| /* |
| * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism |
| * |
| * (C) Copyright 2008-2010,2015 Intel Corporation |
| * Author: Sreedhara DS (sreedhara.ds@intel.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| * |
| * SCU running in ARC processor communicates with other entity running in IA |
| * core through IPC mechanism which in turn messaging between IA core ad SCU. |
| * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and |
| * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with |
| * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC) |
| * along with other APIs. |
| */ |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/pm.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <linux/sfi.h> |
| #include <asm/intel-mid.h> |
| #include <asm/intel_scu_ipc.h> |
| |
| /* IPC defines the following message types */ |
| #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */ |
| #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */ |
| #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */ |
| #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */ |
| #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */ |
| |
| /* Command id associated with message IPCMSG_PCNTRL */ |
| #define IPC_CMD_PCNTRL_W 0 /* Register write */ |
| #define IPC_CMD_PCNTRL_R 1 /* Register read */ |
| #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */ |
| |
| /* |
| * IPC register summary |
| * |
| * IPC register blocks are memory mapped at fixed address of PCI BAR 0. |
| * To read or write information to the SCU, driver writes to IPC-1 memory |
| * mapped registers. The following is the IPC mechanism |
| * |
| * 1. IA core cDMI interface claims this transaction and converts it to a |
| * Transaction Layer Packet (TLP) message which is sent across the cDMI. |
| * |
| * 2. South Complex cDMI block receives this message and writes it to |
| * the IPC-1 register block, causing an interrupt to the SCU |
| * |
| * 3. SCU firmware decodes this interrupt and IPC message and the appropriate |
| * message handler is called within firmware. |
| */ |
| |
| #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */ |
| #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */ |
| #define IPC_IOC 0x100 /* IPC command register IOC bit */ |
| |
| #define PCI_DEVICE_ID_LINCROFT 0x082a |
| #define PCI_DEVICE_ID_PENWELL 0x080e |
| #define PCI_DEVICE_ID_CLOVERVIEW 0x08ea |
| #define PCI_DEVICE_ID_TANGIER 0x11a0 |
| |
| /* intel scu ipc driver data */ |
| struct intel_scu_ipc_pdata_t { |
| u32 i2c_base; |
| u32 i2c_len; |
| }; |
| |
| static const struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = { |
| .i2c_base = 0xff12b000, |
| .i2c_len = 0x10, |
| }; |
| |
| /* Penwell and Cloverview */ |
| static const struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = { |
| .i2c_base = 0xff12b000, |
| .i2c_len = 0x10, |
| }; |
| |
| static const struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = { |
| .i2c_base = 0xff00d000, |
| .i2c_len = 0x10, |
| }; |
| |
| struct intel_scu_ipc_dev { |
| struct device *dev; |
| void __iomem *ipc_base; |
| void __iomem *i2c_base; |
| struct completion cmd_complete; |
| u8 irq_mode; |
| }; |
| |
| static struct intel_scu_ipc_dev ipcdev; /* Only one for now */ |
| |
| #define IPC_STATUS 0x04 |
| #define IPC_STATUS_IRQ BIT(2) |
| |
| /* |
| * IPC Read Buffer (Read Only): |
| * 16 byte buffer for receiving data from SCU, if IPC command |
| * processing results in response data |
| */ |
| #define IPC_READ_BUFFER 0x90 |
| |
| #define IPC_I2C_CNTRL_ADDR 0 |
| #define I2C_DATA_ADDR 0x04 |
| |
| static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */ |
| |
| /* |
| * Send ipc command |
| * Command Register (Write Only): |
| * A write to this register results in an interrupt to the SCU core processor |
| * Format: |
| * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)| |
| */ |
| static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd) |
| { |
| reinit_completion(&scu->cmd_complete); |
| writel(cmd | IPC_IOC, scu->ipc_base); |
| } |
| |
| /* |
| * Write ipc data |
| * IPC Write Buffer (Write Only): |
| * 16-byte buffer for sending data associated with IPC command to |
| * SCU. Size of the data is specified in the IPC_COMMAND_REG register |
| */ |
| static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset) |
| { |
| writel(data, scu->ipc_base + 0x80 + offset); |
| } |
| |
| /* |
| * Status Register (Read Only): |
| * Driver will read this register to get the ready/busy status of the IPC |
| * block and error status of the IPC command that was just processed by SCU |
| * Format: |
| * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)| |
| */ |
| static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu) |
| { |
| return __raw_readl(scu->ipc_base + 0x04); |
| } |
| |
| /* Read ipc byte data */ |
| static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset) |
| { |
| return readb(scu->ipc_base + IPC_READ_BUFFER + offset); |
| } |
| |
| /* Read ipc u32 data */ |
| static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset) |
| { |
| return readl(scu->ipc_base + IPC_READ_BUFFER + offset); |
| } |
| |
| /* Wait till scu status is busy */ |
| static inline int busy_loop(struct intel_scu_ipc_dev *scu) |
| { |
| u32 status = ipc_read_status(scu); |
| u32 loop_count = 100000; |
| |
| /* break if scu doesn't reset busy bit after huge retry */ |
| while ((status & BIT(0)) && --loop_count) { |
| udelay(1); /* scu processing time is in few u secods */ |
| status = ipc_read_status(scu); |
| } |
| |
| if (status & BIT(0)) { |
| dev_err(scu->dev, "IPC timed out"); |
| return -ETIMEDOUT; |
| } |
| |
| if (status & BIT(1)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */ |
| static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu) |
| { |
| int status; |
| |
| if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) { |
| dev_err(scu->dev, "IPC timed out\n"); |
| return -ETIMEDOUT; |
| } |
| |
| status = ipc_read_status(scu); |
| if (status & BIT(1)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu) |
| { |
| return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu); |
| } |
| |
| /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */ |
| static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id) |
| { |
| struct intel_scu_ipc_dev *scu = &ipcdev; |
| int nc; |
| u32 offset = 0; |
| int err; |
| u8 cbuf[IPC_WWBUF_SIZE]; |
| u32 *wbuf = (u32 *)&cbuf; |
| |
| memset(cbuf, 0, sizeof(cbuf)); |
| |
| mutex_lock(&ipclock); |
| |
| if (scu->dev == NULL) { |
| mutex_unlock(&ipclock); |
| return -ENODEV; |
| } |
| |
| for (nc = 0; nc < count; nc++, offset += 2) { |
| cbuf[offset] = addr[nc]; |
| cbuf[offset + 1] = addr[nc] >> 8; |
| } |
| |
| if (id == IPC_CMD_PCNTRL_R) { |
| for (nc = 0, offset = 0; nc < count; nc++, offset += 4) |
| ipc_data_writel(scu, wbuf[nc], offset); |
| ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op); |
| } else if (id == IPC_CMD_PCNTRL_W) { |
| for (nc = 0; nc < count; nc++, offset += 1) |
| cbuf[offset] = data[nc]; |
| for (nc = 0, offset = 0; nc < count; nc++, offset += 4) |
| ipc_data_writel(scu, wbuf[nc], offset); |
| ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op); |
| } else if (id == IPC_CMD_PCNTRL_M) { |
| cbuf[offset] = data[0]; |
| cbuf[offset + 1] = data[1]; |
| ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */ |
| ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op); |
| } |
| |
| err = intel_scu_ipc_check_status(scu); |
| if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */ |
| /* Workaround: values are read as 0 without memcpy_fromio */ |
| memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16); |
| for (nc = 0; nc < count; nc++) |
| data[nc] = ipc_data_readb(scu, nc); |
| } |
| mutex_unlock(&ipclock); |
| return err; |
| } |
| |
| /** |
| * intel_scu_ipc_ioread8 - read a word via the SCU |
| * @addr: register on SCU |
| * @data: return pointer for read byte |
| * |
| * Read a single register. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_ioread8(u16 addr, u8 *data) |
| { |
| return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_ioread8); |
| |
| /** |
| * intel_scu_ipc_ioread16 - read a word via the SCU |
| * @addr: register on SCU |
| * @data: return pointer for read word |
| * |
| * Read a register pair. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_ioread16(u16 addr, u16 *data) |
| { |
| u16 x[2] = {addr, addr + 1}; |
| return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_ioread16); |
| |
| /** |
| * intel_scu_ipc_ioread32 - read a dword via the SCU |
| * @addr: register on SCU |
| * @data: return pointer for read dword |
| * |
| * Read four registers. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_ioread32(u16 addr, u32 *data) |
| { |
| u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; |
| return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_ioread32); |
| |
| /** |
| * intel_scu_ipc_iowrite8 - write a byte via the SCU |
| * @addr: register on SCU |
| * @data: byte to write |
| * |
| * Write a single register. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_iowrite8(u16 addr, u8 data) |
| { |
| return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_iowrite8); |
| |
| /** |
| * intel_scu_ipc_iowrite16 - write a word via the SCU |
| * @addr: register on SCU |
| * @data: word to write |
| * |
| * Write two registers. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_iowrite16(u16 addr, u16 data) |
| { |
| u16 x[2] = {addr, addr + 1}; |
| return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_iowrite16); |
| |
| /** |
| * intel_scu_ipc_iowrite32 - write a dword via the SCU |
| * @addr: register on SCU |
| * @data: dword to write |
| * |
| * Write four registers. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_iowrite32(u16 addr, u32 data) |
| { |
| u16 x[4] = {addr, addr + 1, addr + 2, addr + 3}; |
| return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_iowrite32); |
| |
| /** |
| * intel_scu_ipc_readvv - read a set of registers |
| * @addr: register list |
| * @data: bytes to return |
| * @len: length of array |
| * |
| * Read registers. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * The largest array length permitted by the hardware is 5 items. |
| * |
| * This function may sleep. |
| */ |
| int intel_scu_ipc_readv(u16 *addr, u8 *data, int len) |
| { |
| return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_readv); |
| |
| /** |
| * intel_scu_ipc_writev - write a set of registers |
| * @addr: register list |
| * @data: bytes to write |
| * @len: length of array |
| * |
| * Write registers. Returns 0 on success or an error code. All |
| * locking between SCU accesses is handled for the caller. |
| * |
| * The largest array length permitted by the hardware is 5 items. |
| * |
| * This function may sleep. |
| * |
| */ |
| int intel_scu_ipc_writev(u16 *addr, u8 *data, int len) |
| { |
| return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_writev); |
| |
| /** |
| * intel_scu_ipc_update_register - r/m/w a register |
| * @addr: register address |
| * @bits: bits to update |
| * @mask: mask of bits to update |
| * |
| * Read-modify-write power control unit register. The first data argument |
| * must be register value and second is mask value |
| * mask is a bitmap that indicates which bits to update. |
| * 0 = masked. Don't modify this bit, 1 = modify this bit. |
| * returns 0 on success or an error code. |
| * |
| * This function may sleep. Locking between SCU accesses is handled |
| * for the caller. |
| */ |
| int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask) |
| { |
| u8 data[2] = { bits, mask }; |
| return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M); |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_update_register); |
| |
| /** |
| * intel_scu_ipc_simple_command - send a simple command |
| * @cmd: command |
| * @sub: sub type |
| * |
| * Issue a simple command to the SCU. Do not use this interface if |
| * you must then access data as any data values may be overwritten |
| * by another SCU access by the time this function returns. |
| * |
| * This function may sleep. Locking for SCU accesses is handled for |
| * the caller. |
| */ |
| int intel_scu_ipc_simple_command(int cmd, int sub) |
| { |
| struct intel_scu_ipc_dev *scu = &ipcdev; |
| int err; |
| |
| mutex_lock(&ipclock); |
| if (scu->dev == NULL) { |
| mutex_unlock(&ipclock); |
| return -ENODEV; |
| } |
| ipc_command(scu, sub << 12 | cmd); |
| err = intel_scu_ipc_check_status(scu); |
| mutex_unlock(&ipclock); |
| return err; |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_simple_command); |
| |
| /** |
| * intel_scu_ipc_command - command with data |
| * @cmd: command |
| * @sub: sub type |
| * @in: input data |
| * @inlen: input length in dwords |
| * @out: output data |
| * @outlein: output length in dwords |
| * |
| * Issue a command to the SCU which involves data transfers. Do the |
| * data copies under the lock but leave it for the caller to interpret |
| */ |
| int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen, |
| u32 *out, int outlen) |
| { |
| struct intel_scu_ipc_dev *scu = &ipcdev; |
| int i, err; |
| |
| mutex_lock(&ipclock); |
| if (scu->dev == NULL) { |
| mutex_unlock(&ipclock); |
| return -ENODEV; |
| } |
| |
| for (i = 0; i < inlen; i++) |
| ipc_data_writel(scu, *in++, 4 * i); |
| |
| ipc_command(scu, (inlen << 16) | (sub << 12) | cmd); |
| err = intel_scu_ipc_check_status(scu); |
| |
| if (!err) { |
| for (i = 0; i < outlen; i++) |
| *out++ = ipc_data_readl(scu, 4 * i); |
| } |
| |
| mutex_unlock(&ipclock); |
| return err; |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_command); |
| |
| #define IPC_SPTR 0x08 |
| #define IPC_DPTR 0x0C |
| |
| /** |
| * intel_scu_ipc_raw_command() - IPC command with data and pointers |
| * @cmd: IPC command code. |
| * @sub: IPC command sub type. |
| * @in: input data of this IPC command. |
| * @inlen: input data length in dwords. |
| * @out: output data of this IPC command. |
| * @outlen: output data length in dwords. |
| * @sptr: data writing to SPTR register. |
| * @dptr: data writing to DPTR register. |
| * |
| * Send an IPC command to SCU with input/output data and source/dest pointers. |
| * |
| * Return: an IPC error code or 0 on success. |
| */ |
| int intel_scu_ipc_raw_command(int cmd, int sub, u8 *in, int inlen, |
| u32 *out, int outlen, u32 dptr, u32 sptr) |
| { |
| struct intel_scu_ipc_dev *scu = &ipcdev; |
| int inbuflen = DIV_ROUND_UP(inlen, 4); |
| u32 inbuf[4]; |
| int i, err; |
| |
| /* Up to 16 bytes */ |
| if (inbuflen > 4) |
| return -EINVAL; |
| |
| mutex_lock(&ipclock); |
| if (scu->dev == NULL) { |
| mutex_unlock(&ipclock); |
| return -ENODEV; |
| } |
| |
| writel(dptr, scu->ipc_base + IPC_DPTR); |
| writel(sptr, scu->ipc_base + IPC_SPTR); |
| |
| /* |
| * SRAM controller doesn't support 8-bit writes, it only |
| * supports 32-bit writes, so we have to copy input data into |
| * the temporary buffer, and SCU FW will use the inlen to |
| * determine the actual input data length in the temporary |
| * buffer. |
| */ |
| memcpy(inbuf, in, inlen); |
| |
| for (i = 0; i < inbuflen; i++) |
| ipc_data_writel(scu, inbuf[i], 4 * i); |
| |
| ipc_command(scu, (inlen << 16) | (sub << 12) | cmd); |
| err = intel_scu_ipc_check_status(scu); |
| if (!err) { |
| for (i = 0; i < outlen; i++) |
| *out++ = ipc_data_readl(scu, 4 * i); |
| } |
| |
| mutex_unlock(&ipclock); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(intel_scu_ipc_raw_command); |
| |
| /* I2C commands */ |
| #define IPC_I2C_WRITE 1 /* I2C Write command */ |
| #define IPC_I2C_READ 2 /* I2C Read command */ |
| |
| /** |
| * intel_scu_ipc_i2c_cntrl - I2C read/write operations |
| * @addr: I2C address + command bits |
| * @data: data to read/write |
| * |
| * Perform an an I2C read/write operation via the SCU. All locking is |
| * handled for the caller. This function may sleep. |
| * |
| * Returns an error code or 0 on success. |
| * |
| * This has to be in the IPC driver for the locking. |
| */ |
| int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data) |
| { |
| struct intel_scu_ipc_dev *scu = &ipcdev; |
| u32 cmd = 0; |
| |
| mutex_lock(&ipclock); |
| if (scu->dev == NULL) { |
| mutex_unlock(&ipclock); |
| return -ENODEV; |
| } |
| cmd = (addr >> 24) & 0xFF; |
| if (cmd == IPC_I2C_READ) { |
| writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR); |
| /* Write not getting updated without delay */ |
| usleep_range(1000, 2000); |
| *data = readl(scu->i2c_base + I2C_DATA_ADDR); |
| } else if (cmd == IPC_I2C_WRITE) { |
| writel(*data, scu->i2c_base + I2C_DATA_ADDR); |
| usleep_range(1000, 2000); |
| writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR); |
| } else { |
| dev_err(scu->dev, |
| "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd); |
| |
| mutex_unlock(&ipclock); |
| return -EIO; |
| } |
| mutex_unlock(&ipclock); |
| return 0; |
| } |
| EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl); |
| |
| /* |
| * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1 |
| * When ioc bit is set to 1, caller api must wait for interrupt handler called |
| * which in turn unlocks the caller api. Currently this is not used |
| * |
| * This is edge triggered so we need take no action to clear anything |
| */ |
| static irqreturn_t ioc(int irq, void *dev_id) |
| { |
| struct intel_scu_ipc_dev *scu = dev_id; |
| int status = ipc_read_status(scu); |
| |
| writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS); |
| complete(&scu->cmd_complete); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * ipc_probe - probe an Intel SCU IPC |
| * @pdev: the PCI device matching |
| * @id: entry in the match table |
| * |
| * Enable and install an intel SCU IPC. This appears in the PCI space |
| * but uses some hard coded addresses as well. |
| */ |
| static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| int err; |
| struct intel_scu_ipc_dev *scu = &ipcdev; |
| struct intel_scu_ipc_pdata_t *pdata; |
| |
| if (scu->dev) /* We support only one SCU */ |
| return -EBUSY; |
| |
| pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data; |
| if (!pdata) |
| return -ENODEV; |
| |
| err = pcim_enable_device(pdev); |
| if (err) |
| return err; |
| |
| err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev)); |
| if (err) |
| return err; |
| |
| init_completion(&scu->cmd_complete); |
| |
| scu->ipc_base = pcim_iomap_table(pdev)[0]; |
| |
| scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len); |
| if (!scu->i2c_base) |
| return -ENOMEM; |
| |
| err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc", |
| scu); |
| if (err) |
| return err; |
| |
| /* Assign device at last */ |
| scu->dev = &pdev->dev; |
| |
| intel_scu_devices_create(); |
| |
| pci_set_drvdata(pdev, scu); |
| return 0; |
| } |
| |
| #define SCU_DEVICE(id, pdata) {PCI_VDEVICE(INTEL, id), (kernel_ulong_t)&pdata} |
| |
| static const struct pci_device_id pci_ids[] = { |
| SCU_DEVICE(PCI_DEVICE_ID_LINCROFT, intel_scu_ipc_lincroft_pdata), |
| SCU_DEVICE(PCI_DEVICE_ID_PENWELL, intel_scu_ipc_penwell_pdata), |
| SCU_DEVICE(PCI_DEVICE_ID_CLOVERVIEW, intel_scu_ipc_penwell_pdata), |
| SCU_DEVICE(PCI_DEVICE_ID_TANGIER, intel_scu_ipc_tangier_pdata), |
| {} |
| }; |
| |
| static struct pci_driver ipc_driver = { |
| .driver = { |
| .suppress_bind_attrs = true, |
| }, |
| .name = "intel_scu_ipc", |
| .id_table = pci_ids, |
| .probe = ipc_probe, |
| }; |
| builtin_pci_driver(ipc_driver); |