| /* | 
 |  * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_format.h" | 
 | #include "xfs_log_format.h" | 
 | #include "xfs_trans_resv.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_trans_priv.h" | 
 | #include "xfs_inode_item.h" | 
 | #include "xfs_quota.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_icache.h" | 
 | #include "xfs_bmap_util.h" | 
 | #include "xfs_dquot_item.h" | 
 | #include "xfs_dquot.h" | 
 | #include "xfs_reflink.h" | 
 |  | 
 | #include <linux/kthread.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/iversion.h> | 
 |  | 
 | /* | 
 |  * Allocate and initialise an xfs_inode. | 
 |  */ | 
 | struct xfs_inode * | 
 | xfs_inode_alloc( | 
 | 	struct xfs_mount	*mp, | 
 | 	xfs_ino_t		ino) | 
 | { | 
 | 	struct xfs_inode	*ip; | 
 |  | 
 | 	/* | 
 | 	 * if this didn't occur in transactions, we could use | 
 | 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the | 
 | 	 * code up to do this anyway. | 
 | 	 */ | 
 | 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); | 
 | 	if (!ip) | 
 | 		return NULL; | 
 | 	if (inode_init_always(mp->m_super, VFS_I(ip))) { | 
 | 		kmem_zone_free(xfs_inode_zone, ip); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* VFS doesn't initialise i_mode! */ | 
 | 	VFS_I(ip)->i_mode = 0; | 
 |  | 
 | 	XFS_STATS_INC(mp, vn_active); | 
 | 	ASSERT(atomic_read(&ip->i_pincount) == 0); | 
 | 	ASSERT(!xfs_isiflocked(ip)); | 
 | 	ASSERT(ip->i_ino == 0); | 
 |  | 
 | 	/* initialise the xfs inode */ | 
 | 	ip->i_ino = ino; | 
 | 	ip->i_mount = mp; | 
 | 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); | 
 | 	ip->i_afp = NULL; | 
 | 	ip->i_cowfp = NULL; | 
 | 	ip->i_cnextents = 0; | 
 | 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS; | 
 | 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); | 
 | 	ip->i_flags = 0; | 
 | 	ip->i_delayed_blks = 0; | 
 | 	memset(&ip->i_d, 0, sizeof(ip->i_d)); | 
 |  | 
 | 	return ip; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_inode_free_callback( | 
 | 	struct rcu_head		*head) | 
 | { | 
 | 	struct inode		*inode = container_of(head, struct inode, i_rcu); | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 |  | 
 | 	switch (VFS_I(ip)->i_mode & S_IFMT) { | 
 | 	case S_IFREG: | 
 | 	case S_IFDIR: | 
 | 	case S_IFLNK: | 
 | 		xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (ip->i_afp) | 
 | 		xfs_idestroy_fork(ip, XFS_ATTR_FORK); | 
 | 	if (ip->i_cowfp) | 
 | 		xfs_idestroy_fork(ip, XFS_COW_FORK); | 
 |  | 
 | 	if (ip->i_itemp) { | 
 | 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); | 
 | 		xfs_inode_item_destroy(ip); | 
 | 		ip->i_itemp = NULL; | 
 | 	} | 
 |  | 
 | 	kmem_zone_free(xfs_inode_zone, ip); | 
 | } | 
 |  | 
 | static void | 
 | __xfs_inode_free( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	/* asserts to verify all state is correct here */ | 
 | 	ASSERT(atomic_read(&ip->i_pincount) == 0); | 
 | 	XFS_STATS_DEC(ip->i_mount, vn_active); | 
 |  | 
 | 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); | 
 | } | 
 |  | 
 | void | 
 | xfs_inode_free( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	ASSERT(!xfs_isiflocked(ip)); | 
 |  | 
 | 	/* | 
 | 	 * Because we use RCU freeing we need to ensure the inode always | 
 | 	 * appears to be reclaimed with an invalid inode number when in the | 
 | 	 * free state. The ip->i_flags_lock provides the barrier against lookup | 
 | 	 * races. | 
 | 	 */ | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	ip->i_flags = XFS_IRECLAIM; | 
 | 	ip->i_ino = 0; | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 |  | 
 | 	__xfs_inode_free(ip); | 
 | } | 
 |  | 
 | /* | 
 |  * Queue a new inode reclaim pass if there are reclaimable inodes and there | 
 |  * isn't a reclaim pass already in progress. By default it runs every 5s based | 
 |  * on the xfs periodic sync default of 30s. Perhaps this should have it's own | 
 |  * tunable, but that can be done if this method proves to be ineffective or too | 
 |  * aggressive. | 
 |  */ | 
 | static void | 
 | xfs_reclaim_work_queue( | 
 | 	struct xfs_mount        *mp) | 
 | { | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { | 
 | 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, | 
 | 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * This is a fast pass over the inode cache to try to get reclaim moving on as | 
 |  * many inodes as possible in a short period of time. It kicks itself every few | 
 |  * seconds, as well as being kicked by the inode cache shrinker when memory | 
 |  * goes low. It scans as quickly as possible avoiding locked inodes or those | 
 |  * already being flushed, and once done schedules a future pass. | 
 |  */ | 
 | void | 
 | xfs_reclaim_worker( | 
 | 	struct work_struct *work) | 
 | { | 
 | 	struct xfs_mount *mp = container_of(to_delayed_work(work), | 
 | 					struct xfs_mount, m_reclaim_work); | 
 |  | 
 | 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK); | 
 | 	xfs_reclaim_work_queue(mp); | 
 | } | 
 |  | 
 | static void | 
 | xfs_perag_set_reclaim_tag( | 
 | 	struct xfs_perag	*pag) | 
 | { | 
 | 	struct xfs_mount	*mp = pag->pag_mount; | 
 |  | 
 | 	lockdep_assert_held(&pag->pag_ici_lock); | 
 | 	if (pag->pag_ici_reclaimable++) | 
 | 		return; | 
 |  | 
 | 	/* propagate the reclaim tag up into the perag radix tree */ | 
 | 	spin_lock(&mp->m_perag_lock); | 
 | 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, | 
 | 			   XFS_ICI_RECLAIM_TAG); | 
 | 	spin_unlock(&mp->m_perag_lock); | 
 |  | 
 | 	/* schedule periodic background inode reclaim */ | 
 | 	xfs_reclaim_work_queue(mp); | 
 |  | 
 | 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); | 
 | } | 
 |  | 
 | static void | 
 | xfs_perag_clear_reclaim_tag( | 
 | 	struct xfs_perag	*pag) | 
 | { | 
 | 	struct xfs_mount	*mp = pag->pag_mount; | 
 |  | 
 | 	lockdep_assert_held(&pag->pag_ici_lock); | 
 | 	if (--pag->pag_ici_reclaimable) | 
 | 		return; | 
 |  | 
 | 	/* clear the reclaim tag from the perag radix tree */ | 
 | 	spin_lock(&mp->m_perag_lock); | 
 | 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, | 
 | 			     XFS_ICI_RECLAIM_TAG); | 
 | 	spin_unlock(&mp->m_perag_lock); | 
 | 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * We set the inode flag atomically with the radix tree tag. | 
 |  * Once we get tag lookups on the radix tree, this inode flag | 
 |  * can go away. | 
 |  */ | 
 | void | 
 | xfs_inode_set_reclaim_tag( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_perag	*pag; | 
 |  | 
 | 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
 | 	spin_lock(&pag->pag_ici_lock); | 
 | 	spin_lock(&ip->i_flags_lock); | 
 |  | 
 | 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), | 
 | 			   XFS_ICI_RECLAIM_TAG); | 
 | 	xfs_perag_set_reclaim_tag(pag); | 
 | 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE); | 
 |  | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	spin_unlock(&pag->pag_ici_lock); | 
 | 	xfs_perag_put(pag); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_inode_clear_reclaim_tag( | 
 | 	struct xfs_perag	*pag, | 
 | 	xfs_ino_t		ino) | 
 | { | 
 | 	radix_tree_tag_clear(&pag->pag_ici_root, | 
 | 			     XFS_INO_TO_AGINO(pag->pag_mount, ino), | 
 | 			     XFS_ICI_RECLAIM_TAG); | 
 | 	xfs_perag_clear_reclaim_tag(pag); | 
 | } | 
 |  | 
 | static void | 
 | xfs_inew_wait( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); | 
 | 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); | 
 |  | 
 | 	do { | 
 | 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
 | 		if (!xfs_iflags_test(ip, XFS_INEW)) | 
 | 			break; | 
 | 		schedule(); | 
 | 	} while (true); | 
 | 	finish_wait(wq, &wait.wq_entry); | 
 | } | 
 |  | 
 | /* | 
 |  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode | 
 |  * part of the structure. This is made more complex by the fact we store | 
 |  * information about the on-disk values in the VFS inode and so we can't just | 
 |  * overwrite the values unconditionally. Hence we save the parameters we | 
 |  * need to retain across reinitialisation, and rewrite them into the VFS inode | 
 |  * after reinitialisation even if it fails. | 
 |  */ | 
 | static int | 
 | xfs_reinit_inode( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct inode		*inode) | 
 | { | 
 | 	int		error; | 
 | 	uint32_t	nlink = inode->i_nlink; | 
 | 	uint32_t	generation = inode->i_generation; | 
 | 	uint64_t	version = inode_peek_iversion(inode); | 
 | 	umode_t		mode = inode->i_mode; | 
 | 	dev_t		dev = inode->i_rdev; | 
 |  | 
 | 	error = inode_init_always(mp->m_super, inode); | 
 |  | 
 | 	set_nlink(inode, nlink); | 
 | 	inode->i_generation = generation; | 
 | 	inode_set_iversion_queried(inode, version); | 
 | 	inode->i_mode = mode; | 
 | 	inode->i_rdev = dev; | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Check the validity of the inode we just found it the cache | 
 |  */ | 
 | static int | 
 | xfs_iget_cache_hit( | 
 | 	struct xfs_perag	*pag, | 
 | 	struct xfs_inode	*ip, | 
 | 	xfs_ino_t		ino, | 
 | 	int			flags, | 
 | 	int			lock_flags) __releases(RCU) | 
 | { | 
 | 	struct inode		*inode = VFS_I(ip); | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	int			error; | 
 |  | 
 | 	/* | 
 | 	 * check for re-use of an inode within an RCU grace period due to the | 
 | 	 * radix tree nodes not being updated yet. We monitor for this by | 
 | 	 * setting the inode number to zero before freeing the inode structure. | 
 | 	 * If the inode has been reallocated and set up, then the inode number | 
 | 	 * will not match, so check for that, too. | 
 | 	 */ | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	if (ip->i_ino != ino) { | 
 | 		trace_xfs_iget_skip(ip); | 
 | 		XFS_STATS_INC(mp, xs_ig_frecycle); | 
 | 		error = -EAGAIN; | 
 | 		goto out_error; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * If we are racing with another cache hit that is currently | 
 | 	 * instantiating this inode or currently recycling it out of | 
 | 	 * reclaimabe state, wait for the initialisation to complete | 
 | 	 * before continuing. | 
 | 	 * | 
 | 	 * XXX(hch): eventually we should do something equivalent to | 
 | 	 *	     wait_on_inode to wait for these flags to be cleared | 
 | 	 *	     instead of polling for it. | 
 | 	 */ | 
 | 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { | 
 | 		trace_xfs_iget_skip(ip); | 
 | 		XFS_STATS_INC(mp, xs_ig_frecycle); | 
 | 		error = -EAGAIN; | 
 | 		goto out_error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If lookup is racing with unlink return an error immediately. | 
 | 	 */ | 
 | 	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) { | 
 | 		error = -ENOENT; | 
 | 		goto out_error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already. | 
 | 	 * Need to carefully get it back into useable state. | 
 | 	 */ | 
 | 	if (ip->i_flags & XFS_IRECLAIMABLE) { | 
 | 		trace_xfs_iget_reclaim(ip); | 
 |  | 
 | 		if (flags & XFS_IGET_INCORE) { | 
 | 			error = -EAGAIN; | 
 | 			goto out_error; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode | 
 | 		 * from stomping over us while we recycle the inode.  We can't | 
 | 		 * clear the radix tree reclaimable tag yet as it requires | 
 | 		 * pag_ici_lock to be held exclusive. | 
 | 		 */ | 
 | 		ip->i_flags |= XFS_IRECLAIM; | 
 |  | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		error = xfs_reinit_inode(mp, inode); | 
 | 		if (error) { | 
 | 			bool wake; | 
 | 			/* | 
 | 			 * Re-initializing the inode failed, and we are in deep | 
 | 			 * trouble.  Try to re-add it to the reclaim list. | 
 | 			 */ | 
 | 			rcu_read_lock(); | 
 | 			spin_lock(&ip->i_flags_lock); | 
 | 			wake = !!__xfs_iflags_test(ip, XFS_INEW); | 
 | 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); | 
 | 			if (wake) | 
 | 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); | 
 | 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE); | 
 | 			trace_xfs_iget_reclaim_fail(ip); | 
 | 			goto out_error; | 
 | 		} | 
 |  | 
 | 		spin_lock(&pag->pag_ici_lock); | 
 | 		spin_lock(&ip->i_flags_lock); | 
 |  | 
 | 		/* | 
 | 		 * Clear the per-lifetime state in the inode as we are now | 
 | 		 * effectively a new inode and need to return to the initial | 
 | 		 * state before reuse occurs. | 
 | 		 */ | 
 | 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; | 
 | 		ip->i_flags |= XFS_INEW; | 
 | 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino); | 
 | 		inode->i_state = I_NEW; | 
 |  | 
 | 		ASSERT(!rwsem_is_locked(&inode->i_rwsem)); | 
 | 		init_rwsem(&inode->i_rwsem); | 
 |  | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 | 		spin_unlock(&pag->pag_ici_lock); | 
 | 	} else { | 
 | 		/* If the VFS inode is being torn down, pause and try again. */ | 
 | 		if (!igrab(inode)) { | 
 | 			trace_xfs_iget_skip(ip); | 
 | 			error = -EAGAIN; | 
 | 			goto out_error; | 
 | 		} | 
 |  | 
 | 		/* We've got a live one. */ | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 | 		rcu_read_unlock(); | 
 | 		trace_xfs_iget_hit(ip); | 
 | 	} | 
 |  | 
 | 	if (lock_flags != 0) | 
 | 		xfs_ilock(ip, lock_flags); | 
 |  | 
 | 	if (!(flags & XFS_IGET_INCORE)) | 
 | 		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); | 
 | 	XFS_STATS_INC(mp, xs_ig_found); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_error: | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	rcu_read_unlock(); | 
 | 	return error; | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | xfs_iget_cache_miss( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_perag	*pag, | 
 | 	xfs_trans_t		*tp, | 
 | 	xfs_ino_t		ino, | 
 | 	struct xfs_inode	**ipp, | 
 | 	int			flags, | 
 | 	int			lock_flags) | 
 | { | 
 | 	struct xfs_inode	*ip; | 
 | 	int			error; | 
 | 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino); | 
 | 	int			iflags; | 
 |  | 
 | 	ip = xfs_inode_alloc(mp, ino); | 
 | 	if (!ip) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	error = xfs_iread(mp, tp, ip, flags); | 
 | 	if (error) | 
 | 		goto out_destroy; | 
 |  | 
 | 	if (!xfs_inode_verify_forks(ip)) { | 
 | 		error = -EFSCORRUPTED; | 
 | 		goto out_destroy; | 
 | 	} | 
 |  | 
 | 	trace_xfs_iget_miss(ip); | 
 |  | 
 | 	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) { | 
 | 		error = -ENOENT; | 
 | 		goto out_destroy; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Preload the radix tree so we can insert safely under the | 
 | 	 * write spinlock. Note that we cannot sleep inside the preload | 
 | 	 * region. Since we can be called from transaction context, don't | 
 | 	 * recurse into the file system. | 
 | 	 */ | 
 | 	if (radix_tree_preload(GFP_NOFS)) { | 
 | 		error = -EAGAIN; | 
 | 		goto out_destroy; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Because the inode hasn't been added to the radix-tree yet it can't | 
 | 	 * be found by another thread, so we can do the non-sleeping lock here. | 
 | 	 */ | 
 | 	if (lock_flags) { | 
 | 		if (!xfs_ilock_nowait(ip, lock_flags)) | 
 | 			BUG(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * These values must be set before inserting the inode into the radix | 
 | 	 * tree as the moment it is inserted a concurrent lookup (allowed by the | 
 | 	 * RCU locking mechanism) can find it and that lookup must see that this | 
 | 	 * is an inode currently under construction (i.e. that XFS_INEW is set). | 
 | 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the | 
 | 	 * memory barrier that ensures this detection works correctly at lookup | 
 | 	 * time. | 
 | 	 */ | 
 | 	iflags = XFS_INEW; | 
 | 	if (flags & XFS_IGET_DONTCACHE) | 
 | 		iflags |= XFS_IDONTCACHE; | 
 | 	ip->i_udquot = NULL; | 
 | 	ip->i_gdquot = NULL; | 
 | 	ip->i_pdquot = NULL; | 
 | 	xfs_iflags_set(ip, iflags); | 
 |  | 
 | 	/* insert the new inode */ | 
 | 	spin_lock(&pag->pag_ici_lock); | 
 | 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip); | 
 | 	if (unlikely(error)) { | 
 | 		WARN_ON(error != -EEXIST); | 
 | 		XFS_STATS_INC(mp, xs_ig_dup); | 
 | 		error = -EAGAIN; | 
 | 		goto out_preload_end; | 
 | 	} | 
 | 	spin_unlock(&pag->pag_ici_lock); | 
 | 	radix_tree_preload_end(); | 
 |  | 
 | 	*ipp = ip; | 
 | 	return 0; | 
 |  | 
 | out_preload_end: | 
 | 	spin_unlock(&pag->pag_ici_lock); | 
 | 	radix_tree_preload_end(); | 
 | 	if (lock_flags) | 
 | 		xfs_iunlock(ip, lock_flags); | 
 | out_destroy: | 
 | 	__destroy_inode(VFS_I(ip)); | 
 | 	xfs_inode_free(ip); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Look up an inode by number in the given file system. | 
 |  * The inode is looked up in the cache held in each AG. | 
 |  * If the inode is found in the cache, initialise the vfs inode | 
 |  * if necessary. | 
 |  * | 
 |  * If it is not in core, read it in from the file system's device, | 
 |  * add it to the cache and initialise the vfs inode. | 
 |  * | 
 |  * The inode is locked according to the value of the lock_flags parameter. | 
 |  * This flag parameter indicates how and if the inode's IO lock and inode lock | 
 |  * should be taken. | 
 |  * | 
 |  * mp -- the mount point structure for the current file system.  It points | 
 |  *       to the inode hash table. | 
 |  * tp -- a pointer to the current transaction if there is one.  This is | 
 |  *       simply passed through to the xfs_iread() call. | 
 |  * ino -- the number of the inode desired.  This is the unique identifier | 
 |  *        within the file system for the inode being requested. | 
 |  * lock_flags -- flags indicating how to lock the inode.  See the comment | 
 |  *		 for xfs_ilock() for a list of valid values. | 
 |  */ | 
 | int | 
 | xfs_iget( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_trans_t	*tp, | 
 | 	xfs_ino_t	ino, | 
 | 	uint		flags, | 
 | 	uint		lock_flags, | 
 | 	xfs_inode_t	**ipp) | 
 | { | 
 | 	xfs_inode_t	*ip; | 
 | 	int		error; | 
 | 	xfs_perag_t	*pag; | 
 | 	xfs_agino_t	agino; | 
 |  | 
 | 	/* | 
 | 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode | 
 | 	 * doesn't get freed while it's being referenced during a | 
 | 	 * radix tree traversal here.  It assumes this function | 
 | 	 * aqcuires only the ILOCK (and therefore it has no need to | 
 | 	 * involve the IOLOCK in this synchronization). | 
 | 	 */ | 
 | 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); | 
 |  | 
 | 	/* reject inode numbers outside existing AGs */ | 
 | 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) | 
 | 		return -EINVAL; | 
 |  | 
 | 	XFS_STATS_INC(mp, xs_ig_attempts); | 
 |  | 
 | 	/* get the perag structure and ensure that it's inode capable */ | 
 | 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); | 
 | 	agino = XFS_INO_TO_AGINO(mp, ino); | 
 |  | 
 | again: | 
 | 	error = 0; | 
 | 	rcu_read_lock(); | 
 | 	ip = radix_tree_lookup(&pag->pag_ici_root, agino); | 
 |  | 
 | 	if (ip) { | 
 | 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); | 
 | 		if (error) | 
 | 			goto out_error_or_again; | 
 | 	} else { | 
 | 		rcu_read_unlock(); | 
 | 		if (flags & XFS_IGET_INCORE) { | 
 | 			error = -ENODATA; | 
 | 			goto out_error_or_again; | 
 | 		} | 
 | 		XFS_STATS_INC(mp, xs_ig_missed); | 
 |  | 
 | 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, | 
 | 							flags, lock_flags); | 
 | 		if (error) | 
 | 			goto out_error_or_again; | 
 | 	} | 
 | 	xfs_perag_put(pag); | 
 |  | 
 | 	*ipp = ip; | 
 |  | 
 | 	/* | 
 | 	 * If we have a real type for an on-disk inode, we can setup the inode | 
 | 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it. | 
 | 	 */ | 
 | 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) | 
 | 		xfs_setup_existing_inode(ip); | 
 | 	return 0; | 
 |  | 
 | out_error_or_again: | 
 | 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { | 
 | 		delay(1); | 
 | 		goto again; | 
 | 	} | 
 | 	xfs_perag_put(pag); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * "Is this a cached inode that's also allocated?" | 
 |  * | 
 |  * Look up an inode by number in the given file system.  If the inode is | 
 |  * in cache and isn't in purgatory, return 1 if the inode is allocated | 
 |  * and 0 if it is not.  For all other cases (not in cache, being torn | 
 |  * down, etc.), return a negative error code. | 
 |  * | 
 |  * The caller has to prevent inode allocation and freeing activity, | 
 |  * presumably by locking the AGI buffer.   This is to ensure that an | 
 |  * inode cannot transition from allocated to freed until the caller is | 
 |  * ready to allow that.  If the inode is in an intermediate state (new, | 
 |  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the | 
 |  * inode is not in the cache, -ENOENT will be returned.  The caller must | 
 |  * deal with these scenarios appropriately. | 
 |  * | 
 |  * This is a specialized use case for the online scrubber; if you're | 
 |  * reading this, you probably want xfs_iget. | 
 |  */ | 
 | int | 
 | xfs_icache_inode_is_allocated( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_trans	*tp, | 
 | 	xfs_ino_t		ino, | 
 | 	bool			*inuse) | 
 | { | 
 | 	struct xfs_inode	*ip; | 
 | 	int			error; | 
 |  | 
 | 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	*inuse = !!(VFS_I(ip)->i_mode); | 
 | 	IRELE(ip); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The inode lookup is done in batches to keep the amount of lock traffic and | 
 |  * radix tree lookups to a minimum. The batch size is a trade off between | 
 |  * lookup reduction and stack usage. This is in the reclaim path, so we can't | 
 |  * be too greedy. | 
 |  */ | 
 | #define XFS_LOOKUP_BATCH	32 | 
 |  | 
 | STATIC int | 
 | xfs_inode_ag_walk_grab( | 
 | 	struct xfs_inode	*ip, | 
 | 	int			flags) | 
 | { | 
 | 	struct inode		*inode = VFS_I(ip); | 
 | 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT); | 
 |  | 
 | 	ASSERT(rcu_read_lock_held()); | 
 |  | 
 | 	/* | 
 | 	 * check for stale RCU freed inode | 
 | 	 * | 
 | 	 * If the inode has been reallocated, it doesn't matter if it's not in | 
 | 	 * the AG we are walking - we are walking for writeback, so if it | 
 | 	 * passes all the "valid inode" checks and is dirty, then we'll write | 
 | 	 * it back anyway.  If it has been reallocated and still being | 
 | 	 * initialised, the XFS_INEW check below will catch it. | 
 | 	 */ | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	if (!ip->i_ino) | 
 | 		goto out_unlock_noent; | 
 |  | 
 | 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */ | 
 | 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || | 
 | 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) | 
 | 		goto out_unlock_noent; | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 |  | 
 | 	/* nothing to sync during shutdown */ | 
 | 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
 | 		return -EFSCORRUPTED; | 
 |  | 
 | 	/* If we can't grab the inode, it must on it's way to reclaim. */ | 
 | 	if (!igrab(inode)) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* inode is valid */ | 
 | 	return 0; | 
 |  | 
 | out_unlock_noent: | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	return -ENOENT; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_inode_ag_walk( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_perag	*pag, | 
 | 	int			(*execute)(struct xfs_inode *ip, int flags, | 
 | 					   void *args), | 
 | 	int			flags, | 
 | 	void			*args, | 
 | 	int			tag, | 
 | 	int			iter_flags) | 
 | { | 
 | 	uint32_t		first_index; | 
 | 	int			last_error = 0; | 
 | 	int			skipped; | 
 | 	int			done; | 
 | 	int			nr_found; | 
 |  | 
 | restart: | 
 | 	done = 0; | 
 | 	skipped = 0; | 
 | 	first_index = 0; | 
 | 	nr_found = 0; | 
 | 	do { | 
 | 		struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | 
 | 		int		error = 0; | 
 | 		int		i; | 
 |  | 
 | 		rcu_read_lock(); | 
 |  | 
 | 		if (tag == -1) | 
 | 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, | 
 | 					(void **)batch, first_index, | 
 | 					XFS_LOOKUP_BATCH); | 
 | 		else | 
 | 			nr_found = radix_tree_gang_lookup_tag( | 
 | 					&pag->pag_ici_root, | 
 | 					(void **) batch, first_index, | 
 | 					XFS_LOOKUP_BATCH, tag); | 
 |  | 
 | 		if (!nr_found) { | 
 | 			rcu_read_unlock(); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Grab the inodes before we drop the lock. if we found | 
 | 		 * nothing, nr == 0 and the loop will be skipped. | 
 | 		 */ | 
 | 		for (i = 0; i < nr_found; i++) { | 
 | 			struct xfs_inode *ip = batch[i]; | 
 |  | 
 | 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags)) | 
 | 				batch[i] = NULL; | 
 |  | 
 | 			/* | 
 | 			 * Update the index for the next lookup. Catch | 
 | 			 * overflows into the next AG range which can occur if | 
 | 			 * we have inodes in the last block of the AG and we | 
 | 			 * are currently pointing to the last inode. | 
 | 			 * | 
 | 			 * Because we may see inodes that are from the wrong AG | 
 | 			 * due to RCU freeing and reallocation, only update the | 
 | 			 * index if it lies in this AG. It was a race that lead | 
 | 			 * us to see this inode, so another lookup from the | 
 | 			 * same index will not find it again. | 
 | 			 */ | 
 | 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) | 
 | 				continue; | 
 | 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
 | 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | 
 | 				done = 1; | 
 | 		} | 
 |  | 
 | 		/* unlock now we've grabbed the inodes. */ | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		for (i = 0; i < nr_found; i++) { | 
 | 			if (!batch[i]) | 
 | 				continue; | 
 | 			if ((iter_flags & XFS_AGITER_INEW_WAIT) && | 
 | 			    xfs_iflags_test(batch[i], XFS_INEW)) | 
 | 				xfs_inew_wait(batch[i]); | 
 | 			error = execute(batch[i], flags, args); | 
 | 			IRELE(batch[i]); | 
 | 			if (error == -EAGAIN) { | 
 | 				skipped++; | 
 | 				continue; | 
 | 			} | 
 | 			if (error && last_error != -EFSCORRUPTED) | 
 | 				last_error = error; | 
 | 		} | 
 |  | 
 | 		/* bail out if the filesystem is corrupted.  */ | 
 | 		if (error == -EFSCORRUPTED) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 	} while (nr_found && !done); | 
 |  | 
 | 	if (skipped) { | 
 | 		delay(1); | 
 | 		goto restart; | 
 | 	} | 
 | 	return last_error; | 
 | } | 
 |  | 
 | /* | 
 |  * Background scanning to trim post-EOF preallocated space. This is queued | 
 |  * based on the 'speculative_prealloc_lifetime' tunable (5m by default). | 
 |  */ | 
 | void | 
 | xfs_queue_eofblocks( | 
 | 	struct xfs_mount *mp) | 
 | { | 
 | 	rcu_read_lock(); | 
 | 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) | 
 | 		queue_delayed_work(mp->m_eofblocks_workqueue, | 
 | 				   &mp->m_eofblocks_work, | 
 | 				   msecs_to_jiffies(xfs_eofb_secs * 1000)); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void | 
 | xfs_eofblocks_worker( | 
 | 	struct work_struct *work) | 
 | { | 
 | 	struct xfs_mount *mp = container_of(to_delayed_work(work), | 
 | 				struct xfs_mount, m_eofblocks_work); | 
 | 	xfs_icache_free_eofblocks(mp, NULL); | 
 | 	xfs_queue_eofblocks(mp); | 
 | } | 
 |  | 
 | /* | 
 |  * Background scanning to trim preallocated CoW space. This is queued | 
 |  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). | 
 |  * (We'll just piggyback on the post-EOF prealloc space workqueue.) | 
 |  */ | 
 | void | 
 | xfs_queue_cowblocks( | 
 | 	struct xfs_mount *mp) | 
 | { | 
 | 	rcu_read_lock(); | 
 | 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) | 
 | 		queue_delayed_work(mp->m_eofblocks_workqueue, | 
 | 				   &mp->m_cowblocks_work, | 
 | 				   msecs_to_jiffies(xfs_cowb_secs * 1000)); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void | 
 | xfs_cowblocks_worker( | 
 | 	struct work_struct *work) | 
 | { | 
 | 	struct xfs_mount *mp = container_of(to_delayed_work(work), | 
 | 				struct xfs_mount, m_cowblocks_work); | 
 | 	xfs_icache_free_cowblocks(mp, NULL); | 
 | 	xfs_queue_cowblocks(mp); | 
 | } | 
 |  | 
 | int | 
 | xfs_inode_ag_iterator_flags( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			(*execute)(struct xfs_inode *ip, int flags, | 
 | 					   void *args), | 
 | 	int			flags, | 
 | 	void			*args, | 
 | 	int			iter_flags) | 
 | { | 
 | 	struct xfs_perag	*pag; | 
 | 	int			error = 0; | 
 | 	int			last_error = 0; | 
 | 	xfs_agnumber_t		ag; | 
 |  | 
 | 	ag = 0; | 
 | 	while ((pag = xfs_perag_get(mp, ag))) { | 
 | 		ag = pag->pag_agno + 1; | 
 | 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1, | 
 | 					  iter_flags); | 
 | 		xfs_perag_put(pag); | 
 | 		if (error) { | 
 | 			last_error = error; | 
 | 			if (error == -EFSCORRUPTED) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	return last_error; | 
 | } | 
 |  | 
 | int | 
 | xfs_inode_ag_iterator( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			(*execute)(struct xfs_inode *ip, int flags, | 
 | 					   void *args), | 
 | 	int			flags, | 
 | 	void			*args) | 
 | { | 
 | 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0); | 
 | } | 
 |  | 
 | int | 
 | xfs_inode_ag_iterator_tag( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			(*execute)(struct xfs_inode *ip, int flags, | 
 | 					   void *args), | 
 | 	int			flags, | 
 | 	void			*args, | 
 | 	int			tag) | 
 | { | 
 | 	struct xfs_perag	*pag; | 
 | 	int			error = 0; | 
 | 	int			last_error = 0; | 
 | 	xfs_agnumber_t		ag; | 
 |  | 
 | 	ag = 0; | 
 | 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) { | 
 | 		ag = pag->pag_agno + 1; | 
 | 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag, | 
 | 					  0); | 
 | 		xfs_perag_put(pag); | 
 | 		if (error) { | 
 | 			last_error = error; | 
 | 			if (error == -EFSCORRUPTED) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	return last_error; | 
 | } | 
 |  | 
 | /* | 
 |  * Grab the inode for reclaim exclusively. | 
 |  * Return 0 if we grabbed it, non-zero otherwise. | 
 |  */ | 
 | STATIC int | 
 | xfs_reclaim_inode_grab( | 
 | 	struct xfs_inode	*ip, | 
 | 	int			flags) | 
 | { | 
 | 	ASSERT(rcu_read_lock_held()); | 
 |  | 
 | 	/* quick check for stale RCU freed inode */ | 
 | 	if (!ip->i_ino) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * If we are asked for non-blocking operation, do unlocked checks to | 
 | 	 * see if the inode already is being flushed or in reclaim to avoid | 
 | 	 * lock traffic. | 
 | 	 */ | 
 | 	if ((flags & SYNC_TRYLOCK) && | 
 | 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * The radix tree lock here protects a thread in xfs_iget from racing | 
 | 	 * with us starting reclaim on the inode.  Once we have the | 
 | 	 * XFS_IRECLAIM flag set it will not touch us. | 
 | 	 * | 
 | 	 * Due to RCU lookup, we may find inodes that have been freed and only | 
 | 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that | 
 | 	 * aren't candidates for reclaim at all, so we must check the | 
 | 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. | 
 | 	 */ | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || | 
 | 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) { | 
 | 		/* not a reclaim candidate. */ | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 | 		return 1; | 
 | 	} | 
 | 	__xfs_iflags_set(ip, XFS_IRECLAIM); | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Inodes in different states need to be treated differently. The following | 
 |  * table lists the inode states and the reclaim actions necessary: | 
 |  * | 
 |  *	inode state	     iflush ret		required action | 
 |  *      ---------------      ----------         --------------- | 
 |  *	bad			-		reclaim | 
 |  *	shutdown		EIO		unpin and reclaim | 
 |  *	clean, unpinned		0		reclaim | 
 |  *	stale, unpinned		0		reclaim | 
 |  *	clean, pinned(*)	0		requeue | 
 |  *	stale, pinned		EAGAIN		requeue | 
 |  *	dirty, async		-		requeue | 
 |  *	dirty, sync		0		reclaim | 
 |  * | 
 |  * (*) dgc: I don't think the clean, pinned state is possible but it gets | 
 |  * handled anyway given the order of checks implemented. | 
 |  * | 
 |  * Also, because we get the flush lock first, we know that any inode that has | 
 |  * been flushed delwri has had the flush completed by the time we check that | 
 |  * the inode is clean. | 
 |  * | 
 |  * Note that because the inode is flushed delayed write by AIL pushing, the | 
 |  * flush lock may already be held here and waiting on it can result in very | 
 |  * long latencies.  Hence for sync reclaims, where we wait on the flush lock, | 
 |  * the caller should push the AIL first before trying to reclaim inodes to | 
 |  * minimise the amount of time spent waiting.  For background relaim, we only | 
 |  * bother to reclaim clean inodes anyway. | 
 |  * | 
 |  * Hence the order of actions after gaining the locks should be: | 
 |  *	bad		=> reclaim | 
 |  *	shutdown	=> unpin and reclaim | 
 |  *	pinned, async	=> requeue | 
 |  *	pinned, sync	=> unpin | 
 |  *	stale		=> reclaim | 
 |  *	clean		=> reclaim | 
 |  *	dirty, async	=> requeue | 
 |  *	dirty, sync	=> flush, wait and reclaim | 
 |  */ | 
 | STATIC int | 
 | xfs_reclaim_inode( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_perag	*pag, | 
 | 	int			sync_mode) | 
 | { | 
 | 	struct xfs_buf		*bp = NULL; | 
 | 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */ | 
 | 	int			error; | 
 |  | 
 | restart: | 
 | 	error = 0; | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	if (!xfs_iflock_nowait(ip)) { | 
 | 		if (!(sync_mode & SYNC_WAIT)) | 
 | 			goto out; | 
 | 		xfs_iflock(ip); | 
 | 	} | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
 | 		xfs_iunpin_wait(ip); | 
 | 		/* xfs_iflush_abort() drops the flush lock */ | 
 | 		xfs_iflush_abort(ip, false); | 
 | 		goto reclaim; | 
 | 	} | 
 | 	if (xfs_ipincount(ip)) { | 
 | 		if (!(sync_mode & SYNC_WAIT)) | 
 | 			goto out_ifunlock; | 
 | 		xfs_iunpin_wait(ip); | 
 | 	} | 
 | 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { | 
 | 		xfs_ifunlock(ip); | 
 | 		goto reclaim; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Never flush out dirty data during non-blocking reclaim, as it would | 
 | 	 * just contend with AIL pushing trying to do the same job. | 
 | 	 */ | 
 | 	if (!(sync_mode & SYNC_WAIT)) | 
 | 		goto out_ifunlock; | 
 |  | 
 | 	/* | 
 | 	 * Now we have an inode that needs flushing. | 
 | 	 * | 
 | 	 * Note that xfs_iflush will never block on the inode buffer lock, as | 
 | 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the | 
 | 	 * ip->i_lock, and we are doing the exact opposite here.  As a result, | 
 | 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would | 
 | 	 * result in an ABBA deadlock with xfs_ifree_cluster(). | 
 | 	 * | 
 | 	 * As xfs_ifree_cluser() must gather all inodes that are active in the | 
 | 	 * cache to mark them stale, if we hit this case we don't actually want | 
 | 	 * to do IO here - we want the inode marked stale so we can simply | 
 | 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the | 
 | 	 * inode, back off and try again.  Hopefully the next pass through will | 
 | 	 * see the stale flag set on the inode. | 
 | 	 */ | 
 | 	error = xfs_iflush(ip, &bp); | 
 | 	if (error == -EAGAIN) { | 
 | 		xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 		/* backoff longer than in xfs_ifree_cluster */ | 
 | 		delay(2); | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	if (!error) { | 
 | 		error = xfs_bwrite(bp); | 
 | 		xfs_buf_relse(bp); | 
 | 	} | 
 |  | 
 | reclaim: | 
 | 	ASSERT(!xfs_isiflocked(ip)); | 
 |  | 
 | 	/* | 
 | 	 * Because we use RCU freeing we need to ensure the inode always appears | 
 | 	 * to be reclaimed with an invalid inode number when in the free state. | 
 | 	 * We do this as early as possible under the ILOCK so that | 
 | 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to | 
 | 	 * detect races with us here. By doing this, we guarantee that once | 
 | 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that | 
 | 	 * it will see either a valid inode that will serialise correctly, or it | 
 | 	 * will see an invalid inode that it can skip. | 
 | 	 */ | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	ip->i_flags = XFS_IRECLAIM; | 
 | 	ip->i_ino = 0; | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 |  | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); | 
 | 	/* | 
 | 	 * Remove the inode from the per-AG radix tree. | 
 | 	 * | 
 | 	 * Because radix_tree_delete won't complain even if the item was never | 
 | 	 * added to the tree assert that it's been there before to catch | 
 | 	 * problems with the inode life time early on. | 
 | 	 */ | 
 | 	spin_lock(&pag->pag_ici_lock); | 
 | 	if (!radix_tree_delete(&pag->pag_ici_root, | 
 | 				XFS_INO_TO_AGINO(ip->i_mount, ino))) | 
 | 		ASSERT(0); | 
 | 	xfs_perag_clear_reclaim_tag(pag); | 
 | 	spin_unlock(&pag->pag_ici_lock); | 
 |  | 
 | 	/* | 
 | 	 * Here we do an (almost) spurious inode lock in order to coordinate | 
 | 	 * with inode cache radix tree lookups.  This is because the lookup | 
 | 	 * can reference the inodes in the cache without taking references. | 
 | 	 * | 
 | 	 * We make that OK here by ensuring that we wait until the inode is | 
 | 	 * unlocked after the lookup before we go ahead and free it. | 
 | 	 */ | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_qm_dqdetach(ip); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	__xfs_inode_free(ip); | 
 | 	return error; | 
 |  | 
 | out_ifunlock: | 
 | 	xfs_ifunlock(ip); | 
 | out: | 
 | 	xfs_iflags_clear(ip, XFS_IRECLAIM); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	/* | 
 | 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in | 
 | 	 * a short while. However, this just burns CPU time scanning the tree | 
 | 	 * waiting for IO to complete and the reclaim work never goes back to | 
 | 	 * the idle state. Instead, return 0 to let the next scheduled | 
 | 	 * background reclaim attempt to reclaim the inode again. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is | 
 |  * corrupted, we still want to try to reclaim all the inodes. If we don't, | 
 |  * then a shut down during filesystem unmount reclaim walk leak all the | 
 |  * unreclaimed inodes. | 
 |  */ | 
 | STATIC int | 
 | xfs_reclaim_inodes_ag( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			flags, | 
 | 	int			*nr_to_scan) | 
 | { | 
 | 	struct xfs_perag	*pag; | 
 | 	int			error = 0; | 
 | 	int			last_error = 0; | 
 | 	xfs_agnumber_t		ag; | 
 | 	int			trylock = flags & SYNC_TRYLOCK; | 
 | 	int			skipped; | 
 |  | 
 | restart: | 
 | 	ag = 0; | 
 | 	skipped = 0; | 
 | 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | 
 | 		unsigned long	first_index = 0; | 
 | 		int		done = 0; | 
 | 		int		nr_found = 0; | 
 |  | 
 | 		ag = pag->pag_agno + 1; | 
 |  | 
 | 		if (trylock) { | 
 | 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { | 
 | 				skipped++; | 
 | 				xfs_perag_put(pag); | 
 | 				continue; | 
 | 			} | 
 | 			first_index = pag->pag_ici_reclaim_cursor; | 
 | 		} else | 
 | 			mutex_lock(&pag->pag_ici_reclaim_lock); | 
 |  | 
 | 		do { | 
 | 			struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | 
 | 			int	i; | 
 |  | 
 | 			rcu_read_lock(); | 
 | 			nr_found = radix_tree_gang_lookup_tag( | 
 | 					&pag->pag_ici_root, | 
 | 					(void **)batch, first_index, | 
 | 					XFS_LOOKUP_BATCH, | 
 | 					XFS_ICI_RECLAIM_TAG); | 
 | 			if (!nr_found) { | 
 | 				done = 1; | 
 | 				rcu_read_unlock(); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Grab the inodes before we drop the lock. if we found | 
 | 			 * nothing, nr == 0 and the loop will be skipped. | 
 | 			 */ | 
 | 			for (i = 0; i < nr_found; i++) { | 
 | 				struct xfs_inode *ip = batch[i]; | 
 |  | 
 | 				if (done || xfs_reclaim_inode_grab(ip, flags)) | 
 | 					batch[i] = NULL; | 
 |  | 
 | 				/* | 
 | 				 * Update the index for the next lookup. Catch | 
 | 				 * overflows into the next AG range which can | 
 | 				 * occur if we have inodes in the last block of | 
 | 				 * the AG and we are currently pointing to the | 
 | 				 * last inode. | 
 | 				 * | 
 | 				 * Because we may see inodes that are from the | 
 | 				 * wrong AG due to RCU freeing and | 
 | 				 * reallocation, only update the index if it | 
 | 				 * lies in this AG. It was a race that lead us | 
 | 				 * to see this inode, so another lookup from | 
 | 				 * the same index will not find it again. | 
 | 				 */ | 
 | 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) != | 
 | 								pag->pag_agno) | 
 | 					continue; | 
 | 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
 | 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | 
 | 					done = 1; | 
 | 			} | 
 |  | 
 | 			/* unlock now we've grabbed the inodes. */ | 
 | 			rcu_read_unlock(); | 
 |  | 
 | 			for (i = 0; i < nr_found; i++) { | 
 | 				if (!batch[i]) | 
 | 					continue; | 
 | 				error = xfs_reclaim_inode(batch[i], pag, flags); | 
 | 				if (error && last_error != -EFSCORRUPTED) | 
 | 					last_error = error; | 
 | 			} | 
 |  | 
 | 			*nr_to_scan -= XFS_LOOKUP_BATCH; | 
 |  | 
 | 			cond_resched(); | 
 |  | 
 | 		} while (nr_found && !done && *nr_to_scan > 0); | 
 |  | 
 | 		if (trylock && !done) | 
 | 			pag->pag_ici_reclaim_cursor = first_index; | 
 | 		else | 
 | 			pag->pag_ici_reclaim_cursor = 0; | 
 | 		mutex_unlock(&pag->pag_ici_reclaim_lock); | 
 | 		xfs_perag_put(pag); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * if we skipped any AG, and we still have scan count remaining, do | 
 | 	 * another pass this time using blocking reclaim semantics (i.e | 
 | 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This | 
 | 	 * ensure that when we get more reclaimers than AGs we block rather | 
 | 	 * than spin trying to execute reclaim. | 
 | 	 */ | 
 | 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { | 
 | 		trylock = 0; | 
 | 		goto restart; | 
 | 	} | 
 | 	return last_error; | 
 | } | 
 |  | 
 | int | 
 | xfs_reclaim_inodes( | 
 | 	xfs_mount_t	*mp, | 
 | 	int		mode) | 
 | { | 
 | 	int		nr_to_scan = INT_MAX; | 
 |  | 
 | 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); | 
 | } | 
 |  | 
 | /* | 
 |  * Scan a certain number of inodes for reclaim. | 
 |  * | 
 |  * When called we make sure that there is a background (fast) inode reclaim in | 
 |  * progress, while we will throttle the speed of reclaim via doing synchronous | 
 |  * reclaim of inodes. That means if we come across dirty inodes, we wait for | 
 |  * them to be cleaned, which we hope will not be very long due to the | 
 |  * background walker having already kicked the IO off on those dirty inodes. | 
 |  */ | 
 | long | 
 | xfs_reclaim_inodes_nr( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			nr_to_scan) | 
 | { | 
 | 	/* kick background reclaimer and push the AIL */ | 
 | 	xfs_reclaim_work_queue(mp); | 
 | 	xfs_ail_push_all(mp->m_ail); | 
 |  | 
 | 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the number of reclaimable inodes in the filesystem for | 
 |  * the shrinker to determine how much to reclaim. | 
 |  */ | 
 | int | 
 | xfs_reclaim_inodes_count( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	struct xfs_perag	*pag; | 
 | 	xfs_agnumber_t		ag = 0; | 
 | 	int			reclaimable = 0; | 
 |  | 
 | 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | 
 | 		ag = pag->pag_agno + 1; | 
 | 		reclaimable += pag->pag_ici_reclaimable; | 
 | 		xfs_perag_put(pag); | 
 | 	} | 
 | 	return reclaimable; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_inode_match_id( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_eofblocks	*eofb) | 
 | { | 
 | 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && | 
 | 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) | 
 | 		return 0; | 
 |  | 
 | 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && | 
 | 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) | 
 | 		return 0; | 
 |  | 
 | 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && | 
 | 	    xfs_get_projid(ip) != eofb->eof_prid) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * A union-based inode filtering algorithm. Process the inode if any of the | 
 |  * criteria match. This is for global/internal scans only. | 
 |  */ | 
 | STATIC int | 
 | xfs_inode_match_id_union( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_eofblocks	*eofb) | 
 | { | 
 | 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && | 
 | 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) | 
 | 		return 1; | 
 |  | 
 | 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && | 
 | 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) | 
 | 		return 1; | 
 |  | 
 | 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && | 
 | 	    xfs_get_projid(ip) == eofb->eof_prid) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_inode_free_eofblocks( | 
 | 	struct xfs_inode	*ip, | 
 | 	int			flags, | 
 | 	void			*args) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct xfs_eofblocks *eofb = args; | 
 | 	int match; | 
 |  | 
 | 	if (!xfs_can_free_eofblocks(ip, false)) { | 
 | 		/* inode could be preallocated or append-only */ | 
 | 		trace_xfs_inode_free_eofblocks_invalid(ip); | 
 | 		xfs_inode_clear_eofblocks_tag(ip); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the mapping is dirty the operation can block and wait for some | 
 | 	 * time. Unless we are waiting, skip it. | 
 | 	 */ | 
 | 	if (!(flags & SYNC_WAIT) && | 
 | 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) | 
 | 		return 0; | 
 |  | 
 | 	if (eofb) { | 
 | 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) | 
 | 			match = xfs_inode_match_id_union(ip, eofb); | 
 | 		else | 
 | 			match = xfs_inode_match_id(ip, eofb); | 
 | 		if (!match) | 
 | 			return 0; | 
 |  | 
 | 		/* skip the inode if the file size is too small */ | 
 | 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && | 
 | 		    XFS_ISIZE(ip) < eofb->eof_min_file_size) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the caller is waiting, return -EAGAIN to keep the background | 
 | 	 * scanner moving and revisit the inode in a subsequent pass. | 
 | 	 */ | 
 | 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { | 
 | 		if (flags & SYNC_WAIT) | 
 | 			ret = -EAGAIN; | 
 | 		return ret; | 
 | 	} | 
 | 	ret = xfs_free_eofblocks(ip); | 
 | 	xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | __xfs_icache_free_eofblocks( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_eofblocks	*eofb, | 
 | 	int			(*execute)(struct xfs_inode *ip, int flags, | 
 | 					   void *args), | 
 | 	int			tag) | 
 | { | 
 | 	int flags = SYNC_TRYLOCK; | 
 |  | 
 | 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) | 
 | 		flags = SYNC_WAIT; | 
 |  | 
 | 	return xfs_inode_ag_iterator_tag(mp, execute, flags, | 
 | 					 eofb, tag); | 
 | } | 
 |  | 
 | int | 
 | xfs_icache_free_eofblocks( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_eofblocks	*eofb) | 
 | { | 
 | 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks, | 
 | 			XFS_ICI_EOFBLOCKS_TAG); | 
 | } | 
 |  | 
 | /* | 
 |  * Run eofblocks scans on the quotas applicable to the inode. For inodes with | 
 |  * multiple quotas, we don't know exactly which quota caused an allocation | 
 |  * failure. We make a best effort by including each quota under low free space | 
 |  * conditions (less than 1% free space) in the scan. | 
 |  */ | 
 | static int | 
 | __xfs_inode_free_quota_eofblocks( | 
 | 	struct xfs_inode	*ip, | 
 | 	int			(*execute)(struct xfs_mount *mp, | 
 | 					   struct xfs_eofblocks	*eofb)) | 
 | { | 
 | 	int scan = 0; | 
 | 	struct xfs_eofblocks eofb = {0}; | 
 | 	struct xfs_dquot *dq; | 
 |  | 
 | 	/* | 
 | 	 * Run a sync scan to increase effectiveness and use the union filter to | 
 | 	 * cover all applicable quotas in a single scan. | 
 | 	 */ | 
 | 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; | 
 |  | 
 | 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { | 
 | 		dq = xfs_inode_dquot(ip, XFS_DQ_USER); | 
 | 		if (dq && xfs_dquot_lowsp(dq)) { | 
 | 			eofb.eof_uid = VFS_I(ip)->i_uid; | 
 | 			eofb.eof_flags |= XFS_EOF_FLAGS_UID; | 
 | 			scan = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { | 
 | 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); | 
 | 		if (dq && xfs_dquot_lowsp(dq)) { | 
 | 			eofb.eof_gid = VFS_I(ip)->i_gid; | 
 | 			eofb.eof_flags |= XFS_EOF_FLAGS_GID; | 
 | 			scan = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (scan) | 
 | 		execute(ip->i_mount, &eofb); | 
 |  | 
 | 	return scan; | 
 | } | 
 |  | 
 | int | 
 | xfs_inode_free_quota_eofblocks( | 
 | 	struct xfs_inode *ip) | 
 | { | 
 | 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); | 
 | } | 
 |  | 
 | static inline unsigned long | 
 | xfs_iflag_for_tag( | 
 | 	int		tag) | 
 | { | 
 | 	switch (tag) { | 
 | 	case XFS_ICI_EOFBLOCKS_TAG: | 
 | 		return XFS_IEOFBLOCKS; | 
 | 	case XFS_ICI_COWBLOCKS_TAG: | 
 | 		return XFS_ICOWBLOCKS; | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | __xfs_inode_set_blocks_tag( | 
 | 	xfs_inode_t	*ip, | 
 | 	void		(*execute)(struct xfs_mount *mp), | 
 | 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, | 
 | 				  int error, unsigned long caller_ip), | 
 | 	int		tag) | 
 | { | 
 | 	struct xfs_mount *mp = ip->i_mount; | 
 | 	struct xfs_perag *pag; | 
 | 	int tagged; | 
 |  | 
 | 	/* | 
 | 	 * Don't bother locking the AG and looking up in the radix trees | 
 | 	 * if we already know that we have the tag set. | 
 | 	 */ | 
 | 	if (ip->i_flags & xfs_iflag_for_tag(tag)) | 
 | 		return; | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	ip->i_flags |= xfs_iflag_for_tag(tag); | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 |  | 
 | 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
 | 	spin_lock(&pag->pag_ici_lock); | 
 |  | 
 | 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag); | 
 | 	radix_tree_tag_set(&pag->pag_ici_root, | 
 | 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); | 
 | 	if (!tagged) { | 
 | 		/* propagate the eofblocks tag up into the perag radix tree */ | 
 | 		spin_lock(&ip->i_mount->m_perag_lock); | 
 | 		radix_tree_tag_set(&ip->i_mount->m_perag_tree, | 
 | 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | 
 | 				   tag); | 
 | 		spin_unlock(&ip->i_mount->m_perag_lock); | 
 |  | 
 | 		/* kick off background trimming */ | 
 | 		execute(ip->i_mount); | 
 |  | 
 | 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&pag->pag_ici_lock); | 
 | 	xfs_perag_put(pag); | 
 | } | 
 |  | 
 | void | 
 | xfs_inode_set_eofblocks_tag( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	trace_xfs_inode_set_eofblocks_tag(ip); | 
 | 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks, | 
 | 			trace_xfs_perag_set_eofblocks, | 
 | 			XFS_ICI_EOFBLOCKS_TAG); | 
 | } | 
 |  | 
 | static void | 
 | __xfs_inode_clear_blocks_tag( | 
 | 	xfs_inode_t	*ip, | 
 | 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, | 
 | 				    int error, unsigned long caller_ip), | 
 | 	int		tag) | 
 | { | 
 | 	struct xfs_mount *mp = ip->i_mount; | 
 | 	struct xfs_perag *pag; | 
 |  | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	ip->i_flags &= ~xfs_iflag_for_tag(tag); | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 |  | 
 | 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
 | 	spin_lock(&pag->pag_ici_lock); | 
 |  | 
 | 	radix_tree_tag_clear(&pag->pag_ici_root, | 
 | 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); | 
 | 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { | 
 | 		/* clear the eofblocks tag from the perag radix tree */ | 
 | 		spin_lock(&ip->i_mount->m_perag_lock); | 
 | 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree, | 
 | 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | 
 | 				     tag); | 
 | 		spin_unlock(&ip->i_mount->m_perag_lock); | 
 | 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&pag->pag_ici_lock); | 
 | 	xfs_perag_put(pag); | 
 | } | 
 |  | 
 | void | 
 | xfs_inode_clear_eofblocks_tag( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	trace_xfs_inode_clear_eofblocks_tag(ip); | 
 | 	return __xfs_inode_clear_blocks_tag(ip, | 
 | 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); | 
 | } | 
 |  | 
 | /* | 
 |  * Set ourselves up to free CoW blocks from this file.  If it's already clean | 
 |  * then we can bail out quickly, but otherwise we must back off if the file | 
 |  * is undergoing some kind of write. | 
 |  */ | 
 | static bool | 
 | xfs_prep_free_cowblocks( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_ifork	*ifp) | 
 | { | 
 | 	/* | 
 | 	 * Just clear the tag if we have an empty cow fork or none at all. It's | 
 | 	 * possible the inode was fully unshared since it was originally tagged. | 
 | 	 */ | 
 | 	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) { | 
 | 		trace_xfs_inode_free_cowblocks_invalid(ip); | 
 | 		xfs_inode_clear_cowblocks_tag(ip); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the mapping is dirty or under writeback we cannot touch the | 
 | 	 * CoW fork.  Leave it alone if we're in the midst of a directio. | 
 | 	 */ | 
 | 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || | 
 | 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || | 
 | 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || | 
 | 	    atomic_read(&VFS_I(ip)->i_dio_count)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Automatic CoW Reservation Freeing | 
 |  * | 
 |  * These functions automatically garbage collect leftover CoW reservations | 
 |  * that were made on behalf of a cowextsize hint when we start to run out | 
 |  * of quota or when the reservations sit around for too long.  If the file | 
 |  * has dirty pages or is undergoing writeback, its CoW reservations will | 
 |  * be retained. | 
 |  * | 
 |  * The actual garbage collection piggybacks off the same code that runs | 
 |  * the speculative EOF preallocation garbage collector. | 
 |  */ | 
 | STATIC int | 
 | xfs_inode_free_cowblocks( | 
 | 	struct xfs_inode	*ip, | 
 | 	int			flags, | 
 | 	void			*args) | 
 | { | 
 | 	struct xfs_eofblocks	*eofb = args; | 
 | 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); | 
 | 	int			match; | 
 | 	int			ret = 0; | 
 |  | 
 | 	if (!xfs_prep_free_cowblocks(ip, ifp)) | 
 | 		return 0; | 
 |  | 
 | 	if (eofb) { | 
 | 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) | 
 | 			match = xfs_inode_match_id_union(ip, eofb); | 
 | 		else | 
 | 			match = xfs_inode_match_id(ip, eofb); | 
 | 		if (!match) | 
 | 			return 0; | 
 |  | 
 | 		/* skip the inode if the file size is too small */ | 
 | 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && | 
 | 		    XFS_ISIZE(ip) < eofb->eof_min_file_size) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* Free the CoW blocks */ | 
 | 	xfs_ilock(ip, XFS_IOLOCK_EXCL); | 
 | 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL); | 
 |  | 
 | 	/* | 
 | 	 * Check again, nobody else should be able to dirty blocks or change | 
 | 	 * the reflink iflag now that we have the first two locks held. | 
 | 	 */ | 
 | 	if (xfs_prep_free_cowblocks(ip, ifp)) | 
 | 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); | 
 |  | 
 | 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); | 
 | 	xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int | 
 | xfs_icache_free_cowblocks( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_eofblocks	*eofb) | 
 | { | 
 | 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks, | 
 | 			XFS_ICI_COWBLOCKS_TAG); | 
 | } | 
 |  | 
 | int | 
 | xfs_inode_free_quota_cowblocks( | 
 | 	struct xfs_inode *ip) | 
 | { | 
 | 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); | 
 | } | 
 |  | 
 | void | 
 | xfs_inode_set_cowblocks_tag( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	trace_xfs_inode_set_cowblocks_tag(ip); | 
 | 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks, | 
 | 			trace_xfs_perag_set_cowblocks, | 
 | 			XFS_ICI_COWBLOCKS_TAG); | 
 | } | 
 |  | 
 | void | 
 | xfs_inode_clear_cowblocks_tag( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	trace_xfs_inode_clear_cowblocks_tag(ip); | 
 | 	return __xfs_inode_clear_blocks_tag(ip, | 
 | 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); | 
 | } |