|  | /* | 
|  | *  linux/kernel/hrtimer.c | 
|  | * | 
|  | *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
|  | *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
|  | *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner | 
|  | * | 
|  | *  High-resolution kernel timers | 
|  | * | 
|  | *  In contrast to the low-resolution timeout API implemented in | 
|  | *  kernel/timer.c, hrtimers provide finer resolution and accuracy | 
|  | *  depending on system configuration and capabilities. | 
|  | * | 
|  | *  These timers are currently used for: | 
|  | *   - itimers | 
|  | *   - POSIX timers | 
|  | *   - nanosleep | 
|  | *   - precise in-kernel timing | 
|  | * | 
|  | *  Started by: Thomas Gleixner and Ingo Molnar | 
|  | * | 
|  | *  Credits: | 
|  | *	based on kernel/timer.c | 
|  | * | 
|  | *	Help, testing, suggestions, bugfixes, improvements were | 
|  | *	provided by: | 
|  | * | 
|  | *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | 
|  | *	et. al. | 
|  | * | 
|  | *  For licencing details see kernel-base/COPYING | 
|  | */ | 
|  |  | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/err.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | /** | 
|  | * ktime_get - get the monotonic time in ktime_t format | 
|  | * | 
|  | * returns the time in ktime_t format | 
|  | */ | 
|  | ktime_t ktime_get(void) | 
|  | { | 
|  | struct timespec now; | 
|  |  | 
|  | ktime_get_ts(&now); | 
|  |  | 
|  | return timespec_to_ktime(now); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get); | 
|  |  | 
|  | /** | 
|  | * ktime_get_real - get the real (wall-) time in ktime_t format | 
|  | * | 
|  | * returns the time in ktime_t format | 
|  | */ | 
|  | ktime_t ktime_get_real(void) | 
|  | { | 
|  | struct timespec now; | 
|  |  | 
|  | getnstimeofday(&now); | 
|  |  | 
|  | return timespec_to_ktime(now); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(ktime_get_real); | 
|  |  | 
|  | /* | 
|  | * The timer bases: | 
|  | * | 
|  | * Note: If we want to add new timer bases, we have to skip the two | 
|  | * clock ids captured by the cpu-timers. We do this by holding empty | 
|  | * entries rather than doing math adjustment of the clock ids. | 
|  | * This ensures that we capture erroneous accesses to these clock ids | 
|  | * rather than moving them into the range of valid clock id's. | 
|  | */ | 
|  | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | 
|  | { | 
|  |  | 
|  | .clock_base = | 
|  | { | 
|  | { | 
|  | .index = CLOCK_REALTIME, | 
|  | .get_time = &ktime_get_real, | 
|  | .resolution = KTIME_LOW_RES, | 
|  | }, | 
|  | { | 
|  | .index = CLOCK_MONOTONIC, | 
|  | .get_time = &ktime_get, | 
|  | .resolution = KTIME_LOW_RES, | 
|  | }, | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * ktime_get_ts - get the monotonic clock in timespec format | 
|  | * @ts:		pointer to timespec variable | 
|  | * | 
|  | * The function calculates the monotonic clock from the realtime | 
|  | * clock and the wall_to_monotonic offset and stores the result | 
|  | * in normalized timespec format in the variable pointed to by @ts. | 
|  | */ | 
|  | void ktime_get_ts(struct timespec *ts) | 
|  | { | 
|  | struct timespec tomono; | 
|  | unsigned long seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | getnstimeofday(ts); | 
|  | tomono = wall_to_monotonic; | 
|  |  | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | 
|  | ts->tv_nsec + tomono.tv_nsec); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_ts); | 
|  |  | 
|  | /* | 
|  | * Get the coarse grained time at the softirq based on xtime and | 
|  | * wall_to_monotonic. | 
|  | */ | 
|  | static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) | 
|  | { | 
|  | ktime_t xtim, tomono; | 
|  | struct timespec xts, tom; | 
|  | unsigned long seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | xts = current_kernel_time(); | 
|  | tom = wall_to_monotonic; | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | xtim = timespec_to_ktime(xts); | 
|  | tomono = timespec_to_ktime(tom); | 
|  | base->clock_base[CLOCK_REALTIME].softirq_time = xtim; | 
|  | base->clock_base[CLOCK_MONOTONIC].softirq_time = | 
|  | ktime_add(xtim, tomono); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function to check, whether the timer is running the callback | 
|  | * function | 
|  | */ | 
|  | static inline int hrtimer_callback_running(struct hrtimer *timer) | 
|  | { | 
|  | return timer->state & HRTIMER_STATE_CALLBACK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Functions and macros which are different for UP/SMP systems are kept in a | 
|  | * single place | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | 
|  | * means that all timers which are tied to this base via timer->base are | 
|  | * locked, and the base itself is locked too. | 
|  | * | 
|  | * So __run_timers/migrate_timers can safely modify all timers which could | 
|  | * be found on the lists/queues. | 
|  | * | 
|  | * When the timer's base is locked, and the timer removed from list, it is | 
|  | * possible to set timer->base = NULL and drop the lock: the timer remains | 
|  | * locked. | 
|  | */ | 
|  | static | 
|  | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | 
|  | unsigned long *flags) | 
|  | { | 
|  | struct hrtimer_clock_base *base; | 
|  |  | 
|  | for (;;) { | 
|  | base = timer->base; | 
|  | if (likely(base != NULL)) { | 
|  | spin_lock_irqsave(&base->cpu_base->lock, *flags); | 
|  | if (likely(base == timer->base)) | 
|  | return base; | 
|  | /* The timer has migrated to another CPU: */ | 
|  | spin_unlock_irqrestore(&base->cpu_base->lock, *flags); | 
|  | } | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch the timer base to the current CPU when possible. | 
|  | */ | 
|  | static inline struct hrtimer_clock_base * | 
|  | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base) | 
|  | { | 
|  | struct hrtimer_clock_base *new_base; | 
|  | struct hrtimer_cpu_base *new_cpu_base; | 
|  |  | 
|  | new_cpu_base = &__get_cpu_var(hrtimer_bases); | 
|  | new_base = &new_cpu_base->clock_base[base->index]; | 
|  |  | 
|  | if (base != new_base) { | 
|  | /* | 
|  | * We are trying to schedule the timer on the local CPU. | 
|  | * However we can't change timer's base while it is running, | 
|  | * so we keep it on the same CPU. No hassle vs. reprogramming | 
|  | * the event source in the high resolution case. The softirq | 
|  | * code will take care of this when the timer function has | 
|  | * completed. There is no conflict as we hold the lock until | 
|  | * the timer is enqueued. | 
|  | */ | 
|  | if (unlikely(hrtimer_callback_running(timer))) | 
|  | return base; | 
|  |  | 
|  | /* See the comment in lock_timer_base() */ | 
|  | timer->base = NULL; | 
|  | spin_unlock(&base->cpu_base->lock); | 
|  | spin_lock(&new_base->cpu_base->lock); | 
|  | timer->base = new_base; | 
|  | } | 
|  | return new_base; | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_SMP */ | 
|  |  | 
|  | static inline struct hrtimer_clock_base * | 
|  | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | 
|  | { | 
|  | struct hrtimer_clock_base *base = timer->base; | 
|  |  | 
|  | spin_lock_irqsave(&base->cpu_base->lock, *flags); | 
|  |  | 
|  | return base; | 
|  | } | 
|  |  | 
|  | # define switch_hrtimer_base(t, b)	(b) | 
|  |  | 
|  | #endif	/* !CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * Functions for the union type storage format of ktime_t which are | 
|  | * too large for inlining: | 
|  | */ | 
|  | #if BITS_PER_LONG < 64 | 
|  | # ifndef CONFIG_KTIME_SCALAR | 
|  | /** | 
|  | * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable | 
|  | * @kt:		addend | 
|  | * @nsec:	the scalar nsec value to add | 
|  | * | 
|  | * Returns the sum of kt and nsec in ktime_t format | 
|  | */ | 
|  | ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) | 
|  | { | 
|  | ktime_t tmp; | 
|  |  | 
|  | if (likely(nsec < NSEC_PER_SEC)) { | 
|  | tmp.tv64 = nsec; | 
|  | } else { | 
|  | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | 
|  |  | 
|  | tmp = ktime_set((long)nsec, rem); | 
|  | } | 
|  |  | 
|  | return ktime_add(kt, tmp); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(ktime_add_ns); | 
|  |  | 
|  | /** | 
|  | * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable | 
|  | * @kt:		minuend | 
|  | * @nsec:	the scalar nsec value to subtract | 
|  | * | 
|  | * Returns the subtraction of @nsec from @kt in ktime_t format | 
|  | */ | 
|  | ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) | 
|  | { | 
|  | ktime_t tmp; | 
|  |  | 
|  | if (likely(nsec < NSEC_PER_SEC)) { | 
|  | tmp.tv64 = nsec; | 
|  | } else { | 
|  | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | 
|  |  | 
|  | tmp = ktime_set((long)nsec, rem); | 
|  | } | 
|  |  | 
|  | return ktime_sub(kt, tmp); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(ktime_sub_ns); | 
|  | # endif /* !CONFIG_KTIME_SCALAR */ | 
|  |  | 
|  | /* | 
|  | * Divide a ktime value by a nanosecond value | 
|  | */ | 
|  | u64 ktime_divns(const ktime_t kt, s64 div) | 
|  | { | 
|  | u64 dclc, inc, dns; | 
|  | int sft = 0; | 
|  |  | 
|  | dclc = dns = ktime_to_ns(kt); | 
|  | inc = div; | 
|  | /* Make sure the divisor is less than 2^32: */ | 
|  | while (div >> 32) { | 
|  | sft++; | 
|  | div >>= 1; | 
|  | } | 
|  | dclc >>= sft; | 
|  | do_div(dclc, (unsigned long) div); | 
|  |  | 
|  | return dclc; | 
|  | } | 
|  | #endif /* BITS_PER_LONG >= 64 */ | 
|  |  | 
|  | /* | 
|  | * Add two ktime values and do a safety check for overflow: | 
|  | */ | 
|  | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) | 
|  | { | 
|  | ktime_t res = ktime_add(lhs, rhs); | 
|  |  | 
|  | /* | 
|  | * We use KTIME_SEC_MAX here, the maximum timeout which we can | 
|  | * return to user space in a timespec: | 
|  | */ | 
|  | if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) | 
|  | res = ktime_set(KTIME_SEC_MAX, 0); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check, whether the timer is on the callback pending list | 
|  | */ | 
|  | static inline int hrtimer_cb_pending(const struct hrtimer *timer) | 
|  | { | 
|  | return timer->state & HRTIMER_STATE_PENDING; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a timer from the callback pending list | 
|  | */ | 
|  | static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) | 
|  | { | 
|  | list_del_init(&timer->cb_entry); | 
|  | } | 
|  |  | 
|  | /* High resolution timer related functions */ | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  |  | 
|  | /* | 
|  | * High resolution timer enabled ? | 
|  | */ | 
|  | static int hrtimer_hres_enabled __read_mostly  = 1; | 
|  |  | 
|  | /* | 
|  | * Enable / Disable high resolution mode | 
|  | */ | 
|  | static int __init setup_hrtimer_hres(char *str) | 
|  | { | 
|  | if (!strcmp(str, "off")) | 
|  | hrtimer_hres_enabled = 0; | 
|  | else if (!strcmp(str, "on")) | 
|  | hrtimer_hres_enabled = 1; | 
|  | else | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("highres=", setup_hrtimer_hres); | 
|  |  | 
|  | /* | 
|  | * hrtimer_high_res_enabled - query, if the highres mode is enabled | 
|  | */ | 
|  | static inline int hrtimer_is_hres_enabled(void) | 
|  | { | 
|  | return hrtimer_hres_enabled; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is the high resolution mode active ? | 
|  | */ | 
|  | static inline int hrtimer_hres_active(void) | 
|  | { | 
|  | return __get_cpu_var(hrtimer_bases).hres_active; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reprogram the event source with checking both queues for the | 
|  | * next event | 
|  | * Called with interrupts disabled and base->lock held | 
|  | */ | 
|  | static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | 
|  | { | 
|  | int i; | 
|  | struct hrtimer_clock_base *base = cpu_base->clock_base; | 
|  | ktime_t expires; | 
|  |  | 
|  | cpu_base->expires_next.tv64 = KTIME_MAX; | 
|  |  | 
|  | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | if (!base->first) | 
|  | continue; | 
|  | timer = rb_entry(base->first, struct hrtimer, node); | 
|  | expires = ktime_sub(timer->expires, base->offset); | 
|  | if (expires.tv64 < cpu_base->expires_next.tv64) | 
|  | cpu_base->expires_next = expires; | 
|  | } | 
|  |  | 
|  | if (cpu_base->expires_next.tv64 != KTIME_MAX) | 
|  | tick_program_event(cpu_base->expires_next, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shared reprogramming for clock_realtime and clock_monotonic | 
|  | * | 
|  | * When a timer is enqueued and expires earlier than the already enqueued | 
|  | * timers, we have to check, whether it expires earlier than the timer for | 
|  | * which the clock event device was armed. | 
|  | * | 
|  | * Called with interrupts disabled and base->cpu_base.lock held | 
|  | */ | 
|  | static int hrtimer_reprogram(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base) | 
|  | { | 
|  | ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next; | 
|  | ktime_t expires = ktime_sub(timer->expires, base->offset); | 
|  | int res; | 
|  |  | 
|  | WARN_ON_ONCE(timer->expires.tv64 < 0); | 
|  |  | 
|  | /* | 
|  | * When the callback is running, we do not reprogram the clock event | 
|  | * device. The timer callback is either running on a different CPU or | 
|  | * the callback is executed in the hrtimer_interrupt context. The | 
|  | * reprogramming is handled either by the softirq, which called the | 
|  | * callback or at the end of the hrtimer_interrupt. | 
|  | */ | 
|  | if (hrtimer_callback_running(timer)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * CLOCK_REALTIME timer might be requested with an absolute | 
|  | * expiry time which is less than base->offset. Nothing wrong | 
|  | * about that, just avoid to call into the tick code, which | 
|  | * has now objections against negative expiry values. | 
|  | */ | 
|  | if (expires.tv64 < 0) | 
|  | return -ETIME; | 
|  |  | 
|  | if (expires.tv64 >= expires_next->tv64) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Clockevents returns -ETIME, when the event was in the past. | 
|  | */ | 
|  | res = tick_program_event(expires, 0); | 
|  | if (!IS_ERR_VALUE(res)) | 
|  | *expires_next = expires; | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Retrigger next event is called after clock was set | 
|  | * | 
|  | * Called with interrupts disabled via on_each_cpu() | 
|  | */ | 
|  | static void retrigger_next_event(void *arg) | 
|  | { | 
|  | struct hrtimer_cpu_base *base; | 
|  | struct timespec realtime_offset; | 
|  | unsigned long seq; | 
|  |  | 
|  | if (!hrtimer_hres_active()) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | set_normalized_timespec(&realtime_offset, | 
|  | -wall_to_monotonic.tv_sec, | 
|  | -wall_to_monotonic.tv_nsec); | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | base = &__get_cpu_var(hrtimer_bases); | 
|  |  | 
|  | /* Adjust CLOCK_REALTIME offset */ | 
|  | spin_lock(&base->lock); | 
|  | base->clock_base[CLOCK_REALTIME].offset = | 
|  | timespec_to_ktime(realtime_offset); | 
|  |  | 
|  | hrtimer_force_reprogram(base); | 
|  | spin_unlock(&base->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clock realtime was set | 
|  | * | 
|  | * Change the offset of the realtime clock vs. the monotonic | 
|  | * clock. | 
|  | * | 
|  | * We might have to reprogram the high resolution timer interrupt. On | 
|  | * SMP we call the architecture specific code to retrigger _all_ high | 
|  | * resolution timer interrupts. On UP we just disable interrupts and | 
|  | * call the high resolution interrupt code. | 
|  | */ | 
|  | void clock_was_set(void) | 
|  | { | 
|  | /* Retrigger the CPU local events everywhere */ | 
|  | on_each_cpu(retrigger_next_event, NULL, 0, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During resume we might have to reprogram the high resolution timer | 
|  | * interrupt (on the local CPU): | 
|  | */ | 
|  | void hres_timers_resume(void) | 
|  | { | 
|  | WARN_ON_ONCE(num_online_cpus() > 1); | 
|  |  | 
|  | /* Retrigger the CPU local events: */ | 
|  | retrigger_next_event(NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the high resolution related parts of cpu_base | 
|  | */ | 
|  | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) | 
|  | { | 
|  | base->expires_next.tv64 = KTIME_MAX; | 
|  | base->hres_active = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the high resolution related parts of a hrtimer | 
|  | */ | 
|  | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When High resolution timers are active, try to reprogram. Note, that in case | 
|  | * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry | 
|  | * check happens. The timer gets enqueued into the rbtree. The reprogramming | 
|  | * and expiry check is done in the hrtimer_interrupt or in the softirq. | 
|  | */ | 
|  | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base) | 
|  | { | 
|  | if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { | 
|  |  | 
|  | /* Timer is expired, act upon the callback mode */ | 
|  | switch(timer->cb_mode) { | 
|  | case HRTIMER_CB_IRQSAFE_NO_RESTART: | 
|  | /* | 
|  | * We can call the callback from here. No restart | 
|  | * happens, so no danger of recursion | 
|  | */ | 
|  | BUG_ON(timer->function(timer) != HRTIMER_NORESTART); | 
|  | return 1; | 
|  | case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ: | 
|  | /* | 
|  | * This is solely for the sched tick emulation with | 
|  | * dynamic tick support to ensure that we do not | 
|  | * restart the tick right on the edge and end up with | 
|  | * the tick timer in the softirq ! The calling site | 
|  | * takes care of this. | 
|  | */ | 
|  | return 1; | 
|  | case HRTIMER_CB_IRQSAFE: | 
|  | case HRTIMER_CB_SOFTIRQ: | 
|  | /* | 
|  | * Move everything else into the softirq pending list ! | 
|  | */ | 
|  | list_add_tail(&timer->cb_entry, | 
|  | &base->cpu_base->cb_pending); | 
|  | timer->state = HRTIMER_STATE_PENDING; | 
|  | return 1; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch to high resolution mode | 
|  | */ | 
|  | static int hrtimer_switch_to_hres(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (base->hres_active) | 
|  | return 1; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | if (tick_init_highres()) { | 
|  | local_irq_restore(flags); | 
|  | printk(KERN_WARNING "Could not switch to high resolution " | 
|  | "mode on CPU %d\n", cpu); | 
|  | return 0; | 
|  | } | 
|  | base->hres_active = 1; | 
|  | base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES; | 
|  | base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES; | 
|  |  | 
|  | tick_setup_sched_timer(); | 
|  |  | 
|  | /* "Retrigger" the interrupt to get things going */ | 
|  | retrigger_next_event(NULL); | 
|  | local_irq_restore(flags); | 
|  | printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n", | 
|  | smp_processor_id()); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline void hrtimer_raise_softirq(void) | 
|  | { | 
|  | raise_softirq(HRTIMER_SOFTIRQ); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int hrtimer_hres_active(void) { return 0; } | 
|  | static inline int hrtimer_is_hres_enabled(void) { return 0; } | 
|  | static inline int hrtimer_switch_to_hres(void) { return 0; } | 
|  | static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } | 
|  | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } | 
|  | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { } | 
|  | static inline int hrtimer_reprogram(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void hrtimer_raise_softirq(void) { } | 
|  |  | 
|  | #endif /* CONFIG_HIGH_RES_TIMERS */ | 
|  |  | 
|  | #ifdef CONFIG_TIMER_STATS | 
|  | void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr) | 
|  | { | 
|  | if (timer->start_site) | 
|  | return; | 
|  |  | 
|  | timer->start_site = addr; | 
|  | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | 
|  | timer->start_pid = current->pid; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Counterpart to lock_hrtimer_base above: | 
|  | */ | 
|  | static inline | 
|  | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | 
|  | { | 
|  | spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hrtimer_forward - forward the timer expiry | 
|  | * @timer:	hrtimer to forward | 
|  | * @now:	forward past this time | 
|  | * @interval:	the interval to forward | 
|  | * | 
|  | * Forward the timer expiry so it will expire in the future. | 
|  | * Returns the number of overruns. | 
|  | */ | 
|  | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) | 
|  | { | 
|  | u64 orun = 1; | 
|  | ktime_t delta; | 
|  |  | 
|  | delta = ktime_sub(now, timer->expires); | 
|  |  | 
|  | if (delta.tv64 < 0) | 
|  | return 0; | 
|  |  | 
|  | if (interval.tv64 < timer->base->resolution.tv64) | 
|  | interval.tv64 = timer->base->resolution.tv64; | 
|  |  | 
|  | if (unlikely(delta.tv64 >= interval.tv64)) { | 
|  | s64 incr = ktime_to_ns(interval); | 
|  |  | 
|  | orun = ktime_divns(delta, incr); | 
|  | timer->expires = ktime_add_ns(timer->expires, incr * orun); | 
|  | if (timer->expires.tv64 > now.tv64) | 
|  | return orun; | 
|  | /* | 
|  | * This (and the ktime_add() below) is the | 
|  | * correction for exact: | 
|  | */ | 
|  | orun++; | 
|  | } | 
|  | timer->expires = ktime_add_safe(timer->expires, interval); | 
|  |  | 
|  | return orun; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_forward); | 
|  |  | 
|  | /* | 
|  | * enqueue_hrtimer - internal function to (re)start a timer | 
|  | * | 
|  | * The timer is inserted in expiry order. Insertion into the | 
|  | * red black tree is O(log(n)). Must hold the base lock. | 
|  | */ | 
|  | static void enqueue_hrtimer(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base, int reprogram) | 
|  | { | 
|  | struct rb_node **link = &base->active.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct hrtimer *entry; | 
|  | int leftmost = 1; | 
|  |  | 
|  | /* | 
|  | * Find the right place in the rbtree: | 
|  | */ | 
|  | while (*link) { | 
|  | parent = *link; | 
|  | entry = rb_entry(parent, struct hrtimer, node); | 
|  | /* | 
|  | * We dont care about collisions. Nodes with | 
|  | * the same expiry time stay together. | 
|  | */ | 
|  | if (timer->expires.tv64 < entry->expires.tv64) { | 
|  | link = &(*link)->rb_left; | 
|  | } else { | 
|  | link = &(*link)->rb_right; | 
|  | leftmost = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert the timer to the rbtree and check whether it | 
|  | * replaces the first pending timer | 
|  | */ | 
|  | if (leftmost) { | 
|  | /* | 
|  | * Reprogram the clock event device. When the timer is already | 
|  | * expired hrtimer_enqueue_reprogram has either called the | 
|  | * callback or added it to the pending list and raised the | 
|  | * softirq. | 
|  | * | 
|  | * This is a NOP for !HIGHRES | 
|  | */ | 
|  | if (reprogram && hrtimer_enqueue_reprogram(timer, base)) | 
|  | return; | 
|  |  | 
|  | base->first = &timer->node; | 
|  | } | 
|  |  | 
|  | rb_link_node(&timer->node, parent, link); | 
|  | rb_insert_color(&timer->node, &base->active); | 
|  | /* | 
|  | * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the | 
|  | * state of a possibly running callback. | 
|  | */ | 
|  | timer->state |= HRTIMER_STATE_ENQUEUED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __remove_hrtimer - internal function to remove a timer | 
|  | * | 
|  | * Caller must hold the base lock. | 
|  | * | 
|  | * High resolution timer mode reprograms the clock event device when the | 
|  | * timer is the one which expires next. The caller can disable this by setting | 
|  | * reprogram to zero. This is useful, when the context does a reprogramming | 
|  | * anyway (e.g. timer interrupt) | 
|  | */ | 
|  | static void __remove_hrtimer(struct hrtimer *timer, | 
|  | struct hrtimer_clock_base *base, | 
|  | unsigned long newstate, int reprogram) | 
|  | { | 
|  | /* High res. callback list. NOP for !HIGHRES */ | 
|  | if (hrtimer_cb_pending(timer)) | 
|  | hrtimer_remove_cb_pending(timer); | 
|  | else { | 
|  | /* | 
|  | * Remove the timer from the rbtree and replace the | 
|  | * first entry pointer if necessary. | 
|  | */ | 
|  | if (base->first == &timer->node) { | 
|  | base->first = rb_next(&timer->node); | 
|  | /* Reprogram the clock event device. if enabled */ | 
|  | if (reprogram && hrtimer_hres_active()) | 
|  | hrtimer_force_reprogram(base->cpu_base); | 
|  | } | 
|  | rb_erase(&timer->node, &base->active); | 
|  | } | 
|  | timer->state = newstate; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove hrtimer, called with base lock held | 
|  | */ | 
|  | static inline int | 
|  | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) | 
|  | { | 
|  | if (hrtimer_is_queued(timer)) { | 
|  | int reprogram; | 
|  |  | 
|  | /* | 
|  | * Remove the timer and force reprogramming when high | 
|  | * resolution mode is active and the timer is on the current | 
|  | * CPU. If we remove a timer on another CPU, reprogramming is | 
|  | * skipped. The interrupt event on this CPU is fired and | 
|  | * reprogramming happens in the interrupt handler. This is a | 
|  | * rare case and less expensive than a smp call. | 
|  | */ | 
|  | timer_stats_hrtimer_clear_start_info(timer); | 
|  | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); | 
|  | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | 
|  | reprogram); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hrtimer_start - (re)start an relative timer on the current CPU | 
|  | * @timer:	the timer to be added | 
|  | * @tim:	expiry time | 
|  | * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) | 
|  | * | 
|  | * Returns: | 
|  | *  0 on success | 
|  | *  1 when the timer was active | 
|  | */ | 
|  | int | 
|  | hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) | 
|  | { | 
|  | struct hrtimer_clock_base *base, *new_base; | 
|  | unsigned long flags; | 
|  | int ret, raise; | 
|  |  | 
|  | base = lock_hrtimer_base(timer, &flags); | 
|  |  | 
|  | /* Remove an active timer from the queue: */ | 
|  | ret = remove_hrtimer(timer, base); | 
|  |  | 
|  | /* Switch the timer base, if necessary: */ | 
|  | new_base = switch_hrtimer_base(timer, base); | 
|  |  | 
|  | if (mode == HRTIMER_MODE_REL) { | 
|  | tim = ktime_add_safe(tim, new_base->get_time()); | 
|  | /* | 
|  | * CONFIG_TIME_LOW_RES is a temporary way for architectures | 
|  | * to signal that they simply return xtime in | 
|  | * do_gettimeoffset(). In this case we want to round up by | 
|  | * resolution when starting a relative timer, to avoid short | 
|  | * timeouts. This will go away with the GTOD framework. | 
|  | */ | 
|  | #ifdef CONFIG_TIME_LOW_RES | 
|  | tim = ktime_add_safe(tim, base->resolution); | 
|  | #endif | 
|  | } | 
|  | timer->expires = tim; | 
|  |  | 
|  | timer_stats_hrtimer_set_start_info(timer); | 
|  |  | 
|  | /* | 
|  | * Only allow reprogramming if the new base is on this CPU. | 
|  | * (it might still be on another CPU if the timer was pending) | 
|  | */ | 
|  | enqueue_hrtimer(timer, new_base, | 
|  | new_base->cpu_base == &__get_cpu_var(hrtimer_bases)); | 
|  |  | 
|  | /* | 
|  | * The timer may be expired and moved to the cb_pending | 
|  | * list. We can not raise the softirq with base lock held due | 
|  | * to a possible deadlock with runqueue lock. | 
|  | */ | 
|  | raise = timer->state == HRTIMER_STATE_PENDING; | 
|  |  | 
|  | unlock_hrtimer_base(timer, &flags); | 
|  |  | 
|  | if (raise) | 
|  | hrtimer_raise_softirq(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_start); | 
|  |  | 
|  | /** | 
|  | * hrtimer_try_to_cancel - try to deactivate a timer | 
|  | * @timer:	hrtimer to stop | 
|  | * | 
|  | * Returns: | 
|  | *  0 when the timer was not active | 
|  | *  1 when the timer was active | 
|  | * -1 when the timer is currently excuting the callback function and | 
|  | *    cannot be stopped | 
|  | */ | 
|  | int hrtimer_try_to_cancel(struct hrtimer *timer) | 
|  | { | 
|  | struct hrtimer_clock_base *base; | 
|  | unsigned long flags; | 
|  | int ret = -1; | 
|  |  | 
|  | base = lock_hrtimer_base(timer, &flags); | 
|  |  | 
|  | if (!hrtimer_callback_running(timer)) | 
|  | ret = remove_hrtimer(timer, base); | 
|  |  | 
|  | unlock_hrtimer_base(timer, &flags); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); | 
|  |  | 
|  | /** | 
|  | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | 
|  | * @timer:	the timer to be cancelled | 
|  | * | 
|  | * Returns: | 
|  | *  0 when the timer was not active | 
|  | *  1 when the timer was active | 
|  | */ | 
|  | int hrtimer_cancel(struct hrtimer *timer) | 
|  | { | 
|  | for (;;) { | 
|  | int ret = hrtimer_try_to_cancel(timer); | 
|  |  | 
|  | if (ret >= 0) | 
|  | return ret; | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_cancel); | 
|  |  | 
|  | /** | 
|  | * hrtimer_get_remaining - get remaining time for the timer | 
|  | * @timer:	the timer to read | 
|  | */ | 
|  | ktime_t hrtimer_get_remaining(const struct hrtimer *timer) | 
|  | { | 
|  | struct hrtimer_clock_base *base; | 
|  | unsigned long flags; | 
|  | ktime_t rem; | 
|  |  | 
|  | base = lock_hrtimer_base(timer, &flags); | 
|  | rem = ktime_sub(timer->expires, base->get_time()); | 
|  | unlock_hrtimer_base(timer, &flags); | 
|  |  | 
|  | return rem; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_get_remaining); | 
|  |  | 
|  | #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ) | 
|  | /** | 
|  | * hrtimer_get_next_event - get the time until next expiry event | 
|  | * | 
|  | * Returns the delta to the next expiry event or KTIME_MAX if no timer | 
|  | * is pending. | 
|  | */ | 
|  | ktime_t hrtimer_get_next_event(void) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
|  | struct hrtimer_clock_base *base = cpu_base->clock_base; | 
|  | ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | spin_lock_irqsave(&cpu_base->lock, flags); | 
|  |  | 
|  | if (!hrtimer_hres_active()) { | 
|  | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | if (!base->first) | 
|  | continue; | 
|  |  | 
|  | timer = rb_entry(base->first, struct hrtimer, node); | 
|  | delta.tv64 = timer->expires.tv64; | 
|  | delta = ktime_sub(delta, base->get_time()); | 
|  | if (delta.tv64 < mindelta.tv64) | 
|  | mindelta.tv64 = delta.tv64; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&cpu_base->lock, flags); | 
|  |  | 
|  | if (mindelta.tv64 < 0) | 
|  | mindelta.tv64 = 0; | 
|  | return mindelta; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * hrtimer_init - initialize a timer to the given clock | 
|  | * @timer:	the timer to be initialized | 
|  | * @clock_id:	the clock to be used | 
|  | * @mode:	timer mode abs/rel | 
|  | */ | 
|  | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 
|  | enum hrtimer_mode mode) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base; | 
|  |  | 
|  | memset(timer, 0, sizeof(struct hrtimer)); | 
|  |  | 
|  | cpu_base = &__raw_get_cpu_var(hrtimer_bases); | 
|  |  | 
|  | if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) | 
|  | clock_id = CLOCK_MONOTONIC; | 
|  |  | 
|  | timer->base = &cpu_base->clock_base[clock_id]; | 
|  | INIT_LIST_HEAD(&timer->cb_entry); | 
|  | hrtimer_init_timer_hres(timer); | 
|  |  | 
|  | #ifdef CONFIG_TIMER_STATS | 
|  | timer->start_site = NULL; | 
|  | timer->start_pid = -1; | 
|  | memset(timer->start_comm, 0, TASK_COMM_LEN); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_init); | 
|  |  | 
|  | /** | 
|  | * hrtimer_get_res - get the timer resolution for a clock | 
|  | * @which_clock: which clock to query | 
|  | * @tp:		 pointer to timespec variable to store the resolution | 
|  | * | 
|  | * Store the resolution of the clock selected by @which_clock in the | 
|  | * variable pointed to by @tp. | 
|  | */ | 
|  | int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base; | 
|  |  | 
|  | cpu_base = &__raw_get_cpu_var(hrtimer_bases); | 
|  | *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hrtimer_get_res); | 
|  |  | 
|  | static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base) | 
|  | { | 
|  | spin_lock_irq(&cpu_base->lock); | 
|  |  | 
|  | while (!list_empty(&cpu_base->cb_pending)) { | 
|  | enum hrtimer_restart (*fn)(struct hrtimer *); | 
|  | struct hrtimer *timer; | 
|  | int restart; | 
|  |  | 
|  | timer = list_entry(cpu_base->cb_pending.next, | 
|  | struct hrtimer, cb_entry); | 
|  |  | 
|  | timer_stats_account_hrtimer(timer); | 
|  |  | 
|  | fn = timer->function; | 
|  | __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0); | 
|  | spin_unlock_irq(&cpu_base->lock); | 
|  |  | 
|  | restart = fn(timer); | 
|  |  | 
|  | spin_lock_irq(&cpu_base->lock); | 
|  |  | 
|  | timer->state &= ~HRTIMER_STATE_CALLBACK; | 
|  | if (restart == HRTIMER_RESTART) { | 
|  | BUG_ON(hrtimer_active(timer)); | 
|  | /* | 
|  | * Enqueue the timer, allow reprogramming of the event | 
|  | * device | 
|  | */ | 
|  | enqueue_hrtimer(timer, timer->base, 1); | 
|  | } else if (hrtimer_active(timer)) { | 
|  | /* | 
|  | * If the timer was rearmed on another CPU, reprogram | 
|  | * the event device. | 
|  | */ | 
|  | struct hrtimer_clock_base *base = timer->base; | 
|  |  | 
|  | if (base->first == &timer->node && | 
|  | hrtimer_reprogram(timer, base)) { | 
|  | /* | 
|  | * Timer is expired. Thus move it from tree to | 
|  | * pending list again. | 
|  | */ | 
|  | __remove_hrtimer(timer, base, | 
|  | HRTIMER_STATE_PENDING, 0); | 
|  | list_add_tail(&timer->cb_entry, | 
|  | &base->cpu_base->cb_pending); | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&cpu_base->lock); | 
|  | } | 
|  |  | 
|  | static void __run_hrtimer(struct hrtimer *timer) | 
|  | { | 
|  | struct hrtimer_clock_base *base = timer->base; | 
|  | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | 
|  | enum hrtimer_restart (*fn)(struct hrtimer *); | 
|  | int restart; | 
|  |  | 
|  | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); | 
|  | timer_stats_account_hrtimer(timer); | 
|  |  | 
|  | fn = timer->function; | 
|  | if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) { | 
|  | /* | 
|  | * Used for scheduler timers, avoid lock inversion with | 
|  | * rq->lock and tasklist_lock. | 
|  | * | 
|  | * These timers are required to deal with enqueue expiry | 
|  | * themselves and are not allowed to migrate. | 
|  | */ | 
|  | spin_unlock(&cpu_base->lock); | 
|  | restart = fn(timer); | 
|  | spin_lock(&cpu_base->lock); | 
|  | } else | 
|  | restart = fn(timer); | 
|  |  | 
|  | /* | 
|  | * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid | 
|  | * reprogramming of the event hardware. This happens at the end of this | 
|  | * function anyway. | 
|  | */ | 
|  | if (restart != HRTIMER_NORESTART) { | 
|  | BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); | 
|  | enqueue_hrtimer(timer, base, 0); | 
|  | } | 
|  | timer->state &= ~HRTIMER_STATE_CALLBACK; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  |  | 
|  | /* | 
|  | * High resolution timer interrupt | 
|  | * Called with interrupts disabled | 
|  | */ | 
|  | void hrtimer_interrupt(struct clock_event_device *dev) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
|  | struct hrtimer_clock_base *base; | 
|  | ktime_t expires_next, now; | 
|  | int i, raise = 0; | 
|  |  | 
|  | BUG_ON(!cpu_base->hres_active); | 
|  | cpu_base->nr_events++; | 
|  | dev->next_event.tv64 = KTIME_MAX; | 
|  |  | 
|  | retry: | 
|  | now = ktime_get(); | 
|  |  | 
|  | expires_next.tv64 = KTIME_MAX; | 
|  |  | 
|  | base = cpu_base->clock_base; | 
|  |  | 
|  | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | 
|  | ktime_t basenow; | 
|  | struct rb_node *node; | 
|  |  | 
|  | spin_lock(&cpu_base->lock); | 
|  |  | 
|  | basenow = ktime_add(now, base->offset); | 
|  |  | 
|  | while ((node = base->first)) { | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | timer = rb_entry(node, struct hrtimer, node); | 
|  |  | 
|  | if (basenow.tv64 < timer->expires.tv64) { | 
|  | ktime_t expires; | 
|  |  | 
|  | expires = ktime_sub(timer->expires, | 
|  | base->offset); | 
|  | if (expires.tv64 < expires_next.tv64) | 
|  | expires_next = expires; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Move softirq callbacks to the pending list */ | 
|  | if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) { | 
|  | __remove_hrtimer(timer, base, | 
|  | HRTIMER_STATE_PENDING, 0); | 
|  | list_add_tail(&timer->cb_entry, | 
|  | &base->cpu_base->cb_pending); | 
|  | raise = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | __run_hrtimer(timer); | 
|  | } | 
|  | spin_unlock(&cpu_base->lock); | 
|  | base++; | 
|  | } | 
|  |  | 
|  | cpu_base->expires_next = expires_next; | 
|  |  | 
|  | /* Reprogramming necessary ? */ | 
|  | if (expires_next.tv64 != KTIME_MAX) { | 
|  | if (tick_program_event(expires_next, 0)) | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* Raise softirq ? */ | 
|  | if (raise) | 
|  | raise_softirq(HRTIMER_SOFTIRQ); | 
|  | } | 
|  |  | 
|  | static void run_hrtimer_softirq(struct softirq_action *h) | 
|  | { | 
|  | run_hrtimer_pending(&__get_cpu_var(hrtimer_bases)); | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_HIGH_RES_TIMERS */ | 
|  |  | 
|  | /* | 
|  | * Called from timer softirq every jiffy, expire hrtimers: | 
|  | * | 
|  | * For HRT its the fall back code to run the softirq in the timer | 
|  | * softirq context in case the hrtimer initialization failed or has | 
|  | * not been done yet. | 
|  | */ | 
|  | void hrtimer_run_pending(void) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
|  |  | 
|  | if (hrtimer_hres_active()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * This _is_ ugly: We have to check in the softirq context, | 
|  | * whether we can switch to highres and / or nohz mode. The | 
|  | * clocksource switch happens in the timer interrupt with | 
|  | * xtime_lock held. Notification from there only sets the | 
|  | * check bit in the tick_oneshot code, otherwise we might | 
|  | * deadlock vs. xtime_lock. | 
|  | */ | 
|  | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) | 
|  | hrtimer_switch_to_hres(); | 
|  |  | 
|  | run_hrtimer_pending(cpu_base); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from hardirq context every jiffy | 
|  | */ | 
|  | void hrtimer_run_queues(void) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
|  | struct hrtimer_clock_base *base; | 
|  | int index, gettime = 1; | 
|  |  | 
|  | if (hrtimer_hres_active()) | 
|  | return; | 
|  |  | 
|  | for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { | 
|  | base = &cpu_base->clock_base[index]; | 
|  |  | 
|  | if (!base->first) | 
|  | continue; | 
|  |  | 
|  | if (base->get_softirq_time) | 
|  | base->softirq_time = base->get_softirq_time(); | 
|  | else if (gettime) { | 
|  | hrtimer_get_softirq_time(cpu_base); | 
|  | gettime = 0; | 
|  | } | 
|  |  | 
|  | spin_lock(&cpu_base->lock); | 
|  |  | 
|  | while ((node = base->first)) { | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | timer = rb_entry(node, struct hrtimer, node); | 
|  | if (base->softirq_time.tv64 <= timer->expires.tv64) | 
|  | break; | 
|  |  | 
|  | if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) { | 
|  | __remove_hrtimer(timer, base, | 
|  | HRTIMER_STATE_PENDING, 0); | 
|  | list_add_tail(&timer->cb_entry, | 
|  | &base->cpu_base->cb_pending); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | __run_hrtimer(timer); | 
|  | } | 
|  | spin_unlock(&cpu_base->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sleep related functions: | 
|  | */ | 
|  | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) | 
|  | { | 
|  | struct hrtimer_sleeper *t = | 
|  | container_of(timer, struct hrtimer_sleeper, timer); | 
|  | struct task_struct *task = t->task; | 
|  |  | 
|  | t->task = NULL; | 
|  | if (task) | 
|  | wake_up_process(task); | 
|  |  | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) | 
|  | { | 
|  | sl->timer.function = hrtimer_wakeup; | 
|  | sl->task = task; | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  | sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) | 
|  | { | 
|  | hrtimer_init_sleeper(t, current); | 
|  |  | 
|  | do { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | hrtimer_start(&t->timer, t->timer.expires, mode); | 
|  | if (!hrtimer_active(&t->timer)) | 
|  | t->task = NULL; | 
|  |  | 
|  | if (likely(t->task)) | 
|  | schedule(); | 
|  |  | 
|  | hrtimer_cancel(&t->timer); | 
|  | mode = HRTIMER_MODE_ABS; | 
|  |  | 
|  | } while (t->task && !signal_pending(current)); | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | return t->task == NULL; | 
|  | } | 
|  |  | 
|  | static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) | 
|  | { | 
|  | struct timespec rmt; | 
|  | ktime_t rem; | 
|  |  | 
|  | rem = ktime_sub(timer->expires, timer->base->get_time()); | 
|  | if (rem.tv64 <= 0) | 
|  | return 0; | 
|  | rmt = ktime_to_timespec(rem); | 
|  |  | 
|  | if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | long __sched hrtimer_nanosleep_restart(struct restart_block *restart) | 
|  | { | 
|  | struct hrtimer_sleeper t; | 
|  | struct timespec __user  *rmtp; | 
|  |  | 
|  | hrtimer_init(&t.timer, restart->nanosleep.index, HRTIMER_MODE_ABS); | 
|  | t.timer.expires.tv64 = restart->nanosleep.expires; | 
|  |  | 
|  | if (do_nanosleep(&t, HRTIMER_MODE_ABS)) | 
|  | return 0; | 
|  |  | 
|  | rmtp = restart->nanosleep.rmtp; | 
|  | if (rmtp) { | 
|  | int ret = update_rmtp(&t.timer, rmtp); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* The other values in restart are already filled in */ | 
|  | return -ERESTART_RESTARTBLOCK; | 
|  | } | 
|  |  | 
|  | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, | 
|  | const enum hrtimer_mode mode, const clockid_t clockid) | 
|  | { | 
|  | struct restart_block *restart; | 
|  | struct hrtimer_sleeper t; | 
|  |  | 
|  | hrtimer_init(&t.timer, clockid, mode); | 
|  | t.timer.expires = timespec_to_ktime(*rqtp); | 
|  | if (do_nanosleep(&t, mode)) | 
|  | return 0; | 
|  |  | 
|  | /* Absolute timers do not update the rmtp value and restart: */ | 
|  | if (mode == HRTIMER_MODE_ABS) | 
|  | return -ERESTARTNOHAND; | 
|  |  | 
|  | if (rmtp) { | 
|  | int ret = update_rmtp(&t.timer, rmtp); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | restart = ¤t_thread_info()->restart_block; | 
|  | restart->fn = hrtimer_nanosleep_restart; | 
|  | restart->nanosleep.index = t.timer.base->index; | 
|  | restart->nanosleep.rmtp = rmtp; | 
|  | restart->nanosleep.expires = t.timer.expires.tv64; | 
|  |  | 
|  | return -ERESTART_RESTARTBLOCK; | 
|  | } | 
|  |  | 
|  | asmlinkage long | 
|  | sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) | 
|  | { | 
|  | struct timespec tu; | 
|  |  | 
|  | if (copy_from_user(&tu, rqtp, sizeof(tu))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!timespec_valid(&tu)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Functions related to boot-time initialization: | 
|  | */ | 
|  | static void __cpuinit init_hrtimers_cpu(int cpu) | 
|  | { | 
|  | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); | 
|  | int i; | 
|  |  | 
|  | spin_lock_init(&cpu_base->lock); | 
|  |  | 
|  | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) | 
|  | cpu_base->clock_base[i].cpu_base = cpu_base; | 
|  |  | 
|  | INIT_LIST_HEAD(&cpu_base->cb_pending); | 
|  | hrtimer_init_hres(cpu_base); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | 
|  | struct hrtimer_clock_base *new_base) | 
|  | { | 
|  | struct hrtimer *timer; | 
|  | struct rb_node *node; | 
|  |  | 
|  | while ((node = rb_first(&old_base->active))) { | 
|  | timer = rb_entry(node, struct hrtimer, node); | 
|  | BUG_ON(hrtimer_callback_running(timer)); | 
|  | __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0); | 
|  | timer->base = new_base; | 
|  | /* | 
|  | * Enqueue the timer. Allow reprogramming of the event device | 
|  | */ | 
|  | enqueue_hrtimer(timer, new_base, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void migrate_hrtimers(int cpu) | 
|  | { | 
|  | struct hrtimer_cpu_base *old_base, *new_base; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(cpu_online(cpu)); | 
|  | old_base = &per_cpu(hrtimer_bases, cpu); | 
|  | new_base = &get_cpu_var(hrtimer_bases); | 
|  |  | 
|  | tick_cancel_sched_timer(cpu); | 
|  |  | 
|  | local_irq_disable(); | 
|  | spin_lock(&new_base->lock); | 
|  | spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | 
|  | migrate_hrtimer_list(&old_base->clock_base[i], | 
|  | &new_base->clock_base[i]); | 
|  | } | 
|  |  | 
|  | spin_unlock(&old_base->lock); | 
|  | spin_unlock(&new_base->lock); | 
|  | local_irq_enable(); | 
|  | put_cpu_var(hrtimer_bases); | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | unsigned int cpu = (long)hcpu; | 
|  |  | 
|  | switch (action) { | 
|  |  | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | init_hrtimers_cpu(cpu); | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu); | 
|  | migrate_hrtimers(cpu); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block __cpuinitdata hrtimers_nb = { | 
|  | .notifier_call = hrtimer_cpu_notify, | 
|  | }; | 
|  |  | 
|  | void __init hrtimers_init(void) | 
|  | { | 
|  | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, | 
|  | (void *)(long)smp_processor_id()); | 
|  | register_cpu_notifier(&hrtimers_nb); | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  | open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL); | 
|  | #endif | 
|  | } | 
|  |  |