blob: 00f9ed93360c6707860c5aa3538d518f45224f59 [file] [log] [blame]
/* bnx2x_ethtool.c: QLogic Everest network driver.
*
* Copyright (c) 2007-2013 Broadcom Corporation
* Copyright (c) 2014 QLogic Corporation
* All rights reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Ariel Elior <ariel.elior@qlogic.com>
* Written by: Eliezer Tamir
* Based on code from Michael Chan's bnx2 driver
* UDP CSUM errata workaround by Arik Gendelman
* Slowpath and fastpath rework by Vladislav Zolotarov
* Statistics and Link management by Yitchak Gertner
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/crc32.h>
#include "bnx2x.h"
#include "bnx2x_cmn.h"
#include "bnx2x_dump.h"
#include "bnx2x_init.h"
/* Note: in the format strings below %s is replaced by the queue-name which is
* either its index or 'fcoe' for the fcoe queue. Make sure the format string
* length does not exceed ETH_GSTRING_LEN - MAX_QUEUE_NAME_LEN + 2
*/
#define MAX_QUEUE_NAME_LEN 4
static const struct {
long offset;
int size;
char string[ETH_GSTRING_LEN];
} bnx2x_q_stats_arr[] = {
/* 1 */ { Q_STATS_OFFSET32(total_bytes_received_hi), 8, "[%s]: rx_bytes" },
{ Q_STATS_OFFSET32(total_unicast_packets_received_hi),
8, "[%s]: rx_ucast_packets" },
{ Q_STATS_OFFSET32(total_multicast_packets_received_hi),
8, "[%s]: rx_mcast_packets" },
{ Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
8, "[%s]: rx_bcast_packets" },
{ Q_STATS_OFFSET32(no_buff_discard_hi), 8, "[%s]: rx_discards" },
{ Q_STATS_OFFSET32(rx_err_discard_pkt),
4, "[%s]: rx_phy_ip_err_discards"},
{ Q_STATS_OFFSET32(rx_skb_alloc_failed),
4, "[%s]: rx_skb_alloc_discard" },
{ Q_STATS_OFFSET32(hw_csum_err), 4, "[%s]: rx_csum_offload_errors" },
{ Q_STATS_OFFSET32(driver_xoff), 4, "[%s]: tx_exhaustion_events" },
{ Q_STATS_OFFSET32(total_bytes_transmitted_hi), 8, "[%s]: tx_bytes" },
/* 10 */{ Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
8, "[%s]: tx_ucast_packets" },
{ Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
8, "[%s]: tx_mcast_packets" },
{ Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
8, "[%s]: tx_bcast_packets" },
{ Q_STATS_OFFSET32(total_tpa_aggregations_hi),
8, "[%s]: tpa_aggregations" },
{ Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
8, "[%s]: tpa_aggregated_frames"},
{ Q_STATS_OFFSET32(total_tpa_bytes_hi), 8, "[%s]: tpa_bytes"},
{ Q_STATS_OFFSET32(driver_filtered_tx_pkt),
4, "[%s]: driver_filtered_tx_pkt" }
};
#define BNX2X_NUM_Q_STATS ARRAY_SIZE(bnx2x_q_stats_arr)
static const struct {
long offset;
int size;
bool is_port_stat;
char string[ETH_GSTRING_LEN];
} bnx2x_stats_arr[] = {
/* 1 */ { STATS_OFFSET32(total_bytes_received_hi),
8, false, "rx_bytes" },
{ STATS_OFFSET32(error_bytes_received_hi),
8, false, "rx_error_bytes" },
{ STATS_OFFSET32(total_unicast_packets_received_hi),
8, false, "rx_ucast_packets" },
{ STATS_OFFSET32(total_multicast_packets_received_hi),
8, false, "rx_mcast_packets" },
{ STATS_OFFSET32(total_broadcast_packets_received_hi),
8, false, "rx_bcast_packets" },
{ STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
8, true, "rx_crc_errors" },
{ STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
8, true, "rx_align_errors" },
{ STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
8, true, "rx_undersize_packets" },
{ STATS_OFFSET32(etherstatsoverrsizepkts_hi),
8, true, "rx_oversize_packets" },
/* 10 */{ STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
8, true, "rx_fragments" },
{ STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
8, true, "rx_jabbers" },
{ STATS_OFFSET32(no_buff_discard_hi),
8, false, "rx_discards" },
{ STATS_OFFSET32(mac_filter_discard),
4, true, "rx_filtered_packets" },
{ STATS_OFFSET32(mf_tag_discard),
4, true, "rx_mf_tag_discard" },
{ STATS_OFFSET32(pfc_frames_received_hi),
8, true, "pfc_frames_received" },
{ STATS_OFFSET32(pfc_frames_sent_hi),
8, true, "pfc_frames_sent" },
{ STATS_OFFSET32(brb_drop_hi),
8, true, "rx_brb_discard" },
{ STATS_OFFSET32(brb_truncate_hi),
8, true, "rx_brb_truncate" },
{ STATS_OFFSET32(pause_frames_received_hi),
8, true, "rx_pause_frames" },
{ STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
8, true, "rx_mac_ctrl_frames" },
{ STATS_OFFSET32(nig_timer_max),
4, true, "rx_constant_pause_events" },
/* 20 */{ STATS_OFFSET32(rx_err_discard_pkt),
4, false, "rx_phy_ip_err_discards"},
{ STATS_OFFSET32(rx_skb_alloc_failed),
4, false, "rx_skb_alloc_discard" },
{ STATS_OFFSET32(hw_csum_err),
4, false, "rx_csum_offload_errors" },
{ STATS_OFFSET32(driver_xoff),
4, false, "tx_exhaustion_events" },
{ STATS_OFFSET32(total_bytes_transmitted_hi),
8, false, "tx_bytes" },
{ STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
8, true, "tx_error_bytes" },
{ STATS_OFFSET32(total_unicast_packets_transmitted_hi),
8, false, "tx_ucast_packets" },
{ STATS_OFFSET32(total_multicast_packets_transmitted_hi),
8, false, "tx_mcast_packets" },
{ STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
8, false, "tx_bcast_packets" },
{ STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
8, true, "tx_mac_errors" },
{ STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
8, true, "tx_carrier_errors" },
/* 30 */{ STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
8, true, "tx_single_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
8, true, "tx_multi_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
8, true, "tx_deferred" },
{ STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
8, true, "tx_excess_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
8, true, "tx_late_collisions" },
{ STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
8, true, "tx_total_collisions" },
{ STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
8, true, "tx_64_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
8, true, "tx_65_to_127_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
8, true, "tx_128_to_255_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
8, true, "tx_256_to_511_byte_packets" },
/* 40 */{ STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
8, true, "tx_512_to_1023_byte_packets" },
{ STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
8, true, "tx_1024_to_1522_byte_packets" },
{ STATS_OFFSET32(etherstatspktsover1522octets_hi),
8, true, "tx_1523_to_9022_byte_packets" },
{ STATS_OFFSET32(pause_frames_sent_hi),
8, true, "tx_pause_frames" },
{ STATS_OFFSET32(total_tpa_aggregations_hi),
8, false, "tpa_aggregations" },
{ STATS_OFFSET32(total_tpa_aggregated_frames_hi),
8, false, "tpa_aggregated_frames"},
{ STATS_OFFSET32(total_tpa_bytes_hi),
8, false, "tpa_bytes"},
{ STATS_OFFSET32(recoverable_error),
4, false, "recoverable_errors" },
{ STATS_OFFSET32(unrecoverable_error),
4, false, "unrecoverable_errors" },
{ STATS_OFFSET32(driver_filtered_tx_pkt),
4, false, "driver_filtered_tx_pkt" },
{ STATS_OFFSET32(eee_tx_lpi),
4, true, "Tx LPI entry count"},
{ STATS_OFFSET32(ptp_skip_tx_ts),
4, false, "ptp_skipped_tx_tstamp" },
};
#define BNX2X_NUM_STATS ARRAY_SIZE(bnx2x_stats_arr)
static int bnx2x_get_port_type(struct bnx2x *bp)
{
int port_type;
u32 phy_idx = bnx2x_get_cur_phy_idx(bp);
switch (bp->link_params.phy[phy_idx].media_type) {
case ETH_PHY_SFPP_10G_FIBER:
case ETH_PHY_SFP_1G_FIBER:
case ETH_PHY_XFP_FIBER:
case ETH_PHY_KR:
case ETH_PHY_CX4:
port_type = PORT_FIBRE;
break;
case ETH_PHY_DA_TWINAX:
port_type = PORT_DA;
break;
case ETH_PHY_BASE_T:
port_type = PORT_TP;
break;
case ETH_PHY_NOT_PRESENT:
port_type = PORT_NONE;
break;
case ETH_PHY_UNSPECIFIED:
default:
port_type = PORT_OTHER;
break;
}
return port_type;
}
static int bnx2x_get_vf_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct bnx2x *bp = netdev_priv(dev);
u32 supported, advertising;
ethtool_convert_link_mode_to_legacy_u32(&supported,
cmd->link_modes.supported);
ethtool_convert_link_mode_to_legacy_u32(&advertising,
cmd->link_modes.advertising);
if (bp->state == BNX2X_STATE_OPEN) {
if (test_bit(BNX2X_LINK_REPORT_FD,
&bp->vf_link_vars.link_report_flags))
cmd->base.duplex = DUPLEX_FULL;
else
cmd->base.duplex = DUPLEX_HALF;
cmd->base.speed = bp->vf_link_vars.line_speed;
} else {
cmd->base.duplex = DUPLEX_UNKNOWN;
cmd->base.speed = SPEED_UNKNOWN;
}
cmd->base.port = PORT_OTHER;
cmd->base.phy_address = 0;
cmd->base.autoneg = AUTONEG_DISABLE;
DP(BNX2X_MSG_ETHTOOL, "ethtool_cmd: cmd %d\n"
" supported 0x%x advertising 0x%x speed %u\n"
" duplex %d port %d phy_address %d\n"
" autoneg %d\n",
cmd->base.cmd, supported, advertising,
cmd->base.speed,
cmd->base.duplex, cmd->base.port, cmd->base.phy_address,
cmd->base.autoneg);
return 0;
}
static int bnx2x_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct bnx2x *bp = netdev_priv(dev);
int cfg_idx = bnx2x_get_link_cfg_idx(bp);
u32 media_type;
u32 supported, advertising, lp_advertising;
ethtool_convert_link_mode_to_legacy_u32(&lp_advertising,
cmd->link_modes.lp_advertising);
/* Dual Media boards present all available port types */
supported = bp->port.supported[cfg_idx] |
(bp->port.supported[cfg_idx ^ 1] &
(SUPPORTED_TP | SUPPORTED_FIBRE));
advertising = bp->port.advertising[cfg_idx];
media_type = bp->link_params.phy[bnx2x_get_cur_phy_idx(bp)].media_type;
if (media_type == ETH_PHY_SFP_1G_FIBER) {
supported &= ~(SUPPORTED_10000baseT_Full);
advertising &= ~(ADVERTISED_10000baseT_Full);
}
if ((bp->state == BNX2X_STATE_OPEN) && bp->link_vars.link_up &&
!(bp->flags & MF_FUNC_DIS)) {
cmd->base.duplex = bp->link_vars.duplex;
if (IS_MF(bp) && !BP_NOMCP(bp))
cmd->base.speed = bnx2x_get_mf_speed(bp);
else
cmd->base.speed = bp->link_vars.line_speed;
} else {
cmd->base.duplex = DUPLEX_UNKNOWN;
cmd->base.speed = SPEED_UNKNOWN;
}
cmd->base.port = bnx2x_get_port_type(bp);
cmd->base.phy_address = bp->mdio.prtad;
if (bp->link_params.req_line_speed[cfg_idx] == SPEED_AUTO_NEG)
cmd->base.autoneg = AUTONEG_ENABLE;
else
cmd->base.autoneg = AUTONEG_DISABLE;
/* Publish LP advertised speeds and FC */
if (bp->link_vars.link_status & LINK_STATUS_AUTO_NEGOTIATE_COMPLETE) {
u32 status = bp->link_vars.link_status;
lp_advertising |= ADVERTISED_Autoneg;
if (status & LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE)
lp_advertising |= ADVERTISED_Pause;
if (status & LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE)
lp_advertising |= ADVERTISED_Asym_Pause;
if (status & LINK_STATUS_LINK_PARTNER_10THD_CAPABLE)
lp_advertising |= ADVERTISED_10baseT_Half;
if (status & LINK_STATUS_LINK_PARTNER_10TFD_CAPABLE)
lp_advertising |= ADVERTISED_10baseT_Full;
if (status & LINK_STATUS_LINK_PARTNER_100TXHD_CAPABLE)
lp_advertising |= ADVERTISED_100baseT_Half;
if (status & LINK_STATUS_LINK_PARTNER_100TXFD_CAPABLE)
lp_advertising |= ADVERTISED_100baseT_Full;
if (status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE)
lp_advertising |= ADVERTISED_1000baseT_Half;
if (status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) {
if (media_type == ETH_PHY_KR) {
lp_advertising |=
ADVERTISED_1000baseKX_Full;
} else {
lp_advertising |=
ADVERTISED_1000baseT_Full;
}
}
if (status & LINK_STATUS_LINK_PARTNER_2500XFD_CAPABLE)
lp_advertising |= ADVERTISED_2500baseX_Full;
if (status & LINK_STATUS_LINK_PARTNER_10GXFD_CAPABLE) {
if (media_type == ETH_PHY_KR) {
lp_advertising |=
ADVERTISED_10000baseKR_Full;
} else {
lp_advertising |=
ADVERTISED_10000baseT_Full;
}
}
if (status & LINK_STATUS_LINK_PARTNER_20GXFD_CAPABLE)
lp_advertising |= ADVERTISED_20000baseKR2_Full;
}
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
supported);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
advertising);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
lp_advertising);
DP(BNX2X_MSG_ETHTOOL, "ethtool_cmd: cmd %d\n"
" supported 0x%x advertising 0x%x speed %u\n"
" duplex %d port %d phy_address %d\n"
" autoneg %d\n",
cmd->base.cmd, supported, advertising,
cmd->base.speed,
cmd->base.duplex, cmd->base.port, cmd->base.phy_address,
cmd->base.autoneg);
return 0;
}
static int bnx2x_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct bnx2x *bp = netdev_priv(dev);
u32 advertising, cfg_idx, old_multi_phy_config, new_multi_phy_config;
u32 speed, phy_idx;
u32 supported;
u8 duplex = cmd->base.duplex;
ethtool_convert_link_mode_to_legacy_u32(&supported,
cmd->link_modes.supported);
ethtool_convert_link_mode_to_legacy_u32(&advertising,
cmd->link_modes.advertising);
if (IS_MF_SD(bp))
return 0;
DP(BNX2X_MSG_ETHTOOL, "ethtool_cmd: cmd %d\n"
" supported 0x%x advertising 0x%x speed %u\n"
" duplex %d port %d phy_address %d\n"
" autoneg %d\n",
cmd->base.cmd, supported, advertising,
cmd->base.speed,
cmd->base.duplex, cmd->base.port, cmd->base.phy_address,
cmd->base.autoneg);
speed = cmd->base.speed;
/* If received a request for an unknown duplex, assume full*/
if (duplex == DUPLEX_UNKNOWN)
duplex = DUPLEX_FULL;
if (IS_MF_SI(bp)) {
u32 part;
u32 line_speed = bp->link_vars.line_speed;
/* use 10G if no link detected */
if (!line_speed)
line_speed = 10000;
if (bp->common.bc_ver < REQ_BC_VER_4_SET_MF_BW) {
DP(BNX2X_MSG_ETHTOOL,
"To set speed BC %X or higher is required, please upgrade BC\n",
REQ_BC_VER_4_SET_MF_BW);
return -EINVAL;
}
part = (speed * 100) / line_speed;
if (line_speed < speed || !part) {
DP(BNX2X_MSG_ETHTOOL,
"Speed setting should be in a range from 1%% to 100%% of actual line speed\n");
return -EINVAL;
}
if (bp->state != BNX2X_STATE_OPEN)
/* store value for following "load" */
bp->pending_max = part;
else
bnx2x_update_max_mf_config(bp, part);
return 0;
}
cfg_idx = bnx2x_get_link_cfg_idx(bp);
old_multi_phy_config = bp->link_params.multi_phy_config;
if (cmd->base.port != bnx2x_get_port_type(bp)) {
switch (cmd->base.port) {
case PORT_TP:
if (!(bp->port.supported[0] & SUPPORTED_TP ||
bp->port.supported[1] & SUPPORTED_TP)) {
DP(BNX2X_MSG_ETHTOOL,
"Unsupported port type\n");
return -EINVAL;
}
bp->link_params.multi_phy_config &=
~PORT_HW_CFG_PHY_SELECTION_MASK;
if (bp->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED)
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_SECOND_PHY;
else
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_FIRST_PHY;
break;
case PORT_FIBRE:
case PORT_DA:
case PORT_NONE:
if (!(bp->port.supported[0] & SUPPORTED_FIBRE ||
bp->port.supported[1] & SUPPORTED_FIBRE)) {
DP(BNX2X_MSG_ETHTOOL,
"Unsupported port type\n");
return -EINVAL;
}
bp->link_params.multi_phy_config &=
~PORT_HW_CFG_PHY_SELECTION_MASK;
if (bp->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED)
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_FIRST_PHY;
else
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_SECOND_PHY;
break;
default:
DP(BNX2X_MSG_ETHTOOL, "Unsupported port type\n");
return -EINVAL;
}
}
/* Save new config in case command complete successfully */
new_multi_phy_config = bp->link_params.multi_phy_config;
/* Get the new cfg_idx */
cfg_idx = bnx2x_get_link_cfg_idx(bp);
/* Restore old config in case command failed */
bp->link_params.multi_phy_config = old_multi_phy_config;
DP(BNX2X_MSG_ETHTOOL, "cfg_idx = %x\n", cfg_idx);
if (cmd->base.autoneg == AUTONEG_ENABLE) {
u32 an_supported_speed = bp->port.supported[cfg_idx];
if (bp->link_params.phy[EXT_PHY1].type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
an_supported_speed |= (SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full);
if (!(bp->port.supported[cfg_idx] & SUPPORTED_Autoneg)) {
DP(BNX2X_MSG_ETHTOOL, "Autoneg not supported\n");
return -EINVAL;
}
/* advertise the requested speed and duplex if supported */
if (advertising & ~an_supported_speed) {
DP(BNX2X_MSG_ETHTOOL,
"Advertisement parameters are not supported\n");
return -EINVAL;
}
bp->link_params.req_line_speed[cfg_idx] = SPEED_AUTO_NEG;
bp->link_params.req_duplex[cfg_idx] = duplex;
bp->port.advertising[cfg_idx] = (ADVERTISED_Autoneg |
advertising);
if (advertising) {
bp->link_params.speed_cap_mask[cfg_idx] = 0;
if (advertising & ADVERTISED_10baseT_Half) {
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF;
}
if (advertising & ADVERTISED_10baseT_Full)
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL;
if (advertising & ADVERTISED_100baseT_Full)
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL;
if (advertising & ADVERTISED_100baseT_Half) {
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF;
}
if (advertising & ADVERTISED_1000baseT_Half) {
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G;
}
if (advertising & (ADVERTISED_1000baseT_Full |
ADVERTISED_1000baseKX_Full))
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G;
if (advertising & (ADVERTISED_10000baseT_Full |
ADVERTISED_10000baseKX4_Full |
ADVERTISED_10000baseKR_Full))
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G;
if (advertising & ADVERTISED_20000baseKR2_Full)
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_20G;
}
} else { /* forced speed */
/* advertise the requested speed and duplex if supported */
switch (speed) {
case SPEED_10:
if (duplex == DUPLEX_FULL) {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_10baseT_Full)) {
DP(BNX2X_MSG_ETHTOOL,
"10M full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_10baseT_Full |
ADVERTISED_TP);
} else {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_10baseT_Half)) {
DP(BNX2X_MSG_ETHTOOL,
"10M half not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_10baseT_Half |
ADVERTISED_TP);
}
break;
case SPEED_100:
if (duplex == DUPLEX_FULL) {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_100baseT_Full)) {
DP(BNX2X_MSG_ETHTOOL,
"100M full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_100baseT_Full |
ADVERTISED_TP);
} else {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_100baseT_Half)) {
DP(BNX2X_MSG_ETHTOOL,
"100M half not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_100baseT_Half |
ADVERTISED_TP);
}
break;
case SPEED_1000:
if (duplex != DUPLEX_FULL) {
DP(BNX2X_MSG_ETHTOOL,
"1G half not supported\n");
return -EINVAL;
}
if (bp->port.supported[cfg_idx] &
SUPPORTED_1000baseT_Full) {
advertising = (ADVERTISED_1000baseT_Full |
ADVERTISED_TP);
} else if (bp->port.supported[cfg_idx] &
SUPPORTED_1000baseKX_Full) {
advertising = ADVERTISED_1000baseKX_Full;
} else {
DP(BNX2X_MSG_ETHTOOL,
"1G full not supported\n");
return -EINVAL;
}
break;
case SPEED_2500:
if (duplex != DUPLEX_FULL) {
DP(BNX2X_MSG_ETHTOOL,
"2.5G half not supported\n");
return -EINVAL;
}
if (!(bp->port.supported[cfg_idx]
& SUPPORTED_2500baseX_Full)) {
DP(BNX2X_MSG_ETHTOOL,
"2.5G full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_2500baseX_Full |
ADVERTISED_TP);
break;
case SPEED_10000:
if (duplex != DUPLEX_FULL) {
DP(BNX2X_MSG_ETHTOOL,
"10G half not supported\n");
return -EINVAL;
}
phy_idx = bnx2x_get_cur_phy_idx(bp);
if ((bp->port.supported[cfg_idx] &
SUPPORTED_10000baseT_Full) &&
(bp->link_params.phy[phy_idx].media_type !=
ETH_PHY_SFP_1G_FIBER)) {
advertising = (ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
} else if (bp->port.supported[cfg_idx] &
SUPPORTED_10000baseKR_Full) {
advertising = (ADVERTISED_10000baseKR_Full |
ADVERTISED_FIBRE);
} else {
DP(BNX2X_MSG_ETHTOOL,
"10G full not supported\n");
return -EINVAL;
}
break;
default:
DP(BNX2X_MSG_ETHTOOL, "Unsupported speed %u\n", speed);
return -EINVAL;
}
bp->link_params.req_line_speed[cfg_idx] = speed;
bp->link_params.req_duplex[cfg_idx] = duplex;
bp->port.advertising[cfg_idx] = advertising;
}
DP(BNX2X_MSG_ETHTOOL, "req_line_speed %d\n"
" req_duplex %d advertising 0x%x\n",
bp->link_params.req_line_speed[cfg_idx],
bp->link_params.req_duplex[cfg_idx],
bp->port.advertising[cfg_idx]);
/* Set new config */
bp->link_params.multi_phy_config = new_multi_phy_config;
if (netif_running(dev)) {
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_force_link_reset(bp);
bnx2x_link_set(bp);
}
return 0;
}
#define DUMP_ALL_PRESETS 0x1FFF
#define DUMP_MAX_PRESETS 13
static int __bnx2x_get_preset_regs_len(struct bnx2x *bp, u32 preset)
{
if (CHIP_IS_E1(bp))
return dump_num_registers[0][preset-1];
else if (CHIP_IS_E1H(bp))
return dump_num_registers[1][preset-1];
else if (CHIP_IS_E2(bp))
return dump_num_registers[2][preset-1];
else if (CHIP_IS_E3A0(bp))
return dump_num_registers[3][preset-1];
else if (CHIP_IS_E3B0(bp))
return dump_num_registers[4][preset-1];
else
return 0;
}
static int __bnx2x_get_regs_len(struct bnx2x *bp)
{
u32 preset_idx;
int regdump_len = 0;
/* Calculate the total preset regs length */
for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++)
regdump_len += __bnx2x_get_preset_regs_len(bp, preset_idx);
return regdump_len;
}
static int bnx2x_get_regs_len(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
int regdump_len = 0;
if (IS_VF(bp))
return 0;
regdump_len = __bnx2x_get_regs_len(bp);
regdump_len *= 4;
regdump_len += sizeof(struct dump_header);
return regdump_len;
}
#define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
#define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
#define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
#define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
#define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
#define IS_REG_IN_PRESET(presets, idx) \
((presets & (1 << (idx-1))) == (1 << (idx-1)))
/******* Paged registers info selectors ********/
static const u32 *__bnx2x_get_page_addr_ar(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return page_vals_e2;
else if (CHIP_IS_E3(bp))
return page_vals_e3;
else
return NULL;
}
static u32 __bnx2x_get_page_reg_num(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return PAGE_MODE_VALUES_E2;
else if (CHIP_IS_E3(bp))
return PAGE_MODE_VALUES_E3;
else
return 0;
}
static const u32 *__bnx2x_get_page_write_ar(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return page_write_regs_e2;
else if (CHIP_IS_E3(bp))
return page_write_regs_e3;
else
return NULL;
}
static u32 __bnx2x_get_page_write_num(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return PAGE_WRITE_REGS_E2;
else if (CHIP_IS_E3(bp))
return PAGE_WRITE_REGS_E3;
else
return 0;
}
static const struct reg_addr *__bnx2x_get_page_read_ar(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return page_read_regs_e2;
else if (CHIP_IS_E3(bp))
return page_read_regs_e3;
else
return NULL;
}
static u32 __bnx2x_get_page_read_num(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return PAGE_READ_REGS_E2;
else if (CHIP_IS_E3(bp))
return PAGE_READ_REGS_E3;
else
return 0;
}
static bool bnx2x_is_reg_in_chip(struct bnx2x *bp,
const struct reg_addr *reg_info)
{
if (CHIP_IS_E1(bp))
return IS_E1_REG(reg_info->chips);
else if (CHIP_IS_E1H(bp))
return IS_E1H_REG(reg_info->chips);
else if (CHIP_IS_E2(bp))
return IS_E2_REG(reg_info->chips);
else if (CHIP_IS_E3A0(bp))
return IS_E3A0_REG(reg_info->chips);
else if (CHIP_IS_E3B0(bp))
return IS_E3B0_REG(reg_info->chips);
else
return false;
}
static bool bnx2x_is_wreg_in_chip(struct bnx2x *bp,
const struct wreg_addr *wreg_info)
{
if (CHIP_IS_E1(bp))
return IS_E1_REG(wreg_info->chips);
else if (CHIP_IS_E1H(bp))
return IS_E1H_REG(wreg_info->chips);
else if (CHIP_IS_E2(bp))
return IS_E2_REG(wreg_info->chips);
else if (CHIP_IS_E3A0(bp))
return IS_E3A0_REG(wreg_info->chips);
else if (CHIP_IS_E3B0(bp))
return IS_E3B0_REG(wreg_info->chips);
else
return false;
}
/**
* bnx2x_read_pages_regs - read "paged" registers
*
* @bp device handle
* @p output buffer
*
* Reads "paged" memories: memories that may only be read by first writing to a
* specific address ("write address") and then reading from a specific address
* ("read address"). There may be more than one write address per "page" and
* more than one read address per write address.
*/
static void bnx2x_read_pages_regs(struct bnx2x *bp, u32 *p, u32 preset)
{
u32 i, j, k, n;
/* addresses of the paged registers */
const u32 *page_addr = __bnx2x_get_page_addr_ar(bp);
/* number of paged registers */
int num_pages = __bnx2x_get_page_reg_num(bp);
/* write addresses */
const u32 *write_addr = __bnx2x_get_page_write_ar(bp);
/* number of write addresses */
int write_num = __bnx2x_get_page_write_num(bp);
/* read addresses info */
const struct reg_addr *read_addr = __bnx2x_get_page_read_ar(bp);
/* number of read addresses */
int read_num = __bnx2x_get_page_read_num(bp);
u32 addr, size;
for (i = 0; i < num_pages; i++) {
for (j = 0; j < write_num; j++) {
REG_WR(bp, write_addr[j], page_addr[i]);
for (k = 0; k < read_num; k++) {
if (IS_REG_IN_PRESET(read_addr[k].presets,
preset)) {
size = read_addr[k].size;
for (n = 0; n < size; n++) {
addr = read_addr[k].addr + n*4;
*p++ = REG_RD(bp, addr);
}
}
}
}
}
}
static int __bnx2x_get_preset_regs(struct bnx2x *bp, u32 *p, u32 preset)
{
u32 i, j, addr;
const struct wreg_addr *wreg_addr_p = NULL;
if (CHIP_IS_E1(bp))
wreg_addr_p = &wreg_addr_e1;
else if (CHIP_IS_E1H(bp))
wreg_addr_p = &wreg_addr_e1h;
else if (CHIP_IS_E2(bp))
wreg_addr_p = &wreg_addr_e2;
else if (CHIP_IS_E3A0(bp))
wreg_addr_p = &wreg_addr_e3;
else if (CHIP_IS_E3B0(bp))
wreg_addr_p = &wreg_addr_e3b0;
/* Read the idle_chk registers */
for (i = 0; i < IDLE_REGS_COUNT; i++) {
if (bnx2x_is_reg_in_chip(bp, &idle_reg_addrs[i]) &&
IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
for (j = 0; j < idle_reg_addrs[i].size; j++)
*p++ = REG_RD(bp, idle_reg_addrs[i].addr + j*4);
}
}
/* Read the regular registers */
for (i = 0; i < REGS_COUNT; i++) {
if (bnx2x_is_reg_in_chip(bp, &reg_addrs[i]) &&
IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
for (j = 0; j < reg_addrs[i].size; j++)
*p++ = REG_RD(bp, reg_addrs[i].addr + j*4);
}
}
/* Read the CAM registers */
if (bnx2x_is_wreg_in_chip(bp, wreg_addr_p) &&
IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
for (i = 0; i < wreg_addr_p->size; i++) {
*p++ = REG_RD(bp, wreg_addr_p->addr + i*4);
/* In case of wreg_addr register, read additional
registers from read_regs array
*/
for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
addr = *(wreg_addr_p->read_regs);
*p++ = REG_RD(bp, addr + j*4);
}
}
}
/* Paged registers are supported in E2 & E3 only */
if (CHIP_IS_E2(bp) || CHIP_IS_E3(bp)) {
/* Read "paged" registers */
bnx2x_read_pages_regs(bp, p, preset);
}
return 0;
}
static void __bnx2x_get_regs(struct bnx2x *bp, u32 *p)
{
u32 preset_idx;
/* Read all registers, by reading all preset registers */
for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
/* Skip presets with IOR */
if ((preset_idx == 2) ||
(preset_idx == 5) ||
(preset_idx == 8) ||
(preset_idx == 11))
continue;
__bnx2x_get_preset_regs(bp, p, preset_idx);
p += __bnx2x_get_preset_regs_len(bp, preset_idx);
}
}
static void bnx2x_get_regs(struct net_device *dev,
struct ethtool_regs *regs, void *_p)
{
u32 *p = _p;
struct bnx2x *bp = netdev_priv(dev);
struct dump_header dump_hdr = {0};
regs->version = 2;
memset(p, 0, regs->len);
if (!netif_running(bp->dev))
return;
/* Disable parity attentions as long as following dump may
* cause false alarms by reading never written registers. We
* will re-enable parity attentions right after the dump.
*/
bnx2x_disable_blocks_parity(bp);
dump_hdr.header_size = (sizeof(struct dump_header) / 4) - 1;
dump_hdr.preset = DUMP_ALL_PRESETS;
dump_hdr.version = BNX2X_DUMP_VERSION;
/* dump_meta_data presents OR of CHIP and PATH. */
if (CHIP_IS_E1(bp)) {
dump_hdr.dump_meta_data = DUMP_CHIP_E1;
} else if (CHIP_IS_E1H(bp)) {
dump_hdr.dump_meta_data = DUMP_CHIP_E1H;
} else if (CHIP_IS_E2(bp)) {
dump_hdr.dump_meta_data = DUMP_CHIP_E2 |
(BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0);
} else if (CHIP_IS_E3A0(bp)) {
dump_hdr.dump_meta_data = DUMP_CHIP_E3A0 |
(BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0);
} else if (CHIP_IS_E3B0(bp)) {
dump_hdr.dump_meta_data = DUMP_CHIP_E3B0 |
(BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0);
}
memcpy(p, &dump_hdr, sizeof(struct dump_header));
p += dump_hdr.header_size + 1;
/* This isn't really an error, but since attention handling is going
* to print the GRC timeouts using this macro, we use the same.
*/
BNX2X_ERR("Generating register dump. Might trigger harmless GRC timeouts\n");
/* Actually read the registers */
__bnx2x_get_regs(bp, p);
/* Re-enable parity attentions */
bnx2x_clear_blocks_parity(bp);
bnx2x_enable_blocks_parity(bp);
}
static int bnx2x_get_preset_regs_len(struct net_device *dev, u32 preset)
{
struct bnx2x *bp = netdev_priv(dev);
int regdump_len = 0;
regdump_len = __bnx2x_get_preset_regs_len(bp, preset);
regdump_len *= 4;
regdump_len += sizeof(struct dump_header);
return regdump_len;
}
static int bnx2x_set_dump(struct net_device *dev, struct ethtool_dump *val)
{
struct bnx2x *bp = netdev_priv(dev);
/* Use the ethtool_dump "flag" field as the dump preset index */
if (val->flag < 1 || val->flag > DUMP_MAX_PRESETS)
return -EINVAL;
bp->dump_preset_idx = val->flag;
return 0;
}
static int bnx2x_get_dump_flag(struct net_device *dev,
struct ethtool_dump *dump)
{
struct bnx2x *bp = netdev_priv(dev);
dump->version = BNX2X_DUMP_VERSION;
dump->flag = bp->dump_preset_idx;
/* Calculate the requested preset idx length */
dump->len = bnx2x_get_preset_regs_len(dev, bp->dump_preset_idx);
DP(BNX2X_MSG_ETHTOOL, "Get dump preset %d length=%d\n",
bp->dump_preset_idx, dump->len);
return 0;
}
static int bnx2x_get_dump_data(struct net_device *dev,
struct ethtool_dump *dump,
void *buffer)
{
u32 *p = buffer;
struct bnx2x *bp = netdev_priv(dev);
struct dump_header dump_hdr = {0};
/* Disable parity attentions as long as following dump may
* cause false alarms by reading never written registers. We
* will re-enable parity attentions right after the dump.
*/
bnx2x_disable_blocks_parity(bp);
dump_hdr.header_size = (sizeof(struct dump_header) / 4) - 1;
dump_hdr.preset = bp->dump_preset_idx;
dump_hdr.version = BNX2X_DUMP_VERSION;
DP(BNX2X_MSG_ETHTOOL, "Get dump data of preset %d\n", dump_hdr.preset);
/* dump_meta_data presents OR of CHIP and PATH. */
if (CHIP_IS_E1(bp)) {
dump_hdr.dump_meta_data = DUMP_CHIP_E1;
} else if (CHIP_IS_E1H(bp)) {
dump_hdr.dump_meta_data = DUMP_CHIP_E1H;
} else if (CHIP_IS_E2(bp)) {
dump_hdr.dump_meta_data = DUMP_CHIP_E2 |
(BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0);
} else if (CHIP_IS_E3A0(bp)) {
dump_hdr.dump_meta_data = DUMP_CHIP_E3A0 |
(BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0);
} else if (CHIP_IS_E3B0(bp)) {
dump_hdr.dump_meta_data = DUMP_CHIP_E3B0 |
(BP_PATH(bp) ? DUMP_PATH_1 : DUMP_PATH_0);
}
memcpy(p, &dump_hdr, sizeof(struct dump_header));
p += dump_hdr.header_size + 1;
/* Actually read the registers */
__bnx2x_get_preset_regs(bp, p, dump_hdr.preset);
/* Re-enable parity attentions */
bnx2x_clear_blocks_parity(bp);
bnx2x_enable_blocks_parity(bp);
return 0;
}
static void bnx2x_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct bnx2x *bp = netdev_priv(dev);
strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
bnx2x_fill_fw_str(bp, info->fw_version, sizeof(info->fw_version));
strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
}
static void bnx2x_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2x *bp = netdev_priv(dev);
if (bp->flags & NO_WOL_FLAG) {
wol->supported = 0;
wol->wolopts = 0;
} else {
wol->supported = WAKE_MAGIC;
if (bp->wol)
wol->wolopts = WAKE_MAGIC;
else
wol->wolopts = 0;
}
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int bnx2x_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2x *bp = netdev_priv(dev);
if (wol->wolopts & ~WAKE_MAGIC) {
DP(BNX2X_MSG_ETHTOOL, "WOL not supported\n");
return -EINVAL;
}
if (wol->wolopts & WAKE_MAGIC) {
if (bp->flags & NO_WOL_FLAG) {
DP(BNX2X_MSG_ETHTOOL, "WOL not supported\n");
return -EINVAL;
}
bp->wol = 1;
} else
bp->wol = 0;
if (SHMEM2_HAS(bp, curr_cfg))
SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
return 0;
}
static u32 bnx2x_get_msglevel(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
return bp->msg_enable;
}
static void bnx2x_set_msglevel(struct net_device *dev, u32 level)
{
struct bnx2x *bp = netdev_priv(dev);
if (capable(CAP_NET_ADMIN)) {
/* dump MCP trace */
if (IS_PF(bp) && (level & BNX2X_MSG_MCP))
bnx2x_fw_dump_lvl(bp, KERN_INFO);
bp->msg_enable = level;
}
}
static int bnx2x_nway_reset(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
if (!bp->port.pmf)
return 0;
if (netif_running(dev)) {
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_force_link_reset(bp);
bnx2x_link_set(bp);
}
return 0;
}
static u32 bnx2x_get_link(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
if (bp->flags & MF_FUNC_DIS || (bp->state != BNX2X_STATE_OPEN))
return 0;
if (IS_VF(bp))
return !test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
&bp->vf_link_vars.link_report_flags);
return bp->link_vars.link_up;
}
static int bnx2x_get_eeprom_len(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
return bp->common.flash_size;
}
/* Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
* had we done things the other way around, if two pfs from the same port would
* attempt to access nvram at the same time, we could run into a scenario such
* as:
* pf A takes the port lock.
* pf B succeeds in taking the same lock since they are from the same port.
* pf A takes the per pf misc lock. Performs eeprom access.
* pf A finishes. Unlocks the per pf misc lock.
* Pf B takes the lock and proceeds to perform it's own access.
* pf A unlocks the per port lock, while pf B is still working (!).
* mcp takes the per port lock and corrupts pf B's access (and/or has it's own
* access corrupted by pf B)
*/
static int bnx2x_acquire_nvram_lock(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int count, i;
u32 val;
/* acquire HW lock: protect against other PFs in PF Direct Assignment */
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_NVRAM);
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* request access to nvram interface */
REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
for (i = 0; i < count*10; i++) {
val = REG_RD(bp, MCP_REG_MCPR_NVM_SW_ARB);
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))
break;
udelay(5);
}
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"cannot get access to nvram interface\n");
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_NVRAM);
return -EBUSY;
}
return 0;
}
static int bnx2x_release_nvram_lock(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int count, i;
u32 val;
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* relinquish nvram interface */
REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
for (i = 0; i < count*10; i++) {
val = REG_RD(bp, MCP_REG_MCPR_NVM_SW_ARB);
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)))
break;
udelay(5);
}
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"cannot free access to nvram interface\n");
return -EBUSY;
}
/* release HW lock: protect against other PFs in PF Direct Assignment */
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_NVRAM);
return 0;
}
static void bnx2x_enable_nvram_access(struct bnx2x *bp)
{
u32 val;
val = REG_RD(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* enable both bits, even on read */
REG_WR(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val | MCPR_NVM_ACCESS_ENABLE_EN |
MCPR_NVM_ACCESS_ENABLE_WR_EN));
}
static void bnx2x_disable_nvram_access(struct bnx2x *bp)
{
u32 val;
val = REG_RD(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* disable both bits, even after read */
REG_WR(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
MCPR_NVM_ACCESS_ENABLE_WR_EN)));
}
static int bnx2x_nvram_read_dword(struct bnx2x *bp, u32 offset, __be32 *ret_val,
u32 cmd_flags)
{
int count, i, rc;
u32 val;
/* build the command word */
cmd_flags |= MCPR_NVM_COMMAND_DOIT;
/* need to clear DONE bit separately */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* address of the NVRAM to read from */
REG_WR(bp, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* issue a read command */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* wait for completion */
*ret_val = 0;
rc = -EBUSY;
for (i = 0; i < count; i++) {
udelay(5);
val = REG_RD(bp, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
val = REG_RD(bp, MCP_REG_MCPR_NVM_READ);
/* we read nvram data in cpu order
* but ethtool sees it as an array of bytes
* converting to big-endian will do the work
*/
*ret_val = cpu_to_be32(val);
rc = 0;
break;
}
}
if (rc == -EBUSY)
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"nvram read timeout expired\n");
return rc;
}
int bnx2x_nvram_read(struct bnx2x *bp, u32 offset, u8 *ret_buf,
int buf_size)
{
int rc;
u32 cmd_flags;
__be32 val;
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"Invalid parameter: offset 0x%x buf_size 0x%x\n",
offset, buf_size);
return -EINVAL;
}
if (offset + buf_size > bp->common.flash_size) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"Invalid parameter: offset (0x%x) + buf_size (0x%x) > flash_size (0x%x)\n",
offset, buf_size, bp->common.flash_size);
return -EINVAL;
}
/* request access to nvram interface */
rc = bnx2x_acquire_nvram_lock(bp);
if (rc)
return rc;
/* enable access to nvram interface */
bnx2x_enable_nvram_access(bp);
/* read the first word(s) */
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((buf_size > sizeof(u32)) && (rc == 0)) {
rc = bnx2x_nvram_read_dword(bp, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
/* advance to the next dword */
offset += sizeof(u32);
ret_buf += sizeof(u32);
buf_size -= sizeof(u32);
cmd_flags = 0;
}
if (rc == 0) {
cmd_flags |= MCPR_NVM_COMMAND_LAST;
rc = bnx2x_nvram_read_dword(bp, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
}
/* disable access to nvram interface */
bnx2x_disable_nvram_access(bp);
bnx2x_release_nvram_lock(bp);
return rc;
}
static int bnx2x_nvram_read32(struct bnx2x *bp, u32 offset, u32 *buf,
int buf_size)
{
int rc;
rc = bnx2x_nvram_read(bp, offset, (u8 *)buf, buf_size);
if (!rc) {
__be32 *be = (__be32 *)buf;
while ((buf_size -= 4) >= 0)
*buf++ = be32_to_cpu(*be++);
}
return rc;
}
static bool bnx2x_is_nvm_accessible(struct bnx2x *bp)
{
int rc = 1;
u16 pm = 0;
struct net_device *dev = pci_get_drvdata(bp->pdev);
if (bp->pdev->pm_cap)
rc = pci_read_config_word(bp->pdev,
bp->pdev->pm_cap + PCI_PM_CTRL, &pm);
if ((rc && !netif_running(dev)) ||
(!rc && ((pm & PCI_PM_CTRL_STATE_MASK) != (__force u16)PCI_D0)))
return false;
return true;
}
static int bnx2x_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *eebuf)
{
struct bnx2x *bp = netdev_priv(dev);
if (!bnx2x_is_nvm_accessible(bp)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"cannot access eeprom when the interface is down\n");
return -EAGAIN;
}
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "ethtool_eeprom: cmd %d\n"
" magic 0x%x offset 0x%x (%d) len 0x%x (%d)\n",
eeprom->cmd, eeprom->magic, eeprom->offset, eeprom->offset,
eeprom->len, eeprom->len);
/* parameters already validated in ethtool_get_eeprom */
return bnx2x_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
}
static int bnx2x_get_module_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee,
u8 *data)
{
struct bnx2x *bp = netdev_priv(dev);
int rc = -EINVAL, phy_idx;
u8 *user_data = data;
unsigned int start_addr = ee->offset, xfer_size = 0;
if (!bnx2x_is_nvm_accessible(bp)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"cannot access eeprom when the interface is down\n");
return -EAGAIN;
}
phy_idx = bnx2x_get_cur_phy_idx(bp);
/* Read A0 section */
if (start_addr < ETH_MODULE_SFF_8079_LEN) {
/* Limit transfer size to the A0 section boundary */
if (start_addr + ee->len > ETH_MODULE_SFF_8079_LEN)
xfer_size = ETH_MODULE_SFF_8079_LEN - start_addr;
else
xfer_size = ee->len;
bnx2x_acquire_phy_lock(bp);
rc = bnx2x_read_sfp_module_eeprom(&bp->link_params.phy[phy_idx],
&bp->link_params,
I2C_DEV_ADDR_A0,
start_addr,
xfer_size,
user_data);
bnx2x_release_phy_lock(bp);
if (rc) {
DP(BNX2X_MSG_ETHTOOL, "Failed reading A0 section\n");
return -EINVAL;
}
user_data += xfer_size;
start_addr += xfer_size;
}
/* Read A2 section */
if ((start_addr >= ETH_MODULE_SFF_8079_LEN) &&
(start_addr < ETH_MODULE_SFF_8472_LEN)) {
xfer_size = ee->len - xfer_size;
/* Limit transfer size to the A2 section boundary */
if (start_addr + xfer_size > ETH_MODULE_SFF_8472_LEN)
xfer_size = ETH_MODULE_SFF_8472_LEN - start_addr;
start_addr -= ETH_MODULE_SFF_8079_LEN;
bnx2x_acquire_phy_lock(bp);
rc = bnx2x_read_sfp_module_eeprom(&bp->link_params.phy[phy_idx],
&bp->link_params,
I2C_DEV_ADDR_A2,
start_addr,
xfer_size,
user_data);
bnx2x_release_phy_lock(bp);
if (rc) {
DP(BNX2X_MSG_ETHTOOL, "Failed reading A2 section\n");
return -EINVAL;
}
}
return rc;
}
static int bnx2x_get_module_info(struct net_device *dev,
struct ethtool_modinfo *modinfo)
{
struct bnx2x *bp = netdev_priv(dev);
int phy_idx, rc;
u8 sff8472_comp, diag_type;
if (!bnx2x_is_nvm_accessible(bp)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"cannot access eeprom when the interface is down\n");
return -EAGAIN;
}
phy_idx = bnx2x_get_cur_phy_idx(bp);
bnx2x_acquire_phy_lock(bp);
rc = bnx2x_read_sfp_module_eeprom(&bp->link_params.phy[phy_idx],
&bp->link_params,
I2C_DEV_ADDR_A0,
SFP_EEPROM_SFF_8472_COMP_ADDR,
SFP_EEPROM_SFF_8472_COMP_SIZE,
&sff8472_comp);
bnx2x_release_phy_lock(bp);
if (rc) {
DP(BNX2X_MSG_ETHTOOL, "Failed reading SFF-8472 comp field\n");
return -EINVAL;
}
bnx2x_acquire_phy_lock(bp);
rc = bnx2x_read_sfp_module_eeprom(&bp->link_params.phy[phy_idx],
&bp->link_params,
I2C_DEV_ADDR_A0,
SFP_EEPROM_DIAG_TYPE_ADDR,
SFP_EEPROM_DIAG_TYPE_SIZE,
&diag_type);
bnx2x_release_phy_lock(bp);
if (rc) {
DP(BNX2X_MSG_ETHTOOL, "Failed reading Diag Type field\n");
return -EINVAL;
}
if (!sff8472_comp ||
(diag_type & SFP_EEPROM_DIAG_ADDR_CHANGE_REQ) ||
!(diag_type & SFP_EEPROM_DDM_IMPLEMENTED)) {
modinfo->type = ETH_MODULE_SFF_8079;
modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
} else {
modinfo->type = ETH_MODULE_SFF_8472;
modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
}
return 0;
}
static int bnx2x_nvram_write_dword(struct bnx2x *bp, u32 offset, u32 val,
u32 cmd_flags)
{
int count, i, rc;
/* build the command word */
cmd_flags |= MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR;
/* need to clear DONE bit separately */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* write the data */
REG_WR(bp, MCP_REG_MCPR_NVM_WRITE, val);
/* address of the NVRAM to write to */
REG_WR(bp, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* issue the write command */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* wait for completion */
rc = -EBUSY;
for (i = 0; i < count; i++) {
udelay(5);
val = REG_RD(bp, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
rc = 0;
break;
}
}
if (rc == -EBUSY)
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"nvram write timeout expired\n");
return rc;
}
#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
static int bnx2x_nvram_write1(struct bnx2x *bp, u32 offset, u8 *data_buf,
int buf_size)
{
int rc;
u32 cmd_flags, align_offset, val;
__be32 val_be;
if (offset + buf_size > bp->common.flash_size) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"Invalid parameter: offset (0x%x) + buf_size (0x%x) > flash_size (0x%x)\n",
offset, buf_size, bp->common.flash_size);
return -EINVAL;
}
/* request access to nvram interface */
rc = bnx2x_acquire_nvram_lock(bp);
if (rc)
return rc;
/* enable access to nvram interface */
bnx2x_enable_nvram_access(bp);
cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
align_offset = (offset & ~0x03);
rc = bnx2x_nvram_read_dword(bp, align_offset, &val_be, cmd_flags);
if (rc == 0) {
/* nvram data is returned as an array of bytes
* convert it back to cpu order
*/
val = be32_to_cpu(val_be);
val &= ~le32_to_cpu((__force __le32)
(0xff << BYTE_OFFSET(offset)));
val |= le32_to_cpu((__force __le32)
(*data_buf << BYTE_OFFSET(offset)));
rc = bnx2x_nvram_write_dword(bp, align_offset, val,
cmd_flags);
}
/* disable access to nvram interface */
bnx2x_disable_nvram_access(bp);
bnx2x_release_nvram_lock(bp);
return rc;
}
static int bnx2x_nvram_write(struct bnx2x *bp, u32 offset, u8 *data_buf,
int buf_size)
{
int rc;
u32 cmd_flags;
u32 val;
u32 written_so_far;
if (buf_size == 1) /* ethtool */
return bnx2x_nvram_write1(bp, offset, data_buf, buf_size);
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"Invalid parameter: offset 0x%x buf_size 0x%x\n",
offset, buf_size);
return -EINVAL;
}
if (offset + buf_size > bp->common.flash_size) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"Invalid parameter: offset (0x%x) + buf_size (0x%x) > flash_size (0x%x)\n",
offset, buf_size, bp->common.flash_size);
return -EINVAL;
}
/* request access to nvram interface */
rc = bnx2x_acquire_nvram_lock(bp);
if (rc)
return rc;
/* enable access to nvram interface */
bnx2x_enable_nvram_access(bp);
written_so_far = 0;
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((written_so_far < buf_size) && (rc == 0)) {
if (written_so_far == (buf_size - sizeof(u32)))
cmd_flags |= MCPR_NVM_COMMAND_LAST;
else if (((offset + 4) % BNX2X_NVRAM_PAGE_SIZE) == 0)
cmd_flags |= MCPR_NVM_COMMAND_LAST;
else if ((offset % BNX2X_NVRAM_PAGE_SIZE) == 0)
cmd_flags |= MCPR_NVM_COMMAND_FIRST;
memcpy(&val, data_buf, 4);
/* Notice unlike bnx2x_nvram_read_dword() this will not
* change val using be32_to_cpu(), which causes data to flip
* if the eeprom is read and then written back. This is due
* to tools utilizing this functionality that would break
* if this would be resolved.
*/
rc = bnx2x_nvram_write_dword(bp, offset, val, cmd_flags);
/* advance to the next dword */
offset += sizeof(u32);
data_buf += sizeof(u32);
written_so_far += sizeof(u32);
/* At end of each 4Kb page, release nvram lock to allow MFW
* chance to take it for its own use.
*/
if ((cmd_flags & MCPR_NVM_COMMAND_LAST) &&
(written_so_far < buf_size)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"Releasing NVM lock after offset 0x%x\n",
(u32)(offset - sizeof(u32)));
bnx2x_release_nvram_lock(bp);
usleep_range(1000, 2000);
rc = bnx2x_acquire_nvram_lock(bp);
if (rc)
return rc;
}
cmd_flags = 0;
}
/* disable access to nvram interface */
bnx2x_disable_nvram_access(bp);
bnx2x_release_nvram_lock(bp);
return rc;
}
static int bnx2x_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *eebuf)
{
struct bnx2x *bp = netdev_priv(dev);
int port = BP_PORT(bp);
int rc = 0;
u32 ext_phy_config;
if (!bnx2x_is_nvm_accessible(bp)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"cannot access eeprom when the interface is down\n");
return -EAGAIN;
}
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "ethtool_eeprom: cmd %d\n"
" magic 0x%x offset 0x%x (%d) len 0x%x (%d)\n",
eeprom->cmd, eeprom->magic, eeprom->offset, eeprom->offset,
eeprom->len, eeprom->len);
/* parameters already validated in ethtool_set_eeprom */
/* PHY eeprom can be accessed only by the PMF */
if ((eeprom->magic >= 0x50485900) && (eeprom->magic <= 0x504859FF) &&
!bp->port.pmf) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"wrong magic or interface is not pmf\n");
return -EINVAL;
}
ext_phy_config =
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config);
if (eeprom->magic == 0x50485950) {
/* 'PHYP' (0x50485950): prepare phy for FW upgrade */
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_acquire_phy_lock(bp);
rc |= bnx2x_link_reset(&bp->link_params,
&bp->link_vars, 0);
if (XGXS_EXT_PHY_TYPE(ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101)
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_0,
MISC_REGISTERS_GPIO_HIGH, port);
bnx2x_release_phy_lock(bp);
bnx2x_link_report(bp);
} else if (eeprom->magic == 0x50485952) {
/* 'PHYR' (0x50485952): re-init link after FW upgrade */
if (bp->state == BNX2X_STATE_OPEN) {
bnx2x_acquire_phy_lock(bp);
rc |= bnx2x_link_reset(&bp->link_params,
&bp->link_vars, 1);
rc |= bnx2x_phy_init(&bp->link_params,
&bp->link_vars);
bnx2x_release_phy_lock(bp);
bnx2x_calc_fc_adv(bp);
}
} else if (eeprom->magic == 0x53985943) {
/* 'PHYC' (0x53985943): PHY FW upgrade completed */
if (XGXS_EXT_PHY_TYPE(ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101) {
/* DSP Remove Download Mode */
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_0,
MISC_REGISTERS_GPIO_LOW, port);
bnx2x_acquire_phy_lock(bp);
bnx2x_sfx7101_sp_sw_reset(bp,
&bp->link_params.phy[EXT_PHY1]);
/* wait 0.5 sec to allow it to run */
msleep(500);
bnx2x_ext_phy_hw_reset(bp, port);
msleep(500);
bnx2x_release_phy_lock(bp);
}
} else
rc = bnx2x_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int bnx2x_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *coal)
{
struct bnx2x *bp = netdev_priv(dev);
memset(coal, 0, sizeof(struct ethtool_coalesce));
coal->rx_coalesce_usecs = bp->rx_ticks;
coal->tx_coalesce_usecs = bp->tx_ticks;
return 0;
}
static int bnx2x_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *coal)
{
struct bnx2x *bp = netdev_priv(dev);
bp->rx_ticks = (u16)coal->rx_coalesce_usecs;
if (bp->rx_ticks > BNX2X_MAX_COALESCE_TOUT)
bp->rx_ticks = BNX2X_MAX_COALESCE_TOUT;
bp->tx_ticks = (u16)coal->tx_coalesce_usecs;
if (bp->tx_ticks > BNX2X_MAX_COALESCE_TOUT)
bp->tx_ticks = BNX2X_MAX_COALESCE_TOUT;
if (netif_running(dev))
bnx2x_update_coalesce(bp);
return 0;
}
static void bnx2x_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct bnx2x *bp = netdev_priv(dev);
ering->rx_max_pending = MAX_RX_AVAIL;
/* If size isn't already set, we give an estimation of the number
* of buffers we'll have. We're neglecting some possible conditions
* [we couldn't know for certain at this point if number of queues
* might shrink] but the number would be correct for the likely
* scenario.
*/
if (bp->rx_ring_size)
ering->rx_pending = bp->rx_ring_size;
else if (BNX2X_NUM_RX_QUEUES(bp))
ering->rx_pending = MAX_RX_AVAIL / BNX2X_NUM_RX_QUEUES(bp);
else
ering->rx_pending = MAX_RX_AVAIL;
ering->tx_max_pending = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
ering->tx_pending = bp->tx_ring_size;
}
static int bnx2x_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct bnx2x *bp = netdev_priv(dev);
DP(BNX2X_MSG_ETHTOOL,
"set ring params command parameters: rx_pending = %d, tx_pending = %d\n",
ering->rx_pending, ering->tx_pending);
if (pci_num_vf(bp->pdev)) {
DP(BNX2X_MSG_IOV,
"VFs are enabled, can not change ring parameters\n");
return -EPERM;
}
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
DP(BNX2X_MSG_ETHTOOL,
"Handling parity error recovery. Try again later\n");
return -EAGAIN;
}
if ((ering->rx_pending > MAX_RX_AVAIL) ||
(ering->rx_pending < (bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
MIN_RX_SIZE_TPA)) ||
(ering->tx_pending > (IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL)) ||
(ering->tx_pending <= MAX_SKB_FRAGS + 4)) {
DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n");
return -EINVAL;
}
bp->rx_ring_size = ering->rx_pending;
bp->tx_ring_size = ering->tx_pending;
return bnx2x_reload_if_running(dev);
}
static void bnx2x_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *epause)
{
struct bnx2x *bp = netdev_priv(dev);
int cfg_idx = bnx2x_get_link_cfg_idx(bp);
int cfg_reg;
epause->autoneg = (bp->link_params.req_flow_ctrl[cfg_idx] ==
BNX2X_FLOW_CTRL_AUTO);
if (!epause->autoneg)
cfg_reg = bp->link_params.req_flow_ctrl[cfg_idx];
else
cfg_reg = bp->link_params.req_fc_auto_adv;
epause->rx_pause = ((cfg_reg & BNX2X_FLOW_CTRL_RX) ==
BNX2X_FLOW_CTRL_RX);
epause->tx_pause = ((cfg_reg & BNX2X_FLOW_CTRL_TX) ==
BNX2X_FLOW_CTRL_TX);
DP(BNX2X_MSG_ETHTOOL, "ethtool_pauseparam: cmd %d\n"
" autoneg %d rx_pause %d tx_pause %d\n",
epause->cmd, epause->autoneg, epause->rx_pause, epause->tx_pause);
}
static int bnx2x_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *epause)
{
struct bnx2x *bp = netdev_priv(dev);
u32 cfg_idx = bnx2x_get_link_cfg_idx(bp);
if (IS_MF(bp))
return 0;
DP(BNX2X_MSG_ETHTOOL, "ethtool_pauseparam: cmd %d\n"
" autoneg %d rx_pause %d tx_pause %d\n",
epause->cmd, epause->autoneg, epause->rx_pause, epause->tx_pause);
bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_AUTO;
if (epause->rx_pause)
bp->link_params.req_flow_ctrl[cfg_idx] |= BNX2X_FLOW_CTRL_RX;
if (epause->tx_pause)
bp->link_params.req_flow_ctrl[cfg_idx] |= BNX2X_FLOW_CTRL_TX;
if (bp->link_params.req_flow_ctrl[cfg_idx] == BNX2X_FLOW_CTRL_AUTO)
bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_NONE;
if (epause->autoneg) {
if (!(bp->port.supported[cfg_idx] & SUPPORTED_Autoneg)) {
DP(BNX2X_MSG_ETHTOOL, "autoneg not supported\n");
return -EINVAL;
}
if (bp->link_params.req_line_speed[cfg_idx] == SPEED_AUTO_NEG) {
bp->link_params.req_flow_ctrl[cfg_idx] =
BNX2X_FLOW_CTRL_AUTO;
}
bp->link_params.req_fc_auto_adv = 0;
if (epause->rx_pause)
bp->link_params.req_fc_auto_adv |= BNX2X_FLOW_CTRL_RX;
if (epause->tx_pause)
bp->link_params.req_fc_auto_adv |= BNX2X_FLOW_CTRL_TX;
if (!bp->link_params.req_fc_auto_adv)
bp->link_params.req_fc_auto_adv |= BNX2X_FLOW_CTRL_NONE;
}
DP(BNX2X_MSG_ETHTOOL,
"req_flow_ctrl 0x%x\n", bp->link_params.req_flow_ctrl[cfg_idx]);
if (netif_running(dev)) {
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_force_link_reset(bp);
bnx2x_link_set(bp);
}
return 0;
}
static const char bnx2x_tests_str_arr[BNX2X_NUM_TESTS_SF][ETH_GSTRING_LEN] = {
"register_test (offline) ",
"memory_test (offline) ",
"int_loopback_test (offline)",
"ext_loopback_test (offline)",
"nvram_test (online) ",
"interrupt_test (online) ",
"link_test (online) "
};
enum {
BNX2X_PRI_FLAG_ISCSI,
BNX2X_PRI_FLAG_FCOE,
BNX2X_PRI_FLAG_STORAGE,
BNX2X_PRI_FLAG_LEN,
};
static const char bnx2x_private_arr[BNX2X_PRI_FLAG_LEN][ETH_GSTRING_LEN] = {
"iSCSI offload support",
"FCoE offload support",
"Storage only interface"
};
static u32 bnx2x_eee_to_adv(u32 eee_adv)
{
u32 modes = 0;
if (eee_adv & SHMEM_EEE_100M_ADV)
modes |= ADVERTISED_100baseT_Full;
if (eee_adv & SHMEM_EEE_1G_ADV)
modes |= ADVERTISED_1000baseT_Full;
if (eee_adv & SHMEM_EEE_10G_ADV)
modes |= ADVERTISED_10000baseT_Full;
return modes;
}
static u32 bnx2x_adv_to_eee(u32 modes, u32 shift)
{
u32 eee_adv = 0;
if (modes & ADVERTISED_100baseT_Full)
eee_adv |= SHMEM_EEE_100M_ADV;
if (modes & ADVERTISED_1000baseT_Full)
eee_adv |= SHMEM_EEE_1G_ADV;
if (modes & ADVERTISED_10000baseT_Full)
eee_adv |= SHMEM_EEE_10G_ADV;
return eee_adv << shift;
}
static int bnx2x_get_eee(struct net_device *dev, struct ethtool_eee *edata)
{
struct bnx2x *bp = netdev_priv(dev);
u32 eee_cfg;
if (!SHMEM2_HAS(bp, eee_status[BP_PORT(bp)])) {
DP(BNX2X_MSG_ETHTOOL, "BC Version does not support EEE\n");
return -EOPNOTSUPP;
}
eee_cfg = bp->link_vars.eee_status;
edata->supported =
bnx2x_eee_to_adv((eee_cfg & SHMEM_EEE_SUPPORTED_MASK) >>
SHMEM_EEE_SUPPORTED_SHIFT);
edata->advertised =
bnx2x_eee_to_adv((eee_cfg & SHMEM_EEE_ADV_STATUS_MASK) >>
SHMEM_EEE_ADV_STATUS_SHIFT);
edata->lp_advertised =
bnx2x_eee_to_adv((eee_cfg & SHMEM_EEE_LP_ADV_STATUS_MASK) >>
SHMEM_EEE_LP_ADV_STATUS_SHIFT);
/* SHMEM value is in 16u units --> Convert to 1u units. */
edata->tx_lpi_timer = (eee_cfg & SHMEM_EEE_TIMER_MASK) << 4;
edata->eee_enabled = (eee_cfg & SHMEM_EEE_REQUESTED_BIT) ? 1 : 0;
edata->eee_active = (eee_cfg & SHMEM_EEE_ACTIVE_BIT) ? 1 : 0;
edata->tx_lpi_enabled = (eee_cfg & SHMEM_EEE_LPI_REQUESTED_BIT) ? 1 : 0;
return 0;
}
static int bnx2x_set_eee(struct net_device *dev, struct ethtool_eee *edata)
{
struct bnx2x *bp = netdev_priv(dev);
u32 eee_cfg;
u32 advertised;
if (IS_MF(bp))
return 0;
if (!SHMEM2_HAS(bp, eee_status[BP_PORT(bp)])) {
DP(BNX2X_MSG_ETHTOOL, "BC Version does not support EEE\n");
return -EOPNOTSUPP;
}
eee_cfg = bp->link_vars.eee_status;
if (!(eee_cfg & SHMEM_EEE_SUPPORTED_MASK)) {
DP(BNX2X_MSG_ETHTOOL, "Board does not support EEE!\n");
return -EOPNOTSUPP;
}
advertised = bnx2x_adv_to_eee(edata->advertised,
SHMEM_EEE_ADV_STATUS_SHIFT);
if ((advertised != (eee_cfg & SHMEM_EEE_ADV_STATUS_MASK))) {
DP(BNX2X_MSG_ETHTOOL,
"Direct manipulation of EEE advertisement is not supported\n");
return -EINVAL;
}
if (edata->tx_lpi_timer > EEE_MODE_TIMER_MASK) {
DP(BNX2X_MSG_ETHTOOL,
"Maximal Tx Lpi timer supported is %x(u)\n",
EEE_MODE_TIMER_MASK);
return -EINVAL;
}
if (edata->tx_lpi_enabled &&
(edata->tx_lpi_timer < EEE_MODE_NVRAM_AGGRESSIVE_TIME)) {
DP(BNX2X_MSG_ETHTOOL,
"Minimal Tx Lpi timer supported is %d(u)\n",
EEE_MODE_NVRAM_AGGRESSIVE_TIME);
return -EINVAL;
}
/* All is well; Apply changes*/
if (edata->eee_enabled)
bp->link_params.eee_mode |= EEE_MODE_ADV_LPI;
else
bp->link_params.eee_mode &= ~EEE_MODE_ADV_LPI;
if (edata->tx_lpi_enabled)
bp->link_params.eee_mode |= EEE_MODE_ENABLE_LPI;
else
bp->link_params.eee_mode &= ~EEE_MODE_ENABLE_LPI;
bp->link_params.eee_mode &= ~EEE_MODE_TIMER_MASK;
bp->link_params.eee_mode |= (edata->tx_lpi_timer &
EEE_MODE_TIMER_MASK) |
EEE_MODE_OVERRIDE_NVRAM |
EEE_MODE_OUTPUT_TIME;
/* Restart link to propagate changes */
if (netif_running(dev)) {
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_force_link_reset(bp);
bnx2x_link_set(bp);
}
return 0;
}
enum {
BNX2X_CHIP_E1_OFST = 0,
BNX2X_CHIP_E1H_OFST,
BNX2X_CHIP_E2_OFST,
BNX2X_CHIP_E3_OFST,
BNX2X_CHIP_E3B0_OFST,
BNX2X_CHIP_MAX_OFST
};
#define BNX2X_CHIP_MASK_E1 (1 << BNX2X_CHIP_E1_OFST)
#define BNX2X_CHIP_MASK_E1H (1 << BNX2X_CHIP_E1H_OFST)
#define BNX2X_CHIP_MASK_E2 (1 << BNX2X_CHIP_E2_OFST)
#define BNX2X_CHIP_MASK_E3 (1 << BNX2X_CHIP_E3_OFST)
#define BNX2X_CHIP_MASK_E3B0 (1 << BNX2X_CHIP_E3B0_OFST)
#define BNX2X_CHIP_MASK_ALL ((1 << BNX2X_CHIP_MAX_OFST) - 1)
#define BNX2X_CHIP_MASK_E1X (BNX2X_CHIP_MASK_E1 | BNX2X_CHIP_MASK_E1H)
static int bnx2x_test_registers(struct bnx2x *bp)
{
int idx, i, rc = -ENODEV;
u32 wr_val = 0, hw;
int port = BP_PORT(bp);
static const struct {
u32 hw;
u32 offset0;
u32 offset1;
u32 mask;
} reg_tbl[] = {
/* 0 */ { BNX2X_CHIP_MASK_ALL,
BRB1_REG_PAUSE_LOW_THRESHOLD_0, 4, 0x000003ff },
{ BNX2X_CHIP_MASK_ALL,
DORQ_REG_DB_ADDR0, 4, 0xffffffff },
{ BNX2X_CHIP_MASK_E1X,
HC_REG_AGG_INT_0, 4, 0x000003ff },
{ BNX2X_CHIP_MASK_ALL,
PBF_REG_MAC_IF0_ENABLE, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2 | BNX2X_CHIP_MASK_E3,
PBF_REG_P0_INIT_CRD, 4, 0x000007ff },
{ BNX2X_CHIP_MASK_E3B0,
PBF_REG_INIT_CRD_Q0, 4, 0x000007ff },
{ BNX2X_CHIP_MASK_ALL,
PRS_REG_CID_PORT_0, 4, 0x00ffffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_PSWRQ_CDU0_L2P, 4, 0x000fffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_RQ_CDU0_EFIRST_MEM_ADDR, 8, 0x0003ffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_PSWRQ_TM0_L2P, 4, 0x000fffff },
/* 10 */ { BNX2X_CHIP_MASK_ALL,
PXP2_REG_RQ_USDM0_EFIRST_MEM_ADDR, 8, 0x0003ffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_PSWRQ_TSDM0_L2P, 4, 0x000fffff },
{ BNX2X_CHIP_MASK_ALL,
QM_REG_CONNNUM_0, 4, 0x000fffff },
{ BNX2X_CHIP_MASK_ALL,
TM_REG_LIN0_MAX_ACTIVE_CID, 4, 0x0003ffff },
{ BNX2X_CHIP_MASK_ALL,
SRC_REG_KEYRSS0_0, 40, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
SRC_REG_KEYRSS0_7, 40, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
XCM_REG_WU_DA_SET_TMR_CNT_FLG_CMD00, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
XCM_REG_WU_DA_CNT_CMD00, 4, 0x00000003 },
{ BNX2X_CHIP_MASK_ALL,
XCM_REG_GLB_DEL_ACK_MAX_CNT_0, 4, 0x000000ff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_T_BIT, 4, 0x00000001 },
/* 20 */ { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_EMAC0_IN_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_BMAC0_IN_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_XCM0_OUT_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_BRB0_OUT_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_XCM_MASK, 4, 0x00000007 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_ACPI_PAT_6_LEN, 68, 0x000000ff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_ACPI_PAT_0_CRC, 68, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_MAC_0_0, 160, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_IP_0_1, 160, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_IPV4_IPV6_0, 160, 0x00000001 },
/* 30 */ { BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_UDP_0, 160, 0x0000ffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_TCP_0, 160, 0x0000ffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_VLAN_ID_0, 160, 0x00000fff },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_XGXS_SERDES0_MODE_SEL, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LED_CONTROL_OVERRIDE_TRAFFIC_P0, 4, 0x00000001},
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_STATUS_INTERRUPT_PORT0, 4, 0x07ffffff },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_XGXS0_CTRL_EXTREMOTEMDIOST, 24, 0x00000001 },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_SERDES0_CTRL_PHY_ADDR, 16, 0x0000001f },
{ BNX2X_CHIP_MASK_ALL, 0xffffffff, 0, 0x00000000 }
};
if (!bnx2x_is_nvm_accessible(bp)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"cannot access eeprom when the interface is down\n");
return rc;
}
if (CHIP_IS_E1(bp))
hw = BNX2X_CHIP_MASK_E1;
else if (CHIP_IS_E1H(bp))
hw = BNX2X_CHIP_MASK_E1H;
else if (CHIP_IS_E2(bp))
hw = BNX2X_CHIP_MASK_E2;
else if (CHIP_IS_E3B0(bp))
hw = BNX2X_CHIP_MASK_E3B0;
else /* e3 A0 */
hw = BNX2X_CHIP_MASK_E3;
/* Repeat the test twice:
* First by writing 0x00000000, second by writing 0xffffffff
*/
for (idx = 0; idx < 2; idx++) {
switch (idx) {
case 0:
wr_val = 0;
break;
case 1:
wr_val = 0xffffffff;
break;
}
for (i = 0; reg_tbl[i].offset0 != 0xffffffff; i++) {
u32 offset, mask, save_val, val;
if (!(hw & reg_tbl[i].hw))
continue;
offset = reg_tbl[i].offset0 + port*reg_tbl[i].offset1;
mask = reg_tbl[i].mask;
save_val = REG_RD(bp, offset);
REG_WR(bp, offset, wr_val & mask);
val = REG_RD(bp, offset);
/* Restore the original register's value */
REG_WR(bp, offset, save_val);
/* verify value is as expected */
if ((val & mask) != (wr_val & mask)) {
DP(BNX2X_MSG_ETHTOOL,
"offset 0x%x: val 0x%x != 0x%x mask 0x%x\n",
offset, val, wr_val, mask);
goto test_reg_exit;
}
}
}
rc = 0;
test_reg_exit:
return rc;
}
static int bnx2x_test_memory(struct bnx2x *bp)
{
int i, j, rc = -ENODEV;
u32 val, index;
static const struct {
u32 offset;
int size;
} mem_tbl[] = {
{ CCM_REG_XX_DESCR_TABLE, CCM_REG_XX_DESCR_TABLE_SIZE },
{ CFC_REG_ACTIVITY_COUNTER, CFC_REG_ACTIVITY_COUNTER_SIZE },
{ CFC_REG_LINK_LIST, CFC_REG_LINK_LIST_SIZE },
{ DMAE_REG_CMD_MEM, DMAE_REG_CMD_MEM_SIZE },
{ TCM_REG_XX_DESCR_TABLE, TCM_REG_XX_DESCR_TABLE_SIZE },
{ UCM_REG_XX_DESCR_TABLE, UCM_REG_XX_DESCR_TABLE_SIZE },
{ XCM_REG_XX_DESCR_TABLE, XCM_REG_XX_DESCR_TABLE_SIZE },
{ 0xffffffff, 0 }
};
static const struct {
char *name;
u32 offset;
u32 hw_mask[BNX2X_CHIP_MAX_OFST];
} prty_tbl[] = {
{ "CCM_PRTY_STS", CCM_REG_CCM_PRTY_STS,
{0x3ffc0, 0, 0, 0} },
{ "CFC_PRTY_STS", CFC_REG_CFC_PRTY_STS,
{0x2, 0x2, 0, 0} },
{ "DMAE_PRTY_STS", DMAE_REG_DMAE_PRTY_STS,
{0, 0, 0, 0} },
{ "TCM_PRTY_STS", TCM_REG_TCM_PRTY_STS,
{0x3ffc0, 0, 0, 0} },
{ "UCM_PRTY_STS", UCM_REG_UCM_PRTY_STS,
{0x3ffc0, 0, 0, 0} },
{ "XCM_PRTY_STS", XCM_REG_XCM_PRTY_STS,
{0x3ffc1, 0, 0, 0} },
{ NULL, 0xffffffff, {0, 0, 0, 0} }
};
if (!bnx2x_is_nvm_accessible(bp)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"cannot access eeprom when the interface is down\n");
return rc;
}
if (CHIP_IS_E1(bp))
index = BNX2X_CHIP_E1_OFST;
else if (CHIP_IS_E1H(bp))
index = BNX2X_CHIP_E1H_OFST;
else if (CHIP_IS_E2(bp))
index = BNX2X_CHIP_E2_OFST;
else /* e3 */
index = BNX2X_CHIP_E3_OFST;
/* pre-Check the parity status */
for (i = 0; prty_tbl[i].offset != 0xffffffff; i++) {
val = REG_RD(bp, prty_tbl[i].offset);
if (val & ~(prty_tbl[i].hw_mask[index])) {
DP(BNX2X_MSG_ETHTOOL,
"%s is 0x%x\n", prty_tbl[i].name, val);
goto test_mem_exit;
}
}
/* Go through all the memories */
for (i = 0; mem_tbl[i].offset != 0xffffffff; i++)
for (j = 0; j < mem_tbl[i].size; j++)
REG_RD(bp, mem_tbl[i].offset + j*4);
/* Check the parity status */
for (i = 0; prty_tbl[i].offset != 0xffffffff; i++) {
val = REG_RD(bp, prty_tbl[i].offset);
if (val & ~(prty_tbl[i].hw_mask[index])) {
DP(BNX2X_MSG_ETHTOOL,
"%s is 0x%x\n", prty_tbl[i].name, val);
goto test_mem_exit;
}
}
rc = 0;
test_mem_exit:
return rc;
}
static void bnx2x_wait_for_link(struct bnx2x *bp, u8 link_up, u8 is_serdes)
{
int cnt = 1400;
if (link_up) {
while (bnx2x_link_test(bp, is_serdes) && cnt--)
msleep(20);
if (cnt <= 0 && bnx2x_link_test(bp, is_serdes))
DP(BNX2X_MSG_ETHTOOL, "Timeout waiting for link up\n");
cnt = 1400;
while (!bp->link_vars.link_up && cnt--)
msleep(20);
if (cnt <= 0 && !bp->link_vars.link_up)
DP(BNX2X_MSG_ETHTOOL,
"Timeout waiting for link init\n");
}
}
static int bnx2x_run_loopback(struct bnx2x *bp, int loopback_mode)
{
unsigned int pkt_size, num_pkts, i;
struct sk_buff *skb;
unsigned char *packet;
struct bnx2x_fastpath *fp_rx = &bp->fp[0];
struct bnx2x_fastpath *fp_tx = &bp->fp[0];
struct bnx2x_fp_txdata *txdata = fp_tx->txdata_ptr[0];
u16 tx_start_idx, tx_idx;
u16 rx_start_idx, rx_idx;
u16 pkt_prod, bd_prod;
struct sw_tx_bd *tx_buf;
struct eth_tx_start_bd *tx_start_bd;
dma_addr_t mapping;
union eth_rx_cqe *cqe;
u8 cqe_fp_flags, cqe_fp_type;
struct sw_rx_bd *rx_buf;
u16 len;
int rc = -ENODEV;
u8 *data;
struct netdev_queue *txq = netdev_get_tx_queue(bp->dev,
txdata->txq_index);
/* check the loopback mode */
switch (loopback_mode) {
case BNX2X_PHY_LOOPBACK:
if (bp->link_params.loopback_mode != LOOPBACK_XGXS) {
DP(BNX2X_MSG_ETHTOOL, "PHY loopback not supported\n");
return -EINVAL;
}
break;
case BNX2X_MAC_LOOPBACK:
if (CHIP_IS_E3(bp)) {
int cfg_idx = bnx2x_get_link_cfg_idx(bp);
if (bp->port.supported[cfg_idx] &
(SUPPORTED_10000baseT_Full |
SUPPORTED_20000baseMLD2_Full |
SUPPORTED_20000baseKR2_Full))
bp->link_params.loopback_mode = LOOPBACK_XMAC;
else
bp->link_params.loopback_mode = LOOPBACK_UMAC;
} else
bp->link_params.loopback_mode = LOOPBACK_BMAC;
bnx2x_phy_init(&bp->link_params, &bp->link_vars);
break;
case BNX2X_EXT_LOOPBACK:
if (bp->link_params.loopback_mode != LOOPBACK_EXT) {
DP(BNX2X_MSG_ETHTOOL,
"Can't configure external loopback\n");
return -EINVAL;
}
break;
default:
DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n");
return -EINVAL;
}
/* prepare the loopback packet */
pkt_size = (((bp->dev->mtu < ETH_MAX_PACKET_SIZE) ?
bp->dev->mtu : ETH_MAX_PACKET_SIZE) + ETH_HLEN);
skb = netdev_alloc_skb(bp->dev, fp_rx->rx_buf_size);
if (!skb) {
DP(BNX2X_MSG_ETHTOOL, "Can't allocate skb\n");
rc = -ENOMEM;
goto test_loopback_exit;
}
packet = skb_put(skb, pkt_size);
memcpy(packet, bp->dev->dev_addr, ETH_ALEN);
eth_zero_addr(packet + ETH_ALEN);
memset(packet + 2*ETH_ALEN, 0x77, (ETH_HLEN - 2*ETH_ALEN));
for (i = ETH_HLEN; i < pkt_size; i++)
packet[i] = (unsigned char) (i & 0xff);
mapping = dma_map_single(&bp->pdev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
rc = -ENOMEM;
dev_kfree_skb(skb);
DP(BNX2X_MSG_ETHTOOL, "Unable to map SKB\n");
goto test_loopback_exit;
}
/* send the loopback packet */
num_pkts = 0;
tx_start_idx = le16_to_cpu(*txdata->tx_cons_sb);
rx_start_idx = le16_to_cpu(*fp_rx->rx_cons_sb);
netdev_tx_sent_queue(txq, skb->len);
pkt_prod = txdata->tx_pkt_prod++;
tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
tx_buf->first_bd = txdata->tx_bd_prod;
tx_buf->skb = skb;
tx_buf->flags = 0;
bd_prod = TX_BD(txdata->tx_bd_prod);
tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
tx_start_bd->nbd = cpu_to_le16(2); /* start + pbd */
tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
SET_FLAG(tx_start_bd->general_data,
ETH_TX_START_BD_HDR_NBDS,
1);
SET_FLAG(tx_start_bd->general_data,
ETH_TX_START_BD_PARSE_NBDS,
0);
/* turn on parsing and get a BD */
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
if (CHIP_IS_E1x(bp)) {
u16 global_data = 0;
struct eth_tx_parse_bd_e1x *pbd_e1x =
&txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
SET_FLAG(global_data,
ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, UNICAST_ADDRESS);
pbd_e1x->global_data = cpu_to_le16(global_data);
} else {
u32 parsing_data = 0;
struct eth_tx_parse_bd_e2 *pbd_e2 =
&txdata->tx_desc_ring[bd_prod].parse_bd_e2;
memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
SET_FLAG(parsing_data,
ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, UNICAST_ADDRESS);
pbd_e2->parsing_data = cpu_to_le32(parsing_data);
}
wmb();
txdata->tx_db.data.prod += 2;
/* make sure descriptor update is observed by the HW */
wmb();
DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
mmiowb();
barrier();
num_pkts++;
txdata->tx_bd_prod += 2; /* start + pbd */
udelay(100);
tx_idx = le16_to_cpu(*txdata->tx_cons_sb);
if (tx_idx != tx_start_idx + num_pkts)
goto test_loopback_exit;
/* Unlike HC IGU won't generate an interrupt for status block
* updates that have been performed while interrupts were
* disabled.
*/
if (bp->common.int_block == INT_BLOCK_IGU) {
/* Disable local BHes to prevent a dead-lock situation between
* sch_direct_xmit() and bnx2x_run_loopback() (calling
* bnx2x_tx_int()), as both are taking netif_tx_lock().
*/
local_bh_disable();
bnx2x_tx_int(bp, txdata);
local_bh_enable();
}
rx_idx = le16_to_cpu(*fp_rx->rx_cons_sb);
if (rx_idx != rx_start_idx + num_pkts)
goto test_loopback_exit;
cqe = &fp_rx->rx_comp_ring[RCQ_BD(fp_rx->rx_comp_cons)];
cqe_fp_flags = cqe->fast_path_cqe.type_error_flags;
cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
if (!CQE_TYPE_FAST(cqe_fp_type) || (cqe_fp_flags & ETH_RX_ERROR_FALGS))
goto test_loopback_rx_exit;
len = le16_to_cpu(cqe->fast_path_cqe.pkt_len_or_gro_seg_len);
if (len != pkt_size)
goto test_loopback_rx_exit;
rx_buf = &fp_rx->rx_buf_ring[RX_BD(fp_rx->rx_bd_cons)];
dma_sync_single_for_cpu(&bp->pdev->dev,
dma_unmap_addr(rx_buf, mapping),
fp_rx->rx_buf_size, DMA_FROM_DEVICE);
data = rx_buf->data + NET_SKB_PAD + cqe->fast_path_cqe.placement_offset;
for (i = ETH_HLEN; i < pkt_size; i++)
if (*(data + i) != (unsigned char) (i & 0xff))
goto test_loopback_rx_exit;
rc = 0;
test_loopback_rx_exit:
fp_rx->rx_bd_cons = NEXT_RX_IDX(fp_rx->rx_bd_cons);
fp_rx->rx_bd_prod = NEXT_RX_IDX(fp_rx->rx_bd_prod);
fp_rx->rx_comp_cons = NEXT_RCQ_IDX(fp_rx->rx_comp_cons);
fp_rx->rx_comp_prod = NEXT_RCQ_IDX(fp_rx->rx_comp_prod);
/* Update producers */
bnx2x_update_rx_prod(bp, fp_rx, fp_rx->rx_bd_prod, fp_rx->rx_comp_prod,
fp_rx->rx_sge_prod);
test_loopback_exit:
bp->link_params.loopback_mode = LOOPBACK_NONE;
return rc;
}
static int bnx2x_test_loopback(struct bnx2x *bp)
{
int rc = 0, res;
if (BP_NOMCP(bp))
return rc;
if (!netif_running(bp->dev))
return BNX2X_LOOPBACK_FAILED;
bnx2x_netif_stop(bp, 1);
bnx2x_acquire_phy_lock(bp);
res = bnx2x_run_loopback(bp, BNX2X_PHY_LOOPBACK);
if (res) {
DP(BNX2X_MSG_ETHTOOL, " PHY loopback failed (res %d)\n", res);
rc |= BNX2X_PHY_LOOPBACK_FAILED;
}
res = bnx2x_run_loopback(bp, BNX2X_MAC_LOOPBACK);
if (res) {
DP(BNX2X_MSG_ETHTOOL, " MAC loopback failed (res %d)\n", res);
rc |= BNX2X_MAC_LOOPBACK_FAILED;
}
bnx2x_release_phy_lock(bp);
bnx2x_netif_start(bp);
return rc;
}
static int bnx2x_test_ext_loopback(struct bnx2x *bp)
{
int rc;
u8 is_serdes =
(bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) > 0;
if (BP_NOMCP(bp))
return -ENODEV;
if (!netif_running(bp->dev))
return BNX2X_EXT_LOOPBACK_FAILED;
bnx2x_nic_unload(bp, UNLOAD_NORMAL, false);
rc = bnx2x_nic_load(bp, LOAD_LOOPBACK_EXT);
if (rc) {
DP(BNX2X_MSG_ETHTOOL,
"Can't perform self-test, nic_load (for external lb) failed\n");
return -ENODEV;
}
bnx2x_wait_for_link(bp, 1, is_serdes);
bnx2x_netif_stop(bp, 1);
rc = bnx2x_run_loopback(bp, BNX2X_EXT_LOOPBACK);
if (rc)
DP(BNX2X_MSG_ETHTOOL, "EXT loopback failed (res %d)\n", rc);
bnx2x_netif_start(bp);
return rc;
}
struct code_entry {
u32 sram_start_addr;
u32 code_attribute;
#define CODE_IMAGE_TYPE_MASK 0xf0800003
#define CODE_IMAGE_VNTAG_PROFILES_DATA 0xd0000003
#define CODE_IMAGE_LENGTH_MASK 0x007ffffc
#define CODE_IMAGE_TYPE_EXTENDED_DIR 0xe0000000
u32 nvm_start_addr;
};
#define CODE_ENTRY_MAX 16
#define CODE_ENTRY_EXTENDED_DIR_IDX 15
#define MAX_IMAGES_IN_EXTENDED_DIR 64
#define NVRAM_DIR_OFFSET 0x14
#define EXTENDED_DIR_EXISTS(code) \
((code & CODE_IMAGE_TYPE_MASK) == CODE_IMAGE_TYPE_EXTENDED_DIR && \
(code & CODE_IMAGE_LENGTH_MASK) != 0)
#define CRC32_RESIDUAL 0xdebb20e3
#define CRC_BUFF_SIZE 256
static int bnx2x_nvram_crc(struct bnx2x *bp,
int offset,
int size,
u8 *buff)
{
u32 crc = ~0;
int rc = 0, done = 0;
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"NVRAM CRC from 0x%08x to 0x%08x\n", offset, offset + size);
while (done < size) {
int count = min_t(int, size - done, CRC_BUFF_SIZE);
rc = bnx2x_nvram_read(bp, offset + done, buff, count);
if (rc)
return rc;
crc = crc32_le(crc, buff, count);
done += count;
}
if (crc != CRC32_RESIDUAL)
rc = -EINVAL;
return rc;
}
static int bnx2x_test_nvram_dir(struct bnx2x *bp,
struct code_entry *entry,
u8 *buff)
{
size_t size = entry->code_attribute & CODE_IMAGE_LENGTH_MASK;
u32 type = entry->code_attribute & CODE_IMAGE_TYPE_MASK;
int rc;
/* Zero-length images and AFEX profiles do not have CRC */
if (size == 0 || type == CODE_IMAGE_VNTAG_PROFILES_DATA)
return 0;
rc = bnx2x_nvram_crc(bp, entry->nvm_start_addr, size, buff);
if (rc)
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"image %x has failed crc test (rc %d)\n", type, rc);
return rc;
}
static int bnx2x_test_dir_entry(struct bnx2x *bp, u32 addr, u8 *buff)
{
int rc;
struct code_entry entry;
rc = bnx2x_nvram_read32(bp, addr, (u32 *)&entry, sizeof(entry));
if (rc)
return rc;
return bnx2x_test_nvram_dir(bp, &entry, buff);
}
static int bnx2x_test_nvram_ext_dirs(struct bnx2x *bp, u8 *buff)
{
u32 rc, cnt, dir_offset = NVRAM_DIR_OFFSET;
struct code_entry entry;
int i;
rc = bnx2x_nvram_read32(bp,
dir_offset +
sizeof(entry) * CODE_ENTRY_EXTENDED_DIR_IDX,
(u32 *)&entry, sizeof(entry));
if (rc)
return rc;
if (!EXTENDED_DIR_EXISTS(entry.code_attribute))
return 0;
rc = bnx2x_nvram_read32(bp, entry.nvm_start_addr,
&cnt, sizeof(u32));
if (rc)
return rc;
dir_offset = entry.nvm_start_addr + 8;
for (i = 0; i < cnt && i < MAX_IMAGES_IN_EXTENDED_DIR; i++) {
rc = bnx2x_test_dir_entry(bp, dir_offset +
sizeof(struct code_entry) * i,
buff);
if (rc)
return rc;
}
return 0;
}
static int bnx2x_test_nvram_dirs(struct bnx2x *bp, u8 *buff)
{
u32 rc, dir_offset = NVRAM_DIR_OFFSET;
int i;
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "NVRAM DIRS CRC test-set\n");
for (i = 0; i < CODE_ENTRY_EXTENDED_DIR_IDX; i++) {
rc = bnx2x_test_dir_entry(bp, dir_offset +
sizeof(struct code_entry) * i,
buff);
if (rc)
return rc;
}
return bnx2x_test_nvram_ext_dirs(bp, buff);
}
struct crc_pair {
int offset;
int size;
};
static int bnx2x_test_nvram_tbl(struct bnx2x *bp,
const struct crc_pair *nvram_tbl, u8 *buf)
{
int i;
for (i = 0; nvram_tbl[i].size; i++) {
int rc = bnx2x_nvram_crc(bp, nvram_tbl[i].offset,
nvram_tbl[i].size, buf);
if (rc) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"nvram_tbl[%d] has failed crc test (rc %d)\n",
i, rc);
return rc;
}
}
return 0;
}
static int bnx2x_test_nvram(struct bnx2x *bp)
{
static const struct crc_pair nvram_tbl[] = {
{ 0, 0x14 }, /* bootstrap */
{ 0x14, 0xec }, /* dir */
{ 0x100, 0x350 }, /* manuf_info */
{ 0x450, 0xf0 }, /* feature_info */
{ 0x640, 0x64 }, /* upgrade_key_info */
{ 0x708, 0x70 }, /* manuf_key_info */
{ 0, 0 }
};
static const struct crc_pair nvram_tbl2[] = {
{ 0x7e8, 0x350 }, /* manuf_info2 */
{ 0xb38, 0xf0 }, /* feature_info */
{ 0, 0 }
};
u8 *buf;
int rc;
u32 magic;
if (BP_NOMCP(bp))
return 0;
buf = kmalloc(CRC_BUFF_SIZE, GFP_KERNEL);
if (!buf) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "kmalloc failed\n");
rc = -ENOMEM;
goto test_nvram_exit;
}
rc = bnx2x_nvram_read32(bp, 0, &magic, sizeof(magic));
if (rc) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"magic value read (rc %d)\n", rc);
goto test_nvram_exit;
}
if (magic != 0x669955aa) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"wrong magic value (0x%08x)\n", magic);
rc = -ENODEV;
goto test_nvram_exit;
}
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM, "Port 0 CRC test-set\n");
rc = bnx2x_test_nvram_tbl(bp, nvram_tbl, buf);
if (rc)
goto test_nvram_exit;
if (!CHIP_IS_E1x(bp) && !CHIP_IS_57811xx(bp)) {
u32 hide = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
SHARED_HW_CFG_HIDE_PORT1;
if (!hide) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"Port 1 CRC test-set\n");
rc = bnx2x_test_nvram_tbl(bp, nvram_tbl2, buf);
if (rc)
goto test_nvram_exit;
}
}
rc = bnx2x_test_nvram_dirs(bp, buf);
test_nvram_exit:
kfree(buf);
return rc;
}
/* Send an EMPTY ramrod on the first queue */
static int bnx2x_test_intr(struct bnx2x *bp)
{
struct bnx2x_queue_state_params params = {NULL};
if (!netif_running(bp->dev)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"cannot access eeprom when the interface is down\n");
return -ENODEV;
}
params.q_obj = &bp->sp_objs->q_obj;
params.cmd = BNX2X_Q_CMD_EMPTY;
__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
return bnx2x_queue_state_change(bp, &params);
}
static void bnx2x_self_test(struct net_device *dev,
struct ethtool_test *etest, u64 *buf)
{
struct bnx2x *bp = netdev_priv(dev);
u8 is_serdes, link_up;
int rc, cnt = 0;
if (pci_num_vf(bp->pdev)) {
DP(BNX2X_MSG_IOV,
"VFs are enabled, can not perform self test\n");
return;
}
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
netdev_err(bp->dev,
"Handling parity error recovery. Try again later\n");
etest->flags |= ETH_TEST_FL_FAILED;
return;
}
DP(BNX2X_MSG_ETHTOOL,
"Self-test command parameters: offline = %d, external_lb = %d\n",
(etest->flags & ETH_TEST_FL_OFFLINE),
(etest->flags & ETH_TEST_FL_EXTERNAL_LB)>>2);
memset(buf, 0, sizeof(u64) * BNX2X_NUM_TESTS(bp));
if (bnx2x_test_nvram(bp) != 0) {
if (!IS_MF(bp))
buf[4] = 1;
else
buf[0] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (!netif_running(dev)) {
DP(BNX2X_MSG_ETHTOOL, "Interface is down\n");
return;
}
is_serdes = (bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) > 0;
link_up = bp->link_vars.link_up;
/* offline tests are not supported in MF mode */
if ((etest->flags & ETH_TEST_FL_OFFLINE) && !IS_MF(bp)) {
int port = BP_PORT(bp);
u32 val;
/* save current value of input enable for TX port IF */
val = REG_RD(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4);
/* disable input for TX port IF */
REG_WR(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4, 0);
bnx2x_nic_unload(bp, UNLOAD_NORMAL, false);
rc = bnx2x_nic_load(bp, LOAD_DIAG);
if (rc) {
etest->flags |= ETH_TEST_FL_FAILED;
DP(BNX2X_MSG_ETHTOOL,
"Can't perform self-test, nic_load (for offline) failed\n");
return;
}
/* wait until link state is restored */
bnx2x_wait_for_link(bp, 1, is_serdes);
if (bnx2x_test_registers(bp) != 0) {
buf[0] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2x_test_memory(bp) != 0) {
buf[1] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
buf[2] = bnx2x_test_loopback(bp); /* internal LB */
if (buf[2] != 0)
etest->flags |= ETH_TEST_FL_FAILED;
if (etest->flags & ETH_TEST_FL_EXTERNAL_LB) {
buf[3] = bnx2x_test_ext_loopback(bp); /* external LB */
if (buf[3] != 0)
etest->flags |= ETH_TEST_FL_FAILED;
etest->flags |= ETH_TEST_FL_EXTERNAL_LB_DONE;
}
bnx2x_nic_unload(bp, UNLOAD_NORMAL, false);
/* restore input for TX port IF */
REG_WR(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4, val);
rc = bnx2x_nic_load(bp, LOAD_NORMAL);
if (rc) {
etest->flags |= ETH_TEST_FL_FAILED;
DP(BNX2X_MSG_ETHTOOL,
"Can't perform self-test, nic_load (for online) failed\n");
return;
}
/* wait until link state is restored */
bnx2x_wait_for_link(bp, link_up, is_serdes);
}
if (bnx2x_test_intr(bp) != 0) {
if (!IS_MF(bp))
buf[5] = 1;
else
buf[1] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (link_up) {
cnt = 100;
while (bnx2x_link_test(bp, is_serdes) && --cnt)
msleep(20);
}
if (!cnt) {
if (!IS_MF(bp))
buf[6] = 1;
else
buf[2] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
}
#define IS_PORT_STAT(i) (bnx2x_stats_arr[i].is_port_stat)
#define HIDE_PORT_STAT(bp) IS_VF(bp)
/* ethtool statistics are displayed for all regular ethernet queues and the
* fcoe L2 queue if not disabled
*/
static int bnx2x_num_stat_queues(struct bnx2x *bp)
{
return BNX2X_NUM_ETH_QUEUES(bp);
}
static int bnx2x_get_sset_count(struct net_device *dev, int stringset)
{
struct bnx2x *bp = netdev_priv(dev);
int i, num_strings = 0;
switch (stringset) {
case ETH_SS_STATS:
if (is_multi(bp)) {
num_strings = bnx2x_num_stat_queues(bp) *
BNX2X_NUM_Q_STATS;
} else
num_strings = 0;
if (HIDE_PORT_STAT(bp)) {
for (i = 0; i < BNX2X_NUM_STATS; i++)
if (!IS_PORT_STAT(i))
num_strings++;
} else
num_strings += BNX2X_NUM_STATS;
return num_strings;
case ETH_SS_TEST:
return BNX2X_NUM_TESTS(bp);
case ETH_SS_PRIV_FLAGS:
return BNX2X_PRI_FLAG_LEN;
default:
return -EINVAL;
}
}
static u32 bnx2x_get_private_flags(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
u32 flags = 0;
flags |= (!(bp->flags & NO_ISCSI_FLAG) ? 1 : 0) << BNX2X_PRI_FLAG_ISCSI;
flags |= (!(bp->flags & NO_FCOE_FLAG) ? 1 : 0) << BNX2X_PRI_FLAG_FCOE;
flags |= (!!IS_MF_STORAGE_ONLY(bp)) << BNX2X_PRI_FLAG_STORAGE;
return flags;
}
static void bnx2x_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
struct bnx2x *bp = netdev_priv(dev);
int i, j, k, start;
char queue_name[MAX_QUEUE_NAME_LEN+1];
switch (stringset) {
case ETH_SS_STATS:
k = 0;
if (is_multi(bp)) {
for_each_eth_queue(bp, i) {
memset(queue_name, 0, sizeof(queue_name));
snprintf(queue_name, sizeof(queue_name),
"%d", i);
for (j = 0; j < BNX2X_NUM_Q_STATS; j++)
snprintf(buf + (k + j)*ETH_GSTRING_LEN,
ETH_GSTRING_LEN,
bnx2x_q_stats_arr[j].string,
queue_name);
k += BNX2X_NUM_Q_STATS;
}
}
for (i = 0, j = 0; i < BNX2X_NUM_STATS; i++) {
if (HIDE_PORT_STAT(bp) && IS_PORT_STAT(i))
continue;
strcpy(buf + (k + j)*ETH_GSTRING_LEN,
bnx2x_stats_arr[i].string);
j++;
}
break;
case ETH_SS_TEST:
/* First 4 tests cannot be done in MF mode */
if (!IS_MF(bp))
start = 0;
else
start = 4;
memcpy(buf, bnx2x_tests_str_arr + start,
ETH_GSTRING_LEN * BNX2X_NUM_TESTS(bp));
break;
case ETH_SS_PRIV_FLAGS:
memcpy(buf, bnx2x_private_arr,
ETH_GSTRING_LEN * BNX2X_PRI_FLAG_LEN);
break;
}
}
static void bnx2x_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *buf)
{
struct bnx2x *bp = netdev_priv(dev);
u32 *hw_stats, *offset;
int i, j, k = 0;
if (is_multi(bp)) {
for_each_eth_queue(bp, i) {
hw_stats = (u32 *)&bp->fp_stats[i].eth_q_stats;
for (j = 0; j < BNX2X_NUM_Q_STATS; j++) {
if (bnx2x_q_stats_arr[j].size == 0) {
/* skip this counter */
buf[k + j] = 0;
continue;
}
offset = (hw_stats +
bnx2x_q_stats_arr[j].offset);
if (bnx2x_q_stats_arr[j].size == 4) {
/* 4-byte counter */
buf[k + j] = (u64) *offset;
continue;
}
/* 8-byte counter */
buf[k + j] = HILO_U64(*offset, *(offset + 1));
}
k += BNX2X_NUM_Q_STATS;
}
}
hw_stats = (u32 *)&bp->eth_stats;
for (i = 0, j = 0; i < BNX2X_NUM_STATS; i++) {
if (HIDE_PORT_STAT(bp) && IS_PORT_STAT(i))
continue;
if (bnx2x_stats_arr[i].size == 0) {
/* skip this counter */
buf[k + j] = 0;
j++;
continue;
}
offset = (hw_stats + bnx2x_stats_arr[i].offset);
if (bnx2x_stats_arr[i].size == 4) {
/* 4-byte counter */
buf[k + j] = (u64) *offset;
j++;
continue;
}
/* 8-byte counter */
buf[k + j] = HILO_U64(*offset, *(offset + 1));
j++;
}
}
static int bnx2x_set_phys_id(struct net_device *dev,
enum ethtool_phys_id_state state)
{
struct bnx2x *bp = netdev_priv(dev);
if (!bnx2x_is_nvm_accessible(bp)) {
DP(BNX2X_MSG_ETHTOOL | BNX2X_MSG_NVM,
"cannot access eeprom when the interface is down\n");
return -EAGAIN;
}
switch (state) {
case ETHTOOL_ID_ACTIVE:
return 1; /* cycle on/off once per second */
case ETHTOOL_ID_ON:
bnx2x_acquire_phy_lock(bp);
bnx2x_set_led(&bp->link_params, &bp->link_vars,
LED_MODE_ON, SPEED_1000);
bnx2x_release_phy_lock(bp);
break;
case ETHTOOL_ID_OFF:
bnx2x_acquire_phy_lock(bp);
bnx2x_set_led(&bp->link_params, &bp->link_vars,
LED_MODE_FRONT_PANEL_OFF, 0);
bnx2x_release_phy_lock(bp);
break;
case ETHTOOL_ID_INACTIVE:
bnx2x_acquire_phy_lock(bp);
bnx2x_set_led(&bp->link_params, &bp->link_vars,
LED_MODE_OPER,
bp->link_vars.line_speed);
bnx2x_release_phy_lock(bp);
}
return 0;
}
static int bnx2x_get_rss_flags(struct bnx2x *bp, struct ethtool_rxnfc *info)
{
switch (info->flow_type) {
case TCP_V4_FLOW:
case TCP_V6_FLOW:
info->data = RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3;
break;
case UDP_V4_FLOW:
if (bp->rss_conf_obj.udp_rss_v4)
info->data = RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3;
else
info->data = RXH_IP_SRC | RXH_IP_DST;
break;
case UDP_V6_FLOW:
if (bp->rss_conf_obj.udp_rss_v6)
info->data = RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3;
else
info->data = RXH_IP_SRC | RXH_IP_DST;
break;
case IPV4_FLOW:
case IPV6_FLOW:
info->data = RXH_IP_SRC | RXH_IP_DST;
break;
default:
info->data = 0;
break;
}
return 0;
}
static int bnx2x_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
u32 *rules __always_unused)
{
struct bnx2x *bp = netdev_priv(dev);
switch (info->cmd) {
case ETHTOOL_GRXRINGS:
info->data = BNX2X_NUM_ETH_QUEUES(bp);
return 0;
case ETHTOOL_GRXFH:
return bnx2x_get_rss_flags(bp, info);
default:
DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n");
return -EOPNOTSUPP;
}
}
static int bnx2x_set_rss_flags(struct bnx2x *bp, struct ethtool_rxnfc *info)
{
int udp_rss_requested;
DP(BNX2X_MSG_ETHTOOL,
"Set rss flags command parameters: flow type = %d, data = %llu\n",
info->flow_type, info->data);
switch (info->flow_type) {
case TCP_V4_FLOW:
case TCP_V6_FLOW:
/* For TCP only 4-tupple hash is supported */
if (info->data ^ (RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
DP(BNX2X_MSG_ETHTOOL,
"Command parameters not supported\n");
return -EINVAL;
}
return 0;
case UDP_V4_FLOW:
case UDP_V6_FLOW:
/* For UDP either 2-tupple hash or 4-tupple hash is supported */
if (info->data == (RXH_IP_SRC | RXH_IP_DST |
RXH_L4_B_0_1 | RXH_L4_B_2_3))
udp_rss_requested = 1;
else if (info->data == (RXH_IP_SRC | RXH_IP_DST))
udp_rss_requested = 0;
else
return -EINVAL;
if (CHIP_IS_E1x(bp) && udp_rss_requested) {
DP(BNX2X_MSG_ETHTOOL,
"57710, 57711 boards don't support RSS according to UDP 4-tuple\n");
return -EINVAL;
}
if ((info->flow_type == UDP_V4_FLOW) &&
(bp->rss_conf_obj.udp_rss_v4 != udp_rss_requested)) {
bp->rss_conf_obj.udp_rss_v4 = udp_rss_requested;
DP(BNX2X_MSG_ETHTOOL,
"rss re-configured, UDP 4-tupple %s\n",
udp_rss_requested ? "enabled" : "disabled");
if (bp->state == BNX2X_STATE_OPEN)
return bnx2x_rss(bp, &bp->rss_conf_obj, false,
true);
} else if ((info->flow_type == UDP_V6_FLOW) &&
(bp->rss_conf_obj.udp_rss_v6 != udp_rss_requested)) {
bp->rss_conf_obj.udp_rss_v6 = udp_rss_requested;
DP(BNX2X_MSG_ETHTOOL,
"rss re-configured, UDP 4-tupple %s\n",
udp_rss_requested ? "enabled" : "disabled");
if (bp->state == BNX2X_STATE_OPEN)
return bnx2x_rss(bp, &bp->rss_conf_obj, false,
true);
}
return 0;
case IPV4_FLOW:
case IPV6_FLOW:
/* For IP only 2-tupple hash is supported */
if (info->data ^ (RXH_IP_SRC | RXH_IP_DST)) {
DP(BNX2X_MSG_ETHTOOL,
"Command parameters not supported\n");
return -EINVAL;
}
return 0;
case SCTP_V4_FLOW:
case AH_ESP_V4_FLOW:
case AH_V4_FLOW:
case ESP_V4_FLOW:
case SCTP_V6_FLOW:
case AH_ESP_V6_FLOW:
case AH_V6_FLOW:
case ESP_V6_FLOW:
case IP_USER_FLOW:
case ETHER_FLOW:
/* RSS is not supported for these protocols */
if (info->data) {
DP(BNX2X_MSG_ETHTOOL,
"Command parameters not supported\n");
return -EINVAL;
}
return 0;
default:
return -EINVAL;
}
}
static int bnx2x_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info)
{
struct bnx2x *bp = netdev_priv(dev);
switch (info->cmd) {
case ETHTOOL_SRXFH:
return bnx2x_set_rss_flags(bp, info);
default:
DP(BNX2X_MSG_ETHTOOL, "Command parameters not supported\n");
return -EOPNOTSUPP;
}
}
static u32 bnx2x_get_rxfh_indir_size(struct net_device *dev)
{
return T_ETH_INDIRECTION_TABLE_SIZE;
}
static int bnx2x_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
u8 *hfunc)
{
struct bnx2x *bp = netdev_priv(dev);
u8 ind_table[T_ETH_INDIRECTION_TABLE_SIZE] = {0};
size_t i;
if (hfunc)
*hfunc = ETH_RSS_HASH_TOP;
if (!indir)
return 0;
/* Get the current configuration of the RSS indirection table */
bnx2x_get_rss_ind_table(&bp->rss_conf_obj, ind_table);
/*
* We can't use a memcpy() as an internal storage of an
* indirection table is a u8 array while indir->ring_index
* points to an array of u32.
*
* Indirection table contains the FW Client IDs, so we need to
* align the returned table to the Client ID of the leading RSS
* queue.
*/
for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++)
indir[i] = ind_table[i] - bp->fp->cl_id;
return 0;
}
static int bnx2x_set_rxfh(struct net_device *dev, const u32 *indir,
const u8 *key, const u8 hfunc)
{
struct bnx2x *bp = netdev_priv(dev);
size_t i;
/* We require at least one supported parameter to be changed and no
* change in any of the unsupported parameters
*/
if (key ||
(hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
return -EOPNOTSUPP;
if (!indir)
return 0;
for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
/*
* The same as in bnx2x_get_rxfh: we can't use a memcpy()
* as an internal storage of an indirection table is a u8 array
* while indir->ring_index points to an array of u32.
*
* Indirection table contains the FW Client IDs, so we need to
* align the received table to the Client ID of the leading RSS
* queue
*/
bp->rss_conf_obj.ind_table[i] = indir[i] + bp->fp->cl_id;
}
if (bp->state == BNX2X_STATE_OPEN)
return bnx2x_config_rss_eth(bp, false);
return 0;
}
/**
* bnx2x_get_channels - gets the number of RSS queues.
*
* @dev: net device
* @channels: returns the number of max / current queues
*/
static void bnx2x_get_channels(struct net_device *dev,
struct ethtool_channels *channels)
{
struct bnx2x *bp = netdev_priv(dev);
channels->max_combined = BNX2X_MAX_RSS_COUNT(bp);
channels->combined_count = BNX2X_NUM_ETH_QUEUES(bp);
}
/**
* bnx2x_change_num_queues - change the number of RSS queues.
*
* @bp: bnx2x private structure
*
* Re-configure interrupt mode to get the new number of MSI-X
* vectors and re-add NAPI objects.
*/
static void bnx2x_change_num_queues(struct bnx2x *bp, int num_rss)
{
bnx2x_disable_msi(bp);
bp->num_ethernet_queues = num_rss;
bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
bnx2x_set_int_mode(bp);
}
/**
* bnx2x_set_channels - sets the number of RSS queues.
*
* @dev: net device
* @channels: includes the number of queues requested
*/
static int bnx2x_set_channels(struct net_device *dev,
struct ethtool_channels *channels)
{
struct bnx2x *bp = netdev_priv(dev);
DP(BNX2X_MSG_ETHTOOL,
"set-channels command parameters: rx = %d, tx = %d, other = %d, combined = %d\n",
channels->rx_count, channels->tx_count, channels->other_count,
channels->combined_count);
if (pci_num_vf(bp->pdev)) {
DP(BNX2X_MSG_IOV, "VFs are enabled, can not set channels\n");
return -EPERM;
}
/* We don't support separate rx / tx channels.
* We don't allow setting 'other' channels.
*/
if (channels->rx_count || channels->tx_count || channels->other_count
|| (channels->combined_count == 0) ||
(channels->combined_count > BNX2X_MAX_RSS_COUNT(bp))) {
DP(BNX2X_MSG_ETHTOOL, "command parameters not supported\n");
return -EINVAL;
}
/* Check if there was a change in the active parameters */
if (channels->combined_count == BNX2X_NUM_ETH_QUEUES(bp)) {
DP(BNX2X_MSG_ETHTOOL, "No change in active parameters\n");
return 0;
}
/* Set the requested number of queues in bp context.
* Note that the actual number of queues created during load may be
* less than requested if memory is low.
*/
if (unlikely(!netif_running(dev))) {
bnx2x_change_num_queues(bp, channels->combined_count);
return 0;
}
bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
bnx2x_change_num_queues(bp, channels->combined_count);
return bnx2x_nic_load(bp, LOAD_NORMAL);
}
static int bnx2x_get_ts_info(struct net_device *dev,
struct ethtool_ts_info *info)
{
struct bnx2x *bp = netdev_priv(dev);
if (bp->flags & PTP_SUPPORTED) {
info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE |
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
if (bp->ptp_clock)
info->phc_index = ptp_clock_index(bp->ptp_clock);
else
info->phc_index = -1;
info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
info->tx_types = (1 << HWTSTAMP_TX_OFF)|(1 << HWTSTAMP_TX_ON);
return 0;
}
return ethtool_op_get_ts_info(dev, info);
}
static const struct ethtool_ops bnx2x_ethtool_ops = {
.get_drvinfo = bnx2x_get_drvinfo,
.get_regs_len = bnx2x_get_regs_len,
.get_regs = bnx2x_get_regs,
.get_dump_flag = bnx2x_get_dump_flag,
.get_dump_data = bnx2x_get_dump_data,
.set_dump = bnx2x_set_dump,
.get_wol = bnx2x_get_wol,
.set_wol = bnx2x_set_wol,
.get_msglevel = bnx2x_get_msglevel,
.set_msglevel = bnx2x_set_msglevel,
.nway_reset = bnx2x_nway_reset,
.get_link = bnx2x_get_link,
.get_eeprom_len = bnx2x_get_eeprom_len,
.get_eeprom = bnx2x_get_eeprom,
.set_eeprom = bnx2x_set_eeprom,
.get_coalesce = bnx2x_get_coalesce,
.set_coalesce = bnx2x_set_coalesce,
.get_ringparam = bnx2x_get_ringparam,
.set_ringparam = bnx2x_set_ringparam,
.get_pauseparam = bnx2x_get_pauseparam,
.set_pauseparam = bnx2x_set_pauseparam,
.self_test = bnx2x_self_test,
.get_sset_count = bnx2x_get_sset_count,
.get_priv_flags = bnx2x_get_private_flags,
.get_strings = bnx2x_get_strings,
.set_phys_id = bnx2x_set_phys_id,
.get_ethtool_stats = bnx2x_get_ethtool_stats,
.get_rxnfc = bnx2x_get_rxnfc,
.set_rxnfc = bnx2x_set_rxnfc,
.get_rxfh_indir_size = bnx2x_get_rxfh_indir_size,
.get_rxfh = bnx2x_get_rxfh,
.set_rxfh = bnx2x_set_rxfh,
.get_channels = bnx2x_get_channels,
.set_channels = bnx2x_set_channels,
.get_module_info = bnx2x_get_module_info,
.get_module_eeprom = bnx2x_get_module_eeprom,
.get_eee = bnx2x_get_eee,
.set_eee = bnx2x_set_eee,
.get_ts_info = bnx2x_get_ts_info,
.get_link_ksettings = bnx2x_get_link_ksettings,
.set_link_ksettings = bnx2x_set_link_ksettings,
};
static const struct ethtool_ops bnx2x_vf_ethtool_ops = {
.get_drvinfo = bnx2x_get_drvinfo,
.get_msglevel = bnx2x_get_msglevel,
.set_msglevel = bnx2x_set_msglevel,
.get_link = bnx2x_get_link,
.get_coalesce = bnx2x_get_coalesce,
.get_ringparam = bnx2x_get_ringparam,
.set_ringparam = bnx2x_set_ringparam,
.get_sset_count = bnx2x_get_sset_count,
.get_strings = bnx2x_get_strings,
.get_ethtool_stats = bnx2x_get_ethtool_stats,
.get_rxnfc = bnx2x_get_rxnfc,
.set_rxnfc = bnx2x_set_rxnfc,
.get_rxfh_indir_size = bnx2x_get_rxfh_indir_size,
.get_rxfh = bnx2x_get_rxfh,
.set_rxfh = bnx2x_set_rxfh,
.get_channels = bnx2x_get_channels,
.set_channels = bnx2x_set_channels,
.get_link_ksettings = bnx2x_get_vf_link_ksettings,
};
void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev)
{
netdev->ethtool_ops = (IS_PF(bp)) ?
&bnx2x_ethtool_ops : &bnx2x_vf_ethtool_ops;
}