|  | /* | 
|  | * Block multiqueue core code | 
|  | * | 
|  | * Copyright (C) 2013-2014 Jens Axboe | 
|  | * Copyright (C) 2013-2014 Christoph Hellwig | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/llist.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/sched/sysctl.h> | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include <trace/events/block.h> | 
|  |  | 
|  | #include <linux/blk-mq.h> | 
|  | #include "blk.h" | 
|  | #include "blk-mq.h" | 
|  | #include "blk-mq-tag.h" | 
|  |  | 
|  | static DEFINE_MUTEX(all_q_mutex); | 
|  | static LIST_HEAD(all_q_list); | 
|  |  | 
|  | static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); | 
|  |  | 
|  | static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q, | 
|  | unsigned int cpu) | 
|  | { | 
|  | return per_cpu_ptr(q->queue_ctx, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This assumes per-cpu software queueing queues. They could be per-node | 
|  | * as well, for instance. For now this is hardcoded as-is. Note that we don't | 
|  | * care about preemption, since we know the ctx's are persistent. This does | 
|  | * mean that we can't rely on ctx always matching the currently running CPU. | 
|  | */ | 
|  | static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q) | 
|  | { | 
|  | return __blk_mq_get_ctx(q, get_cpu()); | 
|  | } | 
|  |  | 
|  | static void blk_mq_put_ctx(struct blk_mq_ctx *ctx) | 
|  | { | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if any of the ctx's have pending work in this hardware queue | 
|  | */ | 
|  | static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < hctx->ctx_map.map_size; i++) | 
|  | if (hctx->ctx_map.map[i].word) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, | 
|  | struct blk_mq_ctx *ctx) | 
|  | { | 
|  | return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; | 
|  | } | 
|  |  | 
|  | #define CTX_TO_BIT(hctx, ctx)	\ | 
|  | ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) | 
|  |  | 
|  | /* | 
|  | * Mark this ctx as having pending work in this hardware queue | 
|  | */ | 
|  | static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, | 
|  | struct blk_mq_ctx *ctx) | 
|  | { | 
|  | struct blk_align_bitmap *bm = get_bm(hctx, ctx); | 
|  |  | 
|  | if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) | 
|  | set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); | 
|  | } | 
|  |  | 
|  | static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, | 
|  | struct blk_mq_ctx *ctx) | 
|  | { | 
|  | struct blk_align_bitmap *bm = get_bm(hctx, ctx); | 
|  |  | 
|  | clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); | 
|  | } | 
|  |  | 
|  | static int blk_mq_queue_enter(struct request_queue *q) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | __percpu_counter_add(&q->mq_usage_counter, 1, 1000000); | 
|  | smp_wmb(); | 
|  | /* we have problems to freeze the queue if it's initializing */ | 
|  | if (!blk_queue_bypass(q) || !blk_queue_init_done(q)) | 
|  | return 0; | 
|  |  | 
|  | __percpu_counter_add(&q->mq_usage_counter, -1, 1000000); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq, | 
|  | !blk_queue_bypass(q) || blk_queue_dying(q), | 
|  | *q->queue_lock); | 
|  | /* inc usage with lock hold to avoid freeze_queue runs here */ | 
|  | if (!ret && !blk_queue_dying(q)) | 
|  | __percpu_counter_add(&q->mq_usage_counter, 1, 1000000); | 
|  | else if (blk_queue_dying(q)) | 
|  | ret = -ENODEV; | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void blk_mq_queue_exit(struct request_queue *q) | 
|  | { | 
|  | __percpu_counter_add(&q->mq_usage_counter, -1, 1000000); | 
|  | } | 
|  |  | 
|  | static void __blk_mq_drain_queue(struct request_queue *q) | 
|  | { | 
|  | while (true) { | 
|  | s64 count; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | count = percpu_counter_sum(&q->mq_usage_counter); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | if (count == 0) | 
|  | break; | 
|  | blk_mq_run_queues(q, false); | 
|  | msleep(10); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Guarantee no request is in use, so we can change any data structure of | 
|  | * the queue afterward. | 
|  | */ | 
|  | static void blk_mq_freeze_queue(struct request_queue *q) | 
|  | { | 
|  | bool drain; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | drain = !q->bypass_depth++; | 
|  | queue_flag_set(QUEUE_FLAG_BYPASS, q); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | if (drain) | 
|  | __blk_mq_drain_queue(q); | 
|  | } | 
|  |  | 
|  | void blk_mq_drain_queue(struct request_queue *q) | 
|  | { | 
|  | __blk_mq_drain_queue(q); | 
|  | } | 
|  |  | 
|  | static void blk_mq_unfreeze_queue(struct request_queue *q) | 
|  | { | 
|  | bool wake = false; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | if (!--q->bypass_depth) { | 
|  | queue_flag_clear(QUEUE_FLAG_BYPASS, q); | 
|  | wake = true; | 
|  | } | 
|  | WARN_ON_ONCE(q->bypass_depth < 0); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | if (wake) | 
|  | wake_up_all(&q->mq_freeze_wq); | 
|  | } | 
|  |  | 
|  | bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) | 
|  | { | 
|  | return blk_mq_has_free_tags(hctx->tags); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_can_queue); | 
|  |  | 
|  | static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, | 
|  | struct request *rq, unsigned int rw_flags) | 
|  | { | 
|  | if (blk_queue_io_stat(q)) | 
|  | rw_flags |= REQ_IO_STAT; | 
|  |  | 
|  | INIT_LIST_HEAD(&rq->queuelist); | 
|  | /* csd/requeue_work/fifo_time is initialized before use */ | 
|  | rq->q = q; | 
|  | rq->mq_ctx = ctx; | 
|  | rq->cmd_flags |= rw_flags; | 
|  | /* do not touch atomic flags, it needs atomic ops against the timer */ | 
|  | rq->cpu = -1; | 
|  | INIT_HLIST_NODE(&rq->hash); | 
|  | RB_CLEAR_NODE(&rq->rb_node); | 
|  | rq->rq_disk = NULL; | 
|  | rq->part = NULL; | 
|  | #ifdef CONFIG_BLK_CGROUP | 
|  | rq->rl = NULL; | 
|  | set_start_time_ns(rq); | 
|  | rq->io_start_time_ns = 0; | 
|  | #endif | 
|  | rq->nr_phys_segments = 0; | 
|  | #if defined(CONFIG_BLK_DEV_INTEGRITY) | 
|  | rq->nr_integrity_segments = 0; | 
|  | #endif | 
|  | rq->special = NULL; | 
|  | /* tag was already set */ | 
|  | rq->errors = 0; | 
|  |  | 
|  | rq->extra_len = 0; | 
|  | rq->sense_len = 0; | 
|  | rq->resid_len = 0; | 
|  | rq->sense = NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&rq->timeout_list); | 
|  | rq->end_io = NULL; | 
|  | rq->end_io_data = NULL; | 
|  | rq->next_rq = NULL; | 
|  |  | 
|  | ctx->rq_dispatched[rw_is_sync(rw_flags)]++; | 
|  | } | 
|  |  | 
|  | static struct request * | 
|  | __blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx, | 
|  | struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved) | 
|  | { | 
|  | struct request *rq; | 
|  | unsigned int tag; | 
|  |  | 
|  | tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved); | 
|  | if (tag != BLK_MQ_TAG_FAIL) { | 
|  | rq = hctx->tags->rqs[tag]; | 
|  |  | 
|  | rq->cmd_flags = 0; | 
|  | if (blk_mq_tag_busy(hctx)) { | 
|  | rq->cmd_flags = REQ_MQ_INFLIGHT; | 
|  | atomic_inc(&hctx->nr_active); | 
|  | } | 
|  |  | 
|  | rq->tag = tag; | 
|  | blk_mq_rq_ctx_init(q, ctx, rq, rw); | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, | 
|  | bool reserved) | 
|  | { | 
|  | struct blk_mq_ctx *ctx; | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | struct request *rq; | 
|  |  | 
|  | if (blk_mq_queue_enter(q)) | 
|  | return NULL; | 
|  |  | 
|  | ctx = blk_mq_get_ctx(q); | 
|  | hctx = q->mq_ops->map_queue(q, ctx->cpu); | 
|  |  | 
|  | rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp & ~__GFP_WAIT, | 
|  | reserved); | 
|  | if (!rq && (gfp & __GFP_WAIT)) { | 
|  | __blk_mq_run_hw_queue(hctx); | 
|  | blk_mq_put_ctx(ctx); | 
|  |  | 
|  | ctx = blk_mq_get_ctx(q); | 
|  | hctx = q->mq_ops->map_queue(q, ctx->cpu); | 
|  | rq =  __blk_mq_alloc_request(q, hctx, ctx, rw, gfp, reserved); | 
|  | } | 
|  | blk_mq_put_ctx(ctx); | 
|  | return rq; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_alloc_request); | 
|  |  | 
|  | static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, | 
|  | struct blk_mq_ctx *ctx, struct request *rq) | 
|  | { | 
|  | const int tag = rq->tag; | 
|  | struct request_queue *q = rq->q; | 
|  |  | 
|  | if (rq->cmd_flags & REQ_MQ_INFLIGHT) | 
|  | atomic_dec(&hctx->nr_active); | 
|  |  | 
|  | clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); | 
|  | blk_mq_put_tag(hctx, tag, &ctx->last_tag); | 
|  | blk_mq_queue_exit(q); | 
|  | } | 
|  |  | 
|  | void blk_mq_free_request(struct request *rq) | 
|  | { | 
|  | struct blk_mq_ctx *ctx = rq->mq_ctx; | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | struct request_queue *q = rq->q; | 
|  |  | 
|  | ctx->rq_completed[rq_is_sync(rq)]++; | 
|  |  | 
|  | hctx = q->mq_ops->map_queue(q, ctx->cpu); | 
|  | __blk_mq_free_request(hctx, ctx, rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clone all relevant state from a request that has been put on hold in | 
|  | * the flush state machine into the preallocated flush request that hangs | 
|  | * off the request queue. | 
|  | * | 
|  | * For a driver the flush request should be invisible, that's why we are | 
|  | * impersonating the original request here. | 
|  | */ | 
|  | void blk_mq_clone_flush_request(struct request *flush_rq, | 
|  | struct request *orig_rq) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx = | 
|  | orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu); | 
|  |  | 
|  | flush_rq->mq_ctx = orig_rq->mq_ctx; | 
|  | flush_rq->tag = orig_rq->tag; | 
|  | memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq), | 
|  | hctx->cmd_size); | 
|  | } | 
|  |  | 
|  | inline void __blk_mq_end_io(struct request *rq, int error) | 
|  | { | 
|  | blk_account_io_done(rq); | 
|  |  | 
|  | if (rq->end_io) { | 
|  | rq->end_io(rq, error); | 
|  | } else { | 
|  | if (unlikely(blk_bidi_rq(rq))) | 
|  | blk_mq_free_request(rq->next_rq); | 
|  | blk_mq_free_request(rq); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__blk_mq_end_io); | 
|  |  | 
|  | void blk_mq_end_io(struct request *rq, int error) | 
|  | { | 
|  | if (blk_update_request(rq, error, blk_rq_bytes(rq))) | 
|  | BUG(); | 
|  | __blk_mq_end_io(rq, error); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_end_io); | 
|  |  | 
|  | static void __blk_mq_complete_request_remote(void *data) | 
|  | { | 
|  | struct request *rq = data; | 
|  |  | 
|  | rq->q->softirq_done_fn(rq); | 
|  | } | 
|  |  | 
|  | static void blk_mq_ipi_complete_request(struct request *rq) | 
|  | { | 
|  | struct blk_mq_ctx *ctx = rq->mq_ctx; | 
|  | bool shared = false; | 
|  | int cpu; | 
|  |  | 
|  | if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { | 
|  | rq->q->softirq_done_fn(rq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) | 
|  | shared = cpus_share_cache(cpu, ctx->cpu); | 
|  |  | 
|  | if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { | 
|  | rq->csd.func = __blk_mq_complete_request_remote; | 
|  | rq->csd.info = rq; | 
|  | rq->csd.flags = 0; | 
|  | smp_call_function_single_async(ctx->cpu, &rq->csd); | 
|  | } else { | 
|  | rq->q->softirq_done_fn(rq); | 
|  | } | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | void __blk_mq_complete_request(struct request *rq) | 
|  | { | 
|  | struct request_queue *q = rq->q; | 
|  |  | 
|  | if (!q->softirq_done_fn) | 
|  | blk_mq_end_io(rq, rq->errors); | 
|  | else | 
|  | blk_mq_ipi_complete_request(rq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_mq_complete_request - end I/O on a request | 
|  | * @rq:		the request being processed | 
|  | * | 
|  | * Description: | 
|  | *	Ends all I/O on a request. It does not handle partial completions. | 
|  | *	The actual completion happens out-of-order, through a IPI handler. | 
|  | **/ | 
|  | void blk_mq_complete_request(struct request *rq) | 
|  | { | 
|  | struct request_queue *q = rq->q; | 
|  |  | 
|  | if (unlikely(blk_should_fake_timeout(q))) | 
|  | return; | 
|  | if (!blk_mark_rq_complete(rq)) | 
|  | __blk_mq_complete_request(rq); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_complete_request); | 
|  |  | 
|  | static void blk_mq_start_request(struct request *rq, bool last) | 
|  | { | 
|  | struct request_queue *q = rq->q; | 
|  |  | 
|  | trace_block_rq_issue(q, rq); | 
|  |  | 
|  | rq->resid_len = blk_rq_bytes(rq); | 
|  | if (unlikely(blk_bidi_rq(rq))) | 
|  | rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); | 
|  |  | 
|  | /* | 
|  | * Just mark start time and set the started bit. Due to memory | 
|  | * ordering, we know we'll see the correct deadline as long as | 
|  | * REQ_ATOMIC_STARTED is seen. Use the default queue timeout, | 
|  | * unless one has been set in the request. | 
|  | */ | 
|  | if (!rq->timeout) | 
|  | rq->deadline = jiffies + q->rq_timeout; | 
|  | else | 
|  | rq->deadline = jiffies + rq->timeout; | 
|  |  | 
|  | /* | 
|  | * Mark us as started and clear complete. Complete might have been | 
|  | * set if requeue raced with timeout, which then marked it as | 
|  | * complete. So be sure to clear complete again when we start | 
|  | * the request, otherwise we'll ignore the completion event. | 
|  | */ | 
|  | if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) | 
|  | set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); | 
|  | if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) | 
|  | clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); | 
|  |  | 
|  | if (q->dma_drain_size && blk_rq_bytes(rq)) { | 
|  | /* | 
|  | * Make sure space for the drain appears.  We know we can do | 
|  | * this because max_hw_segments has been adjusted to be one | 
|  | * fewer than the device can handle. | 
|  | */ | 
|  | rq->nr_phys_segments++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flag the last request in the series so that drivers know when IO | 
|  | * should be kicked off, if they don't do it on a per-request basis. | 
|  | * | 
|  | * Note: the flag isn't the only condition drivers should do kick off. | 
|  | * If drive is busy, the last request might not have the bit set. | 
|  | */ | 
|  | if (last) | 
|  | rq->cmd_flags |= REQ_END; | 
|  | } | 
|  |  | 
|  | static void __blk_mq_requeue_request(struct request *rq) | 
|  | { | 
|  | struct request_queue *q = rq->q; | 
|  |  | 
|  | trace_block_rq_requeue(q, rq); | 
|  | clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); | 
|  |  | 
|  | rq->cmd_flags &= ~REQ_END; | 
|  |  | 
|  | if (q->dma_drain_size && blk_rq_bytes(rq)) | 
|  | rq->nr_phys_segments--; | 
|  | } | 
|  |  | 
|  | void blk_mq_requeue_request(struct request *rq) | 
|  | { | 
|  | __blk_mq_requeue_request(rq); | 
|  | blk_clear_rq_complete(rq); | 
|  |  | 
|  | BUG_ON(blk_queued_rq(rq)); | 
|  | blk_mq_add_to_requeue_list(rq, true); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_requeue_request); | 
|  |  | 
|  | static void blk_mq_requeue_work(struct work_struct *work) | 
|  | { | 
|  | struct request_queue *q = | 
|  | container_of(work, struct request_queue, requeue_work); | 
|  | LIST_HEAD(rq_list); | 
|  | struct request *rq, *next; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&q->requeue_lock, flags); | 
|  | list_splice_init(&q->requeue_list, &rq_list); | 
|  | spin_unlock_irqrestore(&q->requeue_lock, flags); | 
|  |  | 
|  | list_for_each_entry_safe(rq, next, &rq_list, queuelist) { | 
|  | if (!(rq->cmd_flags & REQ_SOFTBARRIER)) | 
|  | continue; | 
|  |  | 
|  | rq->cmd_flags &= ~REQ_SOFTBARRIER; | 
|  | list_del_init(&rq->queuelist); | 
|  | blk_mq_insert_request(rq, true, false, false); | 
|  | } | 
|  |  | 
|  | while (!list_empty(&rq_list)) { | 
|  | rq = list_entry(rq_list.next, struct request, queuelist); | 
|  | list_del_init(&rq->queuelist); | 
|  | blk_mq_insert_request(rq, false, false, false); | 
|  | } | 
|  |  | 
|  | blk_mq_run_queues(q, false); | 
|  | } | 
|  |  | 
|  | void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) | 
|  | { | 
|  | struct request_queue *q = rq->q; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * We abuse this flag that is otherwise used by the I/O scheduler to | 
|  | * request head insertation from the workqueue. | 
|  | */ | 
|  | BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); | 
|  |  | 
|  | spin_lock_irqsave(&q->requeue_lock, flags); | 
|  | if (at_head) { | 
|  | rq->cmd_flags |= REQ_SOFTBARRIER; | 
|  | list_add(&rq->queuelist, &q->requeue_list); | 
|  | } else { | 
|  | list_add_tail(&rq->queuelist, &q->requeue_list); | 
|  | } | 
|  | spin_unlock_irqrestore(&q->requeue_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_add_to_requeue_list); | 
|  |  | 
|  | void blk_mq_kick_requeue_list(struct request_queue *q) | 
|  | { | 
|  | kblockd_schedule_work(&q->requeue_work); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_kick_requeue_list); | 
|  |  | 
|  | struct request *blk_mq_tag_to_rq(struct blk_mq_hw_ctx *hctx, unsigned int tag) | 
|  | { | 
|  | struct request_queue *q = hctx->queue; | 
|  |  | 
|  | if ((q->flush_rq->cmd_flags & REQ_FLUSH_SEQ) && | 
|  | q->flush_rq->tag == tag) | 
|  | return q->flush_rq; | 
|  |  | 
|  | return hctx->tags->rqs[tag]; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_tag_to_rq); | 
|  |  | 
|  | struct blk_mq_timeout_data { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | unsigned long *next; | 
|  | unsigned int *next_set; | 
|  | }; | 
|  |  | 
|  | static void blk_mq_timeout_check(void *__data, unsigned long *free_tags) | 
|  | { | 
|  | struct blk_mq_timeout_data *data = __data; | 
|  | struct blk_mq_hw_ctx *hctx = data->hctx; | 
|  | unsigned int tag; | 
|  |  | 
|  | /* It may not be in flight yet (this is where | 
|  | * the REQ_ATOMIC_STARTED flag comes in). The requests are | 
|  | * statically allocated, so we know it's always safe to access the | 
|  | * memory associated with a bit offset into ->rqs[]. | 
|  | */ | 
|  | tag = 0; | 
|  | do { | 
|  | struct request *rq; | 
|  |  | 
|  | tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag); | 
|  | if (tag >= hctx->tags->nr_tags) | 
|  | break; | 
|  |  | 
|  | rq = blk_mq_tag_to_rq(hctx, tag++); | 
|  | if (rq->q != hctx->queue) | 
|  | continue; | 
|  | if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) | 
|  | continue; | 
|  |  | 
|  | blk_rq_check_expired(rq, data->next, data->next_set); | 
|  | } while (1); | 
|  | } | 
|  |  | 
|  | static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx, | 
|  | unsigned long *next, | 
|  | unsigned int *next_set) | 
|  | { | 
|  | struct blk_mq_timeout_data data = { | 
|  | .hctx		= hctx, | 
|  | .next		= next, | 
|  | .next_set	= next_set, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Ask the tagging code to iterate busy requests, so we can | 
|  | * check them for timeout. | 
|  | */ | 
|  | blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data); | 
|  | } | 
|  |  | 
|  | static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq) | 
|  | { | 
|  | struct request_queue *q = rq->q; | 
|  |  | 
|  | /* | 
|  | * We know that complete is set at this point. If STARTED isn't set | 
|  | * anymore, then the request isn't active and the "timeout" should | 
|  | * just be ignored. This can happen due to the bitflag ordering. | 
|  | * Timeout first checks if STARTED is set, and if it is, assumes | 
|  | * the request is active. But if we race with completion, then | 
|  | * we both flags will get cleared. So check here again, and ignore | 
|  | * a timeout event with a request that isn't active. | 
|  | */ | 
|  | if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) | 
|  | return BLK_EH_NOT_HANDLED; | 
|  |  | 
|  | if (!q->mq_ops->timeout) | 
|  | return BLK_EH_RESET_TIMER; | 
|  |  | 
|  | return q->mq_ops->timeout(rq); | 
|  | } | 
|  |  | 
|  | static void blk_mq_rq_timer(unsigned long data) | 
|  | { | 
|  | struct request_queue *q = (struct request_queue *) data; | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | unsigned long next = 0; | 
|  | int i, next_set = 0; | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) { | 
|  | /* | 
|  | * If not software queues are currently mapped to this | 
|  | * hardware queue, there's nothing to check | 
|  | */ | 
|  | if (!hctx->nr_ctx || !hctx->tags) | 
|  | continue; | 
|  |  | 
|  | blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set); | 
|  | } | 
|  |  | 
|  | if (next_set) { | 
|  | next = blk_rq_timeout(round_jiffies_up(next)); | 
|  | mod_timer(&q->timeout, next); | 
|  | } else { | 
|  | queue_for_each_hw_ctx(q, hctx, i) | 
|  | blk_mq_tag_idle(hctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reverse check our software queue for entries that we could potentially | 
|  | * merge with. Currently includes a hand-wavy stop count of 8, to not spend | 
|  | * too much time checking for merges. | 
|  | */ | 
|  | static bool blk_mq_attempt_merge(struct request_queue *q, | 
|  | struct blk_mq_ctx *ctx, struct bio *bio) | 
|  | { | 
|  | struct request *rq; | 
|  | int checked = 8; | 
|  |  | 
|  | list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { | 
|  | int el_ret; | 
|  |  | 
|  | if (!checked--) | 
|  | break; | 
|  |  | 
|  | if (!blk_rq_merge_ok(rq, bio)) | 
|  | continue; | 
|  |  | 
|  | el_ret = blk_try_merge(rq, bio); | 
|  | if (el_ret == ELEVATOR_BACK_MERGE) { | 
|  | if (bio_attempt_back_merge(q, rq, bio)) { | 
|  | ctx->rq_merged++; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } else if (el_ret == ELEVATOR_FRONT_MERGE) { | 
|  | if (bio_attempt_front_merge(q, rq, bio)) { | 
|  | ctx->rq_merged++; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process software queues that have been marked busy, splicing them | 
|  | * to the for-dispatch | 
|  | */ | 
|  | static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) | 
|  | { | 
|  | struct blk_mq_ctx *ctx; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < hctx->ctx_map.map_size; i++) { | 
|  | struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; | 
|  | unsigned int off, bit; | 
|  |  | 
|  | if (!bm->word) | 
|  | continue; | 
|  |  | 
|  | bit = 0; | 
|  | off = i * hctx->ctx_map.bits_per_word; | 
|  | do { | 
|  | bit = find_next_bit(&bm->word, bm->depth, bit); | 
|  | if (bit >= bm->depth) | 
|  | break; | 
|  |  | 
|  | ctx = hctx->ctxs[bit + off]; | 
|  | clear_bit(bit, &bm->word); | 
|  | spin_lock(&ctx->lock); | 
|  | list_splice_tail_init(&ctx->rq_list, list); | 
|  | spin_unlock(&ctx->lock); | 
|  |  | 
|  | bit++; | 
|  | } while (1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run this hardware queue, pulling any software queues mapped to it in. | 
|  | * Note that this function currently has various problems around ordering | 
|  | * of IO. In particular, we'd like FIFO behaviour on handling existing | 
|  | * items on the hctx->dispatch list. Ignore that for now. | 
|  | */ | 
|  | static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) | 
|  | { | 
|  | struct request_queue *q = hctx->queue; | 
|  | struct request *rq; | 
|  | LIST_HEAD(rq_list); | 
|  | int queued; | 
|  |  | 
|  | WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); | 
|  |  | 
|  | if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) | 
|  | return; | 
|  |  | 
|  | hctx->run++; | 
|  |  | 
|  | /* | 
|  | * Touch any software queue that has pending entries. | 
|  | */ | 
|  | flush_busy_ctxs(hctx, &rq_list); | 
|  |  | 
|  | /* | 
|  | * If we have previous entries on our dispatch list, grab them | 
|  | * and stuff them at the front for more fair dispatch. | 
|  | */ | 
|  | if (!list_empty_careful(&hctx->dispatch)) { | 
|  | spin_lock(&hctx->lock); | 
|  | if (!list_empty(&hctx->dispatch)) | 
|  | list_splice_init(&hctx->dispatch, &rq_list); | 
|  | spin_unlock(&hctx->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now process all the entries, sending them to the driver. | 
|  | */ | 
|  | queued = 0; | 
|  | while (!list_empty(&rq_list)) { | 
|  | int ret; | 
|  |  | 
|  | rq = list_first_entry(&rq_list, struct request, queuelist); | 
|  | list_del_init(&rq->queuelist); | 
|  |  | 
|  | blk_mq_start_request(rq, list_empty(&rq_list)); | 
|  |  | 
|  | ret = q->mq_ops->queue_rq(hctx, rq); | 
|  | switch (ret) { | 
|  | case BLK_MQ_RQ_QUEUE_OK: | 
|  | queued++; | 
|  | continue; | 
|  | case BLK_MQ_RQ_QUEUE_BUSY: | 
|  | list_add(&rq->queuelist, &rq_list); | 
|  | __blk_mq_requeue_request(rq); | 
|  | break; | 
|  | default: | 
|  | pr_err("blk-mq: bad return on queue: %d\n", ret); | 
|  | case BLK_MQ_RQ_QUEUE_ERROR: | 
|  | rq->errors = -EIO; | 
|  | blk_mq_end_io(rq, rq->errors); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret == BLK_MQ_RQ_QUEUE_BUSY) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!queued) | 
|  | hctx->dispatched[0]++; | 
|  | else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) | 
|  | hctx->dispatched[ilog2(queued) + 1]++; | 
|  |  | 
|  | /* | 
|  | * Any items that need requeuing? Stuff them into hctx->dispatch, | 
|  | * that is where we will continue on next queue run. | 
|  | */ | 
|  | if (!list_empty(&rq_list)) { | 
|  | spin_lock(&hctx->lock); | 
|  | list_splice(&rq_list, &hctx->dispatch); | 
|  | spin_unlock(&hctx->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It'd be great if the workqueue API had a way to pass | 
|  | * in a mask and had some smarts for more clever placement. | 
|  | * For now we just round-robin here, switching for every | 
|  | * BLK_MQ_CPU_WORK_BATCH queued items. | 
|  | */ | 
|  | static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) | 
|  | { | 
|  | int cpu = hctx->next_cpu; | 
|  |  | 
|  | if (--hctx->next_cpu_batch <= 0) { | 
|  | int next_cpu; | 
|  |  | 
|  | next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); | 
|  | if (next_cpu >= nr_cpu_ids) | 
|  | next_cpu = cpumask_first(hctx->cpumask); | 
|  |  | 
|  | hctx->next_cpu = next_cpu; | 
|  | hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; | 
|  | } | 
|  |  | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) | 
|  | { | 
|  | if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) | 
|  | return; | 
|  |  | 
|  | if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask)) | 
|  | __blk_mq_run_hw_queue(hctx); | 
|  | else if (hctx->queue->nr_hw_queues == 1) | 
|  | kblockd_schedule_delayed_work(&hctx->run_work, 0); | 
|  | else { | 
|  | unsigned int cpu; | 
|  |  | 
|  | cpu = blk_mq_hctx_next_cpu(hctx); | 
|  | kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void blk_mq_run_queues(struct request_queue *q, bool async) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | int i; | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) { | 
|  | if ((!blk_mq_hctx_has_pending(hctx) && | 
|  | list_empty_careful(&hctx->dispatch)) || | 
|  | test_bit(BLK_MQ_S_STOPPED, &hctx->state)) | 
|  | continue; | 
|  |  | 
|  | preempt_disable(); | 
|  | blk_mq_run_hw_queue(hctx, async); | 
|  | preempt_enable(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_run_queues); | 
|  |  | 
|  | void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) | 
|  | { | 
|  | cancel_delayed_work(&hctx->run_work); | 
|  | cancel_delayed_work(&hctx->delay_work); | 
|  | set_bit(BLK_MQ_S_STOPPED, &hctx->state); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_stop_hw_queue); | 
|  |  | 
|  | void blk_mq_stop_hw_queues(struct request_queue *q) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | int i; | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) | 
|  | blk_mq_stop_hw_queue(hctx); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_stop_hw_queues); | 
|  |  | 
|  | void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) | 
|  | { | 
|  | clear_bit(BLK_MQ_S_STOPPED, &hctx->state); | 
|  |  | 
|  | preempt_disable(); | 
|  | __blk_mq_run_hw_queue(hctx); | 
|  | preempt_enable(); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_start_hw_queue); | 
|  |  | 
|  | void blk_mq_start_hw_queues(struct request_queue *q) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | int i; | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) | 
|  | blk_mq_start_hw_queue(hctx); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_start_hw_queues); | 
|  |  | 
|  |  | 
|  | void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | int i; | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) { | 
|  | if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) | 
|  | continue; | 
|  |  | 
|  | clear_bit(BLK_MQ_S_STOPPED, &hctx->state); | 
|  | preempt_disable(); | 
|  | blk_mq_run_hw_queue(hctx, async); | 
|  | preempt_enable(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); | 
|  |  | 
|  | static void blk_mq_run_work_fn(struct work_struct *work) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  |  | 
|  | hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); | 
|  |  | 
|  | __blk_mq_run_hw_queue(hctx); | 
|  | } | 
|  |  | 
|  | static void blk_mq_delay_work_fn(struct work_struct *work) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  |  | 
|  | hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); | 
|  |  | 
|  | if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) | 
|  | __blk_mq_run_hw_queue(hctx); | 
|  | } | 
|  |  | 
|  | void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) | 
|  | { | 
|  | unsigned long tmo = msecs_to_jiffies(msecs); | 
|  |  | 
|  | if (hctx->queue->nr_hw_queues == 1) | 
|  | kblockd_schedule_delayed_work(&hctx->delay_work, tmo); | 
|  | else { | 
|  | unsigned int cpu; | 
|  |  | 
|  | cpu = blk_mq_hctx_next_cpu(hctx); | 
|  | kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_delay_queue); | 
|  |  | 
|  | static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, | 
|  | struct request *rq, bool at_head) | 
|  | { | 
|  | struct blk_mq_ctx *ctx = rq->mq_ctx; | 
|  |  | 
|  | trace_block_rq_insert(hctx->queue, rq); | 
|  |  | 
|  | if (at_head) | 
|  | list_add(&rq->queuelist, &ctx->rq_list); | 
|  | else | 
|  | list_add_tail(&rq->queuelist, &ctx->rq_list); | 
|  |  | 
|  | blk_mq_hctx_mark_pending(hctx, ctx); | 
|  |  | 
|  | /* | 
|  | * We do this early, to ensure we are on the right CPU. | 
|  | */ | 
|  | blk_add_timer(rq); | 
|  | } | 
|  |  | 
|  | void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, | 
|  | bool async) | 
|  | { | 
|  | struct request_queue *q = rq->q; | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; | 
|  |  | 
|  | current_ctx = blk_mq_get_ctx(q); | 
|  | if (!cpu_online(ctx->cpu)) | 
|  | rq->mq_ctx = ctx = current_ctx; | 
|  |  | 
|  | hctx = q->mq_ops->map_queue(q, ctx->cpu); | 
|  |  | 
|  | if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) && | 
|  | !(rq->cmd_flags & (REQ_FLUSH_SEQ))) { | 
|  | blk_insert_flush(rq); | 
|  | } else { | 
|  | spin_lock(&ctx->lock); | 
|  | __blk_mq_insert_request(hctx, rq, at_head); | 
|  | spin_unlock(&ctx->lock); | 
|  | } | 
|  |  | 
|  | if (run_queue) | 
|  | blk_mq_run_hw_queue(hctx, async); | 
|  |  | 
|  | blk_mq_put_ctx(current_ctx); | 
|  | } | 
|  |  | 
|  | static void blk_mq_insert_requests(struct request_queue *q, | 
|  | struct blk_mq_ctx *ctx, | 
|  | struct list_head *list, | 
|  | int depth, | 
|  | bool from_schedule) | 
|  |  | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | struct blk_mq_ctx *current_ctx; | 
|  |  | 
|  | trace_block_unplug(q, depth, !from_schedule); | 
|  |  | 
|  | current_ctx = blk_mq_get_ctx(q); | 
|  |  | 
|  | if (!cpu_online(ctx->cpu)) | 
|  | ctx = current_ctx; | 
|  | hctx = q->mq_ops->map_queue(q, ctx->cpu); | 
|  |  | 
|  | /* | 
|  | * preemption doesn't flush plug list, so it's possible ctx->cpu is | 
|  | * offline now | 
|  | */ | 
|  | spin_lock(&ctx->lock); | 
|  | while (!list_empty(list)) { | 
|  | struct request *rq; | 
|  |  | 
|  | rq = list_first_entry(list, struct request, queuelist); | 
|  | list_del_init(&rq->queuelist); | 
|  | rq->mq_ctx = ctx; | 
|  | __blk_mq_insert_request(hctx, rq, false); | 
|  | } | 
|  | spin_unlock(&ctx->lock); | 
|  |  | 
|  | blk_mq_run_hw_queue(hctx, from_schedule); | 
|  | blk_mq_put_ctx(current_ctx); | 
|  | } | 
|  |  | 
|  | static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) | 
|  | { | 
|  | struct request *rqa = container_of(a, struct request, queuelist); | 
|  | struct request *rqb = container_of(b, struct request, queuelist); | 
|  |  | 
|  | return !(rqa->mq_ctx < rqb->mq_ctx || | 
|  | (rqa->mq_ctx == rqb->mq_ctx && | 
|  | blk_rq_pos(rqa) < blk_rq_pos(rqb))); | 
|  | } | 
|  |  | 
|  | void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) | 
|  | { | 
|  | struct blk_mq_ctx *this_ctx; | 
|  | struct request_queue *this_q; | 
|  | struct request *rq; | 
|  | LIST_HEAD(list); | 
|  | LIST_HEAD(ctx_list); | 
|  | unsigned int depth; | 
|  |  | 
|  | list_splice_init(&plug->mq_list, &list); | 
|  |  | 
|  | list_sort(NULL, &list, plug_ctx_cmp); | 
|  |  | 
|  | this_q = NULL; | 
|  | this_ctx = NULL; | 
|  | depth = 0; | 
|  |  | 
|  | while (!list_empty(&list)) { | 
|  | rq = list_entry_rq(list.next); | 
|  | list_del_init(&rq->queuelist); | 
|  | BUG_ON(!rq->q); | 
|  | if (rq->mq_ctx != this_ctx) { | 
|  | if (this_ctx) { | 
|  | blk_mq_insert_requests(this_q, this_ctx, | 
|  | &ctx_list, depth, | 
|  | from_schedule); | 
|  | } | 
|  |  | 
|  | this_ctx = rq->mq_ctx; | 
|  | this_q = rq->q; | 
|  | depth = 0; | 
|  | } | 
|  |  | 
|  | depth++; | 
|  | list_add_tail(&rq->queuelist, &ctx_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If 'this_ctx' is set, we know we have entries to complete | 
|  | * on 'ctx_list'. Do those. | 
|  | */ | 
|  | if (this_ctx) { | 
|  | blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, | 
|  | from_schedule); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) | 
|  | { | 
|  | init_request_from_bio(rq, bio); | 
|  |  | 
|  | if (blk_do_io_stat(rq)) { | 
|  | rq->start_time = jiffies; | 
|  | blk_account_io_start(rq, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, | 
|  | struct blk_mq_ctx *ctx, | 
|  | struct request *rq, struct bio *bio) | 
|  | { | 
|  | struct request_queue *q = hctx->queue; | 
|  |  | 
|  | if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) { | 
|  | blk_mq_bio_to_request(rq, bio); | 
|  | spin_lock(&ctx->lock); | 
|  | insert_rq: | 
|  | __blk_mq_insert_request(hctx, rq, false); | 
|  | spin_unlock(&ctx->lock); | 
|  | return false; | 
|  | } else { | 
|  | spin_lock(&ctx->lock); | 
|  | if (!blk_mq_attempt_merge(q, ctx, bio)) { | 
|  | blk_mq_bio_to_request(rq, bio); | 
|  | goto insert_rq; | 
|  | } | 
|  |  | 
|  | spin_unlock(&ctx->lock); | 
|  | __blk_mq_free_request(hctx, ctx, rq); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | struct blk_map_ctx { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | struct blk_mq_ctx *ctx; | 
|  | }; | 
|  |  | 
|  | static struct request *blk_mq_map_request(struct request_queue *q, | 
|  | struct bio *bio, | 
|  | struct blk_map_ctx *data) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | struct blk_mq_ctx *ctx; | 
|  | struct request *rq; | 
|  | int rw = bio_data_dir(bio); | 
|  |  | 
|  | if (unlikely(blk_mq_queue_enter(q))) { | 
|  | bio_endio(bio, -EIO); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ctx = blk_mq_get_ctx(q); | 
|  | hctx = q->mq_ops->map_queue(q, ctx->cpu); | 
|  |  | 
|  | if (rw_is_sync(bio->bi_rw)) | 
|  | rw |= REQ_SYNC; | 
|  |  | 
|  | trace_block_getrq(q, bio, rw); | 
|  | rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false); | 
|  | if (unlikely(!rq)) { | 
|  | __blk_mq_run_hw_queue(hctx); | 
|  | blk_mq_put_ctx(ctx); | 
|  | trace_block_sleeprq(q, bio, rw); | 
|  |  | 
|  | ctx = blk_mq_get_ctx(q); | 
|  | hctx = q->mq_ops->map_queue(q, ctx->cpu); | 
|  | rq = __blk_mq_alloc_request(q, hctx, ctx, rw, | 
|  | __GFP_WAIT|GFP_ATOMIC, false); | 
|  | } | 
|  |  | 
|  | hctx->queued++; | 
|  | data->hctx = hctx; | 
|  | data->ctx = ctx; | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Multiple hardware queue variant. This will not use per-process plugs, | 
|  | * but will attempt to bypass the hctx queueing if we can go straight to | 
|  | * hardware for SYNC IO. | 
|  | */ | 
|  | static void blk_mq_make_request(struct request_queue *q, struct bio *bio) | 
|  | { | 
|  | const int is_sync = rw_is_sync(bio->bi_rw); | 
|  | const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); | 
|  | struct blk_map_ctx data; | 
|  | struct request *rq; | 
|  |  | 
|  | blk_queue_bounce(q, &bio); | 
|  |  | 
|  | if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { | 
|  | bio_endio(bio, -EIO); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rq = blk_mq_map_request(q, bio, &data); | 
|  | if (unlikely(!rq)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(is_flush_fua)) { | 
|  | blk_mq_bio_to_request(rq, bio); | 
|  | blk_insert_flush(rq); | 
|  | goto run_queue; | 
|  | } | 
|  |  | 
|  | if (is_sync) { | 
|  | int ret; | 
|  |  | 
|  | blk_mq_bio_to_request(rq, bio); | 
|  | blk_mq_start_request(rq, true); | 
|  | blk_add_timer(rq); | 
|  |  | 
|  | /* | 
|  | * For OK queue, we are done. For error, kill it. Any other | 
|  | * error (busy), just add it to our list as we previously | 
|  | * would have done | 
|  | */ | 
|  | ret = q->mq_ops->queue_rq(data.hctx, rq); | 
|  | if (ret == BLK_MQ_RQ_QUEUE_OK) | 
|  | goto done; | 
|  | else { | 
|  | __blk_mq_requeue_request(rq); | 
|  |  | 
|  | if (ret == BLK_MQ_RQ_QUEUE_ERROR) { | 
|  | rq->errors = -EIO; | 
|  | blk_mq_end_io(rq, rq->errors); | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { | 
|  | /* | 
|  | * For a SYNC request, send it to the hardware immediately. For | 
|  | * an ASYNC request, just ensure that we run it later on. The | 
|  | * latter allows for merging opportunities and more efficient | 
|  | * dispatching. | 
|  | */ | 
|  | run_queue: | 
|  | blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); | 
|  | } | 
|  | done: | 
|  | blk_mq_put_ctx(data.ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Single hardware queue variant. This will attempt to use any per-process | 
|  | * plug for merging and IO deferral. | 
|  | */ | 
|  | static void blk_sq_make_request(struct request_queue *q, struct bio *bio) | 
|  | { | 
|  | const int is_sync = rw_is_sync(bio->bi_rw); | 
|  | const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); | 
|  | unsigned int use_plug, request_count = 0; | 
|  | struct blk_map_ctx data; | 
|  | struct request *rq; | 
|  |  | 
|  | /* | 
|  | * If we have multiple hardware queues, just go directly to | 
|  | * one of those for sync IO. | 
|  | */ | 
|  | use_plug = !is_flush_fua && !is_sync; | 
|  |  | 
|  | blk_queue_bounce(q, &bio); | 
|  |  | 
|  | if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { | 
|  | bio_endio(bio, -EIO); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (use_plug && !blk_queue_nomerges(q) && | 
|  | blk_attempt_plug_merge(q, bio, &request_count)) | 
|  | return; | 
|  |  | 
|  | rq = blk_mq_map_request(q, bio, &data); | 
|  |  | 
|  | if (unlikely(is_flush_fua)) { | 
|  | blk_mq_bio_to_request(rq, bio); | 
|  | blk_insert_flush(rq); | 
|  | goto run_queue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A task plug currently exists. Since this is completely lockless, | 
|  | * utilize that to temporarily store requests until the task is | 
|  | * either done or scheduled away. | 
|  | */ | 
|  | if (use_plug) { | 
|  | struct blk_plug *plug = current->plug; | 
|  |  | 
|  | if (plug) { | 
|  | blk_mq_bio_to_request(rq, bio); | 
|  | if (list_empty(&plug->mq_list)) | 
|  | trace_block_plug(q); | 
|  | else if (request_count >= BLK_MAX_REQUEST_COUNT) { | 
|  | blk_flush_plug_list(plug, false); | 
|  | trace_block_plug(q); | 
|  | } | 
|  | list_add_tail(&rq->queuelist, &plug->mq_list); | 
|  | blk_mq_put_ctx(data.ctx); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { | 
|  | /* | 
|  | * For a SYNC request, send it to the hardware immediately. For | 
|  | * an ASYNC request, just ensure that we run it later on. The | 
|  | * latter allows for merging opportunities and more efficient | 
|  | * dispatching. | 
|  | */ | 
|  | run_queue: | 
|  | blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); | 
|  | } | 
|  |  | 
|  | blk_mq_put_ctx(data.ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Default mapping to a software queue, since we use one per CPU. | 
|  | */ | 
|  | struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) | 
|  | { | 
|  | return q->queue_hw_ctx[q->mq_map[cpu]]; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_map_queue); | 
|  |  | 
|  | static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, | 
|  | struct blk_mq_tags *tags, unsigned int hctx_idx) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (tags->rqs && set->ops->exit_request) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < tags->nr_tags; i++) { | 
|  | if (!tags->rqs[i]) | 
|  | continue; | 
|  | set->ops->exit_request(set->driver_data, tags->rqs[i], | 
|  | hctx_idx, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (!list_empty(&tags->page_list)) { | 
|  | page = list_first_entry(&tags->page_list, struct page, lru); | 
|  | list_del_init(&page->lru); | 
|  | __free_pages(page, page->private); | 
|  | } | 
|  |  | 
|  | kfree(tags->rqs); | 
|  |  | 
|  | blk_mq_free_tags(tags); | 
|  | } | 
|  |  | 
|  | static size_t order_to_size(unsigned int order) | 
|  | { | 
|  | return (size_t)PAGE_SIZE << order; | 
|  | } | 
|  |  | 
|  | static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, | 
|  | unsigned int hctx_idx) | 
|  | { | 
|  | struct blk_mq_tags *tags; | 
|  | unsigned int i, j, entries_per_page, max_order = 4; | 
|  | size_t rq_size, left; | 
|  |  | 
|  | tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, | 
|  | set->numa_node); | 
|  | if (!tags) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&tags->page_list); | 
|  |  | 
|  | tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *), | 
|  | GFP_KERNEL, set->numa_node); | 
|  | if (!tags->rqs) { | 
|  | blk_mq_free_tags(tags); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rq_size is the size of the request plus driver payload, rounded | 
|  | * to the cacheline size | 
|  | */ | 
|  | rq_size = round_up(sizeof(struct request) + set->cmd_size, | 
|  | cache_line_size()); | 
|  | left = rq_size * set->queue_depth; | 
|  |  | 
|  | for (i = 0; i < set->queue_depth; ) { | 
|  | int this_order = max_order; | 
|  | struct page *page; | 
|  | int to_do; | 
|  | void *p; | 
|  |  | 
|  | while (left < order_to_size(this_order - 1) && this_order) | 
|  | this_order--; | 
|  |  | 
|  | do { | 
|  | page = alloc_pages_node(set->numa_node, GFP_KERNEL, | 
|  | this_order); | 
|  | if (page) | 
|  | break; | 
|  | if (!this_order--) | 
|  | break; | 
|  | if (order_to_size(this_order) < rq_size) | 
|  | break; | 
|  | } while (1); | 
|  |  | 
|  | if (!page) | 
|  | goto fail; | 
|  |  | 
|  | page->private = this_order; | 
|  | list_add_tail(&page->lru, &tags->page_list); | 
|  |  | 
|  | p = page_address(page); | 
|  | entries_per_page = order_to_size(this_order) / rq_size; | 
|  | to_do = min(entries_per_page, set->queue_depth - i); | 
|  | left -= to_do * rq_size; | 
|  | for (j = 0; j < to_do; j++) { | 
|  | tags->rqs[i] = p; | 
|  | if (set->ops->init_request) { | 
|  | if (set->ops->init_request(set->driver_data, | 
|  | tags->rqs[i], hctx_idx, i, | 
|  | set->numa_node)) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | p += rq_size; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return tags; | 
|  |  | 
|  | fail: | 
|  | pr_warn("%s: failed to allocate requests\n", __func__); | 
|  | blk_mq_free_rq_map(set, tags, hctx_idx); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) | 
|  | { | 
|  | kfree(bitmap->map); | 
|  | } | 
|  |  | 
|  | static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) | 
|  | { | 
|  | unsigned int bpw = 8, total, num_maps, i; | 
|  |  | 
|  | bitmap->bits_per_word = bpw; | 
|  |  | 
|  | num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; | 
|  | bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), | 
|  | GFP_KERNEL, node); | 
|  | if (!bitmap->map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bitmap->map_size = num_maps; | 
|  |  | 
|  | total = nr_cpu_ids; | 
|  | for (i = 0; i < num_maps; i++) { | 
|  | bitmap->map[i].depth = min(total, bitmap->bits_per_word); | 
|  | total -= bitmap->map[i].depth; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) | 
|  | { | 
|  | struct request_queue *q = hctx->queue; | 
|  | struct blk_mq_ctx *ctx; | 
|  | LIST_HEAD(tmp); | 
|  |  | 
|  | /* | 
|  | * Move ctx entries to new CPU, if this one is going away. | 
|  | */ | 
|  | ctx = __blk_mq_get_ctx(q, cpu); | 
|  |  | 
|  | spin_lock(&ctx->lock); | 
|  | if (!list_empty(&ctx->rq_list)) { | 
|  | list_splice_init(&ctx->rq_list, &tmp); | 
|  | blk_mq_hctx_clear_pending(hctx, ctx); | 
|  | } | 
|  | spin_unlock(&ctx->lock); | 
|  |  | 
|  | if (list_empty(&tmp)) | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | ctx = blk_mq_get_ctx(q); | 
|  | spin_lock(&ctx->lock); | 
|  |  | 
|  | while (!list_empty(&tmp)) { | 
|  | struct request *rq; | 
|  |  | 
|  | rq = list_first_entry(&tmp, struct request, queuelist); | 
|  | rq->mq_ctx = ctx; | 
|  | list_move_tail(&rq->queuelist, &ctx->rq_list); | 
|  | } | 
|  |  | 
|  | hctx = q->mq_ops->map_queue(q, ctx->cpu); | 
|  | blk_mq_hctx_mark_pending(hctx, ctx); | 
|  |  | 
|  | spin_unlock(&ctx->lock); | 
|  |  | 
|  | blk_mq_run_hw_queue(hctx, true); | 
|  | blk_mq_put_ctx(ctx); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) | 
|  | { | 
|  | struct request_queue *q = hctx->queue; | 
|  | struct blk_mq_tag_set *set = q->tag_set; | 
|  |  | 
|  | if (set->tags[hctx->queue_num]) | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); | 
|  | if (!set->tags[hctx->queue_num]) | 
|  | return NOTIFY_STOP; | 
|  |  | 
|  | hctx->tags = set->tags[hctx->queue_num]; | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static int blk_mq_hctx_notify(void *data, unsigned long action, | 
|  | unsigned int cpu) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx = data; | 
|  |  | 
|  | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) | 
|  | return blk_mq_hctx_cpu_offline(hctx, cpu); | 
|  | else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) | 
|  | return blk_mq_hctx_cpu_online(hctx, cpu); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static void blk_mq_exit_hw_queues(struct request_queue *q, | 
|  | struct blk_mq_tag_set *set, int nr_queue) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | unsigned int i; | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) { | 
|  | if (i == nr_queue) | 
|  | break; | 
|  |  | 
|  | if (set->ops->exit_hctx) | 
|  | set->ops->exit_hctx(hctx, i); | 
|  |  | 
|  | blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); | 
|  | kfree(hctx->ctxs); | 
|  | blk_mq_free_bitmap(&hctx->ctx_map); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static void blk_mq_free_hw_queues(struct request_queue *q, | 
|  | struct blk_mq_tag_set *set) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | unsigned int i; | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) { | 
|  | free_cpumask_var(hctx->cpumask); | 
|  | kfree(hctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int blk_mq_init_hw_queues(struct request_queue *q, | 
|  | struct blk_mq_tag_set *set) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Initialize hardware queues | 
|  | */ | 
|  | queue_for_each_hw_ctx(q, hctx, i) { | 
|  | int node; | 
|  |  | 
|  | node = hctx->numa_node; | 
|  | if (node == NUMA_NO_NODE) | 
|  | node = hctx->numa_node = set->numa_node; | 
|  |  | 
|  | INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); | 
|  | INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); | 
|  | spin_lock_init(&hctx->lock); | 
|  | INIT_LIST_HEAD(&hctx->dispatch); | 
|  | hctx->queue = q; | 
|  | hctx->queue_num = i; | 
|  | hctx->flags = set->flags; | 
|  | hctx->cmd_size = set->cmd_size; | 
|  |  | 
|  | blk_mq_init_cpu_notifier(&hctx->cpu_notifier, | 
|  | blk_mq_hctx_notify, hctx); | 
|  | blk_mq_register_cpu_notifier(&hctx->cpu_notifier); | 
|  |  | 
|  | hctx->tags = set->tags[i]; | 
|  |  | 
|  | /* | 
|  | * Allocate space for all possible cpus to avoid allocation in | 
|  | * runtime | 
|  | */ | 
|  | hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), | 
|  | GFP_KERNEL, node); | 
|  | if (!hctx->ctxs) | 
|  | break; | 
|  |  | 
|  | if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) | 
|  | break; | 
|  |  | 
|  | hctx->nr_ctx = 0; | 
|  |  | 
|  | if (set->ops->init_hctx && | 
|  | set->ops->init_hctx(hctx, set->driver_data, i)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == q->nr_hw_queues) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Init failed | 
|  | */ | 
|  | blk_mq_exit_hw_queues(q, set, i); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void blk_mq_init_cpu_queues(struct request_queue *q, | 
|  | unsigned int nr_hw_queues) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  |  | 
|  | memset(__ctx, 0, sizeof(*__ctx)); | 
|  | __ctx->cpu = i; | 
|  | spin_lock_init(&__ctx->lock); | 
|  | INIT_LIST_HEAD(&__ctx->rq_list); | 
|  | __ctx->queue = q; | 
|  |  | 
|  | /* If the cpu isn't online, the cpu is mapped to first hctx */ | 
|  | if (!cpu_online(i)) | 
|  | continue; | 
|  |  | 
|  | hctx = q->mq_ops->map_queue(q, i); | 
|  | cpumask_set_cpu(i, hctx->cpumask); | 
|  | hctx->nr_ctx++; | 
|  |  | 
|  | /* | 
|  | * Set local node, IFF we have more than one hw queue. If | 
|  | * not, we remain on the home node of the device | 
|  | */ | 
|  | if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) | 
|  | hctx->numa_node = cpu_to_node(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void blk_mq_map_swqueue(struct request_queue *q) | 
|  | { | 
|  | unsigned int i; | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | struct blk_mq_ctx *ctx; | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) { | 
|  | cpumask_clear(hctx->cpumask); | 
|  | hctx->nr_ctx = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map software to hardware queues | 
|  | */ | 
|  | queue_for_each_ctx(q, ctx, i) { | 
|  | /* If the cpu isn't online, the cpu is mapped to first hctx */ | 
|  | if (!cpu_online(i)) | 
|  | continue; | 
|  |  | 
|  | hctx = q->mq_ops->map_queue(q, i); | 
|  | cpumask_set_cpu(i, hctx->cpumask); | 
|  | ctx->index_hw = hctx->nr_ctx; | 
|  | hctx->ctxs[hctx->nr_ctx++] = ctx; | 
|  | } | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) { | 
|  | /* | 
|  | * If not software queues are mapped to this hardware queue, | 
|  | * disable it and free the request entries | 
|  | */ | 
|  | if (!hctx->nr_ctx) { | 
|  | struct blk_mq_tag_set *set = q->tag_set; | 
|  |  | 
|  | if (set->tags[i]) { | 
|  | blk_mq_free_rq_map(set, set->tags[i], i); | 
|  | set->tags[i] = NULL; | 
|  | hctx->tags = NULL; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize batch roundrobin counts | 
|  | */ | 
|  | hctx->next_cpu = cpumask_first(hctx->cpumask); | 
|  | hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) | 
|  | { | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | struct request_queue *q; | 
|  | bool shared; | 
|  | int i; | 
|  |  | 
|  | if (set->tag_list.next == set->tag_list.prev) | 
|  | shared = false; | 
|  | else | 
|  | shared = true; | 
|  |  | 
|  | list_for_each_entry(q, &set->tag_list, tag_set_list) { | 
|  | blk_mq_freeze_queue(q); | 
|  |  | 
|  | queue_for_each_hw_ctx(q, hctx, i) { | 
|  | if (shared) | 
|  | hctx->flags |= BLK_MQ_F_TAG_SHARED; | 
|  | else | 
|  | hctx->flags &= ~BLK_MQ_F_TAG_SHARED; | 
|  | } | 
|  | blk_mq_unfreeze_queue(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void blk_mq_del_queue_tag_set(struct request_queue *q) | 
|  | { | 
|  | struct blk_mq_tag_set *set = q->tag_set; | 
|  |  | 
|  | blk_mq_freeze_queue(q); | 
|  |  | 
|  | mutex_lock(&set->tag_list_lock); | 
|  | list_del_init(&q->tag_set_list); | 
|  | blk_mq_update_tag_set_depth(set); | 
|  | mutex_unlock(&set->tag_list_lock); | 
|  |  | 
|  | blk_mq_unfreeze_queue(q); | 
|  | } | 
|  |  | 
|  | static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, | 
|  | struct request_queue *q) | 
|  | { | 
|  | q->tag_set = set; | 
|  |  | 
|  | mutex_lock(&set->tag_list_lock); | 
|  | list_add_tail(&q->tag_set_list, &set->tag_list); | 
|  | blk_mq_update_tag_set_depth(set); | 
|  | mutex_unlock(&set->tag_list_lock); | 
|  | } | 
|  |  | 
|  | struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) | 
|  | { | 
|  | struct blk_mq_hw_ctx **hctxs; | 
|  | struct blk_mq_ctx *ctx; | 
|  | struct request_queue *q; | 
|  | unsigned int *map; | 
|  | int i; | 
|  |  | 
|  | ctx = alloc_percpu(struct blk_mq_ctx); | 
|  | if (!ctx) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, | 
|  | set->numa_node); | 
|  |  | 
|  | if (!hctxs) | 
|  | goto err_percpu; | 
|  |  | 
|  | map = blk_mq_make_queue_map(set); | 
|  | if (!map) | 
|  | goto err_map; | 
|  |  | 
|  | for (i = 0; i < set->nr_hw_queues; i++) { | 
|  | int node = blk_mq_hw_queue_to_node(map, i); | 
|  |  | 
|  | hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), | 
|  | GFP_KERNEL, node); | 
|  | if (!hctxs[i]) | 
|  | goto err_hctxs; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL)) | 
|  | goto err_hctxs; | 
|  |  | 
|  | atomic_set(&hctxs[i]->nr_active, 0); | 
|  | hctxs[i]->numa_node = node; | 
|  | hctxs[i]->queue_num = i; | 
|  | } | 
|  |  | 
|  | q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); | 
|  | if (!q) | 
|  | goto err_hctxs; | 
|  |  | 
|  | if (percpu_counter_init(&q->mq_usage_counter, 0)) | 
|  | goto err_map; | 
|  |  | 
|  | setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); | 
|  | blk_queue_rq_timeout(q, 30000); | 
|  |  | 
|  | q->nr_queues = nr_cpu_ids; | 
|  | q->nr_hw_queues = set->nr_hw_queues; | 
|  | q->mq_map = map; | 
|  |  | 
|  | q->queue_ctx = ctx; | 
|  | q->queue_hw_ctx = hctxs; | 
|  |  | 
|  | q->mq_ops = set->ops; | 
|  | q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; | 
|  |  | 
|  | if (!(set->flags & BLK_MQ_F_SG_MERGE)) | 
|  | q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; | 
|  |  | 
|  | q->sg_reserved_size = INT_MAX; | 
|  |  | 
|  | INIT_WORK(&q->requeue_work, blk_mq_requeue_work); | 
|  | INIT_LIST_HEAD(&q->requeue_list); | 
|  | spin_lock_init(&q->requeue_lock); | 
|  |  | 
|  | if (q->nr_hw_queues > 1) | 
|  | blk_queue_make_request(q, blk_mq_make_request); | 
|  | else | 
|  | blk_queue_make_request(q, blk_sq_make_request); | 
|  |  | 
|  | blk_queue_rq_timed_out(q, blk_mq_rq_timed_out); | 
|  | if (set->timeout) | 
|  | blk_queue_rq_timeout(q, set->timeout); | 
|  |  | 
|  | /* | 
|  | * Do this after blk_queue_make_request() overrides it... | 
|  | */ | 
|  | q->nr_requests = set->queue_depth; | 
|  |  | 
|  | if (set->ops->complete) | 
|  | blk_queue_softirq_done(q, set->ops->complete); | 
|  |  | 
|  | blk_mq_init_flush(q); | 
|  | blk_mq_init_cpu_queues(q, set->nr_hw_queues); | 
|  |  | 
|  | q->flush_rq = kzalloc(round_up(sizeof(struct request) + | 
|  | set->cmd_size, cache_line_size()), | 
|  | GFP_KERNEL); | 
|  | if (!q->flush_rq) | 
|  | goto err_hw; | 
|  |  | 
|  | if (blk_mq_init_hw_queues(q, set)) | 
|  | goto err_flush_rq; | 
|  |  | 
|  | mutex_lock(&all_q_mutex); | 
|  | list_add_tail(&q->all_q_node, &all_q_list); | 
|  | mutex_unlock(&all_q_mutex); | 
|  |  | 
|  | blk_mq_add_queue_tag_set(set, q); | 
|  |  | 
|  | blk_mq_map_swqueue(q); | 
|  |  | 
|  | return q; | 
|  |  | 
|  | err_flush_rq: | 
|  | kfree(q->flush_rq); | 
|  | err_hw: | 
|  | blk_cleanup_queue(q); | 
|  | err_hctxs: | 
|  | kfree(map); | 
|  | for (i = 0; i < set->nr_hw_queues; i++) { | 
|  | if (!hctxs[i]) | 
|  | break; | 
|  | free_cpumask_var(hctxs[i]->cpumask); | 
|  | kfree(hctxs[i]); | 
|  | } | 
|  | err_map: | 
|  | kfree(hctxs); | 
|  | err_percpu: | 
|  | free_percpu(ctx); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_init_queue); | 
|  |  | 
|  | void blk_mq_free_queue(struct request_queue *q) | 
|  | { | 
|  | struct blk_mq_tag_set	*set = q->tag_set; | 
|  |  | 
|  | blk_mq_del_queue_tag_set(q); | 
|  |  | 
|  | blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); | 
|  | blk_mq_free_hw_queues(q, set); | 
|  |  | 
|  | percpu_counter_destroy(&q->mq_usage_counter); | 
|  |  | 
|  | free_percpu(q->queue_ctx); | 
|  | kfree(q->queue_hw_ctx); | 
|  | kfree(q->mq_map); | 
|  |  | 
|  | q->queue_ctx = NULL; | 
|  | q->queue_hw_ctx = NULL; | 
|  | q->mq_map = NULL; | 
|  |  | 
|  | mutex_lock(&all_q_mutex); | 
|  | list_del_init(&q->all_q_node); | 
|  | mutex_unlock(&all_q_mutex); | 
|  | } | 
|  |  | 
|  | /* Basically redo blk_mq_init_queue with queue frozen */ | 
|  | static void blk_mq_queue_reinit(struct request_queue *q) | 
|  | { | 
|  | blk_mq_freeze_queue(q); | 
|  |  | 
|  | blk_mq_sysfs_unregister(q); | 
|  |  | 
|  | blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); | 
|  |  | 
|  | /* | 
|  | * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe | 
|  | * we should change hctx numa_node according to new topology (this | 
|  | * involves free and re-allocate memory, worthy doing?) | 
|  | */ | 
|  |  | 
|  | blk_mq_map_swqueue(q); | 
|  |  | 
|  | blk_mq_sysfs_register(q); | 
|  |  | 
|  | blk_mq_unfreeze_queue(q); | 
|  | } | 
|  |  | 
|  | static int blk_mq_queue_reinit_notify(struct notifier_block *nb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | struct request_queue *q; | 
|  |  | 
|  | /* | 
|  | * Before new mappings are established, hotadded cpu might already | 
|  | * start handling requests. This doesn't break anything as we map | 
|  | * offline CPUs to first hardware queue. We will re-init the queue | 
|  | * below to get optimal settings. | 
|  | */ | 
|  | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && | 
|  | action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | mutex_lock(&all_q_mutex); | 
|  | list_for_each_entry(q, &all_q_list, all_q_node) | 
|  | blk_mq_queue_reinit(q); | 
|  | mutex_unlock(&all_q_mutex); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!set->nr_hw_queues) | 
|  | return -EINVAL; | 
|  | if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH) | 
|  | return -EINVAL; | 
|  | if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue) | 
|  | return -EINVAL; | 
|  |  | 
|  |  | 
|  | set->tags = kmalloc_node(set->nr_hw_queues * | 
|  | sizeof(struct blk_mq_tags *), | 
|  | GFP_KERNEL, set->numa_node); | 
|  | if (!set->tags) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < set->nr_hw_queues; i++) { | 
|  | set->tags[i] = blk_mq_init_rq_map(set, i); | 
|  | if (!set->tags[i]) | 
|  | goto out_unwind; | 
|  | } | 
|  |  | 
|  | mutex_init(&set->tag_list_lock); | 
|  | INIT_LIST_HEAD(&set->tag_list); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unwind: | 
|  | while (--i >= 0) | 
|  | blk_mq_free_rq_map(set, set->tags[i], i); | 
|  | out: | 
|  | return -ENOMEM; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_alloc_tag_set); | 
|  |  | 
|  | void blk_mq_free_tag_set(struct blk_mq_tag_set *set) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < set->nr_hw_queues; i++) { | 
|  | if (set->tags[i]) | 
|  | blk_mq_free_rq_map(set, set->tags[i], i); | 
|  | } | 
|  |  | 
|  | kfree(set->tags); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_mq_free_tag_set); | 
|  |  | 
|  | int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) | 
|  | { | 
|  | struct blk_mq_tag_set *set = q->tag_set; | 
|  | struct blk_mq_hw_ctx *hctx; | 
|  | int i, ret; | 
|  |  | 
|  | if (!set || nr > set->queue_depth) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = 0; | 
|  | queue_for_each_hw_ctx(q, hctx, i) { | 
|  | ret = blk_mq_tag_update_depth(hctx->tags, nr); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | q->nr_requests = nr; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void blk_mq_disable_hotplug(void) | 
|  | { | 
|  | mutex_lock(&all_q_mutex); | 
|  | } | 
|  |  | 
|  | void blk_mq_enable_hotplug(void) | 
|  | { | 
|  | mutex_unlock(&all_q_mutex); | 
|  | } | 
|  |  | 
|  | static int __init blk_mq_init(void) | 
|  | { | 
|  | blk_mq_cpu_init(); | 
|  |  | 
|  | /* Must be called after percpu_counter_hotcpu_callback() */ | 
|  | hotcpu_notifier(blk_mq_queue_reinit_notify, -10); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(blk_mq_init); |