blob: 13235d84e5a67d45ca52bf4de9536d1c22a26dc6 [file] [log] [blame]
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include "drmP.h"
#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "vi.h"
#include "vid.h"
#include "amdgpu_ucode.h"
#include "clearstate_vi.h"
#include "gmc/gmc_8_2_d.h"
#include "gmc/gmc_8_2_sh_mask.h"
#include "oss/oss_3_0_d.h"
#include "oss/oss_3_0_sh_mask.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "gca/gfx_8_0_d.h"
#include "gca/gfx_8_0_enum.h"
#include "gca/gfx_8_0_sh_mask.h"
#include "gca/gfx_8_0_enum.h"
#include "uvd/uvd_5_0_d.h"
#include "uvd/uvd_5_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
#define GFX8_NUM_GFX_RINGS 1
#define GFX8_NUM_COMPUTE_RINGS 8
#define TOPAZ_GB_ADDR_CONFIG_GOLDEN 0x22010001
#define CARRIZO_GB_ADDR_CONFIG_GOLDEN 0x22010001
#define TONGA_GB_ADDR_CONFIG_GOLDEN 0x22011003
#define ARRAY_MODE(x) ((x) << GB_TILE_MODE0__ARRAY_MODE__SHIFT)
#define PIPE_CONFIG(x) ((x) << GB_TILE_MODE0__PIPE_CONFIG__SHIFT)
#define TILE_SPLIT(x) ((x) << GB_TILE_MODE0__TILE_SPLIT__SHIFT)
#define MICRO_TILE_MODE_NEW(x) ((x) << GB_TILE_MODE0__MICRO_TILE_MODE_NEW__SHIFT)
#define SAMPLE_SPLIT(x) ((x) << GB_TILE_MODE0__SAMPLE_SPLIT__SHIFT)
#define BANK_WIDTH(x) ((x) << GB_MACROTILE_MODE0__BANK_WIDTH__SHIFT)
#define BANK_HEIGHT(x) ((x) << GB_MACROTILE_MODE0__BANK_HEIGHT__SHIFT)
#define MACRO_TILE_ASPECT(x) ((x) << GB_MACROTILE_MODE0__MACRO_TILE_ASPECT__SHIFT)
#define NUM_BANKS(x) ((x) << GB_MACROTILE_MODE0__NUM_BANKS__SHIFT)
#define RLC_CGTT_MGCG_OVERRIDE__CPF_MASK 0x00000001L
#define RLC_CGTT_MGCG_OVERRIDE__RLC_MASK 0x00000002L
#define RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK 0x00000004L
#define RLC_CGTT_MGCG_OVERRIDE__CGCG_MASK 0x00000008L
#define RLC_CGTT_MGCG_OVERRIDE__CGLS_MASK 0x00000010L
#define RLC_CGTT_MGCG_OVERRIDE__GRBM_MASK 0x00000020L
/* BPM SERDES CMD */
#define SET_BPM_SERDES_CMD 1
#define CLE_BPM_SERDES_CMD 0
/* BPM Register Address*/
enum {
BPM_REG_CGLS_EN = 0, /* Enable/Disable CGLS */
BPM_REG_CGLS_ON, /* ON/OFF CGLS: shall be controlled by RLC FW */
BPM_REG_CGCG_OVERRIDE, /* Set/Clear CGCG Override */
BPM_REG_MGCG_OVERRIDE, /* Set/Clear MGCG Override */
BPM_REG_FGCG_OVERRIDE, /* Set/Clear FGCG Override */
BPM_REG_FGCG_MAX
};
MODULE_FIRMWARE("amdgpu/carrizo_ce.bin");
MODULE_FIRMWARE("amdgpu/carrizo_pfp.bin");
MODULE_FIRMWARE("amdgpu/carrizo_me.bin");
MODULE_FIRMWARE("amdgpu/carrizo_mec.bin");
MODULE_FIRMWARE("amdgpu/carrizo_mec2.bin");
MODULE_FIRMWARE("amdgpu/carrizo_rlc.bin");
MODULE_FIRMWARE("amdgpu/stoney_ce.bin");
MODULE_FIRMWARE("amdgpu/stoney_pfp.bin");
MODULE_FIRMWARE("amdgpu/stoney_me.bin");
MODULE_FIRMWARE("amdgpu/stoney_mec.bin");
MODULE_FIRMWARE("amdgpu/stoney_rlc.bin");
MODULE_FIRMWARE("amdgpu/tonga_ce.bin");
MODULE_FIRMWARE("amdgpu/tonga_pfp.bin");
MODULE_FIRMWARE("amdgpu/tonga_me.bin");
MODULE_FIRMWARE("amdgpu/tonga_mec.bin");
MODULE_FIRMWARE("amdgpu/tonga_mec2.bin");
MODULE_FIRMWARE("amdgpu/tonga_rlc.bin");
MODULE_FIRMWARE("amdgpu/topaz_ce.bin");
MODULE_FIRMWARE("amdgpu/topaz_pfp.bin");
MODULE_FIRMWARE("amdgpu/topaz_me.bin");
MODULE_FIRMWARE("amdgpu/topaz_mec.bin");
MODULE_FIRMWARE("amdgpu/topaz_mec2.bin");
MODULE_FIRMWARE("amdgpu/topaz_rlc.bin");
MODULE_FIRMWARE("amdgpu/fiji_ce.bin");
MODULE_FIRMWARE("amdgpu/fiji_pfp.bin");
MODULE_FIRMWARE("amdgpu/fiji_me.bin");
MODULE_FIRMWARE("amdgpu/fiji_mec.bin");
MODULE_FIRMWARE("amdgpu/fiji_mec2.bin");
MODULE_FIRMWARE("amdgpu/fiji_rlc.bin");
static const struct amdgpu_gds_reg_offset amdgpu_gds_reg_offset[] =
{
{mmGDS_VMID0_BASE, mmGDS_VMID0_SIZE, mmGDS_GWS_VMID0, mmGDS_OA_VMID0},
{mmGDS_VMID1_BASE, mmGDS_VMID1_SIZE, mmGDS_GWS_VMID1, mmGDS_OA_VMID1},
{mmGDS_VMID2_BASE, mmGDS_VMID2_SIZE, mmGDS_GWS_VMID2, mmGDS_OA_VMID2},
{mmGDS_VMID3_BASE, mmGDS_VMID3_SIZE, mmGDS_GWS_VMID3, mmGDS_OA_VMID3},
{mmGDS_VMID4_BASE, mmGDS_VMID4_SIZE, mmGDS_GWS_VMID4, mmGDS_OA_VMID4},
{mmGDS_VMID5_BASE, mmGDS_VMID5_SIZE, mmGDS_GWS_VMID5, mmGDS_OA_VMID5},
{mmGDS_VMID6_BASE, mmGDS_VMID6_SIZE, mmGDS_GWS_VMID6, mmGDS_OA_VMID6},
{mmGDS_VMID7_BASE, mmGDS_VMID7_SIZE, mmGDS_GWS_VMID7, mmGDS_OA_VMID7},
{mmGDS_VMID8_BASE, mmGDS_VMID8_SIZE, mmGDS_GWS_VMID8, mmGDS_OA_VMID8},
{mmGDS_VMID9_BASE, mmGDS_VMID9_SIZE, mmGDS_GWS_VMID9, mmGDS_OA_VMID9},
{mmGDS_VMID10_BASE, mmGDS_VMID10_SIZE, mmGDS_GWS_VMID10, mmGDS_OA_VMID10},
{mmGDS_VMID11_BASE, mmGDS_VMID11_SIZE, mmGDS_GWS_VMID11, mmGDS_OA_VMID11},
{mmGDS_VMID12_BASE, mmGDS_VMID12_SIZE, mmGDS_GWS_VMID12, mmGDS_OA_VMID12},
{mmGDS_VMID13_BASE, mmGDS_VMID13_SIZE, mmGDS_GWS_VMID13, mmGDS_OA_VMID13},
{mmGDS_VMID14_BASE, mmGDS_VMID14_SIZE, mmGDS_GWS_VMID14, mmGDS_OA_VMID14},
{mmGDS_VMID15_BASE, mmGDS_VMID15_SIZE, mmGDS_GWS_VMID15, mmGDS_OA_VMID15}
};
static const u32 golden_settings_tonga_a11[] =
{
mmCB_HW_CONTROL, 0xfffdf3cf, 0x00007208,
mmCB_HW_CONTROL_3, 0x00000040, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmGB_GPU_ID, 0x0000000f, 0x00000000,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_FIFO_DEPTH_CNTL, 0x000003ff, 0x000000fc,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCC_EXE_DISABLE, 0x00000002, 0x00000002,
mmTCP_ADDR_CONFIG, 0x000003ff, 0x000002fb,
mmTCP_CHAN_STEER_HI, 0xffffffff, 0x0000543b,
mmTCP_CHAN_STEER_LO, 0xffffffff, 0xa9210876,
mmVGT_RESET_DEBUG, 0x00000004, 0x00000004,
};
static const u32 tonga_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x16000012,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x0000002A,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22011003,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00007FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00007FAF
};
static const u32 tonga_mgcg_cgcg_init[] =
{
mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0x40000100,
mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100,
mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100,
mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100,
mmTA_CGTT_CTRL, 0xffffffff, 0x00000100,
mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTD_CGTT_CTRL, 0xffffffff, 0x00000100,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCGTS_CU0_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU0_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU0_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU0_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU0_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU1_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU1_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU1_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU1_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU1_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU2_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU2_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU2_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU2_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU2_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU3_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU3_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU3_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU3_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU3_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU4_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU4_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU4_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU4_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU4_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU5_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU5_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU5_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU5_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU5_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU6_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU6_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU6_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU6_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU6_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU7_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU7_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU7_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU7_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU7_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200,
mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100,
mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003c,
mmCP_MEM_SLP_CNTL, 0x00000001, 0x00000001,
};
static const u32 fiji_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x3a00161a,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x0000002e,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22011003,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00007FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00007FAF,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmSPI_CONFIG_CNTL_1, 0x0000000f, 0x00000009,
};
static const u32 golden_settings_fiji_a10[] =
{
mmCB_HW_CONTROL_3, 0x000001ff, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c,
mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCC_EXE_DISABLE, 0x00000002, 0x00000002,
mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000ff,
mmVGT_RESET_DEBUG, 0x00000004, 0x00000004,
};
static const u32 fiji_mgcg_cgcg_init[] =
{
mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0x40000100,
mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100,
mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100,
mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100,
mmTA_CGTT_CTRL, 0xffffffff, 0x00000100,
mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTD_CGTT_CTRL, 0xffffffff, 0x00000100,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200,
mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100,
mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003c,
mmCP_MEM_SLP_CNTL, 0x00000001, 0x00000001,
};
static const u32 golden_settings_iceland_a11[] =
{
mmCB_HW_CONTROL_3, 0x00000040, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmDB_DEBUG3, 0xc0000000, 0xc0000000,
mmGB_GPU_ID, 0x0000000f, 0x00000000,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmPA_SC_RASTER_CONFIG, 0x3f3fffff, 0x00000002,
mmPA_SC_RASTER_CONFIG_1, 0x0000003f, 0x00000000,
mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCC_EXE_DISABLE, 0x00000002, 0x00000002,
mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000f1,
mmTCP_CHAN_STEER_HI, 0xffffffff, 0x00000000,
mmTCP_CHAN_STEER_LO, 0xffffffff, 0x00000010,
};
static const u32 iceland_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x00000002,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x00000000,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22010001,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00007FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00007FAF
};
static const u32 iceland_mgcg_cgcg_init[] =
{
mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CP_CLK_CTRL, 0xffffffff, 0xc0000100,
mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0xc0000100,
mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0xc0000100,
mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100,
mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0xff000100,
mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100,
mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100,
mmTA_CGTT_CTRL, 0xffffffff, 0x00000100,
mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTD_CGTT_CTRL, 0xffffffff, 0x00000100,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCGTS_CU0_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU0_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU0_TA_SQC_CTRL_REG, 0xffffffff, 0x0f840f87,
mmCGTS_CU0_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU0_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU1_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU1_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU1_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU1_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU1_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU2_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU2_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU2_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU2_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU2_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU3_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU3_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU3_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU3_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU3_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU4_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU4_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU4_TA_SQC_CTRL_REG, 0xffffffff, 0x0f840f87,
mmCGTS_CU4_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU4_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU5_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU5_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU5_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU5_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU5_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200,
mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100,
mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003c,
};
static const u32 cz_golden_settings_a11[] =
{
mmCB_HW_CONTROL_3, 0x00000040, 0x00000040,
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmGB_GPU_ID, 0x0000000f, 0x00000000,
mmPA_SC_ENHANCE, 0xffffffff, 0x00000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd,
mmTA_CNTL_AUX, 0x000f000f, 0x00010000,
mmTCC_EXE_DISABLE, 0x00000002, 0x00000002,
mmTCP_ADDR_CONFIG, 0x0000000f, 0x000000f3,
mmTCP_CHAN_STEER_LO, 0xffffffff, 0x00001302
};
static const u32 cz_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x00000002,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x00000000,
mmGB_ADDR_CONFIG, 0xffffffff, 0x22010001,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00007FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00007FAF
};
static const u32 cz_mgcg_cgcg_init[] =
{
mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100,
mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100,
mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100,
mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100,
mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100,
mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100,
mmTA_CGTT_CTRL, 0xffffffff, 0x00000100,
mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100,
mmTD_CGTT_CTRL, 0xffffffff, 0x00000100,
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmCGTS_CU0_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU0_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU0_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU0_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU0_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU1_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU1_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU1_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU1_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU1_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU2_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU2_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU2_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU2_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU2_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU3_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU3_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU3_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU3_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU3_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU4_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU4_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU4_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU4_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU4_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU5_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU5_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU5_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU5_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU5_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU6_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU6_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU6_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU6_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU6_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_CU7_SP0_CTRL_REG, 0xffffffff, 0x00010000,
mmCGTS_CU7_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002,
mmCGTS_CU7_TA_CTRL_REG, 0xffffffff, 0x00040007,
mmCGTS_CU7_SP1_CTRL_REG, 0xffffffff, 0x00060005,
mmCGTS_CU7_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008,
mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200,
mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100,
mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003f,
mmCP_MEM_SLP_CNTL, 0x00000001, 0x00000001,
};
static const u32 stoney_golden_settings_a11[] =
{
mmDB_DEBUG2, 0xf00fffff, 0x00000400,
mmGB_GPU_ID, 0x0000000f, 0x00000000,
mmPA_SC_ENHANCE, 0xffffffff, 0x20000001,
mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000,
mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c,
mmTA_CNTL_AUX, 0x000f000f, 0x000b0000,
mmTCC_CTRL, 0x00100000, 0xf31fff7f,
mmTCC_EXE_DISABLE, 0x00000002, 0x00000002,
mmTCP_ADDR_CONFIG, 0x0000000f, 0x000000f1,
mmTCP_CHAN_STEER_LO, 0xffffffff, 0x10101010,
};
static const u32 stoney_golden_common_all[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x00000000,
mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x00000000,
mmGB_ADDR_CONFIG, 0xffffffff, 0x12010001,
mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800,
mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00007FBF,
mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00007FAF,
};
static const u32 stoney_mgcg_cgcg_init[] =
{
mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000,
mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003f,
mmCP_MEM_SLP_CNTL, 0xffffffff, 0x00020201,
mmRLC_MEM_SLP_CNTL, 0xffffffff, 0x00020201,
mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96940200,
mmATC_MISC_CG, 0xffffffff, 0x000c0200,
};
static void gfx_v8_0_set_ring_funcs(struct amdgpu_device *adev);
static void gfx_v8_0_set_irq_funcs(struct amdgpu_device *adev);
static void gfx_v8_0_set_gds_init(struct amdgpu_device *adev);
static void gfx_v8_0_init_golden_registers(struct amdgpu_device *adev)
{
switch (adev->asic_type) {
case CHIP_TOPAZ:
amdgpu_program_register_sequence(adev,
iceland_mgcg_cgcg_init,
(const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init));
amdgpu_program_register_sequence(adev,
golden_settings_iceland_a11,
(const u32)ARRAY_SIZE(golden_settings_iceland_a11));
amdgpu_program_register_sequence(adev,
iceland_golden_common_all,
(const u32)ARRAY_SIZE(iceland_golden_common_all));
break;
case CHIP_FIJI:
amdgpu_program_register_sequence(adev,
fiji_mgcg_cgcg_init,
(const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
amdgpu_program_register_sequence(adev,
golden_settings_fiji_a10,
(const u32)ARRAY_SIZE(golden_settings_fiji_a10));
amdgpu_program_register_sequence(adev,
fiji_golden_common_all,
(const u32)ARRAY_SIZE(fiji_golden_common_all));
break;
case CHIP_TONGA:
amdgpu_program_register_sequence(adev,
tonga_mgcg_cgcg_init,
(const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
amdgpu_program_register_sequence(adev,
golden_settings_tonga_a11,
(const u32)ARRAY_SIZE(golden_settings_tonga_a11));
amdgpu_program_register_sequence(adev,
tonga_golden_common_all,
(const u32)ARRAY_SIZE(tonga_golden_common_all));
break;
case CHIP_CARRIZO:
amdgpu_program_register_sequence(adev,
cz_mgcg_cgcg_init,
(const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
amdgpu_program_register_sequence(adev,
cz_golden_settings_a11,
(const u32)ARRAY_SIZE(cz_golden_settings_a11));
amdgpu_program_register_sequence(adev,
cz_golden_common_all,
(const u32)ARRAY_SIZE(cz_golden_common_all));
break;
case CHIP_STONEY:
amdgpu_program_register_sequence(adev,
stoney_mgcg_cgcg_init,
(const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
amdgpu_program_register_sequence(adev,
stoney_golden_settings_a11,
(const u32)ARRAY_SIZE(stoney_golden_settings_a11));
amdgpu_program_register_sequence(adev,
stoney_golden_common_all,
(const u32)ARRAY_SIZE(stoney_golden_common_all));
break;
default:
break;
}
}
static void gfx_v8_0_scratch_init(struct amdgpu_device *adev)
{
int i;
adev->gfx.scratch.num_reg = 7;
adev->gfx.scratch.reg_base = mmSCRATCH_REG0;
for (i = 0; i < adev->gfx.scratch.num_reg; i++) {
adev->gfx.scratch.free[i] = true;
adev->gfx.scratch.reg[i] = adev->gfx.scratch.reg_base + i;
}
}
static int gfx_v8_0_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
uint32_t scratch;
uint32_t tmp = 0;
unsigned i;
int r;
r = amdgpu_gfx_scratch_get(adev, &scratch);
if (r) {
DRM_ERROR("amdgpu: cp failed to get scratch reg (%d).\n", r);
return r;
}
WREG32(scratch, 0xCAFEDEAD);
r = amdgpu_ring_lock(ring, 3);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n",
ring->idx, r);
amdgpu_gfx_scratch_free(adev, scratch);
return r;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
amdgpu_ring_write(ring, (scratch - PACKET3_SET_UCONFIG_REG_START));
amdgpu_ring_write(ring, 0xDEADBEEF);
amdgpu_ring_unlock_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF)
break;
DRM_UDELAY(1);
}
if (i < adev->usec_timeout) {
DRM_INFO("ring test on %d succeeded in %d usecs\n",
ring->idx, i);
} else {
DRM_ERROR("amdgpu: ring %d test failed (scratch(0x%04X)=0x%08X)\n",
ring->idx, scratch, tmp);
r = -EINVAL;
}
amdgpu_gfx_scratch_free(adev, scratch);
return r;
}
static int gfx_v8_0_ring_test_ib(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ib ib;
struct fence *f = NULL;
uint32_t scratch;
uint32_t tmp = 0;
unsigned i;
int r;
r = amdgpu_gfx_scratch_get(adev, &scratch);
if (r) {
DRM_ERROR("amdgpu: failed to get scratch reg (%d).\n", r);
return r;
}
WREG32(scratch, 0xCAFEDEAD);
memset(&ib, 0, sizeof(ib));
r = amdgpu_ib_get(ring, NULL, 256, &ib);
if (r) {
DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
goto err1;
}
ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1);
ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START));
ib.ptr[2] = 0xDEADBEEF;
ib.length_dw = 3;
r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
AMDGPU_FENCE_OWNER_UNDEFINED,
&f);
if (r)
goto err2;
r = fence_wait(f, false);
if (r) {
DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
goto err2;
}
for (i = 0; i < adev->usec_timeout; i++) {
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF)
break;
DRM_UDELAY(1);
}
if (i < adev->usec_timeout) {
DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
ring->idx, i);
goto err2;
} else {
DRM_ERROR("amdgpu: ib test failed (scratch(0x%04X)=0x%08X)\n",
scratch, tmp);
r = -EINVAL;
}
err2:
fence_put(f);
amdgpu_ib_free(adev, &ib);
err1:
amdgpu_gfx_scratch_free(adev, scratch);
return r;
}
static int gfx_v8_0_init_microcode(struct amdgpu_device *adev)
{
const char *chip_name;
char fw_name[30];
int err;
struct amdgpu_firmware_info *info = NULL;
const struct common_firmware_header *header = NULL;
const struct gfx_firmware_header_v1_0 *cp_hdr;
DRM_DEBUG("\n");
switch (adev->asic_type) {
case CHIP_TOPAZ:
chip_name = "topaz";
break;
case CHIP_TONGA:
chip_name = "tonga";
break;
case CHIP_CARRIZO:
chip_name = "carrizo";
break;
case CHIP_FIJI:
chip_name = "fiji";
break;
case CHIP_STONEY:
chip_name = "stoney";
break;
default:
BUG();
}
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_pfp.bin", chip_name);
err = request_firmware(&adev->gfx.pfp_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.pfp_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data;
adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_me.bin", chip_name);
err = request_firmware(&adev->gfx.me_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.me_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data;
adev->gfx.me_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.me_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_ce.bin", chip_name);
err = request_firmware(&adev->gfx.ce_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.ce_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data;
adev->gfx.ce_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.ce_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name);
err = request_firmware(&adev->gfx.rlc_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.rlc_fw);
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.rlc_fw->data;
adev->gfx.rlc_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.rlc_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name);
err = request_firmware(&adev->gfx.mec_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.mec_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
adev->gfx.mec_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.mec_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
if (adev->asic_type != CHIP_STONEY) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec2.bin", chip_name);
err = request_firmware(&adev->gfx.mec2_fw, fw_name, adev->dev);
if (!err) {
err = amdgpu_ucode_validate(adev->gfx.mec2_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec2_fw->data;
adev->gfx.mec2_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.mec2_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
} else {
err = 0;
adev->gfx.mec2_fw = NULL;
}
}
if (adev->firmware.smu_load) {
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_PFP];
info->ucode_id = AMDGPU_UCODE_ID_CP_PFP;
info->fw = adev->gfx.pfp_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_ME];
info->ucode_id = AMDGPU_UCODE_ID_CP_ME;
info->fw = adev->gfx.me_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_CE];
info->ucode_id = AMDGPU_UCODE_ID_CP_CE;
info->fw = adev->gfx.ce_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_G];
info->ucode_id = AMDGPU_UCODE_ID_RLC_G;
info->fw = adev->gfx.rlc_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC1];
info->ucode_id = AMDGPU_UCODE_ID_CP_MEC1;
info->fw = adev->gfx.mec_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
if (adev->gfx.mec2_fw) {
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC2];
info->ucode_id = AMDGPU_UCODE_ID_CP_MEC2;
info->fw = adev->gfx.mec2_fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
}
}
out:
if (err) {
dev_err(adev->dev,
"gfx8: Failed to load firmware \"%s\"\n",
fw_name);
release_firmware(adev->gfx.pfp_fw);
adev->gfx.pfp_fw = NULL;
release_firmware(adev->gfx.me_fw);
adev->gfx.me_fw = NULL;
release_firmware(adev->gfx.ce_fw);
adev->gfx.ce_fw = NULL;
release_firmware(adev->gfx.rlc_fw);
adev->gfx.rlc_fw = NULL;
release_firmware(adev->gfx.mec_fw);
adev->gfx.mec_fw = NULL;
release_firmware(adev->gfx.mec2_fw);
adev->gfx.mec2_fw = NULL;
}
return err;
}
static void gfx_v8_0_mec_fini(struct amdgpu_device *adev)
{
int r;
if (adev->gfx.mec.hpd_eop_obj) {
r = amdgpu_bo_reserve(adev->gfx.mec.hpd_eop_obj, false);
if (unlikely(r != 0))
dev_warn(adev->dev, "(%d) reserve HPD EOP bo failed\n", r);
amdgpu_bo_unpin(adev->gfx.mec.hpd_eop_obj);
amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj);
amdgpu_bo_unref(&adev->gfx.mec.hpd_eop_obj);
adev->gfx.mec.hpd_eop_obj = NULL;
}
}
#define MEC_HPD_SIZE 2048
static int gfx_v8_0_mec_init(struct amdgpu_device *adev)
{
int r;
u32 *hpd;
/*
* we assign only 1 pipe because all other pipes will
* be handled by KFD
*/
adev->gfx.mec.num_mec = 1;
adev->gfx.mec.num_pipe = 1;
adev->gfx.mec.num_queue = adev->gfx.mec.num_mec * adev->gfx.mec.num_pipe * 8;
if (adev->gfx.mec.hpd_eop_obj == NULL) {
r = amdgpu_bo_create(adev,
adev->gfx.mec.num_mec *adev->gfx.mec.num_pipe * MEC_HPD_SIZE * 2,
PAGE_SIZE, true,
AMDGPU_GEM_DOMAIN_GTT, 0, NULL, NULL,
&adev->gfx.mec.hpd_eop_obj);
if (r) {
dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r);
return r;
}
}
r = amdgpu_bo_reserve(adev->gfx.mec.hpd_eop_obj, false);
if (unlikely(r != 0)) {
gfx_v8_0_mec_fini(adev);
return r;
}
r = amdgpu_bo_pin(adev->gfx.mec.hpd_eop_obj, AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.mec.hpd_eop_gpu_addr);
if (r) {
dev_warn(adev->dev, "(%d) pin HDP EOP bo failed\n", r);
gfx_v8_0_mec_fini(adev);
return r;
}
r = amdgpu_bo_kmap(adev->gfx.mec.hpd_eop_obj, (void **)&hpd);
if (r) {
dev_warn(adev->dev, "(%d) map HDP EOP bo failed\n", r);
gfx_v8_0_mec_fini(adev);
return r;
}
memset(hpd, 0, adev->gfx.mec.num_mec *adev->gfx.mec.num_pipe * MEC_HPD_SIZE * 2);
amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj);
amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj);
return 0;
}
static const u32 vgpr_init_compute_shader[] =
{
0x7e000209, 0x7e020208,
0x7e040207, 0x7e060206,
0x7e080205, 0x7e0a0204,
0x7e0c0203, 0x7e0e0202,
0x7e100201, 0x7e120200,
0x7e140209, 0x7e160208,
0x7e180207, 0x7e1a0206,
0x7e1c0205, 0x7e1e0204,
0x7e200203, 0x7e220202,
0x7e240201, 0x7e260200,
0x7e280209, 0x7e2a0208,
0x7e2c0207, 0x7e2e0206,
0x7e300205, 0x7e320204,
0x7e340203, 0x7e360202,
0x7e380201, 0x7e3a0200,
0x7e3c0209, 0x7e3e0208,
0x7e400207, 0x7e420206,
0x7e440205, 0x7e460204,
0x7e480203, 0x7e4a0202,
0x7e4c0201, 0x7e4e0200,
0x7e500209, 0x7e520208,
0x7e540207, 0x7e560206,
0x7e580205, 0x7e5a0204,
0x7e5c0203, 0x7e5e0202,
0x7e600201, 0x7e620200,
0x7e640209, 0x7e660208,
0x7e680207, 0x7e6a0206,
0x7e6c0205, 0x7e6e0204,
0x7e700203, 0x7e720202,
0x7e740201, 0x7e760200,
0x7e780209, 0x7e7a0208,
0x7e7c0207, 0x7e7e0206,
0xbf8a0000, 0xbf810000,
};
static const u32 sgpr_init_compute_shader[] =
{
0xbe8a0100, 0xbe8c0102,
0xbe8e0104, 0xbe900106,
0xbe920108, 0xbe940100,
0xbe960102, 0xbe980104,
0xbe9a0106, 0xbe9c0108,
0xbe9e0100, 0xbea00102,
0xbea20104, 0xbea40106,
0xbea60108, 0xbea80100,
0xbeaa0102, 0xbeac0104,
0xbeae0106, 0xbeb00108,
0xbeb20100, 0xbeb40102,
0xbeb60104, 0xbeb80106,
0xbeba0108, 0xbebc0100,
0xbebe0102, 0xbec00104,
0xbec20106, 0xbec40108,
0xbec60100, 0xbec80102,
0xbee60004, 0xbee70005,
0xbeea0006, 0xbeeb0007,
0xbee80008, 0xbee90009,
0xbefc0000, 0xbf8a0000,
0xbf810000, 0x00000000,
};
static const u32 vgpr_init_regs[] =
{
mmCOMPUTE_STATIC_THREAD_MGMT_SE0, 0xffffffff,
mmCOMPUTE_RESOURCE_LIMITS, 0,
mmCOMPUTE_NUM_THREAD_X, 256*4,
mmCOMPUTE_NUM_THREAD_Y, 1,
mmCOMPUTE_NUM_THREAD_Z, 1,
mmCOMPUTE_PGM_RSRC2, 20,
mmCOMPUTE_USER_DATA_0, 0xedcedc00,
mmCOMPUTE_USER_DATA_1, 0xedcedc01,
mmCOMPUTE_USER_DATA_2, 0xedcedc02,
mmCOMPUTE_USER_DATA_3, 0xedcedc03,
mmCOMPUTE_USER_DATA_4, 0xedcedc04,
mmCOMPUTE_USER_DATA_5, 0xedcedc05,
mmCOMPUTE_USER_DATA_6, 0xedcedc06,
mmCOMPUTE_USER_DATA_7, 0xedcedc07,
mmCOMPUTE_USER_DATA_8, 0xedcedc08,
mmCOMPUTE_USER_DATA_9, 0xedcedc09,
};
static const u32 sgpr1_init_regs[] =
{
mmCOMPUTE_STATIC_THREAD_MGMT_SE0, 0x0f,
mmCOMPUTE_RESOURCE_LIMITS, 0x1000000,
mmCOMPUTE_NUM_THREAD_X, 256*5,
mmCOMPUTE_NUM_THREAD_Y, 1,
mmCOMPUTE_NUM_THREAD_Z, 1,
mmCOMPUTE_PGM_RSRC2, 20,
mmCOMPUTE_USER_DATA_0, 0xedcedc00,
mmCOMPUTE_USER_DATA_1, 0xedcedc01,
mmCOMPUTE_USER_DATA_2, 0xedcedc02,
mmCOMPUTE_USER_DATA_3, 0xedcedc03,
mmCOMPUTE_USER_DATA_4, 0xedcedc04,
mmCOMPUTE_USER_DATA_5, 0xedcedc05,
mmCOMPUTE_USER_DATA_6, 0xedcedc06,
mmCOMPUTE_USER_DATA_7, 0xedcedc07,
mmCOMPUTE_USER_DATA_8, 0xedcedc08,
mmCOMPUTE_USER_DATA_9, 0xedcedc09,
};
static const u32 sgpr2_init_regs[] =
{
mmCOMPUTE_STATIC_THREAD_MGMT_SE0, 0xf0,
mmCOMPUTE_RESOURCE_LIMITS, 0x1000000,
mmCOMPUTE_NUM_THREAD_X, 256*5,
mmCOMPUTE_NUM_THREAD_Y, 1,
mmCOMPUTE_NUM_THREAD_Z, 1,
mmCOMPUTE_PGM_RSRC2, 20,
mmCOMPUTE_USER_DATA_0, 0xedcedc00,
mmCOMPUTE_USER_DATA_1, 0xedcedc01,
mmCOMPUTE_USER_DATA_2, 0xedcedc02,
mmCOMPUTE_USER_DATA_3, 0xedcedc03,
mmCOMPUTE_USER_DATA_4, 0xedcedc04,
mmCOMPUTE_USER_DATA_5, 0xedcedc05,
mmCOMPUTE_USER_DATA_6, 0xedcedc06,
mmCOMPUTE_USER_DATA_7, 0xedcedc07,
mmCOMPUTE_USER_DATA_8, 0xedcedc08,
mmCOMPUTE_USER_DATA_9, 0xedcedc09,
};
static const u32 sec_ded_counter_registers[] =
{
mmCPC_EDC_ATC_CNT,
mmCPC_EDC_SCRATCH_CNT,
mmCPC_EDC_UCODE_CNT,
mmCPF_EDC_ATC_CNT,
mmCPF_EDC_ROQ_CNT,
mmCPF_EDC_TAG_CNT,
mmCPG_EDC_ATC_CNT,
mmCPG_EDC_DMA_CNT,
mmCPG_EDC_TAG_CNT,
mmDC_EDC_CSINVOC_CNT,
mmDC_EDC_RESTORE_CNT,
mmDC_EDC_STATE_CNT,
mmGDS_EDC_CNT,
mmGDS_EDC_GRBM_CNT,
mmGDS_EDC_OA_DED,
mmSPI_EDC_CNT,
mmSQC_ATC_EDC_GATCL1_CNT,
mmSQC_EDC_CNT,
mmSQ_EDC_DED_CNT,
mmSQ_EDC_INFO,
mmSQ_EDC_SEC_CNT,
mmTCC_EDC_CNT,
mmTCP_ATC_EDC_GATCL1_CNT,
mmTCP_EDC_CNT,
mmTD_EDC_CNT
};
static int gfx_v8_0_do_edc_gpr_workarounds(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring = &adev->gfx.compute_ring[0];
struct amdgpu_ib ib;
struct fence *f = NULL;
int r, i;
u32 tmp;
unsigned total_size, vgpr_offset, sgpr_offset;
u64 gpu_addr;
/* only supported on CZ */
if (adev->asic_type != CHIP_CARRIZO)
return 0;
/* bail if the compute ring is not ready */
if (!ring->ready)
return 0;
tmp = RREG32(mmGB_EDC_MODE);
WREG32(mmGB_EDC_MODE, 0);
total_size =
(((ARRAY_SIZE(vgpr_init_regs) / 2) * 3) + 4 + 5 + 2) * 4;
total_size +=
(((ARRAY_SIZE(sgpr1_init_regs) / 2) * 3) + 4 + 5 + 2) * 4;
total_size +=
(((ARRAY_SIZE(sgpr2_init_regs) / 2) * 3) + 4 + 5 + 2) * 4;
total_size = ALIGN(total_size, 256);
vgpr_offset = total_size;
total_size += ALIGN(sizeof(vgpr_init_compute_shader), 256);
sgpr_offset = total_size;
total_size += sizeof(sgpr_init_compute_shader);
/* allocate an indirect buffer to put the commands in */
memset(&ib, 0, sizeof(ib));
r = amdgpu_ib_get(ring, NULL, total_size, &ib);
if (r) {
DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
return r;
}
/* load the compute shaders */
for (i = 0; i < ARRAY_SIZE(vgpr_init_compute_shader); i++)
ib.ptr[i + (vgpr_offset / 4)] = vgpr_init_compute_shader[i];
for (i = 0; i < ARRAY_SIZE(sgpr_init_compute_shader); i++)
ib.ptr[i + (sgpr_offset / 4)] = sgpr_init_compute_shader[i];
/* init the ib length to 0 */
ib.length_dw = 0;
/* VGPR */
/* write the register state for the compute dispatch */
for (i = 0; i < ARRAY_SIZE(vgpr_init_regs); i += 2) {
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 1);
ib.ptr[ib.length_dw++] = vgpr_init_regs[i] - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = vgpr_init_regs[i + 1];
}
/* write the shader start address: mmCOMPUTE_PGM_LO, mmCOMPUTE_PGM_HI */
gpu_addr = (ib.gpu_addr + (u64)vgpr_offset) >> 8;
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 2);
ib.ptr[ib.length_dw++] = mmCOMPUTE_PGM_LO - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = lower_32_bits(gpu_addr);
ib.ptr[ib.length_dw++] = upper_32_bits(gpu_addr);
/* write dispatch packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_DISPATCH_DIRECT, 3);
ib.ptr[ib.length_dw++] = 8; /* x */
ib.ptr[ib.length_dw++] = 1; /* y */
ib.ptr[ib.length_dw++] = 1; /* z */
ib.ptr[ib.length_dw++] =
REG_SET_FIELD(0, COMPUTE_DISPATCH_INITIATOR, COMPUTE_SHADER_EN, 1);
/* write CS partial flush packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_EVENT_WRITE, 0);
ib.ptr[ib.length_dw++] = EVENT_TYPE(7) | EVENT_INDEX(4);
/* SGPR1 */
/* write the register state for the compute dispatch */
for (i = 0; i < ARRAY_SIZE(sgpr1_init_regs); i += 2) {
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 1);
ib.ptr[ib.length_dw++] = sgpr1_init_regs[i] - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = sgpr1_init_regs[i + 1];
}
/* write the shader start address: mmCOMPUTE_PGM_LO, mmCOMPUTE_PGM_HI */
gpu_addr = (ib.gpu_addr + (u64)sgpr_offset) >> 8;
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 2);
ib.ptr[ib.length_dw++] = mmCOMPUTE_PGM_LO - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = lower_32_bits(gpu_addr);
ib.ptr[ib.length_dw++] = upper_32_bits(gpu_addr);
/* write dispatch packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_DISPATCH_DIRECT, 3);
ib.ptr[ib.length_dw++] = 8; /* x */
ib.ptr[ib.length_dw++] = 1; /* y */
ib.ptr[ib.length_dw++] = 1; /* z */
ib.ptr[ib.length_dw++] =
REG_SET_FIELD(0, COMPUTE_DISPATCH_INITIATOR, COMPUTE_SHADER_EN, 1);
/* write CS partial flush packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_EVENT_WRITE, 0);
ib.ptr[ib.length_dw++] = EVENT_TYPE(7) | EVENT_INDEX(4);
/* SGPR2 */
/* write the register state for the compute dispatch */
for (i = 0; i < ARRAY_SIZE(sgpr2_init_regs); i += 2) {
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 1);
ib.ptr[ib.length_dw++] = sgpr2_init_regs[i] - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = sgpr2_init_regs[i + 1];
}
/* write the shader start address: mmCOMPUTE_PGM_LO, mmCOMPUTE_PGM_HI */
gpu_addr = (ib.gpu_addr + (u64)sgpr_offset) >> 8;
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 2);
ib.ptr[ib.length_dw++] = mmCOMPUTE_PGM_LO - PACKET3_SET_SH_REG_START;
ib.ptr[ib.length_dw++] = lower_32_bits(gpu_addr);
ib.ptr[ib.length_dw++] = upper_32_bits(gpu_addr);
/* write dispatch packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_DISPATCH_DIRECT, 3);
ib.ptr[ib.length_dw++] = 8; /* x */
ib.ptr[ib.length_dw++] = 1; /* y */
ib.ptr[ib.length_dw++] = 1; /* z */
ib.ptr[ib.length_dw++] =
REG_SET_FIELD(0, COMPUTE_DISPATCH_INITIATOR, COMPUTE_SHADER_EN, 1);
/* write CS partial flush packet */
ib.ptr[ib.length_dw++] = PACKET3(PACKET3_EVENT_WRITE, 0);
ib.ptr[ib.length_dw++] = EVENT_TYPE(7) | EVENT_INDEX(4);
/* shedule the ib on the ring */
r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
AMDGPU_FENCE_OWNER_UNDEFINED,
&f);
if (r) {
DRM_ERROR("amdgpu: ib submit failed (%d).\n", r);
goto fail;
}
/* wait for the GPU to finish processing the IB */
r = fence_wait(f, false);
if (r) {
DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
goto fail;
}
tmp = REG_SET_FIELD(tmp, GB_EDC_MODE, DED_MODE, 2);
tmp = REG_SET_FIELD(tmp, GB_EDC_MODE, PROP_FED, 1);
WREG32(mmGB_EDC_MODE, tmp);
tmp = RREG32(mmCC_GC_EDC_CONFIG);
tmp = REG_SET_FIELD(tmp, CC_GC_EDC_CONFIG, DIS_EDC, 0) | 1;
WREG32(mmCC_GC_EDC_CONFIG, tmp);
/* read back registers to clear the counters */
for (i = 0; i < ARRAY_SIZE(sec_ded_counter_registers); i++)
RREG32(sec_ded_counter_registers[i]);
fail:
fence_put(f);
amdgpu_ib_free(adev, &ib);
return r;
}
static void gfx_v8_0_gpu_early_init(struct amdgpu_device *adev)
{
u32 gb_addr_config;
u32 mc_shared_chmap, mc_arb_ramcfg;
u32 dimm00_addr_map, dimm01_addr_map, dimm10_addr_map, dimm11_addr_map;
u32 tmp;
switch (adev->asic_type) {
case CHIP_TOPAZ:
adev->gfx.config.max_shader_engines = 1;
adev->gfx.config.max_tile_pipes = 2;
adev->gfx.config.max_cu_per_sh = 6;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 2;
adev->gfx.config.max_texture_channel_caches = 2;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TOPAZ_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_FIJI:
adev->gfx.config.max_shader_engines = 4;
adev->gfx.config.max_tile_pipes = 16;
adev->gfx.config.max_cu_per_sh = 16;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 4;
adev->gfx.config.max_texture_channel_caches = 16;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_TONGA:
adev->gfx.config.max_shader_engines = 4;
adev->gfx.config.max_tile_pipes = 8;
adev->gfx.config.max_cu_per_sh = 8;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 2;
adev->gfx.config.max_texture_channel_caches = 8;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_CARRIZO:
adev->gfx.config.max_shader_engines = 1;
adev->gfx.config.max_tile_pipes = 2;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 2;
switch (adev->pdev->revision) {
case 0xc4:
case 0x84:
case 0xc8:
case 0xcc:
case 0xe1:
case 0xe3:
/* B10 */
adev->gfx.config.max_cu_per_sh = 8;
break;
case 0xc5:
case 0x81:
case 0x85:
case 0xc9:
case 0xcd:
case 0xe2:
case 0xe4:
/* B8 */
adev->gfx.config.max_cu_per_sh = 6;
break;
case 0xc6:
case 0xca:
case 0xce:
case 0x88:
/* B6 */
adev->gfx.config.max_cu_per_sh = 6;
break;
case 0xc7:
case 0x87:
case 0xcb:
case 0xe5:
case 0x89:
default:
/* B4 */
adev->gfx.config.max_cu_per_sh = 4;
break;
}
adev->gfx.config.max_texture_channel_caches = 2;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = CARRIZO_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_STONEY:
adev->gfx.config.max_shader_engines = 1;
adev->gfx.config.max_tile_pipes = 2;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 1;
switch (adev->pdev->revision) {
case 0xc0:
case 0xc1:
case 0xc2:
case 0xc4:
case 0xc8:
case 0xc9:
adev->gfx.config.max_cu_per_sh = 3;
break;
case 0xd0:
case 0xd1:
case 0xd2:
default:
adev->gfx.config.max_cu_per_sh = 2;
break;
}
adev->gfx.config.max_texture_channel_caches = 2;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 16;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = CARRIZO_GB_ADDR_CONFIG_GOLDEN;
break;
default:
adev->gfx.config.max_shader_engines = 2;
adev->gfx.config.max_tile_pipes = 4;
adev->gfx.config.max_cu_per_sh = 2;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 2;
adev->gfx.config.max_texture_channel_caches = 4;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN;
break;
}
mc_shared_chmap = RREG32(mmMC_SHARED_CHMAP);
adev->gfx.config.mc_arb_ramcfg = RREG32(mmMC_ARB_RAMCFG);
mc_arb_ramcfg = adev->gfx.config.mc_arb_ramcfg;
adev->gfx.config.num_tile_pipes = adev->gfx.config.max_tile_pipes;
adev->gfx.config.mem_max_burst_length_bytes = 256;
if (adev->flags & AMD_IS_APU) {
/* Get memory bank mapping mode. */
tmp = RREG32(mmMC_FUS_DRAM0_BANK_ADDR_MAPPING);
dimm00_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM0_BANK_ADDR_MAPPING, DIMM0ADDRMAP);
dimm01_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM0_BANK_ADDR_MAPPING, DIMM1ADDRMAP);
tmp = RREG32(mmMC_FUS_DRAM1_BANK_ADDR_MAPPING);
dimm10_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM1_BANK_ADDR_MAPPING, DIMM0ADDRMAP);
dimm11_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM1_BANK_ADDR_MAPPING, DIMM1ADDRMAP);
/* Validate settings in case only one DIMM installed. */
if ((dimm00_addr_map == 0) || (dimm00_addr_map == 3) || (dimm00_addr_map == 4) || (dimm00_addr_map > 12))
dimm00_addr_map = 0;
if ((dimm01_addr_map == 0) || (dimm01_addr_map == 3) || (dimm01_addr_map == 4) || (dimm01_addr_map > 12))
dimm01_addr_map = 0;
if ((dimm10_addr_map == 0) || (dimm10_addr_map == 3) || (dimm10_addr_map == 4) || (dimm10_addr_map > 12))
dimm10_addr_map = 0;
if ((dimm11_addr_map == 0) || (dimm11_addr_map == 3) || (dimm11_addr_map == 4) || (dimm11_addr_map > 12))
dimm11_addr_map = 0;
/* If DIMM Addr map is 8GB, ROW size should be 2KB. Otherwise 1KB. */
/* If ROW size(DIMM1) != ROW size(DMIMM0), ROW size should be larger one. */
if ((dimm00_addr_map == 11) || (dimm01_addr_map == 11) || (dimm10_addr_map == 11) || (dimm11_addr_map == 11))
adev->gfx.config.mem_row_size_in_kb = 2;
else
adev->gfx.config.mem_row_size_in_kb = 1;
} else {
tmp = REG_GET_FIELD(mc_arb_ramcfg, MC_ARB_RAMCFG, NOOFCOLS);
adev->gfx.config.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024;
if (adev->gfx.config.mem_row_size_in_kb > 4)
adev->gfx.config.mem_row_size_in_kb = 4;
}
adev->gfx.config.shader_engine_tile_size = 32;
adev->gfx.config.num_gpus = 1;
adev->gfx.config.multi_gpu_tile_size = 64;
/* fix up row size */
switch (adev->gfx.config.mem_row_size_in_kb) {
case 1:
default:
gb_addr_config = REG_SET_FIELD(gb_addr_config, GB_ADDR_CONFIG, ROW_SIZE, 0);
break;
case 2:
gb_addr_config = REG_SET_FIELD(gb_addr_config, GB_ADDR_CONFIG, ROW_SIZE, 1);
break;
case 4:
gb_addr_config = REG_SET_FIELD(gb_addr_config, GB_ADDR_CONFIG, ROW_SIZE, 2);
break;
}
adev->gfx.config.gb_addr_config = gb_addr_config;
}
static int gfx_v8_0_sw_init(void *handle)
{
int i, r;
struct amdgpu_ring *ring;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/* EOP Event */
r = amdgpu_irq_add_id(adev, 181, &adev->gfx.eop_irq);
if (r)
return r;
/* Privileged reg */
r = amdgpu_irq_add_id(adev, 184, &adev->gfx.priv_reg_irq);
if (r)
return r;
/* Privileged inst */
r = amdgpu_irq_add_id(adev, 185, &adev->gfx.priv_inst_irq);
if (r)
return r;
adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE;
gfx_v8_0_scratch_init(adev);
r = gfx_v8_0_init_microcode(adev);
if (r) {
DRM_ERROR("Failed to load gfx firmware!\n");
return r;
}
r = gfx_v8_0_mec_init(adev);
if (r) {
DRM_ERROR("Failed to init MEC BOs!\n");
return r;
}
/* set up the gfx ring */
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
ring->ring_obj = NULL;
sprintf(ring->name, "gfx");
/* no gfx doorbells on iceland */
if (adev->asic_type != CHIP_TOPAZ) {
ring->use_doorbell = true;
ring->doorbell_index = AMDGPU_DOORBELL_GFX_RING0;
}
r = amdgpu_ring_init(adev, ring, 1024 * 1024,
PACKET3(PACKET3_NOP, 0x3FFF), 0xf,
&adev->gfx.eop_irq, AMDGPU_CP_IRQ_GFX_EOP,
AMDGPU_RING_TYPE_GFX);
if (r)
return r;
}
/* set up the compute queues */
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
unsigned irq_type;
/* max 32 queues per MEC */
if ((i >= 32) || (i >= AMDGPU_MAX_COMPUTE_RINGS)) {
DRM_ERROR("Too many (%d) compute rings!\n", i);
break;
}
ring = &adev->gfx.compute_ring[i];
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->doorbell_index = AMDGPU_DOORBELL_MEC_RING0 + i;
ring->me = 1; /* first MEC */
ring->pipe = i / 8;
ring->queue = i % 8;
sprintf(ring->name, "comp %d.%d.%d", ring->me, ring->pipe, ring->queue);
irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP + ring->pipe;
/* type-2 packets are deprecated on MEC, use type-3 instead */
r = amdgpu_ring_init(adev, ring, 1024 * 1024,
PACKET3(PACKET3_NOP, 0x3FFF), 0xf,
&adev->gfx.eop_irq, irq_type,
AMDGPU_RING_TYPE_COMPUTE);
if (r)
return r;
}
/* reserve GDS, GWS and OA resource for gfx */
r = amdgpu_bo_create(adev, adev->gds.mem.gfx_partition_size,
PAGE_SIZE, true,
AMDGPU_GEM_DOMAIN_GDS, 0, NULL,
NULL, &adev->gds.gds_gfx_bo);
if (r)
return r;
r = amdgpu_bo_create(adev, adev->gds.gws.gfx_partition_size,
PAGE_SIZE, true,
AMDGPU_GEM_DOMAIN_GWS, 0, NULL,
NULL, &adev->gds.gws_gfx_bo);
if (r)
return r;
r = amdgpu_bo_create(adev, adev->gds.oa.gfx_partition_size,
PAGE_SIZE, true,
AMDGPU_GEM_DOMAIN_OA, 0, NULL,
NULL, &adev->gds.oa_gfx_bo);
if (r)
return r;
adev->gfx.ce_ram_size = 0x8000;
gfx_v8_0_gpu_early_init(adev);
return 0;
}
static int gfx_v8_0_sw_fini(void *handle)
{
int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_bo_unref(&adev->gds.oa_gfx_bo);
amdgpu_bo_unref(&adev->gds.gws_gfx_bo);
amdgpu_bo_unref(&adev->gds.gds_gfx_bo);
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
amdgpu_ring_fini(&adev->gfx.gfx_ring[i]);
for (i = 0; i < adev->gfx.num_compute_rings; i++)
amdgpu_ring_fini(&adev->gfx.compute_ring[i]);
gfx_v8_0_mec_fini(adev);
return 0;
}
static void gfx_v8_0_tiling_mode_table_init(struct amdgpu_device *adev)
{
uint32_t *modearray, *mod2array;
const u32 num_tile_mode_states = ARRAY_SIZE(adev->gfx.config.tile_mode_array);
const u32 num_secondary_tile_mode_states = ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
u32 reg_offset;
modearray = adev->gfx.config.tile_mode_array;
mod2array = adev->gfx.config.macrotile_mode_array;
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
modearray[reg_offset] = 0;
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
mod2array[reg_offset] = 0;
switch (adev->asic_type) {
case CHIP_TOPAZ:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P2));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
if (reg_offset != 7 && reg_offset != 12 && reg_offset != 17 &&
reg_offset != 23)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
case CHIP_FIJI:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[12] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
case CHIP_TONGA:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[12] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
case CHIP_STONEY:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P2));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
if (reg_offset != 7 && reg_offset != 12 && reg_offset != 17 &&
reg_offset != 23)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
default:
dev_warn(adev->dev,
"Unknown chip type (%d) in function gfx_v8_0_tiling_mode_table_init() falling through to CHIP_CARRIZO\n",
adev->asic_type);
case CHIP_CARRIZO:
modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P2));
modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1));
modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
PIPE_CONFIG(ADDR_SURF_P2) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8));
mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++)
if (reg_offset != 7 && reg_offset != 12 && reg_offset != 17 &&
reg_offset != 23)
WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]);
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++)
if (reg_offset != 7)
WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]);
break;
}
}
static u32 gfx_v8_0_create_bitmask(u32 bit_width)
{
return (u32)((1ULL << bit_width) - 1);
}
void gfx_v8_0_select_se_sh(struct amdgpu_device *adev, u32 se_num, u32 sh_num)
{
u32 data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1);
if ((se_num == 0xffffffff) && (sh_num == 0xffffffff)) {
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_BROADCAST_WRITES, 1);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1);
} else if (se_num == 0xffffffff) {
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_INDEX, sh_num);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1);
} else if (sh_num == 0xffffffff) {
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_BROADCAST_WRITES, 1);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num);
} else {
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_INDEX, sh_num);
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num);
}
WREG32(mmGRBM_GFX_INDEX, data);
}
static u32 gfx_v8_0_get_rb_disabled(struct amdgpu_device *adev,
u32 max_rb_num_per_se,
u32 sh_per_se)
{
u32 data, mask;
data = RREG32(mmCC_RB_BACKEND_DISABLE);
data &= CC_RB_BACKEND_DISABLE__BACKEND_DISABLE_MASK;
data |= RREG32(mmGC_USER_RB_BACKEND_DISABLE);
data >>= GC_USER_RB_BACKEND_DISABLE__BACKEND_DISABLE__SHIFT;
mask = gfx_v8_0_create_bitmask(max_rb_num_per_se / sh_per_se);
return data & mask;
}
static void gfx_v8_0_setup_rb(struct amdgpu_device *adev,
u32 se_num, u32 sh_per_se,
u32 max_rb_num_per_se)
{
int i, j;
u32 data, mask;
u32 disabled_rbs = 0;
u32 enabled_rbs = 0;
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < se_num; i++) {
for (j = 0; j < sh_per_se; j++) {
gfx_v8_0_select_se_sh(adev, i, j);
data = gfx_v8_0_get_rb_disabled(adev,
max_rb_num_per_se, sh_per_se);
disabled_rbs |= data << ((i * sh_per_se + j) *
RB_BITMAP_WIDTH_PER_SH);
}
}
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
mask = 1;
for (i = 0; i < max_rb_num_per_se * se_num; i++) {
if (!(disabled_rbs & mask))
enabled_rbs |= mask;
mask <<= 1;
}
adev->gfx.config.backend_enable_mask = enabled_rbs;
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < se_num; i++) {
gfx_v8_0_select_se_sh(adev, i, 0xffffffff);
data = RREG32(mmPA_SC_RASTER_CONFIG);
for (j = 0; j < sh_per_se; j++) {
switch (enabled_rbs & 3) {
case 0:
if (j == 0)
data |= (RASTER_CONFIG_RB_MAP_3 <<
PA_SC_RASTER_CONFIG__PKR_MAP__SHIFT);
else
data |= (RASTER_CONFIG_RB_MAP_0 <<
PA_SC_RASTER_CONFIG__PKR_MAP__SHIFT);
break;
case 1:
data |= (RASTER_CONFIG_RB_MAP_0 <<
(i * sh_per_se + j) * 2);
break;
case 2:
data |= (RASTER_CONFIG_RB_MAP_3 <<
(i * sh_per_se + j) * 2);
break;
case 3:
default:
data |= (RASTER_CONFIG_RB_MAP_2 <<
(i * sh_per_se + j) * 2);
break;
}
enabled_rbs >>= 2;
}
WREG32(mmPA_SC_RASTER_CONFIG, data);
}
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
}
/**
* gfx_v8_0_init_compute_vmid - gart enable
*
* @rdev: amdgpu_device pointer
*
* Initialize compute vmid sh_mem registers
*
*/
#define DEFAULT_SH_MEM_BASES (0x6000)
#define FIRST_COMPUTE_VMID (8)
#define LAST_COMPUTE_VMID (16)
static void gfx_v8_0_init_compute_vmid(struct amdgpu_device *adev)
{
int i;
uint32_t sh_mem_config;
uint32_t sh_mem_bases;
/*
* Configure apertures:
* LDS: 0x60000000'00000000 - 0x60000001'00000000 (4GB)
* Scratch: 0x60000001'00000000 - 0x60000002'00000000 (4GB)
* GPUVM: 0x60010000'00000000 - 0x60020000'00000000 (1TB)
*/
sh_mem_bases = DEFAULT_SH_MEM_BASES | (DEFAULT_SH_MEM_BASES << 16);
sh_mem_config = SH_MEM_ADDRESS_MODE_HSA64 <<
SH_MEM_CONFIG__ADDRESS_MODE__SHIFT |
SH_MEM_ALIGNMENT_MODE_UNALIGNED <<
SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT |
MTYPE_CC << SH_MEM_CONFIG__DEFAULT_MTYPE__SHIFT |
SH_MEM_CONFIG__PRIVATE_ATC_MASK;
mutex_lock(&adev->srbm_mutex);
for (i = FIRST_COMPUTE_VMID; i < LAST_COMPUTE_VMID; i++) {
vi_srbm_select(adev, 0, 0, 0, i);
/* CP and shaders */
WREG32(mmSH_MEM_CONFIG, sh_mem_config);
WREG32(mmSH_MEM_APE1_BASE, 1);
WREG32(mmSH_MEM_APE1_LIMIT, 0);
WREG32(mmSH_MEM_BASES, sh_mem_bases);
}
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
static void gfx_v8_0_gpu_init(struct amdgpu_device *adev)
{
u32 tmp;
int i;
tmp = RREG32(mmGRBM_CNTL);
tmp = REG_SET_FIELD(tmp, GRBM_CNTL, READ_TIMEOUT, 0xff);
WREG32(mmGRBM_CNTL, tmp);
WREG32(mmGB_ADDR_CONFIG, adev->gfx.config.gb_addr_config);
WREG32(mmHDP_ADDR_CONFIG, adev->gfx.config.gb_addr_config);
WREG32(mmDMIF_ADDR_CALC, adev->gfx.config.gb_addr_config);
WREG32(mmSDMA0_TILING_CONFIG + SDMA0_REGISTER_OFFSET,
adev->gfx.config.gb_addr_config & 0x70);
WREG32(mmSDMA0_TILING_CONFIG + SDMA1_REGISTER_OFFSET,
adev->gfx.config.gb_addr_config & 0x70);
WREG32(mmUVD_UDEC_ADDR_CONFIG, adev->gfx.config.gb_addr_config);
WREG32(mmUVD_UDEC_DB_ADDR_CONFIG, adev->gfx.config.gb_addr_config);
WREG32(mmUVD_UDEC_DBW_ADDR_CONFIG, adev->gfx.config.gb_addr_config);
gfx_v8_0_tiling_mode_table_init(adev);
gfx_v8_0_setup_rb(adev, adev->gfx.config.max_shader_engines,
adev->gfx.config.max_sh_per_se,
adev->gfx.config.max_backends_per_se);
/* XXX SH_MEM regs */
/* where to put LDS, scratch, GPUVM in FSA64 space */
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < 16; i++) {
vi_srbm_select(adev, 0, 0, 0, i);
/* CP and shaders */
if (i == 0) {
tmp = REG_SET_FIELD(0, SH_MEM_CONFIG, DEFAULT_MTYPE, MTYPE_UC);
tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, APE1_MTYPE, MTYPE_UC);
tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, ALIGNMENT_MODE,
SH_MEM_ALIGNMENT_MODE_UNALIGNED);
WREG32(mmSH_MEM_CONFIG, tmp);
} else {
tmp = REG_SET_FIELD(0, SH_MEM_CONFIG, DEFAULT_MTYPE, MTYPE_NC);
tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, APE1_MTYPE, MTYPE_NC);
tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, ALIGNMENT_MODE,
SH_MEM_ALIGNMENT_MODE_UNALIGNED);
WREG32(mmSH_MEM_CONFIG, tmp);
}
WREG32(mmSH_MEM_APE1_BASE, 1);
WREG32(mmSH_MEM_APE1_LIMIT, 0);
WREG32(mmSH_MEM_BASES, 0);
}
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
gfx_v8_0_init_compute_vmid(adev);
mutex_lock(&adev->grbm_idx_mutex);
/*
* making sure that the following register writes will be broadcasted
* to all the shaders
*/
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff);
WREG32(mmPA_SC_FIFO_SIZE,
(adev->gfx.config.sc_prim_fifo_size_frontend <<
PA_SC_FIFO_SIZE__SC_FRONTEND_PRIM_FIFO_SIZE__SHIFT) |
(adev->gfx.config.sc_prim_fifo_size_backend <<
PA_SC_FIFO_SIZE__SC_BACKEND_PRIM_FIFO_SIZE__SHIFT) |
(adev->gfx.config.sc_hiz_tile_fifo_size <<
PA_SC_FIFO_SIZE__SC_HIZ_TILE_FIFO_SIZE__SHIFT) |
(adev->gfx.config.sc_earlyz_tile_fifo_size <<
PA_SC_FIFO_SIZE__SC_EARLYZ_TILE_FIFO_SIZE__SHIFT));
mutex_unlock(&adev->grbm_idx_mutex);
}
static void gfx_v8_0_wait_for_rlc_serdes(struct amdgpu_device *adev)
{
u32 i, j, k;
u32 mask;
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
gfx_v8_0_select_se_sh(adev, i, j);
for (k = 0; k < adev->usec_timeout; k++) {
if (RREG32(mmRLC_SERDES_CU_MASTER_BUSY) == 0)
break;
udelay(1);
}
}
}
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
mask = RLC_SERDES_NONCU_MASTER_BUSY__SE_MASTER_BUSY_MASK |
RLC_SERDES_NONCU_MASTER_BUSY__GC_MASTER_BUSY_MASK |
RLC_SERDES_NONCU_MASTER_BUSY__TC0_MASTER_BUSY_MASK |
RLC_SERDES_NONCU_MASTER_BUSY__TC1_MASTER_BUSY_MASK;
for (k = 0; k < adev->usec_timeout; k++) {
if ((RREG32(mmRLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0)
break;
udelay(1);
}
}
static void gfx_v8_0_enable_gui_idle_interrupt(struct amdgpu_device *adev,
bool enable)
{
u32 tmp = RREG32(mmCP_INT_CNTL_RING0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE, enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_EMPTY_INT_ENABLE, enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CMP_BUSY_INT_ENABLE, enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, GFX_IDLE_INT_ENABLE, enable ? 1 : 0);
WREG32(mmCP_INT_CNTL_RING0, tmp);
}
void gfx_v8_0_rlc_stop(struct amdgpu_device *adev)
{
u32 tmp = RREG32(mmRLC_CNTL);
tmp = REG_SET_FIELD(tmp, RLC_CNTL, RLC_ENABLE_F32, 0);
WREG32(mmRLC_CNTL, tmp);
gfx_v8_0_enable_gui_idle_interrupt(adev, false);
gfx_v8_0_wait_for_rlc_serdes(adev);
}
static void gfx_v8_0_rlc_reset(struct amdgpu_device *adev)
{
u32 tmp = RREG32(mmGRBM_SOFT_RESET);
tmp = REG_SET_FIELD(tmp, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1);
WREG32(mmGRBM_SOFT_RESET, tmp);
udelay(50);
tmp = REG_SET_FIELD(tmp, GRBM_SOFT_RESET, SOFT_RESET_RLC, 0);
WREG32(mmGRBM_SOFT_RESET, tmp);
udelay(50);
}
static void gfx_v8_0_rlc_start(struct amdgpu_device *adev)
{
u32 tmp = RREG32(mmRLC_CNTL);
tmp = REG_SET_FIELD(tmp, RLC_CNTL, RLC_ENABLE_F32, 1);
WREG32(mmRLC_CNTL, tmp);
/* carrizo do enable cp interrupt after cp inited */
if (!(adev->flags & AMD_IS_APU))
gfx_v8_0_enable_gui_idle_interrupt(adev, true);
udelay(50);
}
static int gfx_v8_0_rlc_load_microcode(struct amdgpu_device *adev)
{
const struct rlc_firmware_header_v2_0 *hdr;
const __le32 *fw_data;
unsigned i, fw_size;
if (!adev->gfx.rlc_fw)
return -EINVAL;
hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
amdgpu_ucode_print_rlc_hdr(&hdr->header);
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
WREG32(mmRLC_GPM_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(mmRLC_GPM_UCODE_DATA, le32_to_cpup(fw_data++));
WREG32(mmRLC_GPM_UCODE_ADDR, adev->gfx.rlc_fw_version);
return 0;
}
static int gfx_v8_0_rlc_resume(struct amdgpu_device *adev)
{
int r;
gfx_v8_0_rlc_stop(adev);
/* disable CG */
WREG32(mmRLC_CGCG_CGLS_CTRL, 0);
/* disable PG */
WREG32(mmRLC_PG_CNTL, 0);
gfx_v8_0_rlc_reset(adev);
if (!adev->pp_enabled) {
if (!adev->firmware.smu_load) {
/* legacy rlc firmware loading */
r = gfx_v8_0_rlc_load_microcode(adev);
if (r)
return r;
} else {
r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
AMDGPU_UCODE_ID_RLC_G);
if (r)
return -EINVAL;
}
}
gfx_v8_0_rlc_start(adev);
return 0;
}
static void gfx_v8_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable)
{
int i;
u32 tmp = RREG32(mmCP_ME_CNTL);
if (enable) {
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, CE_HALT, 0);
} else {
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, 1);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, 1);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, CE_HALT, 1);
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
adev->gfx.gfx_ring[i].ready = false;
}
WREG32(mmCP_ME_CNTL, tmp);
udelay(50);
}
static int gfx_v8_0_cp_gfx_load_microcode(struct amdgpu_device *adev)
{
const struct gfx_firmware_header_v1_0 *pfp_hdr;
const struct gfx_firmware_header_v1_0 *ce_hdr;
const struct gfx_firmware_header_v1_0 *me_hdr;
const __le32 *fw_data;
unsigned i, fw_size;
if (!adev->gfx.me_fw || !adev->gfx.pfp_fw || !adev->gfx.ce_fw)
return -EINVAL;
pfp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.pfp_fw->data;
ce_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.ce_fw->data;
me_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.me_fw->data;
amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header);
amdgpu_ucode_print_gfx_hdr(&ce_hdr->header);
amdgpu_ucode_print_gfx_hdr(&me_hdr->header);
gfx_v8_0_cp_gfx_enable(adev, false);
/* PFP */
fw_data = (const __le32 *)
(adev->gfx.pfp_fw->data +
le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes) / 4;
WREG32(mmCP_PFP_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(mmCP_PFP_UCODE_DATA, le32_to_cpup(fw_data++));
WREG32(mmCP_PFP_UCODE_ADDR, adev->gfx.pfp_fw_version);
/* CE */
fw_data = (const __le32 *)
(adev->gfx.ce_fw->data +
le32_to_cpu(ce_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(ce_hdr->header.ucode_size_bytes) / 4;
WREG32(mmCP_CE_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(mmCP_CE_UCODE_DATA, le32_to_cpup(fw_data++));
WREG32(mmCP_CE_UCODE_ADDR, adev->gfx.ce_fw_version);
/* ME */
fw_data = (const __le32 *)
(adev->gfx.me_fw->data +
le32_to_cpu(me_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes) / 4;
WREG32(mmCP_ME_RAM_WADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(mmCP_ME_RAM_DATA, le32_to_cpup(fw_data++));
WREG32(mmCP_ME_RAM_WADDR, adev->gfx.me_fw_version);
return 0;
}
static u32 gfx_v8_0_get_csb_size(struct amdgpu_device *adev)
{
u32 count = 0;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
/* begin clear state */
count += 2;
/* context control state */
count += 3;
for (sect = vi_cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT)
count += 2 + ext->reg_count;
else
return 0;
}
}
/* pa_sc_raster_config/pa_sc_raster_config1 */
count += 4;
/* end clear state */
count += 2;
/* clear state */
count += 2;
return count;
}
static int gfx_v8_0_cp_gfx_start(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring = &adev->gfx.gfx_ring[0];
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
int r, i;
/* init the CP */
WREG32(mmCP_MAX_CONTEXT, adev->gfx.config.max_hw_contexts - 1);
WREG32(mmCP_ENDIAN_SWAP, 0);
WREG32(mmCP_DEVICE_ID, 1);
gfx_v8_0_cp_gfx_enable(adev, true);
r = amdgpu_ring_lock(ring, gfx_v8_0_get_csb_size(adev) + 4);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r);
return r;
}
/* clear state buffer */
amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
amdgpu_ring_write(ring, 0x80000000);
amdgpu_ring_write(ring, 0x80000000);
for (sect = vi_cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT) {
amdgpu_ring_write(ring,
PACKET3(PACKET3_SET_CONTEXT_REG,
ext->reg_count));
amdgpu_ring_write(ring,
ext->reg_index - PACKET3_SET_CONTEXT_REG_START);
for (i = 0; i < ext->reg_count; i++)
amdgpu_ring_write(ring, ext->extent[i]);
}
}
}
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2));
amdgpu_ring_write(ring, mmPA_SC_RASTER_CONFIG - PACKET3_SET_CONTEXT_REG_START);
switch (adev->asic_type) {
case CHIP_TONGA:
amdgpu_ring_write(ring, 0x16000012);
amdgpu_ring_write(ring, 0x0000002A);
break;
case CHIP_FIJI:
amdgpu_ring_write(ring, 0x3a00161a);
amdgpu_ring_write(ring, 0x0000002e);
break;
case CHIP_TOPAZ:
case CHIP_CARRIZO:
amdgpu_ring_write(ring, 0x00000002);
amdgpu_ring_write(ring, 0x00000000);
break;
case CHIP_STONEY:
amdgpu_ring_write(ring, 0x00000000);
amdgpu_ring_write(ring, 0x00000000);
break;
default:
BUG();
}
amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);
amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
amdgpu_ring_write(ring, 0);
/* init the CE partitions */
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2));
amdgpu_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE));
amdgpu_ring_write(ring, 0x8000);
amdgpu_ring_write(ring, 0x8000);
amdgpu_ring_unlock_commit(ring);
return 0;
}
static int gfx_v8_0_cp_gfx_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
u32 tmp;
u32 rb_bufsz;
u64 rb_addr, rptr_addr;
int r;
/* Set the write pointer delay */
WREG32(mmCP_RB_WPTR_DELAY, 0);
/* set the RB to use vmid 0 */
WREG32(mmCP_RB_VMID, 0);
/* Set ring buffer size */
ring = &adev->gfx.gfx_ring[0];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = REG_SET_FIELD(0, CP_RB0_CNTL, RB_BUFSZ, rb_bufsz);
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, RB_BLKSZ, rb_bufsz - 2);
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, MTYPE, 3);
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, MIN_IB_AVAILSZ, 1);
#ifdef __BIG_ENDIAN
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, BUF_SWAP, 1);
#endif
WREG32(mmCP_RB0_CNTL, tmp);
/* Initialize the ring buffer's read and write pointers */
WREG32(mmCP_RB0_CNTL, tmp | CP_RB0_CNTL__RB_RPTR_WR_ENA_MASK);
ring->wptr = 0;
WREG32(mmCP_RB0_WPTR, ring->wptr);
/* set the wb address wether it's enabled or not */
rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
WREG32(mmCP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr));
WREG32(mmCP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & 0xFF);
mdelay(1);
WREG32(mmCP_RB0_CNTL, tmp);
rb_addr = ring->gpu_addr >> 8;
WREG32(mmCP_RB0_BASE, rb_addr);
WREG32(mmCP_RB0_BASE_HI, upper_32_bits(rb_addr));
/* no gfx doorbells on iceland */
if (adev->asic_type != CHIP_TOPAZ) {
tmp = RREG32(mmCP_RB_DOORBELL_CONTROL);
if (ring->use_doorbell) {
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_OFFSET, ring->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 1);
} else {
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 0);
}
WREG32(mmCP_RB_DOORBELL_CONTROL, tmp);
if (adev->asic_type == CHIP_TONGA) {
tmp = REG_SET_FIELD(0, CP_RB_DOORBELL_RANGE_LOWER,
DOORBELL_RANGE_LOWER,
AMDGPU_DOORBELL_GFX_RING0);
WREG32(mmCP_RB_DOORBELL_RANGE_LOWER, tmp);
WREG32(mmCP_RB_DOORBELL_RANGE_UPPER,
CP_RB_DOORBELL_RANGE_UPPER__DOORBELL_RANGE_UPPER_MASK);
}
}
/* start the ring */
gfx_v8_0_cp_gfx_start(adev);
ring->ready = true;
r = amdgpu_ring_test_ring(ring);
if (r) {
ring->ready = false;
return r;
}
return 0;
}
static void gfx_v8_0_cp_compute_enable(struct amdgpu_device *adev, bool enable)
{
int i;
if (enable) {
WREG32(mmCP_MEC_CNTL, 0);
} else {
WREG32(mmCP_MEC_CNTL, (CP_MEC_CNTL__MEC_ME1_HALT_MASK | CP_MEC_CNTL__MEC_ME2_HALT_MASK));
for (i = 0; i < adev->gfx.num_compute_rings; i++)
adev->gfx.compute_ring[i].ready = false;
}
udelay(50);
}
static int gfx_v8_0_cp_compute_start(struct amdgpu_device *adev)
{
gfx_v8_0_cp_compute_enable(adev, true);
return 0;
}
static int gfx_v8_0_cp_compute_load_microcode(struct amdgpu_device *adev)
{
const struct gfx_firmware_header_v1_0 *mec_hdr;
const __le32 *fw_data;
unsigned i, fw_size;
if (!adev->gfx.mec_fw)
return -EINVAL;
gfx_v8_0_cp_compute_enable(adev, false);
mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
amdgpu_ucode_print_gfx_hdr(&mec_hdr->header);
fw_data = (const __le32 *)
(adev->gfx.mec_fw->data +
le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(mec_hdr->header.ucode_size_bytes) / 4;
/* MEC1 */
WREG32(mmCP_MEC_ME1_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(mmCP_MEC_ME1_UCODE_DATA, le32_to_cpup(fw_data+i));
WREG32(mmCP_MEC_ME1_UCODE_ADDR, adev->gfx.mec_fw_version);
/* Loading MEC2 firmware is only necessary if MEC2 should run different microcode than MEC1. */
if (adev->gfx.mec2_fw) {
const struct gfx_firmware_header_v1_0 *mec2_hdr;
mec2_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec2_fw->data;
amdgpu_ucode_print_gfx_hdr(&mec2_hdr->header);
fw_data = (const __le32 *)
(adev->gfx.mec2_fw->data +
le32_to_cpu(mec2_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(mec2_hdr->header.ucode_size_bytes) / 4;
WREG32(mmCP_MEC_ME2_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(mmCP_MEC_ME2_UCODE_DATA, le32_to_cpup(fw_data+i));
WREG32(mmCP_MEC_ME2_UCODE_ADDR, adev->gfx.mec2_fw_version);
}
return 0;
}
struct vi_mqd {
uint32_t header; /* ordinal0 */
uint32_t compute_dispatch_initiator; /* ordinal1 */
uint32_t compute_dim_x; /* ordinal2 */
uint32_t compute_dim_y; /* ordinal3 */
uint32_t compute_dim_z; /* ordinal4 */
uint32_t compute_start_x; /* ordinal5 */
uint32_t compute_start_y; /* ordinal6 */
uint32_t compute_start_z; /* ordinal7 */
uint32_t compute_num_thread_x; /* ordinal8 */
uint32_t compute_num_thread_y; /* ordinal9 */
uint32_t compute_num_thread_z; /* ordinal10 */
uint32_t compute_pipelinestat_enable; /* ordinal11 */
uint32_t compute_perfcount_enable; /* ordinal12 */
uint32_t compute_pgm_lo; /* ordinal13 */
uint32_t compute_pgm_hi; /* ordinal14 */
uint32_t compute_tba_lo; /* ordinal15 */
uint32_t compute_tba_hi; /* ordinal16 */
uint32_t compute_tma_lo; /* ordinal17 */
uint32_t compute_tma_hi; /* ordinal18 */
uint32_t compute_pgm_rsrc1; /* ordinal19 */
uint32_t compute_pgm_rsrc2; /* ordinal20 */
uint32_t compute_vmid; /* ordinal21 */
uint32_t compute_resource_limits; /* ordinal22 */
uint32_t compute_static_thread_mgmt_se0; /* ordinal23 */
uint32_t compute_static_thread_mgmt_se1; /* ordinal24 */
uint32_t compute_tmpring_size; /* ordinal25 */
uint32_t compute_static_thread_mgmt_se2; /* ordinal26 */
uint32_t compute_static_thread_mgmt_se3; /* ordinal27 */
uint32_t compute_restart_x; /* ordinal28 */
uint32_t compute_restart_y; /* ordinal29 */
uint32_t compute_restart_z; /* ordinal30 */
uint32_t compute_thread_trace_enable; /* ordinal31 */
uint32_t compute_misc_reserved; /* ordinal32 */
uint32_t compute_dispatch_id; /* ordinal33 */
uint32_t compute_threadgroup_id; /* ordinal34 */
uint32_t compute_relaunch; /* ordinal35 */
uint32_t compute_wave_restore_addr_lo; /* ordinal36 */
uint32_t compute_wave_restore_addr_hi; /* ordinal37 */
uint32_t compute_wave_restore_control; /* ordinal38 */
uint32_t reserved9; /* ordinal39 */
uint32_t reserved10; /* ordinal40 */
uint32_t reserved11; /* ordinal41 */
uint32_t reserved12; /* ordinal42 */
uint32_t reserved13; /* ordinal43 */
uint32_t reserved14; /* ordinal44 */
uint32_t reserved15; /* ordinal45 */
uint32_t reserved16; /* ordinal46 */
uint32_t reserved17; /* ordinal47 */
uint32_t reserved18; /* ordinal48 */
uint32_t reserved19; /* ordinal49 */
uint32_t reserved20; /* ordinal50 */
uint32_t reserved21; /* ordinal51 */
uint32_t reserved22; /* ordinal52 */
uint32_t reserved23; /* ordinal53 */
uint32_t reserved24; /* ordinal54 */
uint32_t reserved25; /* ordinal55 */
uint32_t reserved26; /* ordinal56 */
uint32_t reserved27; /* ordinal57 */
uint32_t reserved28; /* ordinal58 */
uint32_t reserved29; /* ordinal59 */
uint32_t reserved30; /* ordinal60 */
uint32_t reserved31; /* ordinal61 */
uint32_t reserved32; /* ordinal62 */
uint32_t reserved33; /* ordinal63 */
uint32_t reserved34; /* ordinal64 */
uint32_t compute_user_data_0; /* ordinal65 */
uint32_t compute_user_data_1; /* ordinal66 */
uint32_t compute_user_data_2; /* ordinal67 */
uint32_t compute_user_data_3; /* ordinal68 */
uint32_t compute_user_data_4; /* ordinal69 */
uint32_t compute_user_data_5; /* ordinal70 */
uint32_t compute_user_data_6; /* ordinal71 */
uint32_t compute_user_data_7; /* ordinal72 */
uint32_t compute_user_data_8; /* ordinal73 */
uint32_t compute_user_data_9; /* ordinal74 */
uint32_t compute_user_data_10; /* ordinal75 */
uint32_t compute_user_data_11; /* ordinal76 */
uint32_t compute_user_data_12; /* ordinal77 */
uint32_t compute_user_data_13; /* ordinal78 */
uint32_t compute_user_data_14; /* ordinal79 */
uint32_t compute_user_data_15; /* ordinal80 */
uint32_t cp_compute_csinvoc_count_lo; /* ordinal81 */
uint32_t cp_compute_csinvoc_count_hi; /* ordinal82 */
uint32_t reserved35; /* ordinal83 */
uint32_t reserved36; /* ordinal84 */
uint32_t reserved37; /* ordinal85 */
uint32_t cp_mqd_query_time_lo; /* ordinal86 */
uint32_t cp_mqd_query_time_hi; /* ordinal87 */
uint32_t cp_mqd_connect_start_time_lo; /* ordinal88 */
uint32_t cp_mqd_connect_start_time_hi; /* ordinal89 */
uint32_t cp_mqd_connect_end_time_lo; /* ordinal90 */
uint32_t cp_mqd_connect_end_time_hi; /* ordinal91 */
uint32_t cp_mqd_connect_end_wf_count; /* ordinal92 */
uint32_t cp_mqd_connect_end_pq_rptr; /* ordinal93 */
uint32_t cp_mqd_connect_end_pq_wptr; /* ordinal94 */
uint32_t cp_mqd_connect_end_ib_rptr; /* ordinal95 */
uint32_t reserved38; /* ordinal96 */
uint32_t reserved39; /* ordinal97 */
uint32_t cp_mqd_save_start_time_lo; /* ordinal98 */
uint32_t cp_mqd_save_start_time_hi; /* ordinal99 */
uint32_t cp_mqd_save_end_time_lo; /* ordinal100 */
uint32_t cp_mqd_save_end_time_hi; /* ordinal101 */
uint32_t cp_mqd_restore_start_time_lo; /* ordinal102 */
uint32_t cp_mqd_restore_start_time_hi; /* ordinal103 */
uint32_t cp_mqd_restore_end_time_lo; /* ordinal104 */
uint32_t cp_mqd_restore_end_time_hi; /* ordinal105 */
uint32_t reserved40; /* ordinal106 */
uint32_t reserved41; /* ordinal107 */
uint32_t gds_cs_ctxsw_cnt0; /* ordinal108 */
uint32_t gds_cs_ctxsw_cnt1; /* ordinal109 */
uint32_t gds_cs_ctxsw_cnt2; /* ordinal110 */
uint32_t gds_cs_ctxsw_cnt3; /* ordinal111 */
uint32_t reserved42; /* ordinal112 */
uint32_t reserved43; /* ordinal113 */
uint32_t cp_pq_exe_status_lo; /* ordinal114 */
uint32_t cp_pq_exe_status_hi; /* ordinal115 */
uint32_t cp_packet_id_lo; /* ordinal116 */
uint32_t cp_packet_id_hi; /* ordinal117 */
uint32_t cp_packet_exe_status_lo; /* ordinal118 */
uint32_t cp_packet_exe_status_hi; /* ordinal119 */
uint32_t gds_save_base_addr_lo; /* ordinal120 */
uint32_t gds_save_base_addr_hi; /* ordinal121 */
uint32_t gds_save_mask_lo; /* ordinal122 */
uint32_t gds_save_mask_hi; /* ordinal123 */
uint32_t ctx_save_base_addr_lo; /* ordinal124 */
uint32_t ctx_save_base_addr_hi; /* ordinal125 */
uint32_t reserved44; /* ordinal126 */
uint32_t reserved45; /* ordinal127 */
uint32_t cp_mqd_base_addr_lo; /* ordinal128 */
uint32_t cp_mqd_base_addr_hi; /* ordinal129 */
uint32_t cp_hqd_active; /* ordinal130 */
uint32_t cp_hqd_vmid; /* ordinal131 */
uint32_t cp_hqd_persistent_state; /* ordinal132 */
uint32_t cp_hqd_pipe_priority; /* ordinal133 */
uint32_t cp_hqd_queue_priority; /* ordinal134 */
uint32_t cp_hqd_quantum; /* ordinal135 */
uint32_t cp_hqd_pq_base_lo; /* ordinal136 */
uint32_t cp_hqd_pq_base_hi; /* ordinal137 */
uint32_t cp_hqd_pq_rptr; /* ordinal138 */
uint32_t cp_hqd_pq_rptr_report_addr_lo; /* ordinal139 */
uint32_t cp_hqd_pq_rptr_report_addr_hi; /* ordinal140 */
uint32_t cp_hqd_pq_wptr_poll_addr; /* ordinal141 */
uint32_t cp_hqd_pq_wptr_poll_addr_hi; /* ordinal142 */
uint32_t cp_hqd_pq_doorbell_control; /* ordinal143 */
uint32_t cp_hqd_pq_wptr; /* ordinal144 */
uint32_t cp_hqd_pq_control; /* ordinal145 */
uint32_t cp_hqd_ib_base_addr_lo; /* ordinal146 */
uint32_t cp_hqd_ib_base_addr_hi; /* ordinal147 */
uint32_t cp_hqd_ib_rptr; /* ordinal148 */
uint32_t cp_hqd_ib_control; /* ordinal149 */
uint32_t cp_hqd_iq_timer; /* ordinal150 */
uint32_t cp_hqd_iq_rptr; /* ordinal151 */
uint32_t cp_hqd_dequeue_request; /* ordinal152 */
uint32_t cp_hqd_dma_offload; /* ordinal153 */
uint32_t cp_hqd_sema_cmd; /* ordinal154 */
uint32_t cp_hqd_msg_type; /* ordinal155 */
uint32_t cp_hqd_atomic0_preop_lo; /* ordinal156 */
uint32_t cp_hqd_atomic0_preop_hi; /* ordinal157 */
uint32_t cp_hqd_atomic1_preop_lo; /* ordinal158 */
uint32_t cp_hqd_atomic1_preop_hi; /* ordinal159 */
uint32_t cp_hqd_hq_status0; /* ordinal160 */
uint32_t cp_hqd_hq_control0; /* ordinal161 */
uint32_t cp_mqd_control; /* ordinal162 */
uint32_t cp_hqd_hq_status1; /* ordinal163 */
uint32_t cp_hqd_hq_control1; /* ordinal164 */
uint32_t cp_hqd_eop_base_addr_lo; /* ordinal165 */
uint32_t cp_hqd_eop_base_addr_hi; /* ordinal166 */
uint32_t cp_hqd_eop_control; /* ordinal167 */
uint32_t cp_hqd_eop_rptr; /* ordinal168 */
uint32_t cp_hqd_eop_wptr; /* ordinal169 */
uint32_t cp_hqd_eop_done_events; /* ordinal170 */
uint32_t cp_hqd_ctx_save_base_addr_lo; /* ordinal171 */
uint32_t cp_hqd_ctx_save_base_addr_hi; /* ordinal172 */
uint32_t cp_hqd_ctx_save_control; /* ordinal173 */
uint32_t cp_hqd_cntl_stack_offset; /* ordinal174 */
uint32_t cp_hqd_cntl_stack_size; /* ordinal175 */
uint32_t cp_hqd_wg_state_offset; /* ordinal176 */
uint32_t cp_hqd_ctx_save_size; /* ordinal177 */
uint32_t cp_hqd_gds_resource_state; /* ordinal178 */
uint32_t cp_hqd_error; /* ordinal179 */
uint32_t cp_hqd_eop_wptr_mem; /* ordinal180 */
uint32_t cp_hqd_eop_dones; /* ordinal181 */
uint32_t reserved46; /* ordinal182 */
uint32_t reserved47; /* ordinal183 */
uint32_t reserved48; /* ordinal184 */
uint32_t reserved49; /* ordinal185 */
uint32_t reserved50; /* ordinal186 */
uint32_t reserved51; /* ordinal187 */
uint32_t reserved52; /* ordinal188 */
uint32_t reserved53; /* ordinal189 */
uint32_t reserved54; /* ordinal190 */
uint32_t reserved55; /* ordinal191 */
uint32_t iqtimer_pkt_header; /* ordinal192 */
uint32_t iqtimer_pkt_dw0; /* ordinal193 */
uint32_t iqtimer_pkt_dw1; /* ordinal194 */
uint32_t iqtimer_pkt_dw2; /* ordinal195 */
uint32_t iqtimer_pkt_dw3; /* ordinal196 */
uint32_t iqtimer_pkt_dw4; /* ordinal197 */
uint32_t iqtimer_pkt_dw5; /* ordinal198 */
uint32_t iqtimer_pkt_dw6; /* ordinal199 */
uint32_t iqtimer_pkt_dw7; /* ordinal200 */
uint32_t iqtimer_pkt_dw8; /* ordinal201 */
uint32_t iqtimer_pkt_dw9; /* ordinal202 */
uint32_t iqtimer_pkt_dw10; /* ordinal203 */
uint32_t iqtimer_pkt_dw11; /* ordinal204 */
uint32_t iqtimer_pkt_dw12; /* ordinal205 */
uint32_t iqtimer_pkt_dw13; /* ordinal206 */
uint32_t iqtimer_pkt_dw14; /* ordinal207 */
uint32_t iqtimer_pkt_dw15; /* ordinal208 */
uint32_t iqtimer_pkt_dw16; /* ordinal209 */
uint32_t iqtimer_pkt_dw17; /* ordinal210 */
uint32_t iqtimer_pkt_dw18; /* ordinal211 */
uint32_t iqtimer_pkt_dw19; /* ordinal212 */
uint32_t iqtimer_pkt_dw20; /* ordinal213 */
uint32_t iqtimer_pkt_dw21; /* ordinal214 */
uint32_t iqtimer_pkt_dw22; /* ordinal215 */
uint32_t iqtimer_pkt_dw23; /* ordinal216 */
uint32_t iqtimer_pkt_dw24; /* ordinal217 */
uint32_t iqtimer_pkt_dw25; /* ordinal218 */
uint32_t iqtimer_pkt_dw26; /* ordinal219 */
uint32_t iqtimer_pkt_dw27; /* ordinal220 */
uint32_t iqtimer_pkt_dw28; /* ordinal221 */
uint32_t iqtimer_pkt_dw29; /* ordinal222 */
uint32_t iqtimer_pkt_dw30; /* ordinal223 */
uint32_t iqtimer_pkt_dw31; /* ordinal224 */
uint32_t reserved56; /* ordinal225 */
uint32_t reserved57; /* ordinal226 */
uint32_t reserved58; /* ordinal227 */
uint32_t set_resources_header; /* ordinal228 */
uint32_t set_resources_dw1; /* ordinal229 */
uint32_t set_resources_dw2; /* ordinal230 */
uint32_t set_resources_dw3; /* ordinal231 */
uint32_t set_resources_dw4; /* ordinal232 */
uint32_t set_resources_dw5; /* ordinal233 */
uint32_t set_resources_dw6; /* ordinal234 */
uint32_t set_resources_dw7; /* ordinal235 */
uint32_t reserved59; /* ordinal236 */
uint32_t reserved60; /* ordinal237 */
uint32_t reserved61; /* ordinal238 */
uint32_t reserved62; /* ordinal239 */
uint32_t reserved63; /* ordinal240 */
uint32_t reserved64; /* ordinal241 */
uint32_t reserved65; /* ordinal242 */
uint32_t reserved66; /* ordinal243 */
uint32_t reserved67; /* ordinal244 */
uint32_t reserved68; /* ordinal245 */
uint32_t reserved69; /* ordinal246 */
uint32_t reserved70; /* ordinal247 */
uint32_t reserved71; /* ordinal248 */
uint32_t reserved72; /* ordinal249 */
uint32_t reserved73; /* ordinal250 */
uint32_t reserved74; /* ordinal251 */
uint32_t reserved75; /* ordinal252 */
uint32_t reserved76; /* ordinal253 */
uint32_t reserved77; /* ordinal254 */
uint32_t reserved78; /* ordinal255 */
uint32_t reserved_t[256]; /* Reserve 256 dword buffer used by ucode */
};
static void gfx_v8_0_cp_compute_fini(struct amdgpu_device *adev)
{
int i, r;
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
struct amdgpu_ring *ring = &adev->gfx.compute_ring[i];
if (ring->mqd_obj) {
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0))
dev_warn(adev->dev, "(%d) reserve MQD bo failed\n", r);
amdgpu_bo_unpin(ring->mqd_obj);
amdgpu_bo_unreserve(ring->mqd_obj);
amdgpu_bo_unref(&ring->mqd_obj);
ring->mqd_obj = NULL;
}
}
}
static int gfx_v8_0_cp_compute_resume(struct amdgpu_device *adev)
{
int r, i, j;
u32 tmp;
bool use_doorbell = true;
u64 hqd_gpu_addr;
u64 mqd_gpu_addr;
u64 eop_gpu_addr;
u64 wb_gpu_addr;
u32 *buf;
struct vi_mqd *mqd;
/* init the pipes */
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < (adev->gfx.mec.num_pipe * adev->gfx.mec.num_mec); i++) {
int me = (i < 4) ? 1 : 2;
int pipe = (i < 4) ? i : (i - 4);
eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr + (i * MEC_HPD_SIZE);
eop_gpu_addr >>= 8;
vi_srbm_select(adev, me, pipe, 0, 0);
/* write the EOP addr */
WREG32(mmCP_HQD_EOP_BASE_ADDR, eop_gpu_addr);
WREG32(mmCP_HQD_EOP_BASE_ADDR_HI, upper_32_bits(eop_gpu_addr));
/* set the VMID assigned */
WREG32(mmCP_HQD_VMID, 0);
/* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */
tmp = RREG32(mmCP_HQD_EOP_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_EOP_CONTROL, EOP_SIZE,
(order_base_2(MEC_HPD_SIZE / 4) - 1));
WREG32(mmCP_HQD_EOP_CONTROL, tmp);
}
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
/* init the queues. Just two for now. */
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
struct amdgpu_ring *ring = &adev->gfx.compute_ring[i];
if (ring->mqd_obj == NULL) {
r = amdgpu_bo_create(adev,
sizeof(struct vi_mqd),
PAGE_SIZE, true,
AMDGPU_GEM_DOMAIN_GTT, 0, NULL,
NULL, &ring->mqd_obj);
if (r) {
dev_warn(adev->dev, "(%d) create MQD bo failed\n", r);
return r;
}
}
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0)) {
gfx_v8_0_cp_compute_fini(adev);
return r;
}
r = amdgpu_bo_pin(ring->mqd_obj, AMDGPU_GEM_DOMAIN_GTT,
&mqd_gpu_addr);
if (r) {
dev_warn(adev->dev, "(%d) pin MQD bo failed\n", r);
gfx_v8_0_cp_compute_fini(adev);
return r;
}
r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&buf);
if (r) {
dev_warn(adev->dev, "(%d) map MQD bo failed\n", r);
gfx_v8_0_cp_compute_fini(adev);
return r;
}
/* init the mqd struct */
memset(buf, 0, sizeof(struct vi_mqd));
mqd = (struct vi_mqd *)buf;
mqd->header = 0xC0310800;
mqd->compute_pipelinestat_enable = 0x00000001;
mqd->compute_static_thread_mgmt_se0 = 0xffffffff;
mqd->compute_static_thread_mgmt_se1 = 0xffffffff;
mqd->compute_static_thread_mgmt_se2 = 0xffffffff;
mqd->compute_static_thread_mgmt_se3 = 0xffffffff;
mqd->compute_misc_reserved = 0x00000003;
mutex_lock(&adev->srbm_mutex);
vi_srbm_select(adev, ring->me,
ring->pipe,
ring->queue, 0);
/* disable wptr polling */
tmp = RREG32(mmCP_PQ_WPTR_POLL_CNTL);
tmp = REG_SET_FIELD(tmp, CP_PQ_WPTR_POLL_CNTL, EN, 0);
WREG32(mmCP_PQ_WPTR_POLL_CNTL, tmp);
mqd->cp_hqd_eop_base_addr_lo =
RREG32(mmCP_HQD_EOP_BASE_ADDR);
mqd->cp_hqd_eop_base_addr_hi =
RREG32(mmCP_HQD_EOP_BASE_ADDR_HI);
/* enable doorbell? */
tmp = RREG32(mmCP_HQD_PQ_DOORBELL_CONTROL);
if (use_doorbell) {
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
} else {
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 0);
}
WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, tmp);
mqd->cp_hqd_pq_doorbell_control = tmp;
/* disable the queue if it's active */
mqd->cp_hqd_dequeue_request = 0;
mqd->cp_hqd_pq_rptr = 0;
mqd->cp_hqd_pq_wptr= 0;
if (RREG32(mmCP_HQD_ACTIVE) & 1) {
WREG32(mmCP_HQD_DEQUEUE_REQUEST, 1);
for (j = 0; j < adev->usec_timeout; j++) {
if (!(RREG32(mmCP_HQD_ACTIVE) & 1))
break;
udelay(1);
}
WREG32(mmCP_HQD_DEQUEUE_REQUEST, mqd->cp_hqd_dequeue_request);
WREG32(mmCP_HQD_PQ_RPTR, mqd->cp_hqd_pq_rptr);
WREG32(mmCP_HQD_PQ_WPTR, mqd->cp_hqd_pq_wptr);
}
/* set the pointer to the MQD */
mqd->cp_mqd_base_addr_lo = mqd_gpu_addr & 0xfffffffc;
mqd->cp_mqd_base_addr_hi = upper_32_bits(mqd_gpu_addr);
WREG32(mmCP_MQD_BASE_ADDR, mqd->cp_mqd_base_addr_lo);
WREG32(mmCP_MQD_BASE_ADDR_HI, mqd->cp_mqd_base_addr_hi);
/* set MQD vmid to 0 */
tmp = RREG32(mmCP_MQD_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_MQD_CONTROL, VMID, 0);
WREG32(mmCP_MQD_CONTROL, tmp);
mqd->cp_mqd_control = tmp;
/* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */
hqd_gpu_addr = ring->gpu_addr >> 8;
mqd->cp_hqd_pq_base_lo = hqd_gpu_addr;
mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr);
WREG32(mmCP_HQD_PQ_BASE, mqd->cp_hqd_pq_base_lo);
WREG32(mmCP_HQD_PQ_BASE_HI, mqd->cp_hqd_pq_base_hi);
/* set up the HQD, this is similar to CP_RB0_CNTL */
tmp = RREG32(mmCP_HQD_PQ_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, QUEUE_SIZE,
(order_base_2(ring->ring_size / 4) - 1));
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, RPTR_BLOCK_SIZE,
((order_base_2(AMDGPU_GPU_PAGE_SIZE / 4) - 1) << 8));
#ifdef __BIG_ENDIAN
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ENDIAN_SWAP, 1);
#endif
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, UNORD_DISPATCH, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ROQ_PQ_IB_FLIP, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, PRIV_STATE, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, KMD_QUEUE, 1);
WREG32(mmCP_HQD_PQ_CONTROL, tmp);
mqd->cp_hqd_pq_control = tmp;
/* set the wb address wether it's enabled or not */
wb_gpu_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc;
mqd->cp_hqd_pq_rptr_report_addr_hi =
upper_32_bits(wb_gpu_addr) & 0xffff;
WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR,
mqd->cp_hqd_pq_rptr_report_addr_lo);
WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
mqd->cp_hqd_pq_rptr_report_addr_hi);
/* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */
wb_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
mqd->cp_hqd_pq_wptr_poll_addr = wb_gpu_addr & 0xfffffffc;
mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff;
WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR, mqd->cp_hqd_pq_wptr_poll_addr);
WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
mqd->cp_hqd_pq_wptr_poll_addr_hi);
/* enable the doorbell if requested */
if (use_doorbell) {
if ((adev->asic_type == CHIP_CARRIZO) ||
(adev->asic_type == CHIP_FIJI) ||
(adev->asic_type == CHIP_STONEY)) {
WREG32(mmCP_MEC_DOORBELL_RANGE_LOWER,
AMDGPU_DOORBELL_KIQ << 2);
WREG32(mmCP_MEC_DOORBELL_RANGE_UPPER,
AMDGPU_DOORBELL_MEC_RING7 << 2);
}
tmp = RREG32(mmCP_HQD_PQ_DOORBELL_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_OFFSET, ring->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_SOURCE, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_HIT, 0);
mqd->cp_hqd_pq_doorbell_control = tmp;
} else {
mqd->cp_hqd_pq_doorbell_control = 0;
}
WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL,
mqd->cp_hqd_pq_doorbell_control);
/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
ring->wptr = 0;
mqd->cp_hqd_pq_wptr = ring->wptr;
WREG32(mmCP_HQD_PQ_WPTR, mqd->cp_hqd_pq_wptr);
mqd->cp_hqd_pq_rptr = RREG32(mmCP_HQD_PQ_RPTR);
/* set the vmid for the queue */
mqd->cp_hqd_vmid = 0;
WREG32(mmCP_HQD_VMID, mqd->cp_hqd_vmid);
tmp = RREG32(mmCP_HQD_PERSISTENT_STATE);
tmp = REG_SET_FIELD(tmp, CP_HQD_PERSISTENT_STATE, PRELOAD_SIZE, 0x53);
WREG32(mmCP_HQD_PERSISTENT_STATE, tmp);
mqd->cp_hqd_persistent_state = tmp;
if (adev->asic_type == CHIP_STONEY) {
tmp = RREG32(mmCP_ME1_PIPE3_INT_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME1_PIPE3_INT_CNTL, GENERIC2_INT_ENABLE, 1);
WREG32(mmCP_ME1_PIPE3_INT_CNTL, tmp);
}
/* activate the queue */
mqd->cp_hqd_active = 1;
WREG32(mmCP_HQD_ACTIVE, mqd->cp_hqd_active);
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
amdgpu_bo_kunmap(ring->mqd_obj);
amdgpu_bo_unreserve(ring->mqd_obj);
}
if (use_doorbell) {
tmp = RREG32(mmCP_PQ_STATUS);
tmp = REG_SET_FIELD(tmp, CP_PQ_STATUS, DOORBELL_ENABLE, 1);
WREG32(mmCP_PQ_STATUS, tmp);
}
r = gfx_v8_0_cp_compute_start(adev);
if (r)
return r;
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
struct amdgpu_ring *ring = &adev->gfx.compute_ring[i];
ring->ready = true;
r = amdgpu_ring_test_ring(ring);
if (r)
ring->ready = false;
}
return 0;
}
static int gfx_v8_0_cp_resume(struct amdgpu_device *adev)
{
int r;
if (!(adev->flags & AMD_IS_APU))
gfx_v8_0_enable_gui_idle_interrupt(adev, false);
if (!adev->pp_enabled) {
if (!adev->firmware.smu_load) {
/* legacy firmware loading */
r = gfx_v8_0_cp_gfx_load_microcode(adev);
if (r)
return r;
r = gfx_v8_0_cp_compute_load_microcode(adev);
if (r)
return r;
} else {
r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
AMDGPU_UCODE_ID_CP_CE);
if (r)
return -EINVAL;
r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
AMDGPU_UCODE_ID_CP_PFP);
if (r)
return -EINVAL;
r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
AMDGPU_UCODE_ID_CP_ME);
if (r)
return -EINVAL;
r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
AMDGPU_UCODE_ID_CP_MEC1);
if (r)
return -EINVAL;
}
}
r = gfx_v8_0_cp_gfx_resume(adev);
if (r)
return r;
r = gfx_v8_0_cp_compute_resume(adev);
if (r)
return r;
gfx_v8_0_enable_gui_idle_interrupt(adev, true);
return 0;
}
static void gfx_v8_0_cp_enable(struct amdgpu_device *adev, bool enable)
{
gfx_v8_0_cp_gfx_enable(adev, enable);
gfx_v8_0_cp_compute_enable(adev, enable);
}
static int gfx_v8_0_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
gfx_v8_0_init_golden_registers(adev);
gfx_v8_0_gpu_init(adev);
r = gfx_v8_0_rlc_resume(adev);
if (r)
return r;
r = gfx_v8_0_cp_resume(adev);
if (r)
return r;
return r;
}
static int gfx_v8_0_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
gfx_v8_0_cp_enable(adev, false);
gfx_v8_0_rlc_stop(adev);
gfx_v8_0_cp_compute_fini(adev);
return 0;
}
static int gfx_v8_0_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return gfx_v8_0_hw_fini(adev);
}
static int gfx_v8_0_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return gfx_v8_0_hw_init(adev);
}
static bool gfx_v8_0_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (REG_GET_FIELD(RREG32(mmGRBM_STATUS), GRBM_STATUS, GUI_ACTIVE))
return false;
else
return true;
}
static int gfx_v8_0_wait_for_idle(void *handle)
{
unsigned i;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(mmGRBM_STATUS) & GRBM_STATUS__GUI_ACTIVE_MASK;
if (!REG_GET_FIELD(tmp, GRBM_STATUS, GUI_ACTIVE))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static void gfx_v8_0_print_status(void *handle)
{
int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
dev_info(adev->dev, "GFX 8.x registers\n");
dev_info(adev->dev, " GRBM_STATUS=0x%08X\n",
RREG32(mmGRBM_STATUS));
dev_info(adev->dev, " GRBM_STATUS2=0x%08X\n",
RREG32(mmGRBM_STATUS2));
dev_info(adev->dev, " GRBM_STATUS_SE0=0x%08X\n",
RREG32(mmGRBM_STATUS_SE0));
dev_info(adev->dev, " GRBM_STATUS_SE1=0x%08X\n",
RREG32(mmGRBM_STATUS_SE1));
dev_info(adev->dev, " GRBM_STATUS_SE2=0x%08X\n",
RREG32(mmGRBM_STATUS_SE2));
dev_info(adev->dev, " GRBM_STATUS_SE3=0x%08X\n",
RREG32(mmGRBM_STATUS_SE3));
dev_info(adev->dev, " CP_STAT = 0x%08x\n", RREG32(mmCP_STAT));
dev_info(adev->dev, " CP_STALLED_STAT1 = 0x%08x\n",
RREG32(mmCP_STALLED_STAT1));
dev_info(adev->dev, " CP_STALLED_STAT2 = 0x%08x\n",
RREG32(mmCP_STALLED_STAT2));
dev_info(adev->dev, " CP_STALLED_STAT3 = 0x%08x\n",
RREG32(mmCP_STALLED_STAT3));
dev_info(adev->dev, " CP_CPF_BUSY_STAT = 0x%08x\n",
RREG32(mmCP_CPF_BUSY_STAT));
dev_info(adev->dev, " CP_CPF_STALLED_STAT1 = 0x%08x\n",
RREG32(mmCP_CPF_STALLED_STAT1));
dev_info(adev->dev, " CP_CPF_STATUS = 0x%08x\n", RREG32(mmCP_CPF_STATUS));
dev_info(adev->dev, " CP_CPC_BUSY_STAT = 0x%08x\n", RREG32(mmCP_CPC_BUSY_STAT));
dev_info(adev->dev, " CP_CPC_STALLED_STAT1 = 0x%08x\n",
RREG32(mmCP_CPC_STALLED_STAT1));
dev_info(adev->dev, " CP_CPC_STATUS = 0x%08x\n", RREG32(mmCP_CPC_STATUS));
for (i = 0; i < 32; i++) {
dev_info(adev->dev, " GB_TILE_MODE%d=0x%08X\n",
i, RREG32(mmGB_TILE_MODE0 + (i * 4)));
}
for (i = 0; i < 16; i++) {
dev_info(adev->dev, " GB_MACROTILE_MODE%d=0x%08X\n",
i, RREG32(mmGB_MACROTILE_MODE0 + (i * 4)));
}
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
dev_info(adev->dev, " se: %d\n", i);
gfx_v8_0_select_se_sh(adev, i, 0xffffffff);
dev_info(adev->dev, " PA_SC_RASTER_CONFIG=0x%08X\n",
RREG32(mmPA_SC_RASTER_CONFIG));
dev_info(adev->dev, " PA_SC_RASTER_CONFIG_1=0x%08X\n",
RREG32(mmPA_SC_RASTER_CONFIG_1));
}
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff);
dev_info(adev->dev, " GB_ADDR_CONFIG=0x%08X\n",
RREG32(mmGB_ADDR_CONFIG));
dev_info(adev->dev, " HDP_ADDR_CONFIG=0x%08X\n",
RREG32(mmHDP_ADDR_CONFIG));
dev_info(adev->dev, " DMIF_ADDR_CALC=0x%08X\n",
RREG32(mmDMIF_ADDR_CALC));
dev_info(adev->dev, " SDMA0_TILING_CONFIG=0x%08X\n",
RREG32(mmSDMA0_TILING_CONFIG + SDMA0_REGISTER_OFFSET));
dev_info(adev->dev, " SDMA1_TILING_CONFIG=0x%08X\n",
RREG32(mmSDMA0_TILING_CONFIG + SDMA1_REGISTER_OFFSET));
dev_info(adev->dev, " UVD_UDEC_ADDR_CONFIG=0x%08X\n",
RREG32(mmUVD_UDEC_ADDR_CONFIG));
dev_info(adev->dev, " UVD_UDEC_DB_ADDR_CONFIG=0x%08X\n",
RREG32(mmUVD_UDEC_DB_ADDR_CONFIG));
dev_info(adev->dev, " UVD_UDEC_DBW_ADDR_CONFIG=0x%08X\n",
RREG32(mmUVD_UDEC_DBW_ADDR_CONFIG));
dev_info(adev->dev, " CP_MEQ_THRESHOLDS=0x%08X\n",
RREG32(mmCP_MEQ_THRESHOLDS));
dev_info(adev->dev, " SX_DEBUG_1=0x%08X\n",
RREG32(mmSX_DEBUG_1));
dev_info(adev->dev, " TA_CNTL_AUX=0x%08X\n",
RREG32(mmTA_CNTL_AUX));
dev_info(adev->dev, " SPI_CONFIG_CNTL=0x%08X\n",
RREG32(mmSPI_CONFIG_CNTL));
dev_info(adev->dev, " SQ_CONFIG=0x%08X\n",
RREG32(mmSQ_CONFIG));
dev_info(adev->dev, " DB_DEBUG=0x%08X\n",
RREG32(mmDB_DEBUG));
dev_info(adev->dev, " DB_DEBUG2=0x%08X\n",
RREG32(mmDB_DEBUG2));
dev_info(adev->dev, " DB_DEBUG3=0x%08X\n",
RREG32(mmDB_DEBUG3));
dev_info(adev->dev, " CB_HW_CONTROL=0x%08X\n",
RREG32(mmCB_HW_CONTROL));
dev_info(adev->dev, " SPI_CONFIG_CNTL_1=0x%08X\n",
RREG32(mmSPI_CONFIG_CNTL_1));
dev_info(adev->dev, " PA_SC_FIFO_SIZE=0x%08X\n",
RREG32(mmPA_SC_FIFO_SIZE));
dev_info(adev->dev, " VGT_NUM_INSTANCES=0x%08X\n",
RREG32(mmVGT_NUM_INSTANCES));
dev_info(adev->dev, " CP_PERFMON_CNTL=0x%08X\n",
RREG32(mmCP_PERFMON_CNTL));
dev_info(adev->dev, " PA_SC_FORCE_EOV_MAX_CNTS=0x%08X\n",
RREG32(mmPA_SC_FORCE_EOV_MAX_CNTS));
dev_info(adev->dev, " VGT_CACHE_INVALIDATION=0x%08X\n",
RREG32(mmVGT_CACHE_INVALIDATION));
dev_info(adev->dev, " VGT_GS_VERTEX_REUSE=0x%08X\n",
RREG32(mmVGT_GS_VERTEX_REUSE));
dev_info(adev->dev, " PA_SC_LINE_STIPPLE_STATE=0x%08X\n",
RREG32(mmPA_SC_LINE_STIPPLE_STATE));
dev_info(adev->dev, " PA_CL_ENHANCE=0x%08X\n",
RREG32(mmPA_CL_ENHANCE));
dev_info(adev->dev, " PA_SC_ENHANCE=0x%08X\n",
RREG32(mmPA_SC_ENHANCE));
dev_info(adev->dev, " CP_ME_CNTL=0x%08X\n",
RREG32(mmCP_ME_CNTL));
dev_info(adev->dev, " CP_MAX_CONTEXT=0x%08X\n",
RREG32(mmCP_MAX_CONTEXT));
dev_info(adev->dev, " CP_ENDIAN_SWAP=0x%08X\n",
RREG32(mmCP_ENDIAN_SWAP));
dev_info(adev->dev, " CP_DEVICE_ID=0x%08X\n",
RREG32(mmCP_DEVICE_ID));
dev_info(adev->dev, " CP_SEM_WAIT_TIMER=0x%08X\n",
RREG32(mmCP_SEM_WAIT_TIMER));
dev_info(adev->dev, " CP_RB_WPTR_DELAY=0x%08X\n",
RREG32(mmCP_RB_WPTR_DELAY));
dev_info(adev->dev, " CP_RB_VMID=0x%08X\n",
RREG32(mmCP_RB_VMID));
dev_info(adev->dev, " CP_RB0_CNTL=0x%08X\n",
RREG32(mmCP_RB0_CNTL));
dev_info(adev->dev, " CP_RB0_WPTR=0x%08X\n",
RREG32(mmCP_RB0_WPTR));
dev_info(adev->dev, " CP_RB0_RPTR_ADDR=0x%08X\n",
RREG32(mmCP_RB0_RPTR_ADDR));
dev_info(adev->dev, " CP_RB0_RPTR_ADDR_HI=0x%08X\n",
RREG32(mmCP_RB0_RPTR_ADDR_HI));
dev_info(adev->dev, " CP_RB0_CNTL=0x%08X\n",
RREG32(mmCP_RB0_CNTL));
dev_info(adev->dev, " CP_RB0_BASE=0x%08X\n",
RREG32(mmCP_RB0_BASE));
dev_info(adev->dev, " CP_RB0_BASE_HI=0x%08X\n",
RREG32(mmCP_RB0_BASE_HI));
dev_info(adev->dev, " CP_MEC_CNTL=0x%08X\n",
RREG32(mmCP_MEC_CNTL));
dev_info(adev->dev, " CP_CPF_DEBUG=0x%08X\n",
RREG32(mmCP_CPF_DEBUG));
dev_info(adev->dev, " SCRATCH_ADDR=0x%08X\n",
RREG32(mmSCRATCH_ADDR));
dev_info(adev->dev, " SCRATCH_UMSK=0x%08X\n",
RREG32(mmSCRATCH_UMSK));
dev_info(adev->dev, " CP_INT_CNTL_RING0=0x%08X\n",
RREG32(mmCP_INT_CNTL_RING0));
dev_info(adev->dev, " RLC_LB_CNTL=0x%08X\n",
RREG32(mmRLC_LB_CNTL));
dev_info(adev->dev, " RLC_CNTL=0x%08X\n",
RREG32(mmRLC_CNTL));
dev_info(adev->dev, " RLC_CGCG_CGLS_CTRL=0x%08X\n",
RREG32(mmRLC_CGCG_CGLS_CTRL));
dev_info(adev->dev, " RLC_LB_CNTR_INIT=0x%08X\n",
RREG32(mmRLC_LB_CNTR_INIT));
dev_info(adev->dev, " RLC_LB_CNTR_MAX=0x%08X\n",
RREG32(mmRLC_LB_CNTR_MAX));
dev_info(adev->dev, " RLC_LB_INIT_CU_MASK=0x%08X\n",
RREG32(mmRLC_LB_INIT_CU_MASK));
dev_info(adev->dev, " RLC_LB_PARAMS=0x%08X\n",
RREG32(mmRLC_LB_PARAMS));
dev_info(adev->dev, " RLC_LB_CNTL=0x%08X\n",
RREG32(mmRLC_LB_CNTL));
dev_info(adev->dev, " RLC_MC_CNTL=0x%08X\n",
RREG32(mmRLC_MC_CNTL));
dev_info(adev->dev, " RLC_UCODE_CNTL=0x%08X\n",
RREG32(mmRLC_UCODE_CNTL));
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < 16; i++) {
vi_srbm_select(adev, 0, 0, 0, i);
dev_info(adev->dev, " VM %d:\n", i);
dev_info(adev->dev, " SH_MEM_CONFIG=0x%08X\n",
RREG32(mmSH_MEM_CONFIG));
dev_info(adev->dev, " SH_MEM_APE1_BASE=0x%08X\n",
RREG32(mmSH_MEM_APE1_BASE));
dev_info(adev->dev, " SH_MEM_APE1_LIMIT=0x%08X\n",
RREG32(mmSH_MEM_APE1_LIMIT));
dev_info(adev->dev, " SH_MEM_BASES=0x%08X\n",
RREG32(mmSH_MEM_BASES));
}
vi_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
static int gfx_v8_0_soft_reset(void *handle)
{
u32 grbm_soft_reset = 0, srbm_soft_reset = 0;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/* GRBM_STATUS */
tmp = RREG32(mmGRBM_STATUS);
if (tmp & (GRBM_STATUS__PA_BUSY_MASK | GRBM_STATUS__SC_BUSY_MASK |
GRBM_STATUS__BCI_BUSY_MASK | GRBM_STATUS__SX_BUSY_MASK |
GRBM_STATUS__TA_BUSY_MASK | GRBM_STATUS__VGT_BUSY_MASK |
GRBM_STATUS__DB_BUSY_MASK | GRBM_STATUS__CB_BUSY_MASK |
GRBM_STATUS__GDS_BUSY_MASK | GRBM_STATUS__SPI_BUSY_MASK |
GRBM_STATUS__IA_BUSY_MASK | GRBM_STATUS__IA_BUSY_NO_DMA_MASK)) {
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_CP, 1);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_GFX, 1);
}
if (tmp & (GRBM_STATUS__CP_BUSY_MASK | GRBM_STATUS__CP_COHERENCY_BUSY_MASK)) {
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_CP, 1);
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
SRBM_SOFT_RESET, SOFT_RESET_GRBM, 1);
}
/* GRBM_STATUS2 */
tmp = RREG32(mmGRBM_STATUS2);
if (REG_GET_FIELD(tmp, GRBM_STATUS2, RLC_BUSY))
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset,
GRBM_SOFT_RESET, SOFT_RESET_RLC, 1);
/* SRBM_STATUS */
tmp = RREG32(mmSRBM_STATUS);
if (REG_GET_FIELD(tmp, SRBM_STATUS, GRBM_RQ_PENDING))
srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
SRBM_SOFT_RESET, SOFT_RESET_GRBM, 1);
if (grbm_soft_reset || srbm_soft_reset) {
gfx_v8_0_print_status((void *)adev);
/* stop the rlc */
gfx_v8_0_rlc_stop(adev);
/* Disable GFX parsing/prefetching */
gfx_v8_0_cp_gfx_enable(adev, false);
/* Disable MEC parsing/prefetching */
/* XXX todo */
if (grbm_soft_reset) {
tmp = RREG32(mmGRBM_SOFT_RESET);
tmp |= grbm_soft_reset;
dev_info(adev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmGRBM_SOFT_RESET, tmp);
tmp = RREG32(mmGRBM_SOFT_RESET);
udelay(50);
tmp &= ~grbm_soft_reset;
WREG32(mmGRBM_SOFT_RESET, tmp);
tmp = RREG32(mmGRBM_SOFT_RESET);
}
if (srbm_soft_reset) {
tmp = RREG32(mmSRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
}
/* Wait a little for things to settle down */
udelay(50);
gfx_v8_0_print_status((void *)adev);
}
return 0;
}
/**
* gfx_v8_0_get_gpu_clock_counter - return GPU clock counter snapshot
*
* @adev: amdgpu_device pointer
*
* Fetches a GPU clock counter snapshot.
* Returns the 64 bit clock counter snapshot.
*/
uint64_t gfx_v8_0_get_gpu_clock_counter(struct amdgpu_device *adev)
{
uint64_t clock;
mutex_lock(&adev->gfx.gpu_clock_mutex);
WREG32(mmRLC_CAPTURE_GPU_CLOCK_COUNT, 1);
clock = (uint64_t)RREG32(mmRLC_GPU_CLOCK_COUNT_LSB) |
((uint64_t)RREG32(mmRLC_GPU_CLOCK_COUNT_MSB) << 32ULL);
mutex_unlock(&adev->gfx.gpu_clock_mutex);
return clock;
}
static void gfx_v8_0_ring_emit_gds_switch(struct amdgpu_ring *ring,
uint32_t vmid,
uint32_t gds_base, uint32_t gds_size,
uint32_t gws_base, uint32_t gws_size,
uint32_t oa_base, uint32_t oa_size)
{
gds_base = gds_base >> AMDGPU_GDS_SHIFT;
gds_size = gds_size >> AMDGPU_GDS_SHIFT;
gws_base = gws_base >> AMDGPU_GWS_SHIFT;
gws_size = gws_size >> AMDGPU_GWS_SHIFT;
oa_base = oa_base >> AMDGPU_OA_SHIFT;
oa_size = oa_size >> AMDGPU_OA_SHIFT;
/* GDS Base */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].mem_base);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, gds_base);
/* GDS Size */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].mem_size);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, gds_size);
/* GWS */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].gws);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base);
/* OA */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].oa);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, (1 << (oa_size + oa_base)) - (1 << oa_base));
}
static int gfx_v8_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->gfx.num_gfx_rings = GFX8_NUM_GFX_RINGS;
adev->gfx.num_compute_rings = GFX8_NUM_COMPUTE_RINGS;
gfx_v8_0_set_ring_funcs(adev);
gfx_v8_0_set_irq_funcs(adev);
gfx_v8_0_set_gds_init(adev);
return 0;
}
static int gfx_v8_0_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
/* requires IBs so do in late init after IB pool is initialized */
r = gfx_v8_0_do_edc_gpr_workarounds(adev);
if (r)
return r;
return 0;
}
static int gfx_v8_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static void fiji_send_serdes_cmd(struct amdgpu_device *adev,
uint32_t reg_addr, uint32_t cmd)
{
uint32_t data;
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff);
WREG32(mmRLC_SERDES_WR_CU_MASTER_MASK, 0xffffffff);
WREG32(mmRLC_SERDES_WR_NONCU_MASTER_MASK, 0xffffffff);
data = RREG32(mmRLC_SERDES_WR_CTRL);
data &= ~(RLC_SERDES_WR_CTRL__WRITE_COMMAND_MASK |
RLC_SERDES_WR_CTRL__READ_COMMAND_MASK |
RLC_SERDES_WR_CTRL__P1_SELECT_MASK |
RLC_SERDES_WR_CTRL__P2_SELECT_MASK |
RLC_SERDES_WR_CTRL__RDDATA_RESET_MASK |
RLC_SERDES_WR_CTRL__POWER_DOWN_MASK |
RLC_SERDES_WR_CTRL__POWER_UP_MASK |
RLC_SERDES_WR_CTRL__SHORT_FORMAT_MASK |
RLC_SERDES_WR_CTRL__BPM_DATA_MASK |
RLC_SERDES_WR_CTRL__REG_ADDR_MASK |
RLC_SERDES_WR_CTRL__SRBM_OVERRIDE_MASK);
data |= (RLC_SERDES_WR_CTRL__RSVD_BPM_ADDR_MASK |
(cmd << RLC_SERDES_WR_CTRL__BPM_DATA__SHIFT) |
(reg_addr << RLC_SERDES_WR_CTRL__REG_ADDR__SHIFT) |
(0xff << RLC_SERDES_WR_CTRL__BPM_ADDR__SHIFT));
WREG32(mmRLC_SERDES_WR_CTRL, data);
}
static void fiji_update_medium_grain_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t temp, data;
/* It is disabled by HW by default */
if (enable) {
/* 1 - RLC memory Light sleep */
temp = data = RREG32(mmRLC_MEM_SLP_CNTL);
data |= RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK;
if (temp != data)
WREG32(mmRLC_MEM_SLP_CNTL, data);
/* 2 - CP memory Light sleep */
temp = data = RREG32(mmCP_MEM_SLP_CNTL);
data |= CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK;
if (temp != data)
WREG32(mmCP_MEM_SLP_CNTL, data);
/* 3 - RLC_CGTT_MGCG_OVERRIDE */
temp = data = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
data &= ~(RLC_CGTT_MGCG_OVERRIDE__CPF_MASK |
RLC_CGTT_MGCG_OVERRIDE__RLC_MASK |
RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK |
RLC_CGTT_MGCG_OVERRIDE__GRBM_MASK);
if (temp != data)
WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data);
/* 4 - wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* 5 - clear mgcg override */
fiji_send_serdes_cmd(adev, BPM_REG_MGCG_OVERRIDE, CLE_BPM_SERDES_CMD);
/* 6 - Enable CGTS(Tree Shade) MGCG /MGLS */
temp = data = RREG32(mmCGTS_SM_CTRL_REG);
data &= ~(CGTS_SM_CTRL_REG__SM_MODE_MASK);
data |= (0x2 << CGTS_SM_CTRL_REG__SM_MODE__SHIFT);
data |= CGTS_SM_CTRL_REG__SM_MODE_ENABLE_MASK;
data &= ~CGTS_SM_CTRL_REG__OVERRIDE_MASK;
data &= ~CGTS_SM_CTRL_REG__LS_OVERRIDE_MASK;
data |= CGTS_SM_CTRL_REG__ON_MONITOR_ADD_EN_MASK;
data |= (0x96 << CGTS_SM_CTRL_REG__ON_MONITOR_ADD__SHIFT);
if (temp != data)
WREG32(mmCGTS_SM_CTRL_REG, data);
udelay(50);
/* 7 - wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
} else {
/* 1 - MGCG_OVERRIDE[0] for CP and MGCG_OVERRIDE[1] for RLC */
temp = data = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
data |= (RLC_CGTT_MGCG_OVERRIDE__CPF_MASK |
RLC_CGTT_MGCG_OVERRIDE__RLC_MASK |
RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK |
RLC_CGTT_MGCG_OVERRIDE__GRBM_MASK);
if (temp != data)
WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data);
/* 2 - disable MGLS in RLC */
data = RREG32(mmRLC_MEM_SLP_CNTL);
if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) {
data &= ~RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK;
WREG32(mmRLC_MEM_SLP_CNTL, data);
}
/* 3 - disable MGLS in CP */
data = RREG32(mmCP_MEM_SLP_CNTL);
if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) {
data &= ~CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK;
WREG32(mmCP_MEM_SLP_CNTL, data);
}
/* 4 - Disable CGTS(Tree Shade) MGCG and MGLS */
temp = data = RREG32(mmCGTS_SM_CTRL_REG);
data |= (CGTS_SM_CTRL_REG__OVERRIDE_MASK |
CGTS_SM_CTRL_REG__LS_OVERRIDE_MASK);
if (temp != data)
WREG32(mmCGTS_SM_CTRL_REG, data);
/* 5 - wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* 6 - set mgcg override */
fiji_send_serdes_cmd(adev, BPM_REG_MGCG_OVERRIDE, SET_BPM_SERDES_CMD);
udelay(50);
/* 7- wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
}
}
static void fiji_update_coarse_grain_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t temp, temp1, data, data1;
temp = data = RREG32(mmRLC_CGCG_CGLS_CTRL);
if (enable) {
/* 1 enable cntx_empty_int_enable/cntx_busy_int_enable/
* Cmp_busy/GFX_Idle interrupts
*/
gfx_v8_0_enable_gui_idle_interrupt(adev, true);
temp1 = data1 = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
data1 &= ~RLC_CGTT_MGCG_OVERRIDE__CGCG_MASK;
if (temp1 != data1)
WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data1);
/* 2 wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* 3 - clear cgcg override */
fiji_send_serdes_cmd(adev, BPM_REG_CGCG_OVERRIDE, CLE_BPM_SERDES_CMD);
/* wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* 4 - write cmd to set CGLS */
fiji_send_serdes_cmd(adev, BPM_REG_CGLS_EN, SET_BPM_SERDES_CMD);
/* 5 - enable cgcg */
data |= RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK;
/* enable cgls*/
data |= RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK;
temp1 = data1 = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
data1 &= ~RLC_CGTT_MGCG_OVERRIDE__CGLS_MASK;
if (temp1 != data1)
WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data1);
if (temp != data)
WREG32(mmRLC_CGCG_CGLS_CTRL, data);
} else {
/* disable cntx_empty_int_enable & GFX Idle interrupt */
gfx_v8_0_enable_gui_idle_interrupt(adev, false);
/* TEST CGCG */
temp1 = data1 = RREG32(mmRLC_CGTT_MGCG_OVERRIDE);
data1 |= (RLC_CGTT_MGCG_OVERRIDE__CGCG_MASK |
RLC_CGTT_MGCG_OVERRIDE__CGLS_MASK);
if (temp1 != data1)
WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data1);
/* read gfx register to wake up cgcg */
RREG32(mmCB_CGTT_SCLK_CTRL);
RREG32(mmCB_CGTT_SCLK_CTRL);
RREG32(mmCB_CGTT_SCLK_CTRL);
RREG32(mmCB_CGTT_SCLK_CTRL);
/* wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* write cmd to Set CGCG Overrride */
fiji_send_serdes_cmd(adev, BPM_REG_CGCG_OVERRIDE, SET_BPM_SERDES_CMD);
/* wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */
gfx_v8_0_wait_for_rlc_serdes(adev);
/* write cmd to Clear CGLS */
fiji_send_serdes_cmd(adev, BPM_REG_CGLS_EN, CLE_BPM_SERDES_CMD);
/* disable cgcg, cgls should be disabled too. */
data &= ~(RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK |
RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK);
if (temp != data)
WREG32(mmRLC_CGCG_CGLS_CTRL, data);
}
}
static int fiji_update_gfx_clock_gating(struct amdgpu_device *adev,
bool enable)
{
if (enable) {
/* CGCG/CGLS should be enabled after MGCG/MGLS/TS(CG/LS)
* === MGCG + MGLS + TS(CG/LS) ===
*/
fiji_update_medium_grain_clock_gating(adev, enable);
fiji_update_coarse_grain_clock_gating(adev, enable);
} else {
/* CGCG/CGLS should be disabled before MGCG/MGLS/TS(CG/LS)
* === CGCG + CGLS ===
*/
fiji_update_coarse_grain_clock_gating(adev, enable);
fiji_update_medium_grain_clock_gating(adev, enable);
}
return 0;
}
static int gfx_v8_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
switch (adev->asic_type) {
case CHIP_FIJI:
fiji_update_gfx_clock_gating(adev,
state == AMD_CG_STATE_GATE ? true : false);
break;
default:
break;
}
return 0;
}
static u32 gfx_v8_0_ring_get_rptr_gfx(struct amdgpu_ring *ring)
{
u32 rptr;
rptr = ring->adev->wb.wb[ring->rptr_offs];
return rptr;
}
static u32 gfx_v8_0_ring_get_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 wptr;
if (ring->use_doorbell)
/* XXX check if swapping is necessary on BE */
wptr = ring->adev->wb.wb[ring->wptr_offs];
else
wptr = RREG32(mmCP_RB0_WPTR);
return wptr;
}
static void gfx_v8_0_ring_set_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring->use_doorbell) {
/* XXX check if swapping is necessary on BE */
adev->wb.wb[ring->wptr_offs] = ring->wptr;
WDOORBELL32(ring->doorbell_index, ring->wptr);
} else {
WREG32(mmCP_RB0_WPTR, ring->wptr);
(void)RREG32(mmCP_RB0_WPTR);
}
}
static void gfx_v8_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
u32 ref_and_mask, reg_mem_engine;
if (ring->type == AMDGPU_RING_TYPE_COMPUTE) {
switch (ring->me) {
case 1:
ref_and_mask = GPU_HDP_FLUSH_DONE__CP2_MASK << ring->pipe;
break;
case 2:
ref_and_mask = GPU_HDP_FLUSH_DONE__CP6_MASK << ring->pipe;
break;
default:
return;
}
reg_mem_engine = 0;
} else {
ref_and_mask = GPU_HDP_FLUSH_DONE__CP0_MASK;
reg_mem_engine = WAIT_REG_MEM_ENGINE(1); /* pfp */
}
amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
amdgpu_ring_write(ring, (WAIT_REG_MEM_OPERATION(1) | /* write, wait, write */
WAIT_REG_MEM_FUNCTION(3) | /* == */
reg_mem_engine));
amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ);
amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE);
amdgpu_ring_write(ring, ref_and_mask);
amdgpu_ring_write(ring, ref_and_mask);
amdgpu_ring_write(ring, 0x20); /* poll interval */
}
static void gfx_v8_0_ring_emit_ib_gfx(struct amdgpu_ring *ring,
struct amdgpu_ib *ib)
{
bool need_ctx_switch = ring->current_ctx != ib->ctx;
u32 header, control = 0;
u32 next_rptr = ring->wptr + 5;
/* drop the CE preamble IB for the same context */
if ((ib->flags & AMDGPU_IB_FLAG_PREAMBLE) && !need_ctx_switch)
return;
if (need_ctx_switch)
next_rptr += 2;
next_rptr += 4;
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, WRITE_DATA_DST_SEL(5) | WR_CONFIRM);
amdgpu_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff);
amdgpu_ring_write(ring, next_rptr);
/* insert SWITCH_BUFFER packet before first IB in the ring frame */
if (need_ctx_switch) {
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
}
if (ib->flags & AMDGPU_IB_FLAG_CE)
header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2);
else
header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
control |= ib->length_dw |
(ib->vm ? (ib->vm->ids[ring->idx].id << 24) : 0);
amdgpu_ring_write(ring, header);
amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
(ib->gpu_addr & 0xFFFFFFFC));
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF);
amdgpu_ring_write(ring, control);
}
static void gfx_v8_0_ring_emit_ib_compute(struct amdgpu_ring *ring,
struct amdgpu_ib *ib)
{
u32 header, control = 0;
u32 next_rptr = ring->wptr + 5;
control |= INDIRECT_BUFFER_VALID;
next_rptr += 4;
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, WRITE_DATA_DST_SEL(5) | WR_CONFIRM);
amdgpu_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff);
amdgpu_ring_write(ring, next_rptr);
header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
control |= ib->length_dw |
(ib->vm ? (ib->vm->ids[ring->idx].id << 24) : 0);
amdgpu_ring_write(ring, header);
amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
(ib->gpu_addr & 0xFFFFFFFC));
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF);
amdgpu_ring_write(ring, control);
}
static void gfx_v8_0_ring_emit_fence_gfx(struct amdgpu_ring *ring, u64 addr,
u64 seq, unsigned flags)
{
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
bool int_sel = flags & AMDGPU_FENCE_FLAG_INT;
/* EVENT_WRITE_EOP - flush caches, send int */
amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4));
amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN |
EOP_TC_ACTION_EN |
EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
EVENT_INDEX(5)));
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xffff) |
DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0));
amdgpu_ring_write(ring, lower_32_bits(seq));
amdgpu_ring_write(ring, upper_32_bits(seq));
}
/**
* gfx_v8_0_ring_emit_semaphore - emit a semaphore on the CP ring
*
* @ring: amdgpu ring buffer object
* @semaphore: amdgpu semaphore object
* @emit_wait: Is this a sempahore wait?
*
* Emits a semaphore signal/wait packet to the CP ring and prevents the PFP
* from running ahead of semaphore waits.
*/
static bool gfx_v8_0_ring_emit_semaphore(struct amdgpu_ring *ring,
struct amdgpu_semaphore *semaphore,
bool emit_wait)
{
uint64_t addr = semaphore->gpu_addr;
unsigned sel = emit_wait ? PACKET3_SEM_SEL_WAIT : PACKET3_SEM_SEL_SIGNAL;
if (ring->adev->asic_type == CHIP_TOPAZ ||
ring->adev->asic_type == CHIP_TONGA ||
ring->adev->asic_type == CHIP_FIJI)
/* we got a hw semaphore bug in VI TONGA, return false to switch back to sw fence wait */
return false;
else {
amdgpu_ring_write(ring, PACKET3(PACKET3_MEM_SEMAPHORE, 2));
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, sel);
}
if (emit_wait && (ring->type == AMDGPU_RING_TYPE_GFX)) {
/* Prevent the PFP from running ahead of the semaphore wait */
amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
amdgpu_ring_write(ring, 0x0);
}
return true;
}
static void gfx_v8_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
unsigned vm_id, uint64_t pd_addr)
{
int usepfp = (ring->type == AMDGPU_RING_TYPE_GFX);
uint32_t seq = ring->fence_drv.sync_seq[ring->idx];
uint64_t addr = ring->fence_drv.gpu_addr;
amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
amdgpu_ring_write(ring, (WAIT_REG_MEM_MEM_SPACE(1) | /* memory */
WAIT_REG_MEM_FUNCTION(3))); /* equal */
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
amdgpu_ring_write(ring, seq);
amdgpu_ring_write(ring, 0xffffffff);
amdgpu_ring_write(ring, 4); /* poll interval */
if (usepfp) {
/* synce CE with ME to prevent CE fetch CEIB before context switch done */
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
}
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(usepfp) |
WRITE_DATA_DST_SEL(0)) |
WR_CONFIRM);
if (vm_id < 8) {
amdgpu_ring_write(ring,
(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
} else {
amdgpu_ring_write(ring,
(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
}
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, pd_addr >> 12);
/* bits 0-15 are the VM contexts0-15 */
/* invalidate the cache */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 1 << vm_id);
/* wait for the invalidate to complete */
amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
amdgpu_ring_write(ring, (WAIT_REG_MEM_OPERATION(0) | /* wait */
WAIT_REG_MEM_FUNCTION(0) | /* always */
WAIT_REG_MEM_ENGINE(0))); /* me */
amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0); /* ref */
amdgpu_ring_write(ring, 0); /* mask */
amdgpu_ring_write(ring, 0x20); /* poll interval */
/* compute doesn't have PFP */
if (usepfp) {
/* sync PFP to ME, otherwise we might get invalid PFP reads */
amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
amdgpu_ring_write(ring, 0x0);
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
}
}
static u32 gfx_v8_0_ring_get_rptr_compute(struct amdgpu_ring *ring)
{
return ring->adev->wb.wb[ring->rptr_offs];
}
static u32 gfx_v8_0_ring_get_wptr_compute(struct amdgpu_ring *ring)
{
return ring->adev->wb.wb[ring->wptr_offs];
}
static void gfx_v8_0_ring_set_wptr_compute(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
/* XXX check if swapping is necessary on BE */
adev->wb.wb[ring->wptr_offs] = ring->wptr;
WDOORBELL32(ring->doorbell_index, ring->wptr);
}
static void gfx_v8_0_ring_emit_fence_compute(struct amdgpu_ring *ring,
u64 addr, u64 seq,
unsigned flags)
{
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
bool int_sel = flags & AMDGPU_FENCE_FLAG_INT;
/* RELEASE_MEM - flush caches, send int */
amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 5));
amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN |
EOP_TC_ACTION_EN |
EOP_TC_WB_ACTION_EN |
EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
EVENT_INDEX(5)));
amdgpu_ring_write(ring, DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0));
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, lower_32_bits(seq));
amdgpu_ring_write(ring, upper_32_bits(seq));
}
static void gfx_v8_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev,
enum amdgpu_interrupt_state state)
{
u32 cp_int_cntl;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
TIME_STAMP_INT_ENABLE, 0);
WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0);
cp_int_cntl =
REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
TIME_STAMP_INT_ENABLE, 1);
WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl);
break;
default:
break;
}
}
static void gfx_v8_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev,
int me, int pipe,
enum amdgpu_interrupt_state state)
{
u32 mec_int_cntl, mec_int_cntl_reg;
/*
* amdgpu controls only pipe 0 of MEC1. That's why this function only
* handles the setting of interrupts for this specific pipe. All other
* pipes' interrupts are set by amdkfd.
*/
if (me == 1) {
switch (pipe) {
case 0:
mec_int_cntl_reg = mmCP_ME1_PIPE0_INT_CNTL;
break;
default:
DRM_DEBUG("invalid pipe %d\n", pipe);
return;
}
} else {
DRM_DEBUG("invalid me %d\n", me);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
mec_int_cntl = RREG32(mec_int_cntl_reg);
mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
TIME_STAMP_INT_ENABLE, 0);
WREG32(mec_int_cntl_reg, mec_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
mec_int_cntl = RREG32(mec_int_cntl_reg);
mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
TIME_STAMP_INT_ENABLE, 1);
WREG32(mec_int_cntl_reg, mec_int_cntl);
break;
default:
break;
}
}
static int gfx_v8_0_set_priv_reg_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 cp_int_cntl;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
PRIV_REG_INT_ENABLE, 0);
WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
PRIV_REG_INT_ENABLE, 0);
WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl);
break;
default:
break;
}
return 0;
}
static int gfx_v8_0_set_priv_inst_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 cp_int_cntl;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
PRIV_INSTR_INT_ENABLE, 0);
WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cp_int_cntl = RREG32(mmCP_INT_CNTL_RING0);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
PRIV_INSTR_INT_ENABLE, 1);
WREG32(mmCP_INT_CNTL_RING0, cp_int_cntl);
break;
default:
break;
}
return 0;
}
static int gfx_v8_0_set_eop_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
switch (type) {
case AMDGPU_CP_IRQ_GFX_EOP:
gfx_v8_0_set_gfx_eop_interrupt_state(adev, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 0, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 1, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 2, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 3, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE0_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 0, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE1_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 1, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE2_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 2, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE3_EOP:
gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 3, state);
break;
default:
break;
}
return 0;
}
static int gfx_v8_0_eop_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
int i;
u8 me_id, pipe_id, queue_id;
struct amdgpu_ring *ring;
DRM_DEBUG("IH: CP EOP\n");
me_id = (entry->ring_id & 0x0c) >> 2;
pipe_id = (entry->ring_id & 0x03) >> 0;
queue_id = (entry->ring_id & 0x70) >> 4;
switch (me_id) {
case 0:
amdgpu_fence_process(&adev->gfx.gfx_ring[0]);
break;
case 1:
case 2:
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
/* Per-queue interrupt is supported for MEC starting from VI.
* The interrupt can only be enabled/disabled per pipe instead of per queue.
*/
if ((ring->me == me_id) && (ring->pipe == pipe_id) && (ring->queue == queue_id))
amdgpu_fence_process(ring);
}
break;
}
return 0;
}
static int gfx_v8_0_priv_reg_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal register access in command stream\n");
schedule_work(&adev->reset_work);
return 0;
}
static int gfx_v8_0_priv_inst_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal instruction in command stream\n");
schedule_work(&adev->reset_work);
return 0;
}
const struct amd_ip_funcs gfx_v8_0_ip_funcs = {
.early_init = gfx_v8_0_early_init,
.late_init = gfx_v8_0_late_init,
.sw_init = gfx_v8_0_sw_init,
.sw_fini = gfx_v8_0_sw_fini,
.hw_init = gfx_v8_0_hw_init,
.hw_fini = gfx_v8_0_hw_fini,
.suspend = gfx_v8_0_suspend,
.resume = gfx_v8_0_resume,
.is_idle = gfx_v8_0_is_idle,
.wait_for_idle = gfx_v8_0_wait_for_idle,
.soft_reset = gfx_v8_0_soft_reset,
.print_status = gfx_v8_0_print_status,
.set_clockgating_state = gfx_v8_0_set_clockgating_state,
.set_powergating_state = gfx_v8_0_set_powergating_state,
};
static const struct amdgpu_ring_funcs gfx_v8_0_ring_funcs_gfx = {
.get_rptr = gfx_v8_0_ring_get_rptr_gfx,
.get_wptr = gfx_v8_0_ring_get_wptr_gfx,
.set_wptr = gfx_v8_0_ring_set_wptr_gfx,
.parse_cs = NULL,
.emit_ib = gfx_v8_0_ring_emit_ib_gfx,
.emit_fence = gfx_v8_0_ring_emit_fence_gfx,
.emit_semaphore = gfx_v8_0_ring_emit_semaphore,
.emit_vm_flush = gfx_v8_0_ring_emit_vm_flush,
.emit_gds_switch = gfx_v8_0_ring_emit_gds_switch,
.emit_hdp_flush = gfx_v8_0_ring_emit_hdp_flush,
.test_ring = gfx_v8_0_ring_test_ring,
.test_ib = gfx_v8_0_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
};
static const struct amdgpu_ring_funcs gfx_v8_0_ring_funcs_compute = {
.get_rptr = gfx_v8_0_ring_get_rptr_compute,
.get_wptr = gfx_v8_0_ring_get_wptr_compute,
.set_wptr = gfx_v8_0_ring_set_wptr_compute,
.parse_cs = NULL,
.emit_ib = gfx_v8_0_ring_emit_ib_compute,
.emit_fence = gfx_v8_0_ring_emit_fence_compute,
.emit_semaphore = gfx_v8_0_ring_emit_semaphore,
.emit_vm_flush = gfx_v8_0_ring_emit_vm_flush,
.emit_gds_switch = gfx_v8_0_ring_emit_gds_switch,
.emit_hdp_flush = gfx_v8_0_ring_emit_hdp_flush,
.test_ring = gfx_v8_0_ring_test_ring,
.test_ib = gfx_v8_0_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
};
static void gfx_v8_0_set_ring_funcs(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
adev->gfx.gfx_ring[i].funcs = &gfx_v8_0_ring_funcs_gfx;
for (i = 0; i < adev->gfx.num_compute_rings; i++)
adev->gfx.compute_ring[i].funcs = &gfx_v8_0_ring_funcs_compute;
}
static const struct amdgpu_irq_src_funcs gfx_v8_0_eop_irq_funcs = {
.set = gfx_v8_0_set_eop_interrupt_state,
.process = gfx_v8_0_eop_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v8_0_priv_reg_irq_funcs = {
.set = gfx_v8_0_set_priv_reg_fault_state,
.process = gfx_v8_0_priv_reg_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v8_0_priv_inst_irq_funcs = {
.set = gfx_v8_0_set_priv_inst_fault_state,
.process = gfx_v8_0_priv_inst_irq,
};
static void gfx_v8_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST;
adev->gfx.eop_irq.funcs = &gfx_v8_0_eop_irq_funcs;
adev->gfx.priv_reg_irq.num_types = 1;
adev->gfx.priv_reg_irq.funcs = &gfx_v8_0_priv_reg_irq_funcs;
adev->gfx.priv_inst_irq.num_types = 1;
adev->gfx.priv_inst_irq.funcs = &gfx_v8_0_priv_inst_irq_funcs;
}
static void gfx_v8_0_set_gds_init(struct amdgpu_device *adev)
{
/* init asci gds info */
adev->gds.mem.total_size = RREG32(mmGDS_VMID0_SIZE);
adev->gds.gws.total_size = 64;
adev->gds.oa.total_size = 16;
if (adev->gds.mem.total_size == 64 * 1024) {
adev->gds.mem.gfx_partition_size = 4096;
adev->gds.mem.cs_partition_size = 4096;
adev->gds.gws.gfx_partition_size = 4;
adev->gds.gws.cs_partition_size = 4;
adev->gds.oa.gfx_partition_size = 4;
adev->gds.oa.cs_partition_size = 1;
} else {
adev->gds.mem.gfx_partition_size = 1024;
adev->gds.mem.cs_partition_size = 1024;
adev->gds.gws.gfx_partition_size = 16;
adev->gds.gws.cs_partition_size = 16;
adev->gds.oa.gfx_partition_size = 4;
adev->gds.oa.cs_partition_size = 4;
}
}
static u32 gfx_v8_0_get_cu_active_bitmap(struct amdgpu_device *adev,
u32 se, u32 sh)
{
u32 mask = 0, tmp, tmp1;
int i;
gfx_v8_0_select_se_sh(adev, se, sh);
tmp = RREG32(mmCC_GC_SHADER_ARRAY_CONFIG);
tmp1 = RREG32(mmGC_USER_SHADER_ARRAY_CONFIG);
gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff);
tmp &= 0xffff0000;
tmp |= tmp1;
tmp >>= 16;
for (i = 0; i < adev->gfx.config.max_cu_per_sh; i ++) {
mask <<= 1;
mask |= 1;
}
return (~tmp) & mask;
}
int gfx_v8_0_get_cu_info(struct amdgpu_device *adev,
struct amdgpu_cu_info *cu_info)
{
int i, j, k, counter, active_cu_number = 0;
u32 mask, bitmap, ao_bitmap, ao_cu_mask = 0;
if (!adev || !cu_info)
return -EINVAL;
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
mask = 1;
ao_bitmap = 0;
counter = 0;
bitmap = gfx_v8_0_get_cu_active_bitmap(adev, i, j);
cu_info->bitmap[i][j] = bitmap;
for (k = 0; k < adev->gfx.config.max_cu_per_sh; k ++) {
if (bitmap & mask) {
if (counter < 2)
ao_bitmap |= mask;
counter ++;
}
mask <<= 1;
}
active_cu_number += counter;
ao_cu_mask |= (ao_bitmap << (i * 16 + j * 8));
}
}
cu_info->number = active_cu_number;
cu_info->ao_cu_mask = ao_cu_mask;
mutex_unlock(&adev->grbm_idx_mutex);
return 0;
}