUP_SUBSYS_COUNT) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* get cgroup */ | 
|  | cgrp = __d_cgrp(f->f_dentry); | 
|  | css = cgrp->subsys[id]; | 
|  | return css ? css : ERR_PTR(-ENOENT); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_DEBUG | 
|  | static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp) | 
|  | { | 
|  | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | 
|  |  | 
|  | if (!css) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | return css; | 
|  | } | 
|  |  | 
|  | static void debug_css_free(struct cgroup *cgrp) | 
|  | { | 
|  | kfree(cgrp->subsys[debug_subsys_id]); | 
|  | } | 
|  |  | 
|  | static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft) | 
|  | { | 
|  | return cgroup_task_count(cgrp); | 
|  | } | 
|  |  | 
|  | static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft) | 
|  | { | 
|  | return (u64)(unsigned long)current->cgroups; | 
|  | } | 
|  |  | 
|  | static u64 current_css_set_refcount_read(struct cgroup *cgrp, | 
|  | struct cftype *cft) | 
|  | { | 
|  | u64 count; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | count = atomic_read(&task_css_set(current)->refcount); | 
|  | rcu_read_unlock(); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int current_css_set_cg_links_read(struct cgroup *cgrp, | 
|  | struct cftype *cft, | 
|  | struct seq_file *seq) | 
|  | { | 
|  | struct cgrp_cset_link *link; | 
|  | struct css_set *cset; | 
|  |  | 
|  | read_lock(&css_set_lock); | 
|  | rcu_read_lock(); | 
|  | cset = rcu_dereference(current->cgroups); | 
|  | list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { | 
|  | struct cgroup *c = link->cgrp; | 
|  | const char *name; | 
|  |  | 
|  | if (c->dentry) | 
|  | name = c->dentry->d_name.name; | 
|  | else | 
|  | name = "?"; | 
|  | seq_printf(seq, "Root %d group %s\n", | 
|  | c->root->hierarchy_id, name); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | read_unlock(&css_set_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define MAX_TASKS_SHOWN_PER_CSS 25 | 
|  | static int cgroup_css_links_read(struct cgroup *cgrp, | 
|  | struct cftype *cft, | 
|  | struct seq_file *seq) | 
|  | { | 
|  | struct cgrp_cset_link *link; | 
|  |  | 
|  | read_lock(&css_set_lock); | 
|  | list_for_each_entry(link, &cgrp->cset_links, cset_link) { | 
|  | struct css_set *cset = link->cset; | 
|  | struct task_struct *task; | 
|  | int count = 0; | 
|  | seq_printf(seq, "css_set %p\n", cset); | 
|  | list_for_each_entry(task, &cset->tasks, cg_list) { | 
|  | if (count++ > MAX_TASKS_SHOWN_PER_CSS) { | 
|  | seq_puts(seq, "  ...\n"); | 
|  | break; | 
|  | } else { | 
|  | seq_printf(seq, "  task %d\n", | 
|  | task_pid_vnr(task)); | 
|  | } | 
|  | } | 
|  | } | 
|  | read_unlock(&css_set_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | 
|  | { | 
|  | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | 
|  | } | 
|  |  | 
|  | static struct cftype debug_files[] =  { | 
|  | { | 
|  | .name = "taskcount", | 
|  | .read_u64 = debug_taskcount_read, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "current_css_set", | 
|  | .read_u64 = current_css_set_read, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "current_css_set_refcount", | 
|  | .read_u64 = current_css_set_refcount_read, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "current_css_set_cg_links", | 
|  | .read_seq_string = current_css_set_cg_links_read, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "cgroup_css_links", | 
|  | .read_seq_string = cgroup_css_links_read, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "releasable", | 
|  | .read_u64 = releasable_read, | 
|  | }, | 
|  |  | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | struct cgroup_subsys debug_subsys = { | 
|  | .name = "debug", | 
|  | .css_alloc = debug_css_alloc, | 
|  | .css_free = debug_css_free, | 
|  | .subsys_id = debug_subsys_id, | 
|  | .base_cftypes = debug_files, | 
|  | }; | 
|  | #endif /* CONFIG_CGROUP_DEBUG */ |