|  | /* | 
|  | *  linux/fs/ext4/inode.c | 
|  | * | 
|  | * Copyright (C) 1992, 1993, 1994, 1995 | 
|  | * Remy Card (card@masi.ibp.fr) | 
|  | * Laboratoire MASI - Institut Blaise Pascal | 
|  | * Universite Pierre et Marie Curie (Paris VI) | 
|  | * | 
|  | *  from | 
|  | * | 
|  | *  linux/fs/minix/inode.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  64-bit file support on 64-bit platforms by Jakub Jelinek | 
|  | *	(jj@sunsite.ms.mff.cuni.cz) | 
|  | * | 
|  | *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/jbd2.h> | 
|  | #include <linux/highuid.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/quotaops.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/printk.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/aio.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | #include "ext4_jbd2.h" | 
|  | #include "xattr.h" | 
|  | #include "acl.h" | 
|  | #include "truncate.h" | 
|  |  | 
|  | #include <trace/events/ext4.h> | 
|  |  | 
|  | #define MPAGE_DA_EXTENT_TAIL 0x01 | 
|  |  | 
|  | static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | __u16 csum_lo; | 
|  | __u16 csum_hi = 0; | 
|  | __u32 csum; | 
|  |  | 
|  | csum_lo = le16_to_cpu(raw->i_checksum_lo); | 
|  | raw->i_checksum_lo = 0; | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
|  | EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { | 
|  | csum_hi = le16_to_cpu(raw->i_checksum_hi); | 
|  | raw->i_checksum_hi = 0; | 
|  | } | 
|  |  | 
|  | csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, | 
|  | EXT4_INODE_SIZE(inode->i_sb)); | 
|  |  | 
|  | raw->i_checksum_lo = cpu_to_le16(csum_lo); | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
|  | EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) | 
|  | raw->i_checksum_hi = cpu_to_le16(csum_hi); | 
|  |  | 
|  | return csum; | 
|  | } | 
|  |  | 
|  | static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | __u32 provided, calculated; | 
|  |  | 
|  | if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != | 
|  | cpu_to_le32(EXT4_OS_LINUX) || | 
|  | !ext4_has_metadata_csum(inode->i_sb)) | 
|  | return 1; | 
|  |  | 
|  | provided = le16_to_cpu(raw->i_checksum_lo); | 
|  | calculated = ext4_inode_csum(inode, raw, ei); | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
|  | EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) | 
|  | provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; | 
|  | else | 
|  | calculated &= 0xFFFF; | 
|  |  | 
|  | return provided == calculated; | 
|  | } | 
|  |  | 
|  | static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | __u32 csum; | 
|  |  | 
|  | if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != | 
|  | cpu_to_le32(EXT4_OS_LINUX) || | 
|  | !ext4_has_metadata_csum(inode->i_sb)) | 
|  | return; | 
|  |  | 
|  | csum = ext4_inode_csum(inode, raw, ei); | 
|  | raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
|  | EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) | 
|  | raw->i_checksum_hi = cpu_to_le16(csum >> 16); | 
|  | } | 
|  |  | 
|  | static inline int ext4_begin_ordered_truncate(struct inode *inode, | 
|  | loff_t new_size) | 
|  | { | 
|  | trace_ext4_begin_ordered_truncate(inode, new_size); | 
|  | /* | 
|  | * If jinode is zero, then we never opened the file for | 
|  | * writing, so there's no need to call | 
|  | * jbd2_journal_begin_ordered_truncate() since there's no | 
|  | * outstanding writes we need to flush. | 
|  | */ | 
|  | if (!EXT4_I(inode)->jinode) | 
|  | return 0; | 
|  | return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), | 
|  | EXT4_I(inode)->jinode, | 
|  | new_size); | 
|  | } | 
|  |  | 
|  | static void ext4_invalidatepage(struct page *page, unsigned int offset, | 
|  | unsigned int length); | 
|  | static int __ext4_journalled_writepage(struct page *page, unsigned int len); | 
|  | static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); | 
|  | static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, | 
|  | int pextents); | 
|  |  | 
|  | /* | 
|  | * Test whether an inode is a fast symlink. | 
|  | */ | 
|  | static int ext4_inode_is_fast_symlink(struct inode *inode) | 
|  | { | 
|  | int ea_blocks = EXT4_I(inode)->i_file_acl ? | 
|  | EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return 0; | 
|  |  | 
|  | return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restart the transaction associated with *handle.  This does a commit, | 
|  | * so before we call here everything must be consistently dirtied against | 
|  | * this transaction. | 
|  | */ | 
|  | int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, | 
|  | int nblocks) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this | 
|  | * moment, get_block can be called only for blocks inside i_size since | 
|  | * page cache has been already dropped and writes are blocked by | 
|  | * i_mutex. So we can safely drop the i_data_sem here. | 
|  | */ | 
|  | BUG_ON(EXT4_JOURNAL(inode) == NULL); | 
|  | jbd_debug(2, "restarting handle %p\n", handle); | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | ret = ext4_journal_restart(handle, nblocks); | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | ext4_discard_preallocations(inode); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called at the last iput() if i_nlink is zero. | 
|  | */ | 
|  | void ext4_evict_inode(struct inode *inode) | 
|  | { | 
|  | handle_t *handle; | 
|  | int err; | 
|  |  | 
|  | trace_ext4_evict_inode(inode); | 
|  |  | 
|  | if (inode->i_nlink) { | 
|  | /* | 
|  | * When journalling data dirty buffers are tracked only in the | 
|  | * journal. So although mm thinks everything is clean and | 
|  | * ready for reaping the inode might still have some pages to | 
|  | * write in the running transaction or waiting to be | 
|  | * checkpointed. Thus calling jbd2_journal_invalidatepage() | 
|  | * (via truncate_inode_pages()) to discard these buffers can | 
|  | * cause data loss. Also even if we did not discard these | 
|  | * buffers, we would have no way to find them after the inode | 
|  | * is reaped and thus user could see stale data if he tries to | 
|  | * read them before the transaction is checkpointed. So be | 
|  | * careful and force everything to disk here... We use | 
|  | * ei->i_datasync_tid to store the newest transaction | 
|  | * containing inode's data. | 
|  | * | 
|  | * Note that directories do not have this problem because they | 
|  | * don't use page cache. | 
|  | */ | 
|  | if (ext4_should_journal_data(inode) && | 
|  | (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && | 
|  | inode->i_ino != EXT4_JOURNAL_INO) { | 
|  | journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; | 
|  | tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; | 
|  |  | 
|  | jbd2_complete_transaction(journal, commit_tid); | 
|  | filemap_write_and_wait(&inode->i_data); | 
|  | } | 
|  | truncate_inode_pages_final(&inode->i_data); | 
|  |  | 
|  | WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); | 
|  | goto no_delete; | 
|  | } | 
|  |  | 
|  | if (is_bad_inode(inode)) | 
|  | goto no_delete; | 
|  | dquot_initialize(inode); | 
|  |  | 
|  | if (ext4_should_order_data(inode)) | 
|  | ext4_begin_ordered_truncate(inode, 0); | 
|  | truncate_inode_pages_final(&inode->i_data); | 
|  |  | 
|  | WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); | 
|  |  | 
|  | /* | 
|  | * Protect us against freezing - iput() caller didn't have to have any | 
|  | * protection against it | 
|  | */ | 
|  | sb_start_intwrite(inode->i_sb); | 
|  | handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, | 
|  | ext4_blocks_for_truncate(inode)+3); | 
|  | if (IS_ERR(handle)) { | 
|  | ext4_std_error(inode->i_sb, PTR_ERR(handle)); | 
|  | /* | 
|  | * If we're going to skip the normal cleanup, we still need to | 
|  | * make sure that the in-core orphan linked list is properly | 
|  | * cleaned up. | 
|  | */ | 
|  | ext4_orphan_del(NULL, inode); | 
|  | sb_end_intwrite(inode->i_sb); | 
|  | goto no_delete; | 
|  | } | 
|  |  | 
|  | if (IS_SYNC(inode)) | 
|  | ext4_handle_sync(handle); | 
|  | inode->i_size = 0; | 
|  | err = ext4_mark_inode_dirty(handle, inode); | 
|  | if (err) { | 
|  | ext4_warning(inode->i_sb, | 
|  | "couldn't mark inode dirty (err %d)", err); | 
|  | goto stop_handle; | 
|  | } | 
|  | if (inode->i_blocks) | 
|  | ext4_truncate(inode); | 
|  |  | 
|  | /* | 
|  | * ext4_ext_truncate() doesn't reserve any slop when it | 
|  | * restarts journal transactions; therefore there may not be | 
|  | * enough credits left in the handle to remove the inode from | 
|  | * the orphan list and set the dtime field. | 
|  | */ | 
|  | if (!ext4_handle_has_enough_credits(handle, 3)) { | 
|  | err = ext4_journal_extend(handle, 3); | 
|  | if (err > 0) | 
|  | err = ext4_journal_restart(handle, 3); | 
|  | if (err != 0) { | 
|  | ext4_warning(inode->i_sb, | 
|  | "couldn't extend journal (err %d)", err); | 
|  | stop_handle: | 
|  | ext4_journal_stop(handle); | 
|  | ext4_orphan_del(NULL, inode); | 
|  | sb_end_intwrite(inode->i_sb); | 
|  | goto no_delete; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kill off the orphan record which ext4_truncate created. | 
|  | * AKPM: I think this can be inside the above `if'. | 
|  | * Note that ext4_orphan_del() has to be able to cope with the | 
|  | * deletion of a non-existent orphan - this is because we don't | 
|  | * know if ext4_truncate() actually created an orphan record. | 
|  | * (Well, we could do this if we need to, but heck - it works) | 
|  | */ | 
|  | ext4_orphan_del(handle, inode); | 
|  | EXT4_I(inode)->i_dtime	= get_seconds(); | 
|  |  | 
|  | /* | 
|  | * One subtle ordering requirement: if anything has gone wrong | 
|  | * (transaction abort, IO errors, whatever), then we can still | 
|  | * do these next steps (the fs will already have been marked as | 
|  | * having errors), but we can't free the inode if the mark_dirty | 
|  | * fails. | 
|  | */ | 
|  | if (ext4_mark_inode_dirty(handle, inode)) | 
|  | /* If that failed, just do the required in-core inode clear. */ | 
|  | ext4_clear_inode(inode); | 
|  | else | 
|  | ext4_free_inode(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | sb_end_intwrite(inode->i_sb); | 
|  | return; | 
|  | no_delete: | 
|  | ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_QUOTA | 
|  | qsize_t *ext4_get_reserved_space(struct inode *inode) | 
|  | { | 
|  | return &EXT4_I(inode)->i_reserved_quota; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Called with i_data_sem down, which is important since we can call | 
|  | * ext4_discard_preallocations() from here. | 
|  | */ | 
|  | void ext4_da_update_reserve_space(struct inode *inode, | 
|  | int used, int quota_claim) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  |  | 
|  | spin_lock(&ei->i_block_reservation_lock); | 
|  | trace_ext4_da_update_reserve_space(inode, used, quota_claim); | 
|  | if (unlikely(used > ei->i_reserved_data_blocks)) { | 
|  | ext4_warning(inode->i_sb, "%s: ino %lu, used %d " | 
|  | "with only %d reserved data blocks", | 
|  | __func__, inode->i_ino, used, | 
|  | ei->i_reserved_data_blocks); | 
|  | WARN_ON(1); | 
|  | used = ei->i_reserved_data_blocks; | 
|  | } | 
|  |  | 
|  | /* Update per-inode reservations */ | 
|  | ei->i_reserved_data_blocks -= used; | 
|  | percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); | 
|  |  | 
|  | spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); | 
|  |  | 
|  | /* Update quota subsystem for data blocks */ | 
|  | if (quota_claim) | 
|  | dquot_claim_block(inode, EXT4_C2B(sbi, used)); | 
|  | else { | 
|  | /* | 
|  | * We did fallocate with an offset that is already delayed | 
|  | * allocated. So on delayed allocated writeback we should | 
|  | * not re-claim the quota for fallocated blocks. | 
|  | */ | 
|  | dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have done all the pending block allocations and if | 
|  | * there aren't any writers on the inode, we can discard the | 
|  | * inode's preallocations. | 
|  | */ | 
|  | if ((ei->i_reserved_data_blocks == 0) && | 
|  | (atomic_read(&inode->i_writecount) == 0)) | 
|  | ext4_discard_preallocations(inode); | 
|  | } | 
|  |  | 
|  | static int __check_block_validity(struct inode *inode, const char *func, | 
|  | unsigned int line, | 
|  | struct ext4_map_blocks *map) | 
|  | { | 
|  | if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, | 
|  | map->m_len)) { | 
|  | ext4_error_inode(inode, func, line, map->m_pblk, | 
|  | "lblock %lu mapped to illegal pblock " | 
|  | "(length %d)", (unsigned long) map->m_lblk, | 
|  | map->m_len); | 
|  | return -EIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define check_block_validity(inode, map)	\ | 
|  | __check_block_validity((inode), __func__, __LINE__, (map)) | 
|  |  | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | static void ext4_map_blocks_es_recheck(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct ext4_map_blocks *es_map, | 
|  | struct ext4_map_blocks *map, | 
|  | int flags) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | map->m_flags = 0; | 
|  | /* | 
|  | * There is a race window that the result is not the same. | 
|  | * e.g. xfstests #223 when dioread_nolock enables.  The reason | 
|  | * is that we lookup a block mapping in extent status tree with | 
|  | * out taking i_data_sem.  So at the time the unwritten extent | 
|  | * could be converted. | 
|  | */ | 
|  | if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) | 
|  | down_read(&EXT4_I(inode)->i_data_sem); | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
|  | retval = ext4_ext_map_blocks(handle, inode, map, flags & | 
|  | EXT4_GET_BLOCKS_KEEP_SIZE); | 
|  | } else { | 
|  | retval = ext4_ind_map_blocks(handle, inode, map, flags & | 
|  | EXT4_GET_BLOCKS_KEEP_SIZE); | 
|  | } | 
|  | if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) | 
|  | up_read((&EXT4_I(inode)->i_data_sem)); | 
|  | /* | 
|  | * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag | 
|  | * because it shouldn't be marked in es_map->m_flags. | 
|  | */ | 
|  | map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); | 
|  |  | 
|  | /* | 
|  | * We don't check m_len because extent will be collpased in status | 
|  | * tree.  So the m_len might not equal. | 
|  | */ | 
|  | if (es_map->m_lblk != map->m_lblk || | 
|  | es_map->m_flags != map->m_flags || | 
|  | es_map->m_pblk != map->m_pblk) { | 
|  | printk("ES cache assertion failed for inode: %lu " | 
|  | "es_cached ex [%d/%d/%llu/%x] != " | 
|  | "found ex [%d/%d/%llu/%x] retval %d flags %x\n", | 
|  | inode->i_ino, es_map->m_lblk, es_map->m_len, | 
|  | es_map->m_pblk, es_map->m_flags, map->m_lblk, | 
|  | map->m_len, map->m_pblk, map->m_flags, | 
|  | retval, flags); | 
|  | } | 
|  | } | 
|  | #endif /* ES_AGGRESSIVE_TEST */ | 
|  |  | 
|  | /* | 
|  | * The ext4_map_blocks() function tries to look up the requested blocks, | 
|  | * and returns if the blocks are already mapped. | 
|  | * | 
|  | * Otherwise it takes the write lock of the i_data_sem and allocate blocks | 
|  | * and store the allocated blocks in the result buffer head and mark it | 
|  | * mapped. | 
|  | * | 
|  | * If file type is extents based, it will call ext4_ext_map_blocks(), | 
|  | * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping | 
|  | * based files | 
|  | * | 
|  | * On success, it returns the number of blocks being mapped or allocated. | 
|  | * if create==0 and the blocks are pre-allocated and unwritten block, | 
|  | * the result buffer head is unmapped. If the create ==1, it will make sure | 
|  | * the buffer head is mapped. | 
|  | * | 
|  | * It returns 0 if plain look up failed (blocks have not been allocated), in | 
|  | * that case, buffer head is unmapped | 
|  | * | 
|  | * It returns the error in case of allocation failure. | 
|  | */ | 
|  | int ext4_map_blocks(handle_t *handle, struct inode *inode, | 
|  | struct ext4_map_blocks *map, int flags) | 
|  | { | 
|  | struct extent_status es; | 
|  | int retval; | 
|  | int ret = 0; | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | struct ext4_map_blocks orig_map; | 
|  |  | 
|  | memcpy(&orig_map, map, sizeof(*map)); | 
|  | #endif | 
|  |  | 
|  | map->m_flags = 0; | 
|  | ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," | 
|  | "logical block %lu\n", inode->i_ino, flags, map->m_len, | 
|  | (unsigned long) map->m_lblk); | 
|  |  | 
|  | /* | 
|  | * ext4_map_blocks returns an int, and m_len is an unsigned int | 
|  | */ | 
|  | if (unlikely(map->m_len > INT_MAX)) | 
|  | map->m_len = INT_MAX; | 
|  |  | 
|  | /* We can handle the block number less than EXT_MAX_BLOCKS */ | 
|  | if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) | 
|  | return -EIO; | 
|  |  | 
|  | /* Lookup extent status tree firstly */ | 
|  | if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { | 
|  | ext4_es_lru_add(inode); | 
|  | if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { | 
|  | map->m_pblk = ext4_es_pblock(&es) + | 
|  | map->m_lblk - es.es_lblk; | 
|  | map->m_flags |= ext4_es_is_written(&es) ? | 
|  | EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; | 
|  | retval = es.es_len - (map->m_lblk - es.es_lblk); | 
|  | if (retval > map->m_len) | 
|  | retval = map->m_len; | 
|  | map->m_len = retval; | 
|  | } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { | 
|  | retval = 0; | 
|  | } else { | 
|  | BUG_ON(1); | 
|  | } | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | ext4_map_blocks_es_recheck(handle, inode, map, | 
|  | &orig_map, flags); | 
|  | #endif | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to see if we can get the block without requesting a new | 
|  | * file system block. | 
|  | */ | 
|  | if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) | 
|  | down_read(&EXT4_I(inode)->i_data_sem); | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
|  | retval = ext4_ext_map_blocks(handle, inode, map, flags & | 
|  | EXT4_GET_BLOCKS_KEEP_SIZE); | 
|  | } else { | 
|  | retval = ext4_ind_map_blocks(handle, inode, map, flags & | 
|  | EXT4_GET_BLOCKS_KEEP_SIZE); | 
|  | } | 
|  | if (retval > 0) { | 
|  | unsigned int status; | 
|  |  | 
|  | if (unlikely(retval != map->m_len)) { | 
|  | ext4_warning(inode->i_sb, | 
|  | "ES len assertion failed for inode " | 
|  | "%lu: retval %d != map->m_len %d", | 
|  | inode->i_ino, retval, map->m_len); | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | status = map->m_flags & EXT4_MAP_UNWRITTEN ? | 
|  | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; | 
|  | if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && | 
|  | ext4_find_delalloc_range(inode, map->m_lblk, | 
|  | map->m_lblk + map->m_len - 1)) | 
|  | status |= EXTENT_STATUS_DELAYED; | 
|  | ret = ext4_es_insert_extent(inode, map->m_lblk, | 
|  | map->m_len, map->m_pblk, status); | 
|  | if (ret < 0) | 
|  | retval = ret; | 
|  | } | 
|  | if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) | 
|  | up_read((&EXT4_I(inode)->i_data_sem)); | 
|  |  | 
|  | found: | 
|  | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { | 
|  | ret = check_block_validity(inode, map); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* If it is only a block(s) look up */ | 
|  | if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Returns if the blocks have already allocated | 
|  | * | 
|  | * Note that if blocks have been preallocated | 
|  | * ext4_ext_get_block() returns the create = 0 | 
|  | * with buffer head unmapped. | 
|  | */ | 
|  | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) | 
|  | /* | 
|  | * If we need to convert extent to unwritten | 
|  | * we continue and do the actual work in | 
|  | * ext4_ext_map_blocks() | 
|  | */ | 
|  | if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Here we clear m_flags because after allocating an new extent, | 
|  | * it will be set again. | 
|  | */ | 
|  | map->m_flags &= ~EXT4_MAP_FLAGS; | 
|  |  | 
|  | /* | 
|  | * New blocks allocate and/or writing to unwritten extent | 
|  | * will possibly result in updating i_data, so we take | 
|  | * the write lock of i_data_sem, and call get_block() | 
|  | * with create == 1 flag. | 
|  | */ | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  |  | 
|  | /* | 
|  | * We need to check for EXT4 here because migrate | 
|  | * could have changed the inode type in between | 
|  | */ | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
|  | retval = ext4_ext_map_blocks(handle, inode, map, flags); | 
|  | } else { | 
|  | retval = ext4_ind_map_blocks(handle, inode, map, flags); | 
|  |  | 
|  | if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { | 
|  | /* | 
|  | * We allocated new blocks which will result in | 
|  | * i_data's format changing.  Force the migrate | 
|  | * to fail by clearing migrate flags | 
|  | */ | 
|  | ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update reserved blocks/metadata blocks after successful | 
|  | * block allocation which had been deferred till now. We don't | 
|  | * support fallocate for non extent files. So we can update | 
|  | * reserve space here. | 
|  | */ | 
|  | if ((retval > 0) && | 
|  | (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) | 
|  | ext4_da_update_reserve_space(inode, retval, 1); | 
|  | } | 
|  |  | 
|  | if (retval > 0) { | 
|  | unsigned int status; | 
|  |  | 
|  | if (unlikely(retval != map->m_len)) { | 
|  | ext4_warning(inode->i_sb, | 
|  | "ES len assertion failed for inode " | 
|  | "%lu: retval %d != map->m_len %d", | 
|  | inode->i_ino, retval, map->m_len); | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the extent has been zeroed out, we don't need to update | 
|  | * extent status tree. | 
|  | */ | 
|  | if ((flags & EXT4_GET_BLOCKS_PRE_IO) && | 
|  | ext4_es_lookup_extent(inode, map->m_lblk, &es)) { | 
|  | if (ext4_es_is_written(&es)) | 
|  | goto has_zeroout; | 
|  | } | 
|  | status = map->m_flags & EXT4_MAP_UNWRITTEN ? | 
|  | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; | 
|  | if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && | 
|  | ext4_find_delalloc_range(inode, map->m_lblk, | 
|  | map->m_lblk + map->m_len - 1)) | 
|  | status |= EXTENT_STATUS_DELAYED; | 
|  | ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, | 
|  | map->m_pblk, status); | 
|  | if (ret < 0) | 
|  | retval = ret; | 
|  | } | 
|  |  | 
|  | has_zeroout: | 
|  | up_write((&EXT4_I(inode)->i_data_sem)); | 
|  | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { | 
|  | ret = check_block_validity(inode, map); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Maximum number of blocks we map for direct IO at once. */ | 
|  | #define DIO_MAX_BLOCKS 4096 | 
|  |  | 
|  | static int _ext4_get_block(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh, int flags) | 
|  | { | 
|  | handle_t *handle = ext4_journal_current_handle(); | 
|  | struct ext4_map_blocks map; | 
|  | int ret = 0, started = 0; | 
|  | int dio_credits; | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return -ERANGE; | 
|  |  | 
|  | map.m_lblk = iblock; | 
|  | map.m_len = bh->b_size >> inode->i_blkbits; | 
|  |  | 
|  | if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { | 
|  | /* Direct IO write... */ | 
|  | if (map.m_len > DIO_MAX_BLOCKS) | 
|  | map.m_len = DIO_MAX_BLOCKS; | 
|  | dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); | 
|  | handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, | 
|  | dio_credits); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | return ret; | 
|  | } | 
|  | started = 1; | 
|  | } | 
|  |  | 
|  | ret = ext4_map_blocks(handle, inode, &map, flags); | 
|  | if (ret > 0) { | 
|  | ext4_io_end_t *io_end = ext4_inode_aio(inode); | 
|  |  | 
|  | map_bh(bh, inode->i_sb, map.m_pblk); | 
|  | bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; | 
|  | if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) | 
|  | set_buffer_defer_completion(bh); | 
|  | bh->b_size = inode->i_sb->s_blocksize * map.m_len; | 
|  | ret = 0; | 
|  | } | 
|  | if (started) | 
|  | ext4_journal_stop(handle); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ext4_get_block(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh, int create) | 
|  | { | 
|  | return _ext4_get_block(inode, iblock, bh, | 
|  | create ? EXT4_GET_BLOCKS_CREATE : 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * `handle' can be NULL if create is zero | 
|  | */ | 
|  | struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, | 
|  | ext4_lblk_t block, int create) | 
|  | { | 
|  | struct ext4_map_blocks map; | 
|  | struct buffer_head *bh; | 
|  | int err; | 
|  |  | 
|  | J_ASSERT(handle != NULL || create == 0); | 
|  |  | 
|  | map.m_lblk = block; | 
|  | map.m_len = 1; | 
|  | err = ext4_map_blocks(handle, inode, &map, | 
|  | create ? EXT4_GET_BLOCKS_CREATE : 0); | 
|  |  | 
|  | if (err == 0) | 
|  | return create ? ERR_PTR(-ENOSPC) : NULL; | 
|  | if (err < 0) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | bh = sb_getblk(inode->i_sb, map.m_pblk); | 
|  | if (unlikely(!bh)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | if (map.m_flags & EXT4_MAP_NEW) { | 
|  | J_ASSERT(create != 0); | 
|  | J_ASSERT(handle != NULL); | 
|  |  | 
|  | /* | 
|  | * Now that we do not always journal data, we should | 
|  | * keep in mind whether this should always journal the | 
|  | * new buffer as metadata.  For now, regular file | 
|  | * writes use ext4_get_block instead, so it's not a | 
|  | * problem. | 
|  | */ | 
|  | lock_buffer(bh); | 
|  | BUFFER_TRACE(bh, "call get_create_access"); | 
|  | err = ext4_journal_get_create_access(handle, bh); | 
|  | if (unlikely(err)) { | 
|  | unlock_buffer(bh); | 
|  | goto errout; | 
|  | } | 
|  | if (!buffer_uptodate(bh)) { | 
|  | memset(bh->b_data, 0, inode->i_sb->s_blocksize); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | unlock_buffer(bh); | 
|  | BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); | 
|  | err = ext4_handle_dirty_metadata(handle, inode, bh); | 
|  | if (unlikely(err)) | 
|  | goto errout; | 
|  | } else | 
|  | BUFFER_TRACE(bh, "not a new buffer"); | 
|  | return bh; | 
|  | errout: | 
|  | brelse(bh); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, | 
|  | ext4_lblk_t block, int create) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | bh = ext4_getblk(handle, inode, block, create); | 
|  | if (IS_ERR(bh)) | 
|  | return bh; | 
|  | if (!bh || buffer_uptodate(bh)) | 
|  | return bh; | 
|  | ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); | 
|  | wait_on_buffer(bh); | 
|  | if (buffer_uptodate(bh)) | 
|  | return bh; | 
|  | put_bh(bh); | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  |  | 
|  | int ext4_walk_page_buffers(handle_t *handle, | 
|  | struct buffer_head *head, | 
|  | unsigned from, | 
|  | unsigned to, | 
|  | int *partial, | 
|  | int (*fn)(handle_t *handle, | 
|  | struct buffer_head *bh)) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | unsigned block_start, block_end; | 
|  | unsigned blocksize = head->b_size; | 
|  | int err, ret = 0; | 
|  | struct buffer_head *next; | 
|  |  | 
|  | for (bh = head, block_start = 0; | 
|  | ret == 0 && (bh != head || !block_start); | 
|  | block_start = block_end, bh = next) { | 
|  | next = bh->b_this_page; | 
|  | block_end = block_start + blocksize; | 
|  | if (block_end <= from || block_start >= to) { | 
|  | if (partial && !buffer_uptodate(bh)) | 
|  | *partial = 1; | 
|  | continue; | 
|  | } | 
|  | err = (*fn)(handle, bh); | 
|  | if (!ret) | 
|  | ret = err; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To preserve ordering, it is essential that the hole instantiation and | 
|  | * the data write be encapsulated in a single transaction.  We cannot | 
|  | * close off a transaction and start a new one between the ext4_get_block() | 
|  | * and the commit_write().  So doing the jbd2_journal_start at the start of | 
|  | * prepare_write() is the right place. | 
|  | * | 
|  | * Also, this function can nest inside ext4_writepage().  In that case, we | 
|  | * *know* that ext4_writepage() has generated enough buffer credits to do the | 
|  | * whole page.  So we won't block on the journal in that case, which is good, | 
|  | * because the caller may be PF_MEMALLOC. | 
|  | * | 
|  | * By accident, ext4 can be reentered when a transaction is open via | 
|  | * quota file writes.  If we were to commit the transaction while thus | 
|  | * reentered, there can be a deadlock - we would be holding a quota | 
|  | * lock, and the commit would never complete if another thread had a | 
|  | * transaction open and was blocking on the quota lock - a ranking | 
|  | * violation. | 
|  | * | 
|  | * So what we do is to rely on the fact that jbd2_journal_stop/journal_start | 
|  | * will _not_ run commit under these circumstances because handle->h_ref | 
|  | * is elevated.  We'll still have enough credits for the tiny quotafile | 
|  | * write. | 
|  | */ | 
|  | int do_journal_get_write_access(handle_t *handle, | 
|  | struct buffer_head *bh) | 
|  | { | 
|  | int dirty = buffer_dirty(bh); | 
|  | int ret; | 
|  |  | 
|  | if (!buffer_mapped(bh) || buffer_freed(bh)) | 
|  | return 0; | 
|  | /* | 
|  | * __block_write_begin() could have dirtied some buffers. Clean | 
|  | * the dirty bit as jbd2_journal_get_write_access() could complain | 
|  | * otherwise about fs integrity issues. Setting of the dirty bit | 
|  | * by __block_write_begin() isn't a real problem here as we clear | 
|  | * the bit before releasing a page lock and thus writeback cannot | 
|  | * ever write the buffer. | 
|  | */ | 
|  | if (dirty) | 
|  | clear_buffer_dirty(bh); | 
|  | BUFFER_TRACE(bh, "get write access"); | 
|  | ret = ext4_journal_get_write_access(handle, bh); | 
|  | if (!ret && dirty) | 
|  | ret = ext4_handle_dirty_metadata(handle, NULL, bh); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh_result, int create); | 
|  | static int ext4_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | int ret, needed_blocks; | 
|  | handle_t *handle; | 
|  | int retries = 0; | 
|  | struct page *page; | 
|  | pgoff_t index; | 
|  | unsigned from, to; | 
|  |  | 
|  | trace_ext4_write_begin(inode, pos, len, flags); | 
|  | /* | 
|  | * Reserve one block more for addition to orphan list in case | 
|  | * we allocate blocks but write fails for some reason | 
|  | */ | 
|  | needed_blocks = ext4_writepage_trans_blocks(inode) + 1; | 
|  | index = pos >> PAGE_CACHE_SHIFT; | 
|  | from = pos & (PAGE_CACHE_SIZE - 1); | 
|  | to = from + len; | 
|  |  | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { | 
|  | ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, | 
|  | flags, pagep); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret == 1) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * grab_cache_page_write_begin() can take a long time if the | 
|  | * system is thrashing due to memory pressure, or if the page | 
|  | * is being written back.  So grab it first before we start | 
|  | * the transaction handle.  This also allows us to allocate | 
|  | * the page (if needed) without using GFP_NOFS. | 
|  | */ | 
|  | retry_grab: | 
|  | page = grab_cache_page_write_begin(mapping, index, flags); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | unlock_page(page); | 
|  |  | 
|  | retry_journal: | 
|  | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); | 
|  | if (IS_ERR(handle)) { | 
|  | page_cache_release(page); | 
|  | return PTR_ERR(handle); | 
|  | } | 
|  |  | 
|  | lock_page(page); | 
|  | if (page->mapping != mapping) { | 
|  | /* The page got truncated from under us */ | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | ext4_journal_stop(handle); | 
|  | goto retry_grab; | 
|  | } | 
|  | /* In case writeback began while the page was unlocked */ | 
|  | wait_for_stable_page(page); | 
|  |  | 
|  | if (ext4_should_dioread_nolock(inode)) | 
|  | ret = __block_write_begin(page, pos, len, ext4_get_block_write); | 
|  | else | 
|  | ret = __block_write_begin(page, pos, len, ext4_get_block); | 
|  |  | 
|  | if (!ret && ext4_should_journal_data(inode)) { | 
|  | ret = ext4_walk_page_buffers(handle, page_buffers(page), | 
|  | from, to, NULL, | 
|  | do_journal_get_write_access); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | unlock_page(page); | 
|  | /* | 
|  | * __block_write_begin may have instantiated a few blocks | 
|  | * outside i_size.  Trim these off again. Don't need | 
|  | * i_size_read because we hold i_mutex. | 
|  | * | 
|  | * Add inode to orphan list in case we crash before | 
|  | * truncate finishes | 
|  | */ | 
|  | if (pos + len > inode->i_size && ext4_can_truncate(inode)) | 
|  | ext4_orphan_add(handle, inode); | 
|  |  | 
|  | ext4_journal_stop(handle); | 
|  | if (pos + len > inode->i_size) { | 
|  | ext4_truncate_failed_write(inode); | 
|  | /* | 
|  | * If truncate failed early the inode might | 
|  | * still be on the orphan list; we need to | 
|  | * make sure the inode is removed from the | 
|  | * orphan list in that case. | 
|  | */ | 
|  | if (inode->i_nlink) | 
|  | ext4_orphan_del(NULL, inode); | 
|  | } | 
|  |  | 
|  | if (ret == -ENOSPC && | 
|  | ext4_should_retry_alloc(inode->i_sb, &retries)) | 
|  | goto retry_journal; | 
|  | page_cache_release(page); | 
|  | return ret; | 
|  | } | 
|  | *pagep = page; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* For write_end() in data=journal mode */ | 
|  | static int write_end_fn(handle_t *handle, struct buffer_head *bh) | 
|  | { | 
|  | int ret; | 
|  | if (!buffer_mapped(bh) || buffer_freed(bh)) | 
|  | return 0; | 
|  | set_buffer_uptodate(bh); | 
|  | ret = ext4_handle_dirty_metadata(handle, NULL, bh); | 
|  | clear_buffer_meta(bh); | 
|  | clear_buffer_prio(bh); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to pick up the new inode size which generic_commit_write gave us | 
|  | * `file' can be NULL - eg, when called from page_symlink(). | 
|  | * | 
|  | * ext4 never places buffers on inode->i_mapping->private_list.  metadata | 
|  | * buffers are managed internally. | 
|  | */ | 
|  | static int ext4_write_end(struct file *file, | 
|  | struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | handle_t *handle = ext4_journal_current_handle(); | 
|  | struct inode *inode = mapping->host; | 
|  | int ret = 0, ret2; | 
|  | int i_size_changed = 0; | 
|  |  | 
|  | trace_ext4_write_end(inode, pos, len, copied); | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { | 
|  | ret = ext4_jbd2_file_inode(handle, inode); | 
|  | if (ret) { | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | goto errout; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) { | 
|  | ret = ext4_write_inline_data_end(inode, pos, len, | 
|  | copied, page); | 
|  | if (ret < 0) | 
|  | goto errout; | 
|  | copied = ret; | 
|  | } else | 
|  | copied = block_write_end(file, mapping, pos, | 
|  | len, copied, page, fsdata); | 
|  | /* | 
|  | * it's important to update i_size while still holding page lock: | 
|  | * page writeout could otherwise come in and zero beyond i_size. | 
|  | */ | 
|  | i_size_changed = ext4_update_inode_size(inode, pos + copied); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  |  | 
|  | /* | 
|  | * Don't mark the inode dirty under page lock. First, it unnecessarily | 
|  | * makes the holding time of page lock longer. Second, it forces lock | 
|  | * ordering of page lock and transaction start for journaling | 
|  | * filesystems. | 
|  | */ | 
|  | if (i_size_changed) | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  |  | 
|  | if (pos + len > inode->i_size && ext4_can_truncate(inode)) | 
|  | /* if we have allocated more blocks and copied | 
|  | * less. We will have blocks allocated outside | 
|  | * inode->i_size. So truncate them | 
|  | */ | 
|  | ext4_orphan_add(handle, inode); | 
|  | errout: | 
|  | ret2 = ext4_journal_stop(handle); | 
|  | if (!ret) | 
|  | ret = ret2; | 
|  |  | 
|  | if (pos + len > inode->i_size) { | 
|  | ext4_truncate_failed_write(inode); | 
|  | /* | 
|  | * If truncate failed early the inode might still be | 
|  | * on the orphan list; we need to make sure the inode | 
|  | * is removed from the orphan list in that case. | 
|  | */ | 
|  | if (inode->i_nlink) | 
|  | ext4_orphan_del(NULL, inode); | 
|  | } | 
|  |  | 
|  | return ret ? ret : copied; | 
|  | } | 
|  |  | 
|  | static int ext4_journalled_write_end(struct file *file, | 
|  | struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | handle_t *handle = ext4_journal_current_handle(); | 
|  | struct inode *inode = mapping->host; | 
|  | int ret = 0, ret2; | 
|  | int partial = 0; | 
|  | unsigned from, to; | 
|  | int size_changed = 0; | 
|  |  | 
|  | trace_ext4_journalled_write_end(inode, pos, len, copied); | 
|  | from = pos & (PAGE_CACHE_SIZE - 1); | 
|  | to = from + len; | 
|  |  | 
|  | BUG_ON(!ext4_handle_valid(handle)); | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) | 
|  | copied = ext4_write_inline_data_end(inode, pos, len, | 
|  | copied, page); | 
|  | else { | 
|  | if (copied < len) { | 
|  | if (!PageUptodate(page)) | 
|  | copied = 0; | 
|  | page_zero_new_buffers(page, from+copied, to); | 
|  | } | 
|  |  | 
|  | ret = ext4_walk_page_buffers(handle, page_buffers(page), from, | 
|  | to, &partial, write_end_fn); | 
|  | if (!partial) | 
|  | SetPageUptodate(page); | 
|  | } | 
|  | size_changed = ext4_update_inode_size(inode, pos + copied); | 
|  | ext4_set_inode_state(inode, EXT4_STATE_JDATA); | 
|  | EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  |  | 
|  | if (size_changed) { | 
|  | ret2 = ext4_mark_inode_dirty(handle, inode); | 
|  | if (!ret) | 
|  | ret = ret2; | 
|  | } | 
|  |  | 
|  | if (pos + len > inode->i_size && ext4_can_truncate(inode)) | 
|  | /* if we have allocated more blocks and copied | 
|  | * less. We will have blocks allocated outside | 
|  | * inode->i_size. So truncate them | 
|  | */ | 
|  | ext4_orphan_add(handle, inode); | 
|  |  | 
|  | ret2 = ext4_journal_stop(handle); | 
|  | if (!ret) | 
|  | ret = ret2; | 
|  | if (pos + len > inode->i_size) { | 
|  | ext4_truncate_failed_write(inode); | 
|  | /* | 
|  | * If truncate failed early the inode might still be | 
|  | * on the orphan list; we need to make sure the inode | 
|  | * is removed from the orphan list in that case. | 
|  | */ | 
|  | if (inode->i_nlink) | 
|  | ext4_orphan_del(NULL, inode); | 
|  | } | 
|  |  | 
|  | return ret ? ret : copied; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve a single cluster located at lblock | 
|  | */ | 
|  | static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | unsigned int md_needed; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * We will charge metadata quota at writeout time; this saves | 
|  | * us from metadata over-estimation, though we may go over by | 
|  | * a small amount in the end.  Here we just reserve for data. | 
|  | */ | 
|  | ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * recalculate the amount of metadata blocks to reserve | 
|  | * in order to allocate nrblocks | 
|  | * worse case is one extent per block | 
|  | */ | 
|  | spin_lock(&ei->i_block_reservation_lock); | 
|  | /* | 
|  | * ext4_calc_metadata_amount() has side effects, which we have | 
|  | * to be prepared undo if we fail to claim space. | 
|  | */ | 
|  | md_needed = 0; | 
|  | trace_ext4_da_reserve_space(inode, 0); | 
|  |  | 
|  | if (ext4_claim_free_clusters(sbi, 1, 0)) { | 
|  | spin_unlock(&ei->i_block_reservation_lock); | 
|  | dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); | 
|  | return -ENOSPC; | 
|  | } | 
|  | ei->i_reserved_data_blocks++; | 
|  | spin_unlock(&ei->i_block_reservation_lock); | 
|  |  | 
|  | return 0;       /* success */ | 
|  | } | 
|  |  | 
|  | static void ext4_da_release_space(struct inode *inode, int to_free) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  |  | 
|  | if (!to_free) | 
|  | return;		/* Nothing to release, exit */ | 
|  |  | 
|  | spin_lock(&EXT4_I(inode)->i_block_reservation_lock); | 
|  |  | 
|  | trace_ext4_da_release_space(inode, to_free); | 
|  | if (unlikely(to_free > ei->i_reserved_data_blocks)) { | 
|  | /* | 
|  | * if there aren't enough reserved blocks, then the | 
|  | * counter is messed up somewhere.  Since this | 
|  | * function is called from invalidate page, it's | 
|  | * harmless to return without any action. | 
|  | */ | 
|  | ext4_warning(inode->i_sb, "ext4_da_release_space: " | 
|  | "ino %lu, to_free %d with only %d reserved " | 
|  | "data blocks", inode->i_ino, to_free, | 
|  | ei->i_reserved_data_blocks); | 
|  | WARN_ON(1); | 
|  | to_free = ei->i_reserved_data_blocks; | 
|  | } | 
|  | ei->i_reserved_data_blocks -= to_free; | 
|  |  | 
|  | /* update fs dirty data blocks counter */ | 
|  | percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); | 
|  |  | 
|  | spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); | 
|  |  | 
|  | dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); | 
|  | } | 
|  |  | 
|  | static void ext4_da_page_release_reservation(struct page *page, | 
|  | unsigned int offset, | 
|  | unsigned int length) | 
|  | { | 
|  | int to_release = 0; | 
|  | struct buffer_head *head, *bh; | 
|  | unsigned int curr_off = 0; | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | unsigned int stop = offset + length; | 
|  | int num_clusters; | 
|  | ext4_fsblk_t lblk; | 
|  |  | 
|  | BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); | 
|  |  | 
|  | head = page_buffers(page); | 
|  | bh = head; | 
|  | do { | 
|  | unsigned int next_off = curr_off + bh->b_size; | 
|  |  | 
|  | if (next_off > stop) | 
|  | break; | 
|  |  | 
|  | if ((offset <= curr_off) && (buffer_delay(bh))) { | 
|  | to_release++; | 
|  | clear_buffer_delay(bh); | 
|  | } | 
|  | curr_off = next_off; | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  |  | 
|  | if (to_release) { | 
|  | lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
|  | ext4_es_remove_extent(inode, lblk, to_release); | 
|  | } | 
|  |  | 
|  | /* If we have released all the blocks belonging to a cluster, then we | 
|  | * need to release the reserved space for that cluster. */ | 
|  | num_clusters = EXT4_NUM_B2C(sbi, to_release); | 
|  | while (num_clusters > 0) { | 
|  | lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + | 
|  | ((num_clusters - 1) << sbi->s_cluster_bits); | 
|  | if (sbi->s_cluster_ratio == 1 || | 
|  | !ext4_find_delalloc_cluster(inode, lblk)) | 
|  | ext4_da_release_space(inode, 1); | 
|  |  | 
|  | num_clusters--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delayed allocation stuff | 
|  | */ | 
|  |  | 
|  | struct mpage_da_data { | 
|  | struct inode *inode; | 
|  | struct writeback_control *wbc; | 
|  |  | 
|  | pgoff_t first_page;	/* The first page to write */ | 
|  | pgoff_t next_page;	/* Current page to examine */ | 
|  | pgoff_t last_page;	/* Last page to examine */ | 
|  | /* | 
|  | * Extent to map - this can be after first_page because that can be | 
|  | * fully mapped. We somewhat abuse m_flags to store whether the extent | 
|  | * is delalloc or unwritten. | 
|  | */ | 
|  | struct ext4_map_blocks map; | 
|  | struct ext4_io_submit io_submit;	/* IO submission data */ | 
|  | }; | 
|  |  | 
|  | static void mpage_release_unused_pages(struct mpage_da_data *mpd, | 
|  | bool invalidate) | 
|  | { | 
|  | int nr_pages, i; | 
|  | pgoff_t index, end; | 
|  | struct pagevec pvec; | 
|  | struct inode *inode = mpd->inode; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  |  | 
|  | /* This is necessary when next_page == 0. */ | 
|  | if (mpd->first_page >= mpd->next_page) | 
|  | return; | 
|  |  | 
|  | index = mpd->first_page; | 
|  | end   = mpd->next_page - 1; | 
|  | if (invalidate) { | 
|  | ext4_lblk_t start, last; | 
|  | start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
|  | last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
|  | ext4_es_remove_extent(inode, start, last - start + 1); | 
|  | } | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | while (index <= end) { | 
|  | nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); | 
|  | if (nr_pages == 0) | 
|  | break; | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  | if (page->index > end) | 
|  | break; | 
|  | BUG_ON(!PageLocked(page)); | 
|  | BUG_ON(PageWriteback(page)); | 
|  | if (invalidate) { | 
|  | block_invalidatepage(page, 0, PAGE_CACHE_SIZE); | 
|  | ClearPageUptodate(page); | 
|  | } | 
|  | unlock_page(page); | 
|  | } | 
|  | index = pvec.pages[nr_pages - 1]->index + 1; | 
|  | pagevec_release(&pvec); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ext4_print_free_blocks(struct inode *inode) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  |  | 
|  | ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", | 
|  | EXT4_C2B(EXT4_SB(inode->i_sb), | 
|  | ext4_count_free_clusters(sb))); | 
|  | ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); | 
|  | ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", | 
|  | (long long) EXT4_C2B(EXT4_SB(sb), | 
|  | percpu_counter_sum(&sbi->s_freeclusters_counter))); | 
|  | ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", | 
|  | (long long) EXT4_C2B(EXT4_SB(sb), | 
|  | percpu_counter_sum(&sbi->s_dirtyclusters_counter))); | 
|  | ext4_msg(sb, KERN_CRIT, "Block reservation details"); | 
|  | ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", | 
|  | ei->i_reserved_data_blocks); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) | 
|  | { | 
|  | return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is grabs code from the very beginning of | 
|  | * ext4_map_blocks, but assumes that the caller is from delayed write | 
|  | * time. This function looks up the requested blocks and sets the | 
|  | * buffer delay bit under the protection of i_data_sem. | 
|  | */ | 
|  | static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, | 
|  | struct ext4_map_blocks *map, | 
|  | struct buffer_head *bh) | 
|  | { | 
|  | struct extent_status es; | 
|  | int retval; | 
|  | sector_t invalid_block = ~((sector_t) 0xffff); | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | struct ext4_map_blocks orig_map; | 
|  |  | 
|  | memcpy(&orig_map, map, sizeof(*map)); | 
|  | #endif | 
|  |  | 
|  | if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) | 
|  | invalid_block = ~0; | 
|  |  | 
|  | map->m_flags = 0; | 
|  | ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," | 
|  | "logical block %lu\n", inode->i_ino, map->m_len, | 
|  | (unsigned long) map->m_lblk); | 
|  |  | 
|  | /* Lookup extent status tree firstly */ | 
|  | if (ext4_es_lookup_extent(inode, iblock, &es)) { | 
|  | ext4_es_lru_add(inode); | 
|  | if (ext4_es_is_hole(&es)) { | 
|  | retval = 0; | 
|  | down_read(&EXT4_I(inode)->i_data_sem); | 
|  | goto add_delayed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delayed extent could be allocated by fallocate. | 
|  | * So we need to check it. | 
|  | */ | 
|  | if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { | 
|  | map_bh(bh, inode->i_sb, invalid_block); | 
|  | set_buffer_new(bh); | 
|  | set_buffer_delay(bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; | 
|  | retval = es.es_len - (iblock - es.es_lblk); | 
|  | if (retval > map->m_len) | 
|  | retval = map->m_len; | 
|  | map->m_len = retval; | 
|  | if (ext4_es_is_written(&es)) | 
|  | map->m_flags |= EXT4_MAP_MAPPED; | 
|  | else if (ext4_es_is_unwritten(&es)) | 
|  | map->m_flags |= EXT4_MAP_UNWRITTEN; | 
|  | else | 
|  | BUG_ON(1); | 
|  |  | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); | 
|  | #endif | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to see if we can get the block without requesting a new | 
|  | * file system block. | 
|  | */ | 
|  | down_read(&EXT4_I(inode)->i_data_sem); | 
|  | if (ext4_has_inline_data(inode)) { | 
|  | /* | 
|  | * We will soon create blocks for this page, and let | 
|  | * us pretend as if the blocks aren't allocated yet. | 
|  | * In case of clusters, we have to handle the work | 
|  | * of mapping from cluster so that the reserved space | 
|  | * is calculated properly. | 
|  | */ | 
|  | if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && | 
|  | ext4_find_delalloc_cluster(inode, map->m_lblk)) | 
|  | map->m_flags |= EXT4_MAP_FROM_CLUSTER; | 
|  | retval = 0; | 
|  | } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | retval = ext4_ext_map_blocks(NULL, inode, map, | 
|  | EXT4_GET_BLOCKS_NO_PUT_HOLE); | 
|  | else | 
|  | retval = ext4_ind_map_blocks(NULL, inode, map, | 
|  | EXT4_GET_BLOCKS_NO_PUT_HOLE); | 
|  |  | 
|  | add_delayed: | 
|  | if (retval == 0) { | 
|  | int ret; | 
|  | /* | 
|  | * XXX: __block_prepare_write() unmaps passed block, | 
|  | * is it OK? | 
|  | */ | 
|  | /* | 
|  | * If the block was allocated from previously allocated cluster, | 
|  | * then we don't need to reserve it again. However we still need | 
|  | * to reserve metadata for every block we're going to write. | 
|  | */ | 
|  | if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { | 
|  | ret = ext4_da_reserve_space(inode, iblock); | 
|  | if (ret) { | 
|  | /* not enough space to reserve */ | 
|  | retval = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, | 
|  | ~0, EXTENT_STATUS_DELAYED); | 
|  | if (ret) { | 
|  | retval = ret; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served | 
|  | * and it should not appear on the bh->b_state. | 
|  | */ | 
|  | map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; | 
|  |  | 
|  | map_bh(bh, inode->i_sb, invalid_block); | 
|  | set_buffer_new(bh); | 
|  | set_buffer_delay(bh); | 
|  | } else if (retval > 0) { | 
|  | int ret; | 
|  | unsigned int status; | 
|  |  | 
|  | if (unlikely(retval != map->m_len)) { | 
|  | ext4_warning(inode->i_sb, | 
|  | "ES len assertion failed for inode " | 
|  | "%lu: retval %d != map->m_len %d", | 
|  | inode->i_ino, retval, map->m_len); | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | status = map->m_flags & EXT4_MAP_UNWRITTEN ? | 
|  | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; | 
|  | ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, | 
|  | map->m_pblk, status); | 
|  | if (ret != 0) | 
|  | retval = ret; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | up_read((&EXT4_I(inode)->i_data_sem)); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a special get_block_t callback which is used by | 
|  | * ext4_da_write_begin().  It will either return mapped block or | 
|  | * reserve space for a single block. | 
|  | * | 
|  | * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. | 
|  | * We also have b_blocknr = -1 and b_bdev initialized properly | 
|  | * | 
|  | * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. | 
|  | * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev | 
|  | * initialized properly. | 
|  | */ | 
|  | int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh, int create) | 
|  | { | 
|  | struct ext4_map_blocks map; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(create == 0); | 
|  | BUG_ON(bh->b_size != inode->i_sb->s_blocksize); | 
|  |  | 
|  | map.m_lblk = iblock; | 
|  | map.m_len = 1; | 
|  |  | 
|  | /* | 
|  | * first, we need to know whether the block is allocated already | 
|  | * preallocated blocks are unmapped but should treated | 
|  | * the same as allocated blocks. | 
|  | */ | 
|  | ret = ext4_da_map_blocks(inode, iblock, &map, bh); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  |  | 
|  | map_bh(bh, inode->i_sb, map.m_pblk); | 
|  | bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; | 
|  |  | 
|  | if (buffer_unwritten(bh)) { | 
|  | /* A delayed write to unwritten bh should be marked | 
|  | * new and mapped.  Mapped ensures that we don't do | 
|  | * get_block multiple times when we write to the same | 
|  | * offset and new ensures that we do proper zero out | 
|  | * for partial write. | 
|  | */ | 
|  | set_buffer_new(bh); | 
|  | set_buffer_mapped(bh); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bget_one(handle_t *handle, struct buffer_head *bh) | 
|  | { | 
|  | get_bh(bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bput_one(handle_t *handle, struct buffer_head *bh) | 
|  | { | 
|  | put_bh(bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __ext4_journalled_writepage(struct page *page, | 
|  | unsigned int len) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | struct buffer_head *page_bufs = NULL; | 
|  | handle_t *handle = NULL; | 
|  | int ret = 0, err = 0; | 
|  | int inline_data = ext4_has_inline_data(inode); | 
|  | struct buffer_head *inode_bh = NULL; | 
|  |  | 
|  | ClearPageChecked(page); | 
|  |  | 
|  | if (inline_data) { | 
|  | BUG_ON(page->index != 0); | 
|  | BUG_ON(len > ext4_get_max_inline_size(inode)); | 
|  | inode_bh = ext4_journalled_write_inline_data(inode, len, page); | 
|  | if (inode_bh == NULL) | 
|  | goto out; | 
|  | } else { | 
|  | page_bufs = page_buffers(page); | 
|  | if (!page_bufs) { | 
|  | BUG(); | 
|  | goto out; | 
|  | } | 
|  | ext4_walk_page_buffers(handle, page_bufs, 0, len, | 
|  | NULL, bget_one); | 
|  | } | 
|  | /* As soon as we unlock the page, it can go away, but we have | 
|  | * references to buffers so we are safe */ | 
|  | unlock_page(page); | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, | 
|  | ext4_writepage_trans_blocks(inode)); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | BUG_ON(!ext4_handle_valid(handle)); | 
|  |  | 
|  | if (inline_data) { | 
|  | BUFFER_TRACE(inode_bh, "get write access"); | 
|  | ret = ext4_journal_get_write_access(handle, inode_bh); | 
|  |  | 
|  | err = ext4_handle_dirty_metadata(handle, inode, inode_bh); | 
|  |  | 
|  | } else { | 
|  | ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, | 
|  | do_journal_get_write_access); | 
|  |  | 
|  | err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, | 
|  | write_end_fn); | 
|  | } | 
|  | if (ret == 0) | 
|  | ret = err; | 
|  | EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; | 
|  | err = ext4_journal_stop(handle); | 
|  | if (!ret) | 
|  | ret = err; | 
|  |  | 
|  | if (!ext4_has_inline_data(inode)) | 
|  | ext4_walk_page_buffers(NULL, page_bufs, 0, len, | 
|  | NULL, bput_one); | 
|  | ext4_set_inode_state(inode, EXT4_STATE_JDATA); | 
|  | out: | 
|  | brelse(inode_bh); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that we don't need to start a transaction unless we're journaling data | 
|  | * because we should have holes filled from ext4_page_mkwrite(). We even don't | 
|  | * need to file the inode to the transaction's list in ordered mode because if | 
|  | * we are writing back data added by write(), the inode is already there and if | 
|  | * we are writing back data modified via mmap(), no one guarantees in which | 
|  | * transaction the data will hit the disk. In case we are journaling data, we | 
|  | * cannot start transaction directly because transaction start ranks above page | 
|  | * lock so we have to do some magic. | 
|  | * | 
|  | * This function can get called via... | 
|  | *   - ext4_writepages after taking page lock (have journal handle) | 
|  | *   - journal_submit_inode_data_buffers (no journal handle) | 
|  | *   - shrink_page_list via the kswapd/direct reclaim (no journal handle) | 
|  | *   - grab_page_cache when doing write_begin (have journal handle) | 
|  | * | 
|  | * We don't do any block allocation in this function. If we have page with | 
|  | * multiple blocks we need to write those buffer_heads that are mapped. This | 
|  | * is important for mmaped based write. So if we do with blocksize 1K | 
|  | * truncate(f, 1024); | 
|  | * a = mmap(f, 0, 4096); | 
|  | * a[0] = 'a'; | 
|  | * truncate(f, 4096); | 
|  | * we have in the page first buffer_head mapped via page_mkwrite call back | 
|  | * but other buffer_heads would be unmapped but dirty (dirty done via the | 
|  | * do_wp_page). So writepage should write the first block. If we modify | 
|  | * the mmap area beyond 1024 we will again get a page_fault and the | 
|  | * page_mkwrite callback will do the block allocation and mark the | 
|  | * buffer_heads mapped. | 
|  | * | 
|  | * We redirty the page if we have any buffer_heads that is either delay or | 
|  | * unwritten in the page. | 
|  | * | 
|  | * We can get recursively called as show below. | 
|  | * | 
|  | *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> | 
|  | *		ext4_writepage() | 
|  | * | 
|  | * But since we don't do any block allocation we should not deadlock. | 
|  | * Page also have the dirty flag cleared so we don't get recurive page_lock. | 
|  | */ | 
|  | static int ext4_writepage(struct page *page, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | int ret = 0; | 
|  | loff_t size; | 
|  | unsigned int len; | 
|  | struct buffer_head *page_bufs = NULL; | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct ext4_io_submit io_submit; | 
|  | bool keep_towrite = false; | 
|  |  | 
|  | trace_ext4_writepage(page); | 
|  | size = i_size_read(inode); | 
|  | if (page->index == size >> PAGE_CACHE_SHIFT) | 
|  | len = size & ~PAGE_CACHE_MASK; | 
|  | else | 
|  | len = PAGE_CACHE_SIZE; | 
|  |  | 
|  | page_bufs = page_buffers(page); | 
|  | /* | 
|  | * We cannot do block allocation or other extent handling in this | 
|  | * function. If there are buffers needing that, we have to redirty | 
|  | * the page. But we may reach here when we do a journal commit via | 
|  | * journal_submit_inode_data_buffers() and in that case we must write | 
|  | * allocated buffers to achieve data=ordered mode guarantees. | 
|  | */ | 
|  | if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, | 
|  | ext4_bh_delay_or_unwritten)) { | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | if (current->flags & PF_MEMALLOC) { | 
|  | /* | 
|  | * For memory cleaning there's no point in writing only | 
|  | * some buffers. So just bail out. Warn if we came here | 
|  | * from direct reclaim. | 
|  | */ | 
|  | WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) | 
|  | == PF_MEMALLOC); | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  | keep_towrite = true; | 
|  | } | 
|  |  | 
|  | if (PageChecked(page) && ext4_should_journal_data(inode)) | 
|  | /* | 
|  | * It's mmapped pagecache.  Add buffers and journal it.  There | 
|  | * doesn't seem much point in redirtying the page here. | 
|  | */ | 
|  | return __ext4_journalled_writepage(page, len); | 
|  |  | 
|  | ext4_io_submit_init(&io_submit, wbc); | 
|  | io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); | 
|  | if (!io_submit.io_end) { | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | unlock_page(page); | 
|  | return -ENOMEM; | 
|  | } | 
|  | ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); | 
|  | ext4_io_submit(&io_submit); | 
|  | /* Drop io_end reference we got from init */ | 
|  | ext4_put_io_end_defer(io_submit.io_end); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) | 
|  | { | 
|  | int len; | 
|  | loff_t size = i_size_read(mpd->inode); | 
|  | int err; | 
|  |  | 
|  | BUG_ON(page->index != mpd->first_page); | 
|  | if (page->index == size >> PAGE_CACHE_SHIFT) | 
|  | len = size & ~PAGE_CACHE_MASK; | 
|  | else | 
|  | len = PAGE_CACHE_SIZE; | 
|  | clear_page_dirty_for_io(page); | 
|  | err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); | 
|  | if (!err) | 
|  | mpd->wbc->nr_to_write--; | 
|  | mpd->first_page++; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) | 
|  |  | 
|  | /* | 
|  | * mballoc gives us at most this number of blocks... | 
|  | * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). | 
|  | * The rest of mballoc seems to handle chunks up to full group size. | 
|  | */ | 
|  | #define MAX_WRITEPAGES_EXTENT_LEN 2048 | 
|  |  | 
|  | /* | 
|  | * mpage_add_bh_to_extent - try to add bh to extent of blocks to map | 
|  | * | 
|  | * @mpd - extent of blocks | 
|  | * @lblk - logical number of the block in the file | 
|  | * @bh - buffer head we want to add to the extent | 
|  | * | 
|  | * The function is used to collect contig. blocks in the same state. If the | 
|  | * buffer doesn't require mapping for writeback and we haven't started the | 
|  | * extent of buffers to map yet, the function returns 'true' immediately - the | 
|  | * caller can write the buffer right away. Otherwise the function returns true | 
|  | * if the block has been added to the extent, false if the block couldn't be | 
|  | * added. | 
|  | */ | 
|  | static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, | 
|  | struct buffer_head *bh) | 
|  | { | 
|  | struct ext4_map_blocks *map = &mpd->map; | 
|  |  | 
|  | /* Buffer that doesn't need mapping for writeback? */ | 
|  | if (!buffer_dirty(bh) || !buffer_mapped(bh) || | 
|  | (!buffer_delay(bh) && !buffer_unwritten(bh))) { | 
|  | /* So far no extent to map => we write the buffer right away */ | 
|  | if (map->m_len == 0) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* First block in the extent? */ | 
|  | if (map->m_len == 0) { | 
|  | map->m_lblk = lblk; | 
|  | map->m_len = 1; | 
|  | map->m_flags = bh->b_state & BH_FLAGS; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Don't go larger than mballoc is willing to allocate */ | 
|  | if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) | 
|  | return false; | 
|  |  | 
|  | /* Can we merge the block to our big extent? */ | 
|  | if (lblk == map->m_lblk + map->m_len && | 
|  | (bh->b_state & BH_FLAGS) == map->m_flags) { | 
|  | map->m_len++; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpage_process_page_bufs - submit page buffers for IO or add them to extent | 
|  | * | 
|  | * @mpd - extent of blocks for mapping | 
|  | * @head - the first buffer in the page | 
|  | * @bh - buffer we should start processing from | 
|  | * @lblk - logical number of the block in the file corresponding to @bh | 
|  | * | 
|  | * Walk through page buffers from @bh upto @head (exclusive) and either submit | 
|  | * the page for IO if all buffers in this page were mapped and there's no | 
|  | * accumulated extent of buffers to map or add buffers in the page to the | 
|  | * extent of buffers to map. The function returns 1 if the caller can continue | 
|  | * by processing the next page, 0 if it should stop adding buffers to the | 
|  | * extent to map because we cannot extend it anymore. It can also return value | 
|  | * < 0 in case of error during IO submission. | 
|  | */ | 
|  | static int mpage_process_page_bufs(struct mpage_da_data *mpd, | 
|  | struct buffer_head *head, | 
|  | struct buffer_head *bh, | 
|  | ext4_lblk_t lblk) | 
|  | { | 
|  | struct inode *inode = mpd->inode; | 
|  | int err; | 
|  | ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) | 
|  | >> inode->i_blkbits; | 
|  |  | 
|  | do { | 
|  | BUG_ON(buffer_locked(bh)); | 
|  |  | 
|  | if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { | 
|  | /* Found extent to map? */ | 
|  | if (mpd->map.m_len) | 
|  | return 0; | 
|  | /* Everything mapped so far and we hit EOF */ | 
|  | break; | 
|  | } | 
|  | } while (lblk++, (bh = bh->b_this_page) != head); | 
|  | /* So far everything mapped? Submit the page for IO. */ | 
|  | if (mpd->map.m_len == 0) { | 
|  | err = mpage_submit_page(mpd, head->b_page); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | return lblk < blocks; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpage_map_buffers - update buffers corresponding to changed extent and | 
|  | *		       submit fully mapped pages for IO | 
|  | * | 
|  | * @mpd - description of extent to map, on return next extent to map | 
|  | * | 
|  | * Scan buffers corresponding to changed extent (we expect corresponding pages | 
|  | * to be already locked) and update buffer state according to new extent state. | 
|  | * We map delalloc buffers to their physical location, clear unwritten bits, | 
|  | * and mark buffers as uninit when we perform writes to unwritten extents | 
|  | * and do extent conversion after IO is finished. If the last page is not fully | 
|  | * mapped, we update @map to the next extent in the last page that needs | 
|  | * mapping. Otherwise we submit the page for IO. | 
|  | */ | 
|  | static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) | 
|  | { | 
|  | struct pagevec pvec; | 
|  | int nr_pages, i; | 
|  | struct inode *inode = mpd->inode; | 
|  | struct buffer_head *head, *bh; | 
|  | int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; | 
|  | pgoff_t start, end; | 
|  | ext4_lblk_t lblk; | 
|  | sector_t pblock; | 
|  | int err; | 
|  |  | 
|  | start = mpd->map.m_lblk >> bpp_bits; | 
|  | end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; | 
|  | lblk = start << bpp_bits; | 
|  | pblock = mpd->map.m_pblk; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | while (start <= end) { | 
|  | nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, | 
|  | PAGEVEC_SIZE); | 
|  | if (nr_pages == 0) | 
|  | break; | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | if (page->index > end) | 
|  | break; | 
|  | /* Up to 'end' pages must be contiguous */ | 
|  | BUG_ON(page->index != start); | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (lblk < mpd->map.m_lblk) | 
|  | continue; | 
|  | if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { | 
|  | /* | 
|  | * Buffer after end of mapped extent. | 
|  | * Find next buffer in the page to map. | 
|  | */ | 
|  | mpd->map.m_len = 0; | 
|  | mpd->map.m_flags = 0; | 
|  | /* | 
|  | * FIXME: If dioread_nolock supports | 
|  | * blocksize < pagesize, we need to make | 
|  | * sure we add size mapped so far to | 
|  | * io_end->size as the following call | 
|  | * can submit the page for IO. | 
|  | */ | 
|  | err = mpage_process_page_bufs(mpd, head, | 
|  | bh, lblk); | 
|  | pagevec_release(&pvec); | 
|  | if (err > 0) | 
|  | err = 0; | 
|  | return err; | 
|  | } | 
|  | if (buffer_delay(bh)) { | 
|  | clear_buffer_delay(bh); | 
|  | bh->b_blocknr = pblock++; | 
|  | } | 
|  | clear_buffer_unwritten(bh); | 
|  | } while (lblk++, (bh = bh->b_this_page) != head); | 
|  |  | 
|  | /* | 
|  | * FIXME: This is going to break if dioread_nolock | 
|  | * supports blocksize < pagesize as we will try to | 
|  | * convert potentially unmapped parts of inode. | 
|  | */ | 
|  | mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; | 
|  | /* Page fully mapped - let IO run! */ | 
|  | err = mpage_submit_page(mpd, page); | 
|  | if (err < 0) { | 
|  | pagevec_release(&pvec); | 
|  | return err; | 
|  | } | 
|  | start++; | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | } | 
|  | /* Extent fully mapped and matches with page boundary. We are done. */ | 
|  | mpd->map.m_len = 0; | 
|  | mpd->map.m_flags = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) | 
|  | { | 
|  | struct inode *inode = mpd->inode; | 
|  | struct ext4_map_blocks *map = &mpd->map; | 
|  | int get_blocks_flags; | 
|  | int err, dioread_nolock; | 
|  |  | 
|  | trace_ext4_da_write_pages_extent(inode, map); | 
|  | /* | 
|  | * Call ext4_map_blocks() to allocate any delayed allocation blocks, or | 
|  | * to convert an unwritten extent to be initialized (in the case | 
|  | * where we have written into one or more preallocated blocks).  It is | 
|  | * possible that we're going to need more metadata blocks than | 
|  | * previously reserved. However we must not fail because we're in | 
|  | * writeback and there is nothing we can do about it so it might result | 
|  | * in data loss.  So use reserved blocks to allocate metadata if | 
|  | * possible. | 
|  | * | 
|  | * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if | 
|  | * the blocks in question are delalloc blocks.  This indicates | 
|  | * that the blocks and quotas has already been checked when | 
|  | * the data was copied into the page cache. | 
|  | */ | 
|  | get_blocks_flags = EXT4_GET_BLOCKS_CREATE | | 
|  | EXT4_GET_BLOCKS_METADATA_NOFAIL; | 
|  | dioread_nolock = ext4_should_dioread_nolock(inode); | 
|  | if (dioread_nolock) | 
|  | get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; | 
|  | if (map->m_flags & (1 << BH_Delay)) | 
|  | get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; | 
|  |  | 
|  | err = ext4_map_blocks(handle, inode, map, get_blocks_flags); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { | 
|  | if (!mpd->io_submit.io_end->handle && | 
|  | ext4_handle_valid(handle)) { | 
|  | mpd->io_submit.io_end->handle = handle->h_rsv_handle; | 
|  | handle->h_rsv_handle = NULL; | 
|  | } | 
|  | ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); | 
|  | } | 
|  |  | 
|  | BUG_ON(map->m_len == 0); | 
|  | if (map->m_flags & EXT4_MAP_NEW) { | 
|  | struct block_device *bdev = inode->i_sb->s_bdev; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < map->m_len; i++) | 
|  | unmap_underlying_metadata(bdev, map->m_pblk + i); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length | 
|  | *				 mpd->len and submit pages underlying it for IO | 
|  | * | 
|  | * @handle - handle for journal operations | 
|  | * @mpd - extent to map | 
|  | * @give_up_on_write - we set this to true iff there is a fatal error and there | 
|  | *                     is no hope of writing the data. The caller should discard | 
|  | *                     dirty pages to avoid infinite loops. | 
|  | * | 
|  | * The function maps extent starting at mpd->lblk of length mpd->len. If it is | 
|  | * delayed, blocks are allocated, if it is unwritten, we may need to convert | 
|  | * them to initialized or split the described range from larger unwritten | 
|  | * extent. Note that we need not map all the described range since allocation | 
|  | * can return less blocks or the range is covered by more unwritten extents. We | 
|  | * cannot map more because we are limited by reserved transaction credits. On | 
|  | * the other hand we always make sure that the last touched page is fully | 
|  | * mapped so that it can be written out (and thus forward progress is | 
|  | * guaranteed). After mapping we submit all mapped pages for IO. | 
|  | */ | 
|  | static int mpage_map_and_submit_extent(handle_t *handle, | 
|  | struct mpage_da_data *mpd, | 
|  | bool *give_up_on_write) | 
|  | { | 
|  | struct inode *inode = mpd->inode; | 
|  | struct ext4_map_blocks *map = &mpd->map; | 
|  | int err; | 
|  | loff_t disksize; | 
|  | int progress = 0; | 
|  |  | 
|  | mpd->io_submit.io_end->offset = | 
|  | ((loff_t)map->m_lblk) << inode->i_blkbits; | 
|  | do { | 
|  | err = mpage_map_one_extent(handle, mpd); | 
|  | if (err < 0) { | 
|  | struct super_block *sb = inode->i_sb; | 
|  |  | 
|  | if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) | 
|  | goto invalidate_dirty_pages; | 
|  | /* | 
|  | * Let the uper layers retry transient errors. | 
|  | * In the case of ENOSPC, if ext4_count_free_blocks() | 
|  | * is non-zero, a commit should free up blocks. | 
|  | */ | 
|  | if ((err == -ENOMEM) || | 
|  | (err == -ENOSPC && ext4_count_free_clusters(sb))) { | 
|  | if (progress) | 
|  | goto update_disksize; | 
|  | return err; | 
|  | } | 
|  | ext4_msg(sb, KERN_CRIT, | 
|  | "Delayed block allocation failed for " | 
|  | "inode %lu at logical offset %llu with" | 
|  | " max blocks %u with error %d", | 
|  | inode->i_ino, | 
|  | (unsigned long long)map->m_lblk, | 
|  | (unsigned)map->m_len, -err); | 
|  | ext4_msg(sb, KERN_CRIT, | 
|  | "This should not happen!! Data will " | 
|  | "be lost\n"); | 
|  | if (err == -ENOSPC) | 
|  | ext4_print_free_blocks(inode); | 
|  | invalidate_dirty_pages: | 
|  | *give_up_on_write = true; | 
|  | return err; | 
|  | } | 
|  | progress = 1; | 
|  | /* | 
|  | * Update buffer state, submit mapped pages, and get us new | 
|  | * extent to map | 
|  | */ | 
|  | err = mpage_map_and_submit_buffers(mpd); | 
|  | if (err < 0) | 
|  | goto update_disksize; | 
|  | } while (map->m_len); | 
|  |  | 
|  | update_disksize: | 
|  | /* | 
|  | * Update on-disk size after IO is submitted.  Races with | 
|  | * truncate are avoided by checking i_size under i_data_sem. | 
|  | */ | 
|  | disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; | 
|  | if (disksize > EXT4_I(inode)->i_disksize) { | 
|  | int err2; | 
|  | loff_t i_size; | 
|  |  | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | i_size = i_size_read(inode); | 
|  | if (disksize > i_size) | 
|  | disksize = i_size; | 
|  | if (disksize > EXT4_I(inode)->i_disksize) | 
|  | EXT4_I(inode)->i_disksize = disksize; | 
|  | err2 = ext4_mark_inode_dirty(handle, inode); | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | if (err2) | 
|  | ext4_error(inode->i_sb, | 
|  | "Failed to mark inode %lu dirty", | 
|  | inode->i_ino); | 
|  | if (!err) | 
|  | err = err2; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the total number of credits to reserve for one writepages | 
|  | * iteration. This is called from ext4_writepages(). We map an extent of | 
|  | * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping | 
|  | * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + | 
|  | * bpp - 1 blocks in bpp different extents. | 
|  | */ | 
|  | static int ext4_da_writepages_trans_blocks(struct inode *inode) | 
|  | { | 
|  | int bpp = ext4_journal_blocks_per_page(inode); | 
|  |  | 
|  | return ext4_meta_trans_blocks(inode, | 
|  | MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages | 
|  | * 				 and underlying extent to map | 
|  | * | 
|  | * @mpd - where to look for pages | 
|  | * | 
|  | * Walk dirty pages in the mapping. If they are fully mapped, submit them for | 
|  | * IO immediately. When we find a page which isn't mapped we start accumulating | 
|  | * extent of buffers underlying these pages that needs mapping (formed by | 
|  | * either delayed or unwritten buffers). We also lock the pages containing | 
|  | * these buffers. The extent found is returned in @mpd structure (starting at | 
|  | * mpd->lblk with length mpd->len blocks). | 
|  | * | 
|  | * Note that this function can attach bios to one io_end structure which are | 
|  | * neither logically nor physically contiguous. Although it may seem as an | 
|  | * unnecessary complication, it is actually inevitable in blocksize < pagesize | 
|  | * case as we need to track IO to all buffers underlying a page in one io_end. | 
|  | */ | 
|  | static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) | 
|  | { | 
|  | struct address_space *mapping = mpd->inode->i_mapping; | 
|  | struct pagevec pvec; | 
|  | unsigned int nr_pages; | 
|  | long left = mpd->wbc->nr_to_write; | 
|  | pgoff_t index = mpd->first_page; | 
|  | pgoff_t end = mpd->last_page; | 
|  | int tag; | 
|  | int i, err = 0; | 
|  | int blkbits = mpd->inode->i_blkbits; | 
|  | ext4_lblk_t lblk; | 
|  | struct buffer_head *head; | 
|  |  | 
|  | if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) | 
|  | tag = PAGECACHE_TAG_TOWRITE; | 
|  | else | 
|  | tag = PAGECACHE_TAG_DIRTY; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | mpd->map.m_len = 0; | 
|  | mpd->next_page = index; | 
|  | while (index <= end) { | 
|  | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, | 
|  | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | 
|  | if (nr_pages == 0) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | /* | 
|  | * At this point, the page may be truncated or | 
|  | * invalidated (changing page->mapping to NULL), or | 
|  | * even swizzled back from swapper_space to tmpfs file | 
|  | * mapping. However, page->index will not change | 
|  | * because we have a reference on the page. | 
|  | */ | 
|  | if (page->index > end) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Accumulated enough dirty pages? This doesn't apply | 
|  | * to WB_SYNC_ALL mode. For integrity sync we have to | 
|  | * keep going because someone may be concurrently | 
|  | * dirtying pages, and we might have synced a lot of | 
|  | * newly appeared dirty pages, but have not synced all | 
|  | * of the old dirty pages. | 
|  | */ | 
|  | if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) | 
|  | goto out; | 
|  |  | 
|  | /* If we can't merge this page, we are done. */ | 
|  | if (mpd->map.m_len > 0 && mpd->next_page != page->index) | 
|  | goto out; | 
|  |  | 
|  | lock_page(page); | 
|  | /* | 
|  | * If the page is no longer dirty, or its mapping no | 
|  | * longer corresponds to inode we are writing (which | 
|  | * means it has been truncated or invalidated), or the | 
|  | * page is already under writeback and we are not doing | 
|  | * a data integrity writeback, skip the page | 
|  | */ | 
|  | if (!PageDirty(page) || | 
|  | (PageWriteback(page) && | 
|  | (mpd->wbc->sync_mode == WB_SYNC_NONE)) || | 
|  | unlikely(page->mapping != mapping)) { | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | wait_on_page_writeback(page); | 
|  | BUG_ON(PageWriteback(page)); | 
|  |  | 
|  | if (mpd->map.m_len == 0) | 
|  | mpd->first_page = page->index; | 
|  | mpd->next_page = page->index + 1; | 
|  | /* Add all dirty buffers to mpd */ | 
|  | lblk = ((ext4_lblk_t)page->index) << | 
|  | (PAGE_CACHE_SHIFT - blkbits); | 
|  | head = page_buffers(page); | 
|  | err = mpage_process_page_bufs(mpd, head, head, lblk); | 
|  | if (err <= 0) | 
|  | goto out; | 
|  | err = 0; | 
|  | left--; | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | return 0; | 
|  | out: | 
|  | pagevec_release(&pvec); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __writepage(struct page *page, struct writeback_control *wbc, | 
|  | void *data) | 
|  | { | 
|  | struct address_space *mapping = data; | 
|  | int ret = ext4_writepage(page, wbc); | 
|  | mapping_set_error(mapping, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ext4_writepages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | pgoff_t	writeback_index = 0; | 
|  | long nr_to_write = wbc->nr_to_write; | 
|  | int range_whole = 0; | 
|  | int cycled = 1; | 
|  | handle_t *handle = NULL; | 
|  | struct mpage_da_data mpd; | 
|  | struct inode *inode = mapping->host; | 
|  | int needed_blocks, rsv_blocks = 0, ret = 0; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); | 
|  | bool done; | 
|  | struct blk_plug plug; | 
|  | bool give_up_on_write = false; | 
|  |  | 
|  | trace_ext4_writepages(inode, wbc); | 
|  |  | 
|  | /* | 
|  | * No pages to write? This is mainly a kludge to avoid starting | 
|  | * a transaction for special inodes like journal inode on last iput() | 
|  | * because that could violate lock ordering on umount | 
|  | */ | 
|  | if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | 
|  | goto out_writepages; | 
|  |  | 
|  | if (ext4_should_journal_data(inode)) { | 
|  | struct blk_plug plug; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | ret = write_cache_pages(mapping, wbc, __writepage, mapping); | 
|  | blk_finish_plug(&plug); | 
|  | goto out_writepages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the filesystem has aborted, it is read-only, so return | 
|  | * right away instead of dumping stack traces later on that | 
|  | * will obscure the real source of the problem.  We test | 
|  | * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because | 
|  | * the latter could be true if the filesystem is mounted | 
|  | * read-only, and in that case, ext4_writepages should | 
|  | * *never* be called, so if that ever happens, we would want | 
|  | * the stack trace. | 
|  | */ | 
|  | if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { | 
|  | ret = -EROFS; | 
|  | goto out_writepages; | 
|  | } | 
|  |  | 
|  | if (ext4_should_dioread_nolock(inode)) { | 
|  | /* | 
|  | * We may need to convert up to one extent per block in | 
|  | * the page and we may dirty the inode. | 
|  | */ | 
|  | rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have inline data and arrive here, it means that | 
|  | * we will soon create the block for the 1st page, so | 
|  | * we'd better clear the inline data here. | 
|  | */ | 
|  | if (ext4_has_inline_data(inode)) { | 
|  | /* Just inode will be modified... */ | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | goto out_writepages; | 
|  | } | 
|  | BUG_ON(ext4_test_inode_state(inode, | 
|  | EXT4_STATE_MAY_INLINE_DATA)); | 
|  | ext4_destroy_inline_data(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | } | 
|  |  | 
|  | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
|  | range_whole = 1; | 
|  |  | 
|  | if (wbc->range_cyclic) { | 
|  | writeback_index = mapping->writeback_index; | 
|  | if (writeback_index) | 
|  | cycled = 0; | 
|  | mpd.first_page = writeback_index; | 
|  | mpd.last_page = -1; | 
|  | } else { | 
|  | mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; | 
|  | mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; | 
|  | } | 
|  |  | 
|  | mpd.inode = inode; | 
|  | mpd.wbc = wbc; | 
|  | ext4_io_submit_init(&mpd.io_submit, wbc); | 
|  | retry: | 
|  | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
|  | tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); | 
|  | done = false; | 
|  | blk_start_plug(&plug); | 
|  | while (!done && mpd.first_page <= mpd.last_page) { | 
|  | /* For each extent of pages we use new io_end */ | 
|  | mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); | 
|  | if (!mpd.io_submit.io_end) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have two constraints: We find one extent to map and we | 
|  | * must always write out whole page (makes a difference when | 
|  | * blocksize < pagesize) so that we don't block on IO when we | 
|  | * try to write out the rest of the page. Journalled mode is | 
|  | * not supported by delalloc. | 
|  | */ | 
|  | BUG_ON(ext4_should_journal_data(inode)); | 
|  | needed_blocks = ext4_da_writepages_trans_blocks(inode); | 
|  |  | 
|  | /* start a new transaction */ | 
|  | handle = ext4_journal_start_with_reserve(inode, | 
|  | EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " | 
|  | "%ld pages, ino %lu; err %d", __func__, | 
|  | wbc->nr_to_write, inode->i_ino, ret); | 
|  | /* Release allocated io_end */ | 
|  | ext4_put_io_end(mpd.io_submit.io_end); | 
|  | break; | 
|  | } | 
|  |  | 
|  | trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); | 
|  | ret = mpage_prepare_extent_to_map(&mpd); | 
|  | if (!ret) { | 
|  | if (mpd.map.m_len) | 
|  | ret = mpage_map_and_submit_extent(handle, &mpd, | 
|  | &give_up_on_write); | 
|  | else { | 
|  | /* | 
|  | * We scanned the whole range (or exhausted | 
|  | * nr_to_write), submitted what was mapped and | 
|  | * didn't find anything needing mapping. We are | 
|  | * done. | 
|  | */ | 
|  | done = true; | 
|  | } | 
|  | } | 
|  | ext4_journal_stop(handle); | 
|  | /* Submit prepared bio */ | 
|  | ext4_io_submit(&mpd.io_submit); | 
|  | /* Unlock pages we didn't use */ | 
|  | mpage_release_unused_pages(&mpd, give_up_on_write); | 
|  | /* Drop our io_end reference we got from init */ | 
|  | ext4_put_io_end(mpd.io_submit.io_end); | 
|  |  | 
|  | if (ret == -ENOSPC && sbi->s_journal) { | 
|  | /* | 
|  | * Commit the transaction which would | 
|  | * free blocks released in the transaction | 
|  | * and try again | 
|  | */ | 
|  | jbd2_journal_force_commit_nested(sbi->s_journal); | 
|  | ret = 0; | 
|  | continue; | 
|  | } | 
|  | /* Fatal error - ENOMEM, EIO... */ | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | if (!ret && !cycled && wbc->nr_to_write > 0) { | 
|  | cycled = 1; | 
|  | mpd.last_page = writeback_index - 1; | 
|  | mpd.first_page = 0; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* Update index */ | 
|  | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) | 
|  | /* | 
|  | * Set the writeback_index so that range_cyclic | 
|  | * mode will write it back later | 
|  | */ | 
|  | mapping->writeback_index = mpd.first_page; | 
|  |  | 
|  | out_writepages: | 
|  | trace_ext4_writepages_result(inode, wbc, ret, | 
|  | nr_to_write - wbc->nr_to_write); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ext4_nonda_switch(struct super_block *sb) | 
|  | { | 
|  | s64 free_clusters, dirty_clusters; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  |  | 
|  | /* | 
|  | * switch to non delalloc mode if we are running low | 
|  | * on free block. The free block accounting via percpu | 
|  | * counters can get slightly wrong with percpu_counter_batch getting | 
|  | * accumulated on each CPU without updating global counters | 
|  | * Delalloc need an accurate free block accounting. So switch | 
|  | * to non delalloc when we are near to error range. | 
|  | */ | 
|  | free_clusters = | 
|  | percpu_counter_read_positive(&sbi->s_freeclusters_counter); | 
|  | dirty_clusters = | 
|  | percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); | 
|  | /* | 
|  | * Start pushing delalloc when 1/2 of free blocks are dirty. | 
|  | */ | 
|  | if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) | 
|  | try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); | 
|  |  | 
|  | if (2 * free_clusters < 3 * dirty_clusters || | 
|  | free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { | 
|  | /* | 
|  | * free block count is less than 150% of dirty blocks | 
|  | * or free blocks is less than watermark | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We always reserve for an inode update; the superblock could be there too */ | 
|  | static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) | 
|  | { | 
|  | if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, | 
|  | EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) | 
|  | return 1; | 
|  |  | 
|  | if (pos + len <= 0x7fffffffULL) | 
|  | return 1; | 
|  |  | 
|  | /* We might need to update the superblock to set LARGE_FILE */ | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | static int ext4_da_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | int ret, retries = 0; | 
|  | struct page *page; | 
|  | pgoff_t index; | 
|  | struct inode *inode = mapping->host; | 
|  | handle_t *handle; | 
|  |  | 
|  | index = pos >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | if (ext4_nonda_switch(inode->i_sb)) { | 
|  | *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; | 
|  | return ext4_write_begin(file, mapping, pos, | 
|  | len, flags, pagep, fsdata); | 
|  | } | 
|  | *fsdata = (void *)0; | 
|  | trace_ext4_da_write_begin(inode, pos, len, flags); | 
|  |  | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { | 
|  | ret = ext4_da_write_inline_data_begin(mapping, inode, | 
|  | pos, len, flags, | 
|  | pagep, fsdata); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret == 1) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * grab_cache_page_write_begin() can take a long time if the | 
|  | * system is thrashing due to memory pressure, or if the page | 
|  | * is being written back.  So grab it first before we start | 
|  | * the transaction handle.  This also allows us to allocate | 
|  | * the page (if needed) without using GFP_NOFS. | 
|  | */ | 
|  | retry_grab: | 
|  | page = grab_cache_page_write_begin(mapping, index, flags); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | unlock_page(page); | 
|  |  | 
|  | /* | 
|  | * With delayed allocation, we don't log the i_disksize update | 
|  | * if there is delayed block allocation. But we still need | 
|  | * to journalling the i_disksize update if writes to the end | 
|  | * of file which has an already mapped buffer. | 
|  | */ | 
|  | retry_journal: | 
|  | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, | 
|  | ext4_da_write_credits(inode, pos, len)); | 
|  | if (IS_ERR(handle)) { | 
|  | page_cache_release(page); | 
|  | return PTR_ERR(handle); | 
|  | } | 
|  |  | 
|  | lock_page(page); | 
|  | if (page->mapping != mapping) { | 
|  | /* The page got truncated from under us */ | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | ext4_journal_stop(handle); | 
|  | goto retry_grab; | 
|  | } | 
|  | /* In case writeback began while the page was unlocked */ | 
|  | wait_for_stable_page(page); | 
|  |  | 
|  | ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); | 
|  | if (ret < 0) { | 
|  | unlock_page(page); | 
|  | ext4_journal_stop(handle); | 
|  | /* | 
|  | * block_write_begin may have instantiated a few blocks | 
|  | * outside i_size.  Trim these off again. Don't need | 
|  | * i_size_read because we hold i_mutex. | 
|  | */ | 
|  | if (pos + len > inode->i_size) | 
|  | ext4_truncate_failed_write(inode); | 
|  |  | 
|  | if (ret == -ENOSPC && | 
|  | ext4_should_retry_alloc(inode->i_sb, &retries)) | 
|  | goto retry_journal; | 
|  |  | 
|  | page_cache_release(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | *pagep = page; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we should update i_disksize | 
|  | * when write to the end of file but not require block allocation | 
|  | */ | 
|  | static int ext4_da_should_update_i_disksize(struct page *page, | 
|  | unsigned long offset) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | struct inode *inode = page->mapping->host; | 
|  | unsigned int idx; | 
|  | int i; | 
|  |  | 
|  | bh = page_buffers(page); | 
|  | idx = offset >> inode->i_blkbits; | 
|  |  | 
|  | for (i = 0; i < idx; i++) | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ext4_da_write_end(struct file *file, | 
|  | struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | int ret = 0, ret2; | 
|  | handle_t *handle = ext4_journal_current_handle(); | 
|  | loff_t new_i_size; | 
|  | unsigned long start, end; | 
|  | int write_mode = (int)(unsigned long)fsdata; | 
|  |  | 
|  | if (write_mode == FALL_BACK_TO_NONDELALLOC) | 
|  | return ext4_write_end(file, mapping, pos, | 
|  | len, copied, page, fsdata); | 
|  |  | 
|  | trace_ext4_da_write_end(inode, pos, len, copied); | 
|  | start = pos & (PAGE_CACHE_SIZE - 1); | 
|  | end = start + copied - 1; | 
|  |  | 
|  | /* | 
|  | * generic_write_end() will run mark_inode_dirty() if i_size | 
|  | * changes.  So let's piggyback the i_disksize mark_inode_dirty | 
|  | * into that. | 
|  | */ | 
|  | new_i_size = pos + copied; | 
|  | if (copied && new_i_size > EXT4_I(inode)->i_disksize) { | 
|  | if (ext4_has_inline_data(inode) || | 
|  | ext4_da_should_update_i_disksize(page, end)) { | 
|  | ext4_update_i_disksize(inode, new_i_size); | 
|  | /* We need to mark inode dirty even if | 
|  | * new_i_size is less that inode->i_size | 
|  | * bu greater than i_disksize.(hint delalloc) | 
|  | */ | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (write_mode != CONVERT_INLINE_DATA && | 
|  | ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && | 
|  | ext4_has_inline_data(inode)) | 
|  | ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, | 
|  | page); | 
|  | else | 
|  | ret2 = generic_write_end(file, mapping, pos, len, copied, | 
|  | page, fsdata); | 
|  |  | 
|  | copied = ret2; | 
|  | if (ret2 < 0) | 
|  | ret = ret2; | 
|  | ret2 = ext4_journal_stop(handle); | 
|  | if (!ret) | 
|  | ret = ret2; | 
|  |  | 
|  | return ret ? ret : copied; | 
|  | } | 
|  |  | 
|  | static void ext4_da_invalidatepage(struct page *page, unsigned int offset, | 
|  | unsigned int length) | 
|  | { | 
|  | /* | 
|  | * Drop reserved blocks | 
|  | */ | 
|  | BUG_ON(!PageLocked(page)); | 
|  | if (!page_has_buffers(page)) | 
|  | goto out; | 
|  |  | 
|  | ext4_da_page_release_reservation(page, offset, length); | 
|  |  | 
|  | out: | 
|  | ext4_invalidatepage(page, offset, length); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force all delayed allocation blocks to be allocated for a given inode. | 
|  | */ | 
|  | int ext4_alloc_da_blocks(struct inode *inode) | 
|  | { | 
|  | trace_ext4_alloc_da_blocks(inode); | 
|  |  | 
|  | if (!EXT4_I(inode)->i_reserved_data_blocks) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We do something simple for now.  The filemap_flush() will | 
|  | * also start triggering a write of the data blocks, which is | 
|  | * not strictly speaking necessary (and for users of | 
|  | * laptop_mode, not even desirable).  However, to do otherwise | 
|  | * would require replicating code paths in: | 
|  | * | 
|  | * ext4_writepages() -> | 
|  | *    write_cache_pages() ---> (via passed in callback function) | 
|  | *        __mpage_da_writepage() --> | 
|  | *           mpage_add_bh_to_extent() | 
|  | *           mpage_da_map_blocks() | 
|  | * | 
|  | * The problem is that write_cache_pages(), located in | 
|  | * mm/page-writeback.c, marks pages clean in preparation for | 
|  | * doing I/O, which is not desirable if we're not planning on | 
|  | * doing I/O at all. | 
|  | * | 
|  | * We could call write_cache_pages(), and then redirty all of | 
|  | * the pages by calling redirty_page_for_writepage() but that | 
|  | * would be ugly in the extreme.  So instead we would need to | 
|  | * replicate parts of the code in the above functions, | 
|  | * simplifying them because we wouldn't actually intend to | 
|  | * write out the pages, but rather only collect contiguous | 
|  | * logical block extents, call the multi-block allocator, and | 
|  | * then update the buffer heads with the block allocations. | 
|  | * | 
|  | * For now, though, we'll cheat by calling filemap_flush(), | 
|  | * which will map the blocks, and start the I/O, but not | 
|  | * actually wait for the I/O to complete. | 
|  | */ | 
|  | return filemap_flush(inode->i_mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bmap() is special.  It gets used by applications such as lilo and by | 
|  | * the swapper to find the on-disk block of a specific piece of data. | 
|  | * | 
|  | * Naturally, this is dangerous if the block concerned is still in the | 
|  | * journal.  If somebody makes a swapfile on an ext4 data-journaling | 
|  | * filesystem and enables swap, then they may get a nasty shock when the | 
|  | * data getting swapped to that swapfile suddenly gets overwritten by | 
|  | * the original zero's written out previously to the journal and | 
|  | * awaiting writeback in the kernel's buffer cache. | 
|  | * | 
|  | * So, if we see any bmap calls here on a modified, data-journaled file, | 
|  | * take extra steps to flush any blocks which might be in the cache. | 
|  | */ | 
|  | static sector_t ext4_bmap(struct address_space *mapping, sector_t block) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | journal_t *journal; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * We can get here for an inline file via the FIBMAP ioctl | 
|  | */ | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return 0; | 
|  |  | 
|  | if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && | 
|  | test_opt(inode->i_sb, DELALLOC)) { | 
|  | /* | 
|  | * With delalloc we want to sync the file | 
|  | * so that we can make sure we allocate | 
|  | * blocks for file | 
|  | */ | 
|  | filemap_write_and_wait(mapping); | 
|  | } | 
|  |  | 
|  | if (EXT4_JOURNAL(inode) && | 
|  | ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { | 
|  | /* | 
|  | * This is a REALLY heavyweight approach, but the use of | 
|  | * bmap on dirty files is expected to be extremely rare: | 
|  | * only if we run lilo or swapon on a freshly made file | 
|  | * do we expect this to happen. | 
|  | * | 
|  | * (bmap requires CAP_SYS_RAWIO so this does not | 
|  | * represent an unprivileged user DOS attack --- we'd be | 
|  | * in trouble if mortal users could trigger this path at | 
|  | * will.) | 
|  | * | 
|  | * NB. EXT4_STATE_JDATA is not set on files other than | 
|  | * regular files.  If somebody wants to bmap a directory | 
|  | * or symlink and gets confused because the buffer | 
|  | * hasn't yet been flushed to disk, they deserve | 
|  | * everything they get. | 
|  | */ | 
|  |  | 
|  | ext4_clear_inode_state(inode, EXT4_STATE_JDATA); | 
|  | journal = EXT4_JOURNAL(inode); | 
|  | jbd2_journal_lock_updates(journal); | 
|  | err = jbd2_journal_flush(journal); | 
|  | jbd2_journal_unlock_updates(journal); | 
|  |  | 
|  | if (err) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return generic_block_bmap(mapping, block, ext4_get_block); | 
|  | } | 
|  |  | 
|  | static int ext4_readpage(struct file *file, struct page *page) | 
|  | { | 
|  | int ret = -EAGAIN; | 
|  | struct inode *inode = page->mapping->host; | 
|  |  | 
|  | trace_ext4_readpage(page); | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) | 
|  | ret = ext4_readpage_inline(inode, page); | 
|  |  | 
|  | if (ret == -EAGAIN) | 
|  | return mpage_readpage(page, ext4_get_block); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext4_readpages(struct file *file, struct address_space *mapping, | 
|  | struct list_head *pages, unsigned nr_pages) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | /* If the file has inline data, no need to do readpages. */ | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return 0; | 
|  |  | 
|  | return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); | 
|  | } | 
|  |  | 
|  | static void ext4_invalidatepage(struct page *page, unsigned int offset, | 
|  | unsigned int length) | 
|  | { | 
|  | trace_ext4_invalidatepage(page, offset, length); | 
|  |  | 
|  | /* No journalling happens on data buffers when this function is used */ | 
|  | WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); | 
|  |  | 
|  | block_invalidatepage(page, offset, length); | 
|  | } | 
|  |  | 
|  | static int __ext4_journalled_invalidatepage(struct page *page, | 
|  | unsigned int offset, | 
|  | unsigned int length) | 
|  | { | 
|  | journal_t *journal = EXT4_JOURNAL(page->mapping->host); | 
|  |  | 
|  | trace_ext4_journalled_invalidatepage(page, offset, length); | 
|  |  | 
|  | /* | 
|  | * If it's a full truncate we just forget about the pending dirtying | 
|  | */ | 
|  | if (offset == 0 && length == PAGE_CACHE_SIZE) | 
|  | ClearPageChecked(page); | 
|  |  | 
|  | return jbd2_journal_invalidatepage(journal, page, offset, length); | 
|  | } | 
|  |  | 
|  | /* Wrapper for aops... */ | 
|  | static void ext4_journalled_invalidatepage(struct page *page, | 
|  | unsigned int offset, | 
|  | unsigned int length) | 
|  | { | 
|  | WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); | 
|  | } | 
|  |  | 
|  | static int ext4_releasepage(struct page *page, gfp_t wait) | 
|  | { | 
|  | journal_t *journal = EXT4_JOURNAL(page->mapping->host); | 
|  |  | 
|  | trace_ext4_releasepage(page); | 
|  |  | 
|  | /* Page has dirty journalled data -> cannot release */ | 
|  | if (PageChecked(page)) | 
|  | return 0; | 
|  | if (journal) | 
|  | return jbd2_journal_try_to_free_buffers(journal, page, wait); | 
|  | else | 
|  | return try_to_free_buffers(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_get_block used when preparing for a DIO write or buffer write. | 
|  | * We allocate an uinitialized extent if blocks haven't been allocated. | 
|  | * The extent will be converted to initialized after the IO is complete. | 
|  | */ | 
|  | int ext4_get_block_write(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh_result, int create) | 
|  | { | 
|  | ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", | 
|  | inode->i_ino, create); | 
|  | return _ext4_get_block(inode, iblock, bh_result, | 
|  | EXT4_GET_BLOCKS_IO_CREATE_EXT); | 
|  | } | 
|  |  | 
|  | static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh_result, int create) | 
|  | { | 
|  | ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", | 
|  | inode->i_ino, create); | 
|  | return _ext4_get_block(inode, iblock, bh_result, | 
|  | EXT4_GET_BLOCKS_NO_LOCK); | 
|  | } | 
|  |  | 
|  | static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, | 
|  | ssize_t size, void *private) | 
|  | { | 
|  | ext4_io_end_t *io_end = iocb->private; | 
|  |  | 
|  | /* if not async direct IO just return */ | 
|  | if (!io_end) | 
|  | return; | 
|  |  | 
|  | ext_debug("ext4_end_io_dio(): io_end 0x%p " | 
|  | "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", | 
|  | iocb->private, io_end->inode->i_ino, iocb, offset, | 
|  | size); | 
|  |  | 
|  | iocb->private = NULL; | 
|  | io_end->offset = offset; | 
|  | io_end->size = size; | 
|  | ext4_put_io_end(io_end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For ext4 extent files, ext4 will do direct-io write to holes, | 
|  | * preallocated extents, and those write extend the file, no need to | 
|  | * fall back to buffered IO. | 
|  | * | 
|  | * For holes, we fallocate those blocks, mark them as unwritten | 
|  | * If those blocks were preallocated, we mark sure they are split, but | 
|  | * still keep the range to write as unwritten. | 
|  | * | 
|  | * The unwritten extents will be converted to written when DIO is completed. | 
|  | * For async direct IO, since the IO may still pending when return, we | 
|  | * set up an end_io call back function, which will do the conversion | 
|  | * when async direct IO completed. | 
|  | * | 
|  | * If the O_DIRECT write will extend the file then add this inode to the | 
|  | * orphan list.  So recovery will truncate it back to the original size | 
|  | * if the machine crashes during the write. | 
|  | * | 
|  | */ | 
|  | static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, | 
|  | struct iov_iter *iter, loff_t offset) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | ssize_t ret; | 
|  | size_t count = iov_iter_count(iter); | 
|  | int overwrite = 0; | 
|  | get_block_t *get_block_func = NULL; | 
|  | int dio_flags = 0; | 
|  | loff_t final_size = offset + count; | 
|  | ext4_io_end_t *io_end = NULL; | 
|  |  | 
|  | /* Use the old path for reads and writes beyond i_size. */ | 
|  | if (rw != WRITE || final_size > inode->i_size) | 
|  | return ext4_ind_direct_IO(rw, iocb, iter, offset); | 
|  |  | 
|  | BUG_ON(iocb->private == NULL); | 
|  |  | 
|  | /* | 
|  | * Make all waiters for direct IO properly wait also for extent | 
|  | * conversion. This also disallows race between truncate() and | 
|  | * overwrite DIO as i_dio_count needs to be incremented under i_mutex. | 
|  | */ | 
|  | if (rw == WRITE) | 
|  | atomic_inc(&inode->i_dio_count); | 
|  |  | 
|  | /* If we do a overwrite dio, i_mutex locking can be released */ | 
|  | overwrite = *((int *)iocb->private); | 
|  |  | 
|  | if (overwrite) { | 
|  | down_read(&EXT4_I(inode)->i_data_sem); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We could direct write to holes and fallocate. | 
|  | * | 
|  | * Allocated blocks to fill the hole are marked as | 
|  | * unwritten to prevent parallel buffered read to expose | 
|  | * the stale data before DIO complete the data IO. | 
|  | * | 
|  | * As to previously fallocated extents, ext4 get_block will | 
|  | * just simply mark the buffer mapped but still keep the | 
|  | * extents unwritten. | 
|  | * | 
|  | * For non AIO case, we will convert those unwritten extents | 
|  | * to written after return back from blockdev_direct_IO. | 
|  | * | 
|  | * For async DIO, the conversion needs to be deferred when the | 
|  | * IO is completed. The ext4 end_io callback function will be | 
|  | * called to take care of the conversion work.  Here for async | 
|  | * case, we allocate an io_end structure to hook to the iocb. | 
|  | */ | 
|  | iocb->private = NULL; | 
|  | ext4_inode_aio_set(inode, NULL); | 
|  | if (!is_sync_kiocb(iocb)) { | 
|  | io_end = ext4_init_io_end(inode, GFP_NOFS); | 
|  | if (!io_end) { | 
|  | ret = -ENOMEM; | 
|  | goto retake_lock; | 
|  | } | 
|  | /* | 
|  | * Grab reference for DIO. Will be dropped in ext4_end_io_dio() | 
|  | */ | 
|  | iocb->private = ext4_get_io_end(io_end); | 
|  | /* | 
|  | * we save the io structure for current async direct | 
|  | * IO, so that later ext4_map_blocks() could flag the | 
|  | * io structure whether there is a unwritten extents | 
|  | * needs to be converted when IO is completed. | 
|  | */ | 
|  | ext4_inode_aio_set(inode, io_end); | 
|  | } | 
|  |  | 
|  | if (overwrite) { | 
|  | get_block_func = ext4_get_block_write_nolock; | 
|  | } else { | 
|  | get_block_func = ext4_get_block_write; | 
|  | dio_flags = DIO_LOCKING; | 
|  | } | 
|  | ret = __blockdev_direct_IO(rw, iocb, inode, | 
|  | inode->i_sb->s_bdev, iter, | 
|  | offset, | 
|  | get_block_func, | 
|  | ext4_end_io_dio, | 
|  | NULL, | 
|  | dio_flags); | 
|  |  | 
|  | /* | 
|  | * Put our reference to io_end. This can free the io_end structure e.g. | 
|  | * in sync IO case or in case of error. It can even perform extent | 
|  | * conversion if all bios we submitted finished before we got here. | 
|  | * Note that in that case iocb->private can be already set to NULL | 
|  | * here. | 
|  | */ | 
|  | if (io_end) { | 
|  | ext4_inode_aio_set(inode, NULL); | 
|  | ext4_put_io_end(io_end); | 
|  | /* | 
|  | * When no IO was submitted ext4_end_io_dio() was not | 
|  | * called so we have to put iocb's reference. | 
|  | */ | 
|  | if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { | 
|  | WARN_ON(iocb->private != io_end); | 
|  | WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); | 
|  | ext4_put_io_end(io_end); | 
|  | iocb->private = NULL; | 
|  | } | 
|  | } | 
|  | if (ret > 0 && !overwrite && ext4_test_inode_state(inode, | 
|  | EXT4_STATE_DIO_UNWRITTEN)) { | 
|  | int err; | 
|  | /* | 
|  | * for non AIO case, since the IO is already | 
|  | * completed, we could do the conversion right here | 
|  | */ | 
|  | err = ext4_convert_unwritten_extents(NULL, inode, | 
|  | offset, ret); | 
|  | if (err < 0) | 
|  | ret = err; | 
|  | ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); | 
|  | } | 
|  |  | 
|  | retake_lock: | 
|  | if (rw == WRITE) | 
|  | inode_dio_done(inode); | 
|  | /* take i_mutex locking again if we do a ovewrite dio */ | 
|  | if (overwrite) { | 
|  | up_read(&EXT4_I(inode)->i_data_sem); | 
|  | mutex_lock(&inode->i_mutex); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, | 
|  | struct iov_iter *iter, loff_t offset) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | size_t count = iov_iter_count(iter); | 
|  | ssize_t ret; | 
|  |  | 
|  | /* | 
|  | * If we are doing data journalling we don't support O_DIRECT | 
|  | */ | 
|  | if (ext4_should_journal_data(inode)) | 
|  | return 0; | 
|  |  | 
|  | /* Let buffer I/O handle the inline data case. */ | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return 0; | 
|  |  | 
|  | trace_ext4_direct_IO_enter(inode, offset, count, rw); | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | ret = ext4_ext_direct_IO(rw, iocb, iter, offset); | 
|  | else | 
|  | ret = ext4_ind_direct_IO(rw, iocb, iter, offset); | 
|  | trace_ext4_direct_IO_exit(inode, offset, count, rw, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pages can be marked dirty completely asynchronously from ext4's journalling | 
|  | * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do | 
|  | * much here because ->set_page_dirty is called under VFS locks.  The page is | 
|  | * not necessarily locked. | 
|  | * | 
|  | * We cannot just dirty the page and leave attached buffers clean, because the | 
|  | * buffers' dirty state is "definitive".  We cannot just set the buffers dirty | 
|  | * or jbddirty because all the journalling code will explode. | 
|  | * | 
|  | * So what we do is to mark the page "pending dirty" and next time writepage | 
|  | * is called, propagate that into the buffers appropriately. | 
|  | */ | 
|  | static int ext4_journalled_set_page_dirty(struct page *page) | 
|  | { | 
|  | SetPageChecked(page); | 
|  | return __set_page_dirty_nobuffers(page); | 
|  | } | 
|  |  | 
|  | static const struct address_space_operations ext4_aops = { | 
|  | .readpage		= ext4_readpage, | 
|  | .readpages		= ext4_readpages, | 
|  | .writepage		= ext4_writepage, | 
|  | .writepages		= ext4_writepages, | 
|  | .write_begin		= ext4_write_begin, | 
|  | .write_end		= ext4_write_end, | 
|  | .bmap			= ext4_bmap, | 
|  | .invalidatepage		= ext4_invalidatepage, | 
|  | .releasepage		= ext4_releasepage, | 
|  | .direct_IO		= ext4_direct_IO, | 
|  | .migratepage		= buffer_migrate_page, | 
|  | .is_partially_uptodate  = block_is_partially_uptodate, | 
|  | .error_remove_page	= generic_error_remove_page, | 
|  | }; | 
|  |  | 
|  | static const struct address_space_operations ext4_journalled_aops = { | 
|  | .readpage		= ext4_readpage, | 
|  | .readpages		= ext4_readpages, | 
|  | .writepage		= ext4_writepage, | 
|  | .writepages		= ext4_writepages, | 
|  | .write_begin		= ext4_write_begin, | 
|  | .write_end		= ext4_journalled_write_end, | 
|  | .set_page_dirty		= ext4_journalled_set_page_dirty, | 
|  | .bmap			= ext4_bmap, | 
|  | .invalidatepage		= ext4_journalled_invalidatepage, | 
|  | .releasepage		= ext4_releasepage, | 
|  | .direct_IO		= ext4_direct_IO, | 
|  | .is_partially_uptodate  = block_is_partially_uptodate, | 
|  | .error_remove_page	= generic_error_remove_page, | 
|  | }; | 
|  |  | 
|  | static const struct address_space_operations ext4_da_aops = { | 
|  | .readpage		= ext4_readpage, | 
|  | .readpages		= ext4_readpages, | 
|  | .writepage		= ext4_writepage, | 
|  | .writepages		= ext4_writepages, | 
|  | .write_begin		= ext4_da_write_begin, | 
|  | .write_end		= ext4_da_write_end, | 
|  | .bmap			= ext4_bmap, | 
|  | .invalidatepage		= ext4_da_invalidatepage, | 
|  | .releasepage		= ext4_releasepage, | 
|  | .direct_IO		= ext4_direct_IO, | 
|  | .migratepage		= buffer_migrate_page, | 
|  | .is_partially_uptodate  = block_is_partially_uptodate, | 
|  | .error_remove_page	= generic_error_remove_page, | 
|  | }; | 
|  |  | 
|  | void ext4_set_aops(struct inode *inode) | 
|  | { | 
|  | switch (ext4_inode_journal_mode(inode)) { | 
|  | case EXT4_INODE_ORDERED_DATA_MODE: | 
|  | ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); | 
|  | break; | 
|  | case EXT4_INODE_WRITEBACK_DATA_MODE: | 
|  | ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); | 
|  | break; | 
|  | case EXT4_INODE_JOURNAL_DATA_MODE: | 
|  | inode->i_mapping->a_ops = &ext4_journalled_aops; | 
|  | return; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | if (test_opt(inode->i_sb, DELALLOC)) | 
|  | inode->i_mapping->a_ops = &ext4_da_aops; | 
|  | else | 
|  | inode->i_mapping->a_ops = &ext4_aops; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_block_zero_page_range() zeros out a mapping of length 'length' | 
|  | * starting from file offset 'from'.  The range to be zero'd must | 
|  | * be contained with in one block.  If the specified range exceeds | 
|  | * the end of the block it will be shortened to end of the block | 
|  | * that cooresponds to 'from' | 
|  | */ | 
|  | static int ext4_block_zero_page_range(handle_t *handle, | 
|  | struct address_space *mapping, loff_t from, loff_t length) | 
|  | { | 
|  | ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; | 
|  | unsigned offset = from & (PAGE_CACHE_SIZE-1); | 
|  | unsigned blocksize, max, pos; | 
|  | ext4_lblk_t iblock; | 
|  | struct inode *inode = mapping->host; | 
|  | struct buffer_head *bh; | 
|  | struct page *page; | 
|  | int err = 0; | 
|  |  | 
|  | page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, | 
|  | mapping_gfp_mask(mapping) & ~__GFP_FS); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | blocksize = inode->i_sb->s_blocksize; | 
|  | max = blocksize - (offset & (blocksize - 1)); | 
|  |  | 
|  | /* | 
|  | * correct length if it does not fall between | 
|  | * 'from' and the end of the block | 
|  | */ | 
|  | if (length > max || length < 0) | 
|  | length = max; | 
|  |  | 
|  | iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); | 
|  |  | 
|  | if (!page_has_buffers(page)) | 
|  | create_empty_buffers(page, blocksize, 0); | 
|  |  | 
|  | /* Find the buffer that contains "offset" */ | 
|  | bh = page_buffers(page); | 
|  | pos = blocksize; | 
|  | while (offset >= pos) { | 
|  | bh = bh->b_this_page; | 
|  | iblock++; | 
|  | pos += blocksize; | 
|  | } | 
|  | if (buffer_freed(bh)) { | 
|  | BUFFER_TRACE(bh, "freed: skip"); | 
|  | goto unlock; | 
|  | } | 
|  | if (!buffer_mapped(bh)) { | 
|  | BUFFER_TRACE(bh, "unmapped"); | 
|  | ext4_get_block(inode, iblock, bh, 0); | 
|  | /* unmapped? It's a hole - nothing to do */ | 
|  | if (!buffer_mapped(bh)) { | 
|  | BUFFER_TRACE(bh, "still unmapped"); | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ok, it's mapped. Make sure it's up-to-date */ | 
|  | if (PageUptodate(page)) | 
|  | set_buffer_uptodate(bh); | 
|  |  | 
|  | if (!buffer_uptodate(bh)) { | 
|  | err = -EIO; | 
|  | ll_rw_block(READ, 1, &bh); | 
|  | wait_on_buffer(bh); | 
|  | /* Uhhuh. Read error. Complain and punt. */ | 
|  | if (!buffer_uptodate(bh)) | 
|  | goto unlock; | 
|  | } | 
|  | if (ext4_should_journal_data(inode)) { | 
|  | BUFFER_TRACE(bh, "get write access"); | 
|  | err = ext4_journal_get_write_access(handle, bh); | 
|  | if (err) | 
|  | goto unlock; | 
|  | } | 
|  | zero_user(page, offset, length); | 
|  | BUFFER_TRACE(bh, "zeroed end of block"); | 
|  |  | 
|  | if (ext4_should_journal_data(inode)) { | 
|  | err = ext4_handle_dirty_metadata(handle, inode, bh); | 
|  | } else { | 
|  | err = 0; | 
|  | mark_buffer_dirty(bh); | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) | 
|  | err = ext4_jbd2_file_inode(handle, inode); | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_block_truncate_page() zeroes out a mapping from file offset `from' | 
|  | * up to the end of the block which corresponds to `from'. | 
|  | * This required during truncate. We need to physically zero the tail end | 
|  | * of that block so it doesn't yield old data if the file is later grown. | 
|  | */ | 
|  | static int ext4_block_truncate_page(handle_t *handle, | 
|  | struct address_space *mapping, loff_t from) | 
|  | { | 
|  | unsigned offset = from & (PAGE_CACHE_SIZE-1); | 
|  | unsigned length; | 
|  | unsigned blocksize; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | blocksize = inode->i_sb->s_blocksize; | 
|  | length = blocksize - (offset & (blocksize - 1)); | 
|  |  | 
|  | return ext4_block_zero_page_range(handle, mapping, from, length); | 
|  | } | 
|  |  | 
|  | int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, | 
|  | loff_t lstart, loff_t length) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | unsigned partial_start, partial_end; | 
|  | ext4_fsblk_t start, end; | 
|  | loff_t byte_end = (lstart + length - 1); | 
|  | int err = 0; | 
|  |  | 
|  | partial_start = lstart & (sb->s_blocksize - 1); | 
|  | partial_end = byte_end & (sb->s_blocksize - 1); | 
|  |  | 
|  | start = lstart >> sb->s_blocksize_bits; | 
|  | end = byte_end >> sb->s_blocksize_bits; | 
|  |  | 
|  | /* Handle partial zero within the single block */ | 
|  | if (start == end && | 
|  | (partial_start || (partial_end != sb->s_blocksize - 1))) { | 
|  | err = ext4_block_zero_page_range(handle, mapping, | 
|  | lstart, length); | 
|  | return err; | 
|  | } | 
|  | /* Handle partial zero out on the start of the range */ | 
|  | if (partial_start) { | 
|  | err = ext4_block_zero_page_range(handle, mapping, | 
|  | lstart, sb->s_blocksize); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | /* Handle partial zero out on the end of the range */ | 
|  | if (partial_end != sb->s_blocksize - 1) | 
|  | err = ext4_block_zero_page_range(handle, mapping, | 
|  | byte_end - partial_end, | 
|  | partial_end + 1); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ext4_can_truncate(struct inode *inode) | 
|  | { | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | return 1; | 
|  | if (S_ISDIR(inode->i_mode)) | 
|  | return 1; | 
|  | if (S_ISLNK(inode->i_mode)) | 
|  | return !ext4_inode_is_fast_symlink(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_punch_hole: punches a hole in a file by releaseing the blocks | 
|  | * associated with the given offset and length | 
|  | * | 
|  | * @inode:  File inode | 
|  | * @offset: The offset where the hole will begin | 
|  | * @len:    The length of the hole | 
|  | * | 
|  | * Returns: 0 on success or negative on failure | 
|  | */ | 
|  |  | 
|  | int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | ext4_lblk_t first_block, stop_block; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | loff_t first_block_offset, last_block_offset; | 
|  | handle_t *handle; | 
|  | unsigned int credits; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!S_ISREG(inode->i_mode)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | trace_ext4_punch_hole(inode, offset, length, 0); | 
|  |  | 
|  | /* | 
|  | * Write out all dirty pages to avoid race conditions | 
|  | * Then release them. | 
|  | */ | 
|  | if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { | 
|  | ret = filemap_write_and_wait_range(mapping, offset, | 
|  | offset + length - 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  |  | 
|  | /* No need to punch hole beyond i_size */ | 
|  | if (offset >= inode->i_size) | 
|  | goto out_mutex; | 
|  |  | 
|  | /* | 
|  | * If the hole extends beyond i_size, set the hole | 
|  | * to end after the page that contains i_size | 
|  | */ | 
|  | if (offset + length > inode->i_size) { | 
|  | length = inode->i_size + | 
|  | PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - | 
|  | offset; | 
|  | } | 
|  |  | 
|  | if (offset & (sb->s_blocksize - 1) || | 
|  | (offset + length) & (sb->s_blocksize - 1)) { | 
|  | /* | 
|  | * Attach jinode to inode for jbd2 if we do any zeroing of | 
|  | * partial block | 
|  | */ | 
|  | ret = ext4_inode_attach_jinode(inode); | 
|  | if (ret < 0) | 
|  | goto out_mutex; | 
|  |  | 
|  | } | 
|  |  | 
|  | first_block_offset = round_up(offset, sb->s_blocksize); | 
|  | last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; | 
|  |  | 
|  | /* Now release the pages and zero block aligned part of pages*/ | 
|  | if (last_block_offset > first_block_offset) | 
|  | truncate_pagecache_range(inode, first_block_offset, | 
|  | last_block_offset); | 
|  |  | 
|  | /* Wait all existing dio workers, newcomers will block on i_mutex */ | 
|  | ext4_inode_block_unlocked_dio(inode); | 
|  | inode_dio_wait(inode); | 
|  |  | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | credits = ext4_writepage_trans_blocks(inode); | 
|  | else | 
|  | credits = ext4_blocks_for_truncate(inode); | 
|  | handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | ext4_std_error(sb, ret); | 
|  | goto out_dio; | 
|  | } | 
|  |  | 
|  | ret = ext4_zero_partial_blocks(handle, inode, offset, | 
|  | length); | 
|  | if (ret) | 
|  | goto out_stop; | 
|  |  | 
|  | first_block = (offset + sb->s_blocksize - 1) >> | 
|  | EXT4_BLOCK_SIZE_BITS(sb); | 
|  | stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); | 
|  |  | 
|  | /* If there are no blocks to remove, return now */ | 
|  | if (first_block >= stop_block) | 
|  | goto out_stop; | 
|  |  | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | ext4_discard_preallocations(inode); | 
|  |  | 
|  | ret = ext4_es_remove_extent(inode, first_block, | 
|  | stop_block - first_block); | 
|  | if (ret) { | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | goto out_stop; | 
|  | } | 
|  |  | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | ret = ext4_ext_remove_space(inode, first_block, | 
|  | stop_block - 1); | 
|  | else | 
|  | ret = ext4_ind_remove_space(handle, inode, first_block, | 
|  | stop_block); | 
|  |  | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | if (IS_SYNC(inode)) | 
|  | ext4_handle_sync(handle); | 
|  |  | 
|  | /* Now release the pages again to reduce race window */ | 
|  | if (last_block_offset > first_block_offset) | 
|  | truncate_pagecache_range(inode, first_block_offset, | 
|  | last_block_offset); | 
|  |  | 
|  | inode->i_mtime = inode->i_ctime = ext4_current_time(inode); | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | out_stop: | 
|  | ext4_journal_stop(handle); | 
|  | out_dio: | 
|  | ext4_inode_resume_unlocked_dio(inode); | 
|  | out_mutex: | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ext4_inode_attach_jinode(struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct jbd2_inode *jinode; | 
|  |  | 
|  | if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) | 
|  | return 0; | 
|  |  | 
|  | jinode = jbd2_alloc_inode(GFP_KERNEL); | 
|  | spin_lock(&inode->i_lock); | 
|  | if (!ei->jinode) { | 
|  | if (!jinode) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  | ei->jinode = jinode; | 
|  | jbd2_journal_init_jbd_inode(ei->jinode, inode); | 
|  | jinode = NULL; | 
|  | } | 
|  | spin_unlock(&inode->i_lock); | 
|  | if (unlikely(jinode != NULL)) | 
|  | jbd2_free_inode(jinode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_truncate() | 
|  | * | 
|  | * We block out ext4_get_block() block instantiations across the entire | 
|  | * transaction, and VFS/VM ensures that ext4_truncate() cannot run | 
|  | * simultaneously on behalf of the same inode. | 
|  | * | 
|  | * As we work through the truncate and commit bits of it to the journal there | 
|  | * is one core, guiding principle: the file's tree must always be consistent on | 
|  | * disk.  We must be able to restart the truncate after a crash. | 
|  | * | 
|  | * The file's tree may be transiently inconsistent in memory (although it | 
|  | * probably isn't), but whenever we close off and commit a journal transaction, | 
|  | * the contents of (the filesystem + the journal) must be consistent and | 
|  | * restartable.  It's pretty simple, really: bottom up, right to left (although | 
|  | * left-to-right works OK too). | 
|  | * | 
|  | * Note that at recovery time, journal replay occurs *before* the restart of | 
|  | * truncate against the orphan inode list. | 
|  | * | 
|  | * The committed inode has the new, desired i_size (which is the same as | 
|  | * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see | 
|  | * that this inode's truncate did not complete and it will again call | 
|  | * ext4_truncate() to have another go.  So there will be instantiated blocks | 
|  | * to the right of the truncation point in a crashed ext4 filesystem.  But | 
|  | * that's fine - as long as they are linked from the inode, the post-crash | 
|  | * ext4_truncate() run will find them and release them. | 
|  | */ | 
|  | void ext4_truncate(struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | unsigned int credits; | 
|  | handle_t *handle; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  |  | 
|  | /* | 
|  | * There is a possibility that we're either freeing the inode | 
|  | * or it's a completely new inode. In those cases we might not | 
|  | * have i_mutex locked because it's not necessary. | 
|  | */ | 
|  | if (!(inode->i_state & (I_NEW|I_FREEING))) | 
|  | WARN_ON(!mutex_is_locked(&inode->i_mutex)); | 
|  | trace_ext4_truncate_enter(inode); | 
|  |  | 
|  | if (!ext4_can_truncate(inode)) | 
|  | return; | 
|  |  | 
|  | ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); | 
|  |  | 
|  | if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) | 
|  | ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) { | 
|  | int has_inline = 1; | 
|  |  | 
|  | ext4_inline_data_truncate(inode, &has_inline); | 
|  | if (has_inline) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* If we zero-out tail of the page, we have to create jinode for jbd2 */ | 
|  | if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { | 
|  | if (ext4_inode_attach_jinode(inode) < 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | credits = ext4_writepage_trans_blocks(inode); | 
|  | else | 
|  | credits = ext4_blocks_for_truncate(inode); | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); | 
|  | if (IS_ERR(handle)) { | 
|  | ext4_std_error(inode->i_sb, PTR_ERR(handle)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (inode->i_size & (inode->i_sb->s_blocksize - 1)) | 
|  | ext4_block_truncate_page(handle, mapping, inode->i_size); | 
|  |  | 
|  | /* | 
|  | * We add the inode to the orphan list, so that if this | 
|  | * truncate spans multiple transactions, and we crash, we will | 
|  | * resume the truncate when the filesystem recovers.  It also | 
|  | * marks the inode dirty, to catch the new size. | 
|  | * | 
|  | * Implication: the file must always be in a sane, consistent | 
|  | * truncatable state while each transaction commits. | 
|  | */ | 
|  | if (ext4_orphan_add(handle, inode)) | 
|  | goto out_stop; | 
|  |  | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  |  | 
|  | ext4_discard_preallocations(inode); | 
|  |  | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | ext4_ext_truncate(handle, inode); | 
|  | else | 
|  | ext4_ind_truncate(handle, inode); | 
|  |  | 
|  | up_write(&ei->i_data_sem); | 
|  |  | 
|  | if (IS_SYNC(inode)) | 
|  | ext4_handle_sync(handle); | 
|  |  | 
|  | out_stop: | 
|  | /* | 
|  | * If this was a simple ftruncate() and the file will remain alive, | 
|  | * then we need to clear up the orphan record which we created above. | 
|  | * However, if this was a real unlink then we were called by | 
|  | * ext4_delete_inode(), and we allow that function to clean up the | 
|  | * orphan info for us. | 
|  | */ | 
|  | if (inode->i_nlink) | 
|  | ext4_orphan_del(handle, inode); | 
|  |  | 
|  | inode->i_mtime = inode->i_ctime = ext4_current_time(inode); | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  |  | 
|  | trace_ext4_truncate_exit(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_get_inode_loc returns with an extra refcount against the inode's | 
|  | * underlying buffer_head on success. If 'in_mem' is true, we have all | 
|  | * data in memory that is needed to recreate the on-disk version of this | 
|  | * inode. | 
|  | */ | 
|  | static int __ext4_get_inode_loc(struct inode *inode, | 
|  | struct ext4_iloc *iloc, int in_mem) | 
|  | { | 
|  | struct ext4_group_desc	*gdp; | 
|  | struct buffer_head	*bh; | 
|  | struct super_block	*sb = inode->i_sb; | 
|  | ext4_fsblk_t		block; | 
|  | int			inodes_per_block, inode_offset; | 
|  |  | 
|  | iloc->bh = NULL; | 
|  | if (!ext4_valid_inum(sb, inode->i_ino)) | 
|  | return -EIO; | 
|  |  | 
|  | iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); | 
|  | gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); | 
|  | if (!gdp) | 
|  | return -EIO; | 
|  |  | 
|  | /* | 
|  | * Figure out the offset within the block group inode table | 
|  | */ | 
|  | inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; | 
|  | inode_offset = ((inode->i_ino - 1) % | 
|  | EXT4_INODES_PER_GROUP(sb)); | 
|  | block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); | 
|  | iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); | 
|  |  | 
|  | bh = sb_getblk(sb, block); | 
|  | if (unlikely(!bh)) | 
|  | return -ENOMEM; | 
|  | if (!buffer_uptodate(bh)) { | 
|  | lock_buffer(bh); | 
|  |  | 
|  | /* | 
|  | * If the buffer has the write error flag, we have failed | 
|  | * to write out another inode in the same block.  In this | 
|  | * case, we don't have to read the block because we may | 
|  | * read the old inode data successfully. | 
|  | */ | 
|  | if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) | 
|  | set_buffer_uptodate(bh); | 
|  |  | 
|  | if (buffer_uptodate(bh)) { | 
|  | /* someone brought it uptodate while we waited */ | 
|  | unlock_buffer(bh); | 
|  | goto has_buffer; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have all information of the inode in memory and this | 
|  | * is the only valid inode in the block, we need not read the | 
|  | * block. | 
|  | */ | 
|  | if (in_mem) { | 
|  | struct buffer_head *bitmap_bh; | 
|  | int i, start; | 
|  |  | 
|  | start = inode_offset & ~(inodes_per_block - 1); | 
|  |  | 
|  | /* Is the inode bitmap in cache? */ | 
|  | bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); | 
|  | if (unlikely(!bitmap_bh)) | 
|  | goto make_io; | 
|  |  | 
|  | /* | 
|  | * If the inode bitmap isn't in cache then the | 
|  | * optimisation may end up performing two reads instead | 
|  | * of one, so skip it. | 
|  | */ | 
|  | if (!buffer_uptodate(bitmap_bh)) { | 
|  | brelse(bitmap_bh); | 
|  | goto make_io; | 
|  | } | 
|  | for (i = start; i < start + inodes_per_block; i++) { | 
|  | if (i == inode_offset) | 
|  | continue; | 
|  | if (ext4_test_bit(i, bitmap_bh->b_data)) | 
|  | break; | 
|  | } | 
|  | brelse(bitmap_bh); | 
|  | if (i == start + inodes_per_block) { | 
|  | /* all other inodes are free, so skip I/O */ | 
|  | memset(bh->b_data, 0, bh->b_size); | 
|  | set_buffer_uptodate(bh); | 
|  | unlock_buffer(bh); | 
|  | goto has_buffer; | 
|  | } | 
|  | } | 
|  |  | 
|  | make_io: | 
|  | /* | 
|  | * If we need to do any I/O, try to pre-readahead extra | 
|  | * blocks from the inode table. | 
|  | */ | 
|  | if (EXT4_SB(sb)->s_inode_readahead_blks) { | 
|  | ext4_fsblk_t b, end, table; | 
|  | unsigned num; | 
|  | __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; | 
|  |  | 
|  | table = ext4_inode_table(sb, gdp); | 
|  | /* s_inode_readahead_blks is always a power of 2 */ | 
|  | b = block & ~((ext4_fsblk_t) ra_blks - 1); | 
|  | if (table > b) | 
|  | b = table; | 
|  | end = b + ra_blks; | 
|  | num = EXT4_INODES_PER_GROUP(sb); | 
|  | if (ext4_has_group_desc_csum(sb)) | 
|  | num -= ext4_itable_unused_count(sb, gdp); | 
|  | table += num / inodes_per_block; | 
|  | if (end > table) | 
|  | end = table; | 
|  | while (b <= end) | 
|  | sb_breadahead(sb, b++); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are other valid inodes in the buffer, this inode | 
|  | * has in-inode xattrs, or we don't have this inode in memory. | 
|  | * Read the block from disk. | 
|  | */ | 
|  | trace_ext4_load_inode(inode); | 
|  | get_bh(bh); | 
|  | bh->b_end_io = end_buffer_read_sync; | 
|  | submit_bh(READ | REQ_META | REQ_PRIO, bh); | 
|  | wait_on_buffer(bh); | 
|  | if (!buffer_uptodate(bh)) { | 
|  | EXT4_ERROR_INODE_BLOCK(inode, block, | 
|  | "unable to read itable block"); | 
|  | brelse(bh); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  | has_buffer: | 
|  | iloc->bh = bh; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) | 
|  | { | 
|  | /* We have all inode data except xattrs in memory here. */ | 
|  | return __ext4_get_inode_loc(inode, iloc, | 
|  | !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); | 
|  | } | 
|  |  | 
|  | void ext4_set_inode_flags(struct inode *inode) | 
|  | { | 
|  | unsigned int flags = EXT4_I(inode)->i_flags; | 
|  | unsigned int new_fl = 0; | 
|  |  | 
|  | if (flags & EXT4_SYNC_FL) | 
|  | new_fl |= S_SYNC; | 
|  | if (flags & EXT4_APPEND_FL) | 
|  | new_fl |= S_APPEND; | 
|  | if (flags & EXT4_IMMUTABLE_FL) | 
|  | new_fl |= S_IMMUTABLE; | 
|  | if (flags & EXT4_NOATIME_FL) | 
|  | new_fl |= S_NOATIME; | 
|  | if (flags & EXT4_DIRSYNC_FL) | 
|  | new_fl |= S_DIRSYNC; | 
|  | inode_set_flags(inode, new_fl, | 
|  | S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); | 
|  | } | 
|  |  | 
|  | /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ | 
|  | void ext4_get_inode_flags(struct ext4_inode_info *ei) | 
|  | { | 
|  | unsigned int vfs_fl; | 
|  | unsigned long old_fl, new_fl; | 
|  |  | 
|  | do { | 
|  | vfs_fl = ei->vfs_inode.i_flags; | 
|  | old_fl = ei->i_flags; | 
|  | new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| | 
|  | EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| | 
|  | EXT4_DIRSYNC_FL); | 
|  | if (vfs_fl & S_SYNC) | 
|  | new_fl |= EXT4_SYNC_FL; | 
|  | if (vfs_fl & S_APPEND) | 
|  | new_fl |= EXT4_APPEND_FL; | 
|  | if (vfs_fl & S_IMMUTABLE) | 
|  | new_fl |= EXT4_IMMUTABLE_FL; | 
|  | if (vfs_fl & S_NOATIME) | 
|  | new_fl |= EXT4_NOATIME_FL; | 
|  | if (vfs_fl & S_DIRSYNC) | 
|  | new_fl |= EXT4_DIRSYNC_FL; | 
|  | } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); | 
|  | } | 
|  |  | 
|  | static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | blkcnt_t i_blocks ; | 
|  | struct inode *inode = &(ei->vfs_inode); | 
|  | struct super_block *sb = inode->i_sb; | 
|  |  | 
|  | if (EXT4_HAS_RO_COMPAT_FEATURE(sb, | 
|  | EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { | 
|  | /* we are using combined 48 bit field */ | 
|  | i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | | 
|  | le32_to_cpu(raw_inode->i_blocks_lo); | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { | 
|  | /* i_blocks represent file system block size */ | 
|  | return i_blocks  << (inode->i_blkbits - 9); | 
|  | } else { | 
|  | return i_blocks; | 
|  | } | 
|  | } else { | 
|  | return le32_to_cpu(raw_inode->i_blocks_lo); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void ext4_iget_extra_inode(struct inode *inode, | 
|  | struct ext4_inode *raw_inode, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | __le32 *magic = (void *)raw_inode + | 
|  | EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; | 
|  | if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { | 
|  | ext4_set_inode_state(inode, EXT4_STATE_XATTR); | 
|  | ext4_find_inline_data_nolock(inode); | 
|  | } else | 
|  | EXT4_I(inode)->i_inline_off = 0; | 
|  | } | 
|  |  | 
|  | struct inode *ext4_iget(struct super_block *sb, unsigned long ino) | 
|  | { | 
|  | struct ext4_iloc iloc; | 
|  | struct ext4_inode *raw_inode; | 
|  | struct ext4_inode_info *ei; | 
|  | struct inode *inode; | 
|  | journal_t *journal = EXT4_SB(sb)->s_journal; | 
|  | long ret; | 
|  | int block; | 
|  | uid_t i_uid; | 
|  | gid_t i_gid; | 
|  |  | 
|  | inode = iget_locked(sb, ino); | 
|  | if (!inode) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | if (!(inode->i_state & I_NEW)) | 
|  | return inode; | 
|  |  | 
|  | ei = EXT4_I(inode); | 
|  | iloc.bh = NULL; | 
|  |  | 
|  | ret = __ext4_get_inode_loc(inode, &iloc, 0); | 
|  | if (ret < 0) | 
|  | goto bad_inode; | 
|  | raw_inode = ext4_raw_inode(&iloc); | 
|  |  | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
|  | ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); | 
|  | if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > | 
|  | EXT4_INODE_SIZE(inode->i_sb)) { | 
|  | EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", | 
|  | EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, | 
|  | EXT4_INODE_SIZE(inode->i_sb)); | 
|  | ret = -EIO; | 
|  | goto bad_inode; | 
|  | } | 
|  | } else | 
|  | ei->i_extra_isize = 0; | 
|  |  | 
|  | /* Precompute checksum seed for inode metadata */ | 
|  | if (ext4_has_metadata_csum(sb)) { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | __u32 csum; | 
|  | __le32 inum = cpu_to_le32(inode->i_ino); | 
|  | __le32 gen = raw_inode->i_generation; | 
|  | csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, | 
|  | sizeof(inum)); | 
|  | ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, | 
|  | sizeof(gen)); | 
|  | } | 
|  |  | 
|  | if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { | 
|  | EXT4_ERROR_INODE(inode, "checksum invalid"); | 
|  | ret = -EIO; | 
|  | goto bad_inode; | 
|  | } | 
|  |  | 
|  | inode->i_mode = le16_to_cpu(raw_inode->i_mode); | 
|  | i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); | 
|  | i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); | 
|  | if (!(test_opt(inode->i_sb, NO_UID32))) { | 
|  | i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; | 
|  | i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; | 
|  | } | 
|  | i_uid_write(inode, i_uid); | 
|  | i_gid_write(inode, i_gid); | 
|  | set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); | 
|  |  | 
|  | ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */ | 
|  | ei->i_inline_off = 0; | 
|  | ei->i_dir_start_lookup = 0; | 
|  | ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); | 
|  | /* We now have enough fields to check if the inode was active or not. | 
|  | * This is needed because nfsd might try to access dead inodes | 
|  | * the test is that same one that e2fsck uses | 
|  | * NeilBrown 1999oct15 | 
|  | */ | 
|  | if (inode->i_nlink == 0) { | 
|  | if ((inode->i_mode == 0 || | 
|  | !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && | 
|  | ino != EXT4_BOOT_LOADER_INO) { | 
|  | /* this inode is deleted */ | 
|  | ret = -ESTALE; | 
|  | goto bad_inode; | 
|  | } | 
|  | /* The only unlinked inodes we let through here have | 
|  | * valid i_mode and are being read by the orphan | 
|  | * recovery code: that's fine, we're about to complete | 
|  | * the process of deleting those. | 
|  | * OR it is the EXT4_BOOT_LOADER_INO which is | 
|  | * not initialized on a new filesystem. */ | 
|  | } | 
|  | ei->i_flags = le32_to_cpu(raw_inode->i_flags); | 
|  | inode->i_blocks = ext4_inode_blocks(raw_inode, ei); | 
|  | ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); | 
|  | if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) | 
|  | ei->i_file_acl |= | 
|  | ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; | 
|  | inode->i_size = ext4_isize(raw_inode); | 
|  | ei->i_disksize = inode->i_size; | 
|  | #ifdef CONFIG_QUOTA | 
|  | ei->i_reserved_quota = 0; | 
|  | #endif | 
|  | inode->i_generation = le32_to_cpu(raw_inode->i_generation); | 
|  | ei->i_block_group = iloc.block_group; | 
|  | ei->i_last_alloc_group = ~0; | 
|  | /* | 
|  | * NOTE! The in-memory inode i_data array is in little-endian order | 
|  | * even on big-endian machines: we do NOT byteswap the block numbers! | 
|  | */ | 
|  | for (block = 0; block < EXT4_N_BLOCKS; block++) | 
|  | ei->i_data[block] = raw_inode->i_block[block]; | 
|  | INIT_LIST_HEAD(&ei->i_orphan); | 
|  |  | 
|  | /* | 
|  | * Set transaction id's of transactions that have to be committed | 
|  | * to finish f[data]sync. We set them to currently running transaction | 
|  | * as we cannot be sure that the inode or some of its metadata isn't | 
|  | * part of the transaction - the inode could have been reclaimed and | 
|  | * now it is reread from disk. | 
|  | */ | 
|  | if (journal) { | 
|  | transaction_t *transaction; | 
|  | tid_t tid; | 
|  |  | 
|  | read_lock(&journal->j_state_lock); | 
|  | if (journal->j_running_transaction) | 
|  | transaction = journal->j_running_transaction; | 
|  | else | 
|  | transaction = journal->j_committing_transaction; | 
|  | if (transaction) | 
|  | tid = transaction->t_tid; | 
|  | else | 
|  | tid = journal->j_commit_sequence; | 
|  | read_unlock(&journal->j_state_lock); | 
|  | ei->i_sync_tid = tid; | 
|  | ei->i_datasync_tid = tid; | 
|  | } | 
|  |  | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
|  | if (ei->i_extra_isize == 0) { | 
|  | /* The extra space is currently unused. Use it. */ | 
|  | ei->i_extra_isize = sizeof(struct ext4_inode) - | 
|  | EXT4_GOOD_OLD_INODE_SIZE; | 
|  | } else { | 
|  | ext4_iget_extra_inode(inode, raw_inode, ei); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); | 
|  | EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); | 
|  | EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); | 
|  | EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); | 
|  |  | 
|  | if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { | 
|  | inode->i_version = le32_to_cpu(raw_inode->i_disk_version); | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
|  | if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) | 
|  | inode->i_version |= | 
|  | (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | if (ei->i_file_acl && | 
|  | !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { | 
|  | EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", | 
|  | ei->i_file_acl); | 
|  | ret = -EIO; | 
|  | goto bad_inode; | 
|  | } else if (!ext4_has_inline_data(inode)) { | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
|  | if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
|  | (S_ISLNK(inode->i_mode) && | 
|  | !ext4_inode_is_fast_symlink(inode)))) | 
|  | /* Validate extent which is part of inode */ | 
|  | ret = ext4_ext_check_inode(inode); | 
|  | } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
|  | (S_ISLNK(inode->i_mode) && | 
|  | !ext4_inode_is_fast_symlink(inode))) { | 
|  | /* Validate block references which are part of inode */ | 
|  | ret = ext4_ind_check_inode(inode); | 
|  | } | 
|  | } | 
|  | if (ret) | 
|  | goto bad_inode; | 
|  |  | 
|  | if (S_ISREG(inode->i_mode)) { | 
|  | inode->i_op = &ext4_file_inode_operations; | 
|  | inode->i_fop = &ext4_file_operations; | 
|  | ext4_set_aops(inode); | 
|  | } else if (S_ISDIR(inode->i_mode)) { | 
|  | inode->i_op = &ext4_dir_inode_operations; | 
|  | inode->i_fop = &ext4_dir_operations; | 
|  | } else if (S_ISLNK(inode->i_mode)) { | 
|  | if (ext4_inode_is_fast_symlink(inode)) { | 
|  | inode->i_op = &ext4_fast_symlink_inode_operations; | 
|  | nd_terminate_link(ei->i_data, inode->i_size, | 
|  | sizeof(ei->i_data) - 1); | 
|  | } else { | 
|  | inode->i_op = &ext4_symlink_inode_operations; | 
|  | ext4_set_aops(inode); | 
|  | } | 
|  | } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || | 
|  | S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { | 
|  | inode->i_op = &ext4_special_inode_operations; | 
|  | if (raw_inode->i_block[0]) | 
|  | init_special_inode(inode, inode->i_mode, | 
|  | old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); | 
|  | else | 
|  | init_special_inode(inode, inode->i_mode, | 
|  | new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); | 
|  | } else if (ino == EXT4_BOOT_LOADER_INO) { | 
|  | make_bad_inode(inode); | 
|  | } else { | 
|  | ret = -EIO; | 
|  | EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); | 
|  | goto bad_inode; | 
|  | } | 
|  | brelse(iloc.bh); | 
|  | ext4_set_inode_flags(inode); | 
|  | unlock_new_inode(inode); | 
|  | return inode; | 
|  |  | 
|  | bad_inode: | 
|  | brelse(iloc.bh); | 
|  | iget_failed(inode); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) | 
|  | { | 
|  | if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) | 
|  | return ERR_PTR(-EIO); | 
|  | return ext4_iget(sb, ino); | 
|  | } | 
|  |  | 
|  | static int ext4_inode_blocks_set(handle_t *handle, | 
|  | struct ext4_inode *raw_inode, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | struct inode *inode = &(ei->vfs_inode); | 
|  | u64 i_blocks = inode->i_blocks; | 
|  | struct super_block *sb = inode->i_sb; | 
|  |  | 
|  | if (i_blocks <= ~0U) { | 
|  | /* | 
|  | * i_blocks can be represented in a 32 bit variable | 
|  | * as multiple of 512 bytes | 
|  | */ | 
|  | raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
|  | raw_inode->i_blocks_high = 0; | 
|  | ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
|  | return 0; | 
|  | } | 
|  | if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) | 
|  | return -EFBIG; | 
|  |  | 
|  | if (i_blocks <= 0xffffffffffffULL) { | 
|  | /* | 
|  | * i_blocks can be represented in a 48 bit variable | 
|  | * as multiple of 512 bytes | 
|  | */ | 
|  | raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
|  | raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); | 
|  | ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
|  | } else { | 
|  | ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
|  | /* i_block is stored in file system block size */ | 
|  | i_blocks = i_blocks >> (inode->i_blkbits - 9); | 
|  | raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
|  | raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Post the struct inode info into an on-disk inode location in the | 
|  | * buffer-cache.  This gobbles the caller's reference to the | 
|  | * buffer_head in the inode location struct. | 
|  | * | 
|  | * The caller must have write access to iloc->bh. | 
|  | */ | 
|  | static int ext4_do_update_inode(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct ext4_iloc *iloc) | 
|  | { | 
|  | struct ext4_inode *raw_inode = ext4_raw_inode(iloc); | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct buffer_head *bh = iloc->bh; | 
|  | struct super_block *sb = inode->i_sb; | 
|  | int err = 0, rc, block; | 
|  | int need_datasync = 0, set_large_file = 0; | 
|  | uid_t i_uid; | 
|  | gid_t i_gid; | 
|  |  | 
|  | spin_lock(&ei->i_raw_lock); | 
|  |  | 
|  | /* For fields not tracked in the in-memory inode, | 
|  | * initialise them to zero for new inodes. */ | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) | 
|  | memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); | 
|  |  | 
|  | ext4_get_inode_flags(ei); | 
|  | raw_inode->i_mode = cpu_to_le16(inode->i_mode); | 
|  | i_uid = i_uid_read(inode); | 
|  | i_gid = i_gid_read(inode); | 
|  | if (!(test_opt(inode->i_sb, NO_UID32))) { | 
|  | raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); | 
|  | raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); | 
|  | /* | 
|  | * Fix up interoperability with old kernels. Otherwise, old inodes get | 
|  | * re-used with the upper 16 bits of the uid/gid intact | 
|  | */ | 
|  | if (!ei->i_dtime) { | 
|  | raw_inode->i_uid_high = | 
|  | cpu_to_le16(high_16_bits(i_uid)); | 
|  | raw_inode->i_gid_high = | 
|  | cpu_to_le16(high_16_bits(i_gid)); | 
|  | } else { | 
|  | raw_inode->i_uid_high = 0; | 
|  | raw_inode->i_gid_high = 0; | 
|  | } | 
|  | } else { | 
|  | raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); | 
|  | raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); | 
|  | raw_inode->i_uid_high = 0; | 
|  | raw_inode->i_gid_high = 0; | 
|  | } | 
|  | raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); | 
|  |  | 
|  | EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); | 
|  | EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); | 
|  | EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); | 
|  | EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); | 
|  |  | 
|  | err = ext4_inode_blocks_set(handle, raw_inode, ei); | 
|  | if (err) { | 
|  | spin_unlock(&ei->i_raw_lock); | 
|  | goto out_brelse; | 
|  | } | 
|  | raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); | 
|  | raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); | 
|  | if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) | 
|  | raw_inode->i_file_acl_high = | 
|  | cpu_to_le16(ei->i_file_acl >> 32); | 
|  | raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); | 
|  | if (ei->i_disksize != ext4_isize(raw_inode)) { | 
|  | ext4_isize_set(raw_inode, ei->i_disksize); | 
|  | need_datasync = 1; | 
|  | } | 
|  | if (ei->i_disksize > 0x7fffffffULL) { | 
|  | if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, | 
|  | EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || | 
|  | EXT4_SB(sb)->s_es->s_rev_level == | 
|  | cpu_to_le32(EXT4_GOOD_OLD_REV)) | 
|  | set_large_file = 1; | 
|  | } | 
|  | raw_inode->i_generation = cpu_to_le32(inode->i_generation); | 
|  | if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { | 
|  | if (old_valid_dev(inode->i_rdev)) { | 
|  | raw_inode->i_block[0] = | 
|  | cpu_to_le32(old_encode_dev(inode->i_rdev)); | 
|  | raw_inode->i_block[1] = 0; | 
|  | } else { | 
|  | raw_inode->i_block[0] = 0; | 
|  | raw_inode->i_block[1] = | 
|  | cpu_to_le32(new_encode_dev(inode->i_rdev)); | 
|  | raw_inode->i_block[2] = 0; | 
|  | } | 
|  | } else if (!ext4_has_inline_data(inode)) { | 
|  | for (block = 0; block < EXT4_N_BLOCKS; block++) | 
|  | raw_inode->i_block[block] = ei->i_data[block]; | 
|  | } | 
|  |  | 
|  | if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { | 
|  | raw_inode->i_disk_version = cpu_to_le32(inode->i_version); | 
|  | if (ei->i_extra_isize) { | 
|  | if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) | 
|  | raw_inode->i_version_hi = | 
|  | cpu_to_le32(inode->i_version >> 32); | 
|  | raw_inode->i_extra_isize = | 
|  | cpu_to_le16(ei->i_extra_isize); | 
|  | } | 
|  | } | 
|  |  | 
|  | ext4_inode_csum_set(inode, raw_inode, ei); | 
|  |  | 
|  | spin_unlock(&ei->i_raw_lock); | 
|  |  | 
|  | BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); | 
|  | rc = ext4_handle_dirty_metadata(handle, NULL, bh); | 
|  | if (!err) | 
|  | err = rc; | 
|  | ext4_clear_inode_state(inode, EXT4_STATE_NEW); | 
|  | if (set_large_file) { | 
|  | BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); | 
|  | err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); | 
|  | if (err) | 
|  | goto out_brelse; | 
|  | ext4_update_dynamic_rev(sb); | 
|  | EXT4_SET_RO_COMPAT_FEATURE(sb, | 
|  | EXT4_FEATURE_RO_COMPAT_LARGE_FILE); | 
|  | ext4_handle_sync(handle); | 
|  | err = ext4_handle_dirty_super(handle, sb); | 
|  | } | 
|  | ext4_update_inode_fsync_trans(handle, inode, need_datasync); | 
|  | out_brelse: | 
|  | brelse(bh); | 
|  | ext4_std_error(inode->i_sb, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_write_inode() | 
|  | * | 
|  | * We are called from a few places: | 
|  | * | 
|  | * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. | 
|  | *   Here, there will be no transaction running. We wait for any running | 
|  | *   transaction to commit. | 
|  | * | 
|  | * - Within flush work (sys_sync(), kupdate and such). | 
|  | *   We wait on commit, if told to. | 
|  | * | 
|  | * - Within iput_final() -> write_inode_now() | 
|  | *   We wait on commit, if told to. | 
|  | * | 
|  | * In all cases it is actually safe for us to return without doing anything, | 
|  | * because the inode has been copied into a raw inode buffer in | 
|  | * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL | 
|  | * writeback. | 
|  | * | 
|  | * Note that we are absolutely dependent upon all inode dirtiers doing the | 
|  | * right thing: they *must* call mark_inode_dirty() after dirtying info in | 
|  | * which we are interested. | 
|  | * | 
|  | * It would be a bug for them to not do this.  The code: | 
|  | * | 
|  | *	mark_inode_dirty(inode) | 
|  | *	stuff(); | 
|  | *	inode->i_size = expr; | 
|  | * | 
|  | * is in error because write_inode() could occur while `stuff()' is running, | 
|  | * and the new i_size will be lost.  Plus the inode will no longer be on the | 
|  | * superblock's dirty inode list. | 
|  | */ | 
|  | int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) | 
|  | return 0; | 
|  |  | 
|  | if (EXT4_SB(inode->i_sb)->s_journal) { | 
|  | if (ext4_journal_current_handle()) { | 
|  | jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); | 
|  | dump_stack(); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to force transaction in WB_SYNC_NONE mode. Also | 
|  | * ext4_sync_fs() will force the commit after everything is | 
|  | * written. | 
|  | */ | 
|  | if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) | 
|  | return 0; | 
|  |  | 
|  | err = ext4_force_commit(inode->i_sb); | 
|  | } else { | 
|  | struct ext4_iloc iloc; | 
|  |  | 
|  | err = __ext4_get_inode_loc(inode, &iloc, 0); | 
|  | if (err) | 
|  | return err; | 
|  | /* | 
|  | * sync(2) will flush the whole buffer cache. No need to do | 
|  | * it here separately for each inode. | 
|  | */ | 
|  | if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) | 
|  | sync_dirty_buffer(iloc.bh); | 
|  | if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { | 
|  | EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, | 
|  | "IO error syncing inode"); | 
|  | err = -EIO; | 
|  | } | 
|  | brelse(iloc.bh); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate | 
|  | * buffers that are attached to a page stradding i_size and are undergoing | 
|  | * commit. In that case we have to wait for commit to finish and try again. | 
|  | */ | 
|  | static void ext4_wait_for_tail_page_commit(struct inode *inode) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned offset; | 
|  | journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; | 
|  | tid_t commit_tid = 0; | 
|  | int ret; | 
|  |  | 
|  | offset = inode->i_size & (PAGE_CACHE_SIZE - 1); | 
|  | /* | 
|  | * All buffers in the last page remain valid? Then there's nothing to | 
|  | * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == | 
|  | * blocksize case | 
|  | */ | 
|  | if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) | 
|  | return; | 
|  | while (1) { | 
|  | page = find_lock_page(inode->i_mapping, | 
|  | inode->i_size >> PAGE_CACHE_SHIFT); | 
|  | if (!page) | 
|  | return; | 
|  | ret = __ext4_journalled_invalidatepage(page, offset, | 
|  | PAGE_CACHE_SIZE - offset); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | if (ret != -EBUSY) | 
|  | return; | 
|  | commit_tid = 0; | 
|  | read_lock(&journal->j_state_lock); | 
|  | if (journal->j_committing_transaction) | 
|  | commit_tid = journal->j_committing_transaction->t_tid; | 
|  | read_unlock(&journal->j_state_lock); | 
|  | if (commit_tid) | 
|  | jbd2_log_wait_commit(journal, commit_tid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_setattr() | 
|  | * | 
|  | * Called from notify_change. | 
|  | * | 
|  | * We want to trap VFS attempts to truncate the file as soon as | 
|  | * possible.  In particular, we want to make sure that when the VFS | 
|  | * shrinks i_size, we put the inode on the orphan list and modify | 
|  | * i_disksize immediately, so that during the subsequent flushing of | 
|  | * dirty pages and freeing of disk blocks, we can guarantee that any | 
|  | * commit will leave the blocks being flushed in an unused state on | 
|  | * disk.  (On recovery, the inode will get truncated and the blocks will | 
|  | * be freed, so we have a strong guarantee that no future commit will | 
|  | * leave these blocks visible to the user.) | 
|  | * | 
|  | * Another thing we have to assure is that if we are in ordered mode | 
|  | * and inode is still attached to the committing transaction, we must | 
|  | * we start writeout of all the dirty pages which are being truncated. | 
|  | * This way we are sure that all the data written in the previous | 
|  | * transaction are already on disk (truncate waits for pages under | 
|  | * writeback). | 
|  | * | 
|  | * Called with inode->i_mutex down. | 
|  | */ | 
|  | int ext4_setattr(struct dentry *dentry, struct iattr *attr) | 
|  | { | 
|  | struct inode *inode = dentry->d_inode; | 
|  | int error, rc = 0; | 
|  | int orphan = 0; | 
|  | const unsigned int ia_valid = attr->ia_valid; | 
|  |  | 
|  | error = inode_change_ok(inode, attr); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (is_quota_modification(inode, attr)) | 
|  | dquot_initialize(inode); | 
|  | if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || | 
|  | (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { | 
|  | handle_t *handle; | 
|  |  | 
|  | /* (user+group)*(old+new) structure, inode write (sb, | 
|  | * inode block, ? - but truncate inode update has it) */ | 
|  | handle = ext4_journal_start(inode, EXT4_HT_QUOTA, | 
|  | (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + | 
|  | EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); | 
|  | if (IS_ERR(handle)) { | 
|  | error = PTR_ERR(handle); | 
|  | goto err_out; | 
|  | } | 
|  | error = dquot_transfer(inode, attr); | 
|  | if (error) { | 
|  | ext4_journal_stop(handle); | 
|  | return error; | 
|  | } | 
|  | /* Update corresponding info in inode so that everything is in | 
|  | * one transaction */ | 
|  | if (attr->ia_valid & ATTR_UID) | 
|  | inode->i_uid = attr->ia_uid; | 
|  | if (attr->ia_valid & ATTR_GID) | 
|  | inode->i_gid = attr->ia_gid; | 
|  | error = ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | } | 
|  |  | 
|  | if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { | 
|  | handle_t *handle; | 
|  |  | 
|  | if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  |  | 
|  | if (attr->ia_size > sbi->s_bitmap_maxbytes) | 
|  | return -EFBIG; | 
|  | } | 
|  |  | 
|  | if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) | 
|  | inode_inc_iversion(inode); | 
|  |  | 
|  | if (S_ISREG(inode->i_mode) && | 
|  | (attr->ia_size < inode->i_size)) { | 
|  | if (ext4_should_order_data(inode)) { | 
|  | error = ext4_begin_ordered_truncate(inode, | 
|  | attr->ia_size); | 
|  | if (error) | 
|  | goto err_out; | 
|  | } | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); | 
|  | if (IS_ERR(handle)) { | 
|  | error = PTR_ERR(handle); | 
|  | goto err_out; | 
|  | } | 
|  | if (ext4_handle_valid(handle)) { | 
|  | error = ext4_orphan_add(handle, inode); | 
|  | orphan = 1; | 
|  | } | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | EXT4_I(inode)->i_disksize = attr->ia_size; | 
|  | rc = ext4_mark_inode_dirty(handle, inode); | 
|  | if (!error) | 
|  | error = rc; | 
|  | /* | 
|  | * We have to update i_size under i_data_sem together | 
|  | * with i_disksize to avoid races with writeback code | 
|  | * running ext4_wb_update_i_disksize(). | 
|  | */ | 
|  | if (!error) | 
|  | i_size_write(inode, attr->ia_size); | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | ext4_journal_stop(handle); | 
|  | if (error) { | 
|  | ext4_orphan_del(NULL, inode); | 
|  | goto err_out; | 
|  | } | 
|  | } else { | 
|  | loff_t oldsize = inode->i_size; | 
|  |  | 
|  | i_size_write(inode, attr->ia_size); | 
|  | pagecache_isize_extended(inode, oldsize, inode->i_size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Blocks are going to be removed from the inode. Wait | 
|  | * for dio in flight.  Temporarily disable | 
|  | * dioread_nolock to prevent livelock. | 
|  | */ | 
|  | if (orphan) { | 
|  | if (!ext4_should_journal_data(inode)) { | 
|  | ext4_inode_block_unlocked_dio(inode); | 
|  | inode_dio_wait(inode); | 
|  | ext4_inode_resume_unlocked_dio(inode); | 
|  | } else | 
|  | ext4_wait_for_tail_page_commit(inode); | 
|  | } | 
|  | /* | 
|  | * Truncate pagecache after we've waited for commit | 
|  | * in data=journal mode to make pages freeable. | 
|  | */ | 
|  | truncate_pagecache(inode, inode->i_size); | 
|  | } | 
|  | /* | 
|  | * We want to call ext4_truncate() even if attr->ia_size == | 
|  | * inode->i_size for cases like truncation of fallocated space | 
|  | */ | 
|  | if (attr->ia_valid & ATTR_SIZE) | 
|  | ext4_truncate(inode); | 
|  |  | 
|  | if (!rc) { | 
|  | setattr_copy(inode, attr); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the call to ext4_truncate failed to get a transaction handle at | 
|  | * all, we need to clean up the in-core orphan list manually. | 
|  | */ | 
|  | if (orphan && inode->i_nlink) | 
|  | ext4_orphan_del(NULL, inode); | 
|  |  | 
|  | if (!rc && (ia_valid & ATTR_MODE)) | 
|  | rc = posix_acl_chmod(inode, inode->i_mode); | 
|  |  | 
|  | err_out: | 
|  | ext4_std_error(inode->i_sb, error); | 
|  | if (!error) | 
|  | error = rc; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, | 
|  | struct kstat *stat) | 
|  | { | 
|  | struct inode *inode; | 
|  | unsigned long long delalloc_blocks; | 
|  |  | 
|  | inode = dentry->d_inode; | 
|  | generic_fillattr(inode, stat); | 
|  |  | 
|  | /* | 
|  | * If there is inline data in the inode, the inode will normally not | 
|  | * have data blocks allocated (it may have an external xattr block). | 
|  | * Report at least one sector for such files, so tools like tar, rsync, | 
|  | * others doen't incorrectly think the file is completely sparse. | 
|  | */ | 
|  | if (unlikely(ext4_has_inline_data(inode))) | 
|  | stat->blocks += (stat->size + 511) >> 9; | 
|  |  | 
|  | /* | 
|  | * We can't update i_blocks if the block allocation is delayed | 
|  | * otherwise in the case of system crash before the real block | 
|  | * allocation is done, we will have i_blocks inconsistent with | 
|  | * on-disk file blocks. | 
|  | * We always keep i_blocks updated together with real | 
|  | * allocation. But to not confuse with user, stat | 
|  | * will return the blocks that include the delayed allocation | 
|  | * blocks for this file. | 
|  | */ | 
|  | delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), | 
|  | EXT4_I(inode)->i_reserved_data_blocks); | 
|  | stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_index_trans_blocks(struct inode *inode, int lblocks, | 
|  | int pextents) | 
|  | { | 
|  | if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) | 
|  | return ext4_ind_trans_blocks(inode, lblocks); | 
|  | return ext4_ext_index_trans_blocks(inode, pextents); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for index blocks, block groups bitmaps and block group | 
|  | * descriptor blocks if modify datablocks and index blocks | 
|  | * worse case, the indexs blocks spread over different block groups | 
|  | * | 
|  | * If datablocks are discontiguous, they are possible to spread over | 
|  | * different block groups too. If they are contiguous, with flexbg, | 
|  | * they could still across block group boundary. | 
|  | * | 
|  | * Also account for superblock, inode, quota and xattr blocks | 
|  | */ | 
|  | static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, | 
|  | int pextents) | 
|  | { | 
|  | ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); | 
|  | int gdpblocks; | 
|  | int idxblocks; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * How many index blocks need to touch to map @lblocks logical blocks | 
|  | * to @pextents physical extents? | 
|  | */ | 
|  | idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); | 
|  |  | 
|  | ret = idxblocks; | 
|  |  | 
|  | /* | 
|  | * Now let's see how many group bitmaps and group descriptors need | 
|  | * to account | 
|  | */ | 
|  | groups = idxblocks + pextents; | 
|  | gdpblocks = groups; | 
|  | if (groups > ngroups) | 
|  | groups = ngroups; | 
|  | if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) | 
|  | gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; | 
|  |  | 
|  | /* bitmaps and block group descriptor blocks */ | 
|  | ret += groups + gdpblocks; | 
|  |  | 
|  | /* Blocks for super block, inode, quota and xattr blocks */ | 
|  | ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the total number of credits to reserve to fit | 
|  | * the modification of a single pages into a single transaction, | 
|  | * which may include multiple chunks of block allocations. | 
|  | * | 
|  | * This could be called via ext4_write_begin() | 
|  | * | 
|  | * We need to consider the worse case, when | 
|  | * one new block per extent. | 
|  | */ | 
|  | int ext4_writepage_trans_blocks(struct inode *inode) | 
|  | { | 
|  | int bpp = ext4_journal_blocks_per_page(inode); | 
|  | int ret; | 
|  |  | 
|  | ret = ext4_meta_trans_blocks(inode, bpp, bpp); | 
|  |  | 
|  | /* Account for data blocks for journalled mode */ | 
|  | if (ext4_should_journal_data(inode)) | 
|  | ret += bpp; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the journal credits for a chunk of data modification. | 
|  | * | 
|  | * This is called from DIO, fallocate or whoever calling | 
|  | * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. | 
|  | * | 
|  | * journal buffers for data blocks are not included here, as DIO | 
|  | * and fallocate do no need to journal data buffers. | 
|  | */ | 
|  | int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) | 
|  | { | 
|  | return ext4_meta_trans_blocks(inode, nrblocks, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The caller must have previously called ext4_reserve_inode_write(). | 
|  | * Give this, we know that the caller already has write access to iloc->bh. | 
|  | */ | 
|  | int ext4_mark_iloc_dirty(handle_t *handle, | 
|  | struct inode *inode, struct ext4_iloc *iloc) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (IS_I_VERSION(inode)) | 
|  | inode_inc_iversion(inode); | 
|  |  | 
|  | /* the do_update_inode consumes one bh->b_count */ | 
|  | get_bh(iloc->bh); | 
|  |  | 
|  | /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ | 
|  | err = ext4_do_update_inode(handle, inode, iloc); | 
|  | put_bh(iloc->bh); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On success, We end up with an outstanding reference count against | 
|  | * iloc->bh.  This _must_ be cleaned up later. | 
|  | */ | 
|  |  | 
|  | int | 
|  | ext4_reserve_inode_write(handle_t *handle, struct inode *inode, | 
|  | struct ext4_iloc *iloc) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = ext4_get_inode_loc(inode, iloc); | 
|  | if (!err) { | 
|  | BUFFER_TRACE(iloc->bh, "get_write_access"); | 
|  | err = ext4_journal_get_write_access(handle, iloc->bh); | 
|  | if (err) { | 
|  | brelse(iloc->bh); | 
|  | iloc->bh = NULL; | 
|  | } | 
|  | } | 
|  | ext4_std_error(inode->i_sb, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expand an inode by new_extra_isize bytes. | 
|  | * Returns 0 on success or negative error number on failure. | 
|  | */ | 
|  | static int ext4_expand_extra_isize(struct inode *inode, | 
|  | unsigned int new_extra_isize, | 
|  | struct ext4_iloc iloc, | 
|  | handle_t *handle) | 
|  | { | 
|  | struct ext4_inode *raw_inode; | 
|  | struct ext4_xattr_ibody_header *header; | 
|  |  | 
|  | if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) | 
|  | return 0; | 
|  |  | 
|  | raw_inode = ext4_raw_inode(&iloc); | 
|  |  | 
|  | header = IHDR(inode, raw_inode); | 
|  |  | 
|  | /* No extended attributes present */ | 
|  | if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || | 
|  | header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { | 
|  | memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, | 
|  | new_extra_isize); | 
|  | EXT4_I(inode)->i_extra_isize = new_extra_isize; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* try to expand with EAs present */ | 
|  | return ext4_expand_extra_isize_ea(inode, new_extra_isize, | 
|  | raw_inode, handle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * What we do here is to mark the in-core inode as clean with respect to inode | 
|  | * dirtiness (it may still be data-dirty). | 
|  | * This means that the in-core inode may be reaped by prune_icache | 
|  | * without having to perform any I/O.  This is a very good thing, | 
|  | * because *any* task may call prune_icache - even ones which | 
|  | * have a transaction open against a different journal. | 
|  | * | 
|  | * Is this cheating?  Not really.  Sure, we haven't written the | 
|  | * inode out, but prune_icache isn't a user-visible syncing function. | 
|  | * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) | 
|  | * we start and wait on commits. | 
|  | */ | 
|  | int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) | 
|  | { | 
|  | struct ext4_iloc iloc; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | static unsigned int mnt_count; | 
|  | int err, ret; | 
|  |  | 
|  | might_sleep(); | 
|  | trace_ext4_mark_inode_dirty(inode, _RET_IP_); | 
|  | err = ext4_reserve_inode_write(handle, inode, &iloc); | 
|  | if (ext4_handle_valid(handle) && | 
|  | EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && | 
|  | !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { | 
|  | /* | 
|  | * We need extra buffer credits since we may write into EA block | 
|  | * with this same handle. If journal_extend fails, then it will | 
|  | * only result in a minor loss of functionality for that inode. | 
|  | * If this is felt to be critical, then e2fsck should be run to | 
|  | * force a large enough s_min_extra_isize. | 
|  | */ | 
|  | if ((jbd2_journal_extend(handle, | 
|  | EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { | 
|  | ret = ext4_expand_extra_isize(inode, | 
|  | sbi->s_want_extra_isize, | 
|  | iloc, handle); | 
|  | if (ret) { | 
|  | ext4_set_inode_state(inode, | 
|  | EXT4_STATE_NO_EXPAND); | 
|  | if (mnt_count != | 
|  | le16_to_cpu(sbi->s_es->s_mnt_count)) { | 
|  | ext4_warning(inode->i_sb, | 
|  | "Unable to expand inode %lu. Delete" | 
|  | " some EAs or run e2fsck.", | 
|  | inode->i_ino); | 
|  | mnt_count = | 
|  | le16_to_cpu(sbi->s_es->s_mnt_count); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!err) | 
|  | err = ext4_mark_iloc_dirty(handle, inode, &iloc); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_dirty_inode() is called from __mark_inode_dirty() | 
|  | * | 
|  | * We're really interested in the case where a file is being extended. | 
|  | * i_size has been changed by generic_commit_write() and we thus need | 
|  | * to include the updated inode in the current transaction. | 
|  | * | 
|  | * Also, dquot_alloc_block() will always dirty the inode when blocks | 
|  | * are allocated to the file. | 
|  | * | 
|  | * If the inode is marked synchronous, we don't honour that here - doing | 
|  | * so would cause a commit on atime updates, which we don't bother doing. | 
|  | * We handle synchronous inodes at the highest possible level. | 
|  | */ | 
|  | void ext4_dirty_inode(struct inode *inode, int flags) | 
|  | { | 
|  | handle_t *handle; | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); | 
|  | if (IS_ERR(handle)) | 
|  | goto out; | 
|  |  | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  |  | 
|  | ext4_journal_stop(handle); | 
|  | out: | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* | 
|  | * Bind an inode's backing buffer_head into this transaction, to prevent | 
|  | * it from being flushed to disk early.  Unlike | 
|  | * ext4_reserve_inode_write, this leaves behind no bh reference and | 
|  | * returns no iloc structure, so the caller needs to repeat the iloc | 
|  | * lookup to mark the inode dirty later. | 
|  | */ | 
|  | static int ext4_pin_inode(handle_t *handle, struct inode *inode) | 
|  | { | 
|  | struct ext4_iloc iloc; | 
|  |  | 
|  | int err = 0; | 
|  | if (handle) { | 
|  | err = ext4_get_inode_loc(inode, &iloc); | 
|  | if (!err) { | 
|  | BUFFER_TRACE(iloc.bh, "get_write_access"); | 
|  | err = jbd2_journal_get_write_access(handle, iloc.bh); | 
|  | if (!err) | 
|  | err = ext4_handle_dirty_metadata(handle, | 
|  | NULL, | 
|  | iloc.bh); | 
|  | brelse(iloc.bh); | 
|  | } | 
|  | } | 
|  | ext4_std_error(inode->i_sb, err); | 
|  | return err; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int ext4_change_inode_journal_flag(struct inode *inode, int val) | 
|  | { | 
|  | journal_t *journal; | 
|  | handle_t *handle; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * We have to be very careful here: changing a data block's | 
|  | * journaling status dynamically is dangerous.  If we write a | 
|  | * data block to the journal, change the status and then delete | 
|  | * that block, we risk forgetting to revoke the old log record | 
|  | * from the journal and so a subsequent replay can corrupt data. | 
|  | * So, first we make sure that the journal is empty and that | 
|  | * nobody is changing anything. | 
|  | */ | 
|  |  | 
|  | journal = EXT4_JOURNAL(inode); | 
|  | if (!journal) | 
|  | return 0; | 
|  | if (is_journal_aborted(journal)) | 
|  | return -EROFS; | 
|  | /* We have to allocate physical blocks for delalloc blocks | 
|  | * before flushing journal. otherwise delalloc blocks can not | 
|  | * be allocated any more. even more truncate on delalloc blocks | 
|  | * could trigger BUG by flushing delalloc blocks in journal. | 
|  | * There is no delalloc block in non-journal data mode. | 
|  | */ | 
|  | if (val && test_opt(inode->i_sb, DELALLOC)) { | 
|  | err = ext4_alloc_da_blocks(inode); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Wait for all existing dio workers */ | 
|  | ext4_inode_block_unlocked_dio(inode); | 
|  | inode_dio_wait(inode); | 
|  |  | 
|  | jbd2_journal_lock_updates(journal); | 
|  |  | 
|  | /* | 
|  | * OK, there are no updates running now, and all cached data is | 
|  | * synced to disk.  We are now in a completely consistent state | 
|  | * which doesn't have anything in the journal, and we know that | 
|  | * no filesystem updates are running, so it is safe to modify | 
|  | * the inode's in-core data-journaling state flag now. | 
|  | */ | 
|  |  | 
|  | if (val) | 
|  | ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); | 
|  | else { | 
|  | err = jbd2_journal_flush(journal); | 
|  | if (err < 0) { | 
|  | jbd2_journal_unlock_updates(journal); | 
|  | ext4_inode_resume_unlocked_dio(inode); | 
|  | return err; | 
|  | } | 
|  | ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); | 
|  | } | 
|  | ext4_set_aops(inode); | 
|  |  | 
|  | jbd2_journal_unlock_updates(journal); | 
|  | ext4_inode_resume_unlocked_dio(inode); | 
|  |  | 
|  | /* Finally we can mark the inode as dirty. */ | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); | 
|  | if (IS_ERR(handle)) | 
|  | return PTR_ERR(handle); | 
|  |  | 
|  | err = ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_handle_sync(handle); | 
|  | ext4_journal_stop(handle); | 
|  | ext4_std_error(inode->i_sb, err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) | 
|  | { | 
|  | return !buffer_mapped(bh); | 
|  | } | 
|  |  | 
|  | int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) | 
|  | { | 
|  | struct page *page = vmf->page; | 
|  | loff_t size; | 
|  | unsigned long len; | 
|  | int ret; | 
|  | struct file *file = vma->vm_file; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | handle_t *handle; | 
|  | get_block_t *get_block; | 
|  | int retries = 0; | 
|  |  | 
|  | sb_start_pagefault(inode->i_sb); | 
|  | file_update_time(vma->vm_file); | 
|  | /* Delalloc case is easy... */ | 
|  | if (test_opt(inode->i_sb, DELALLOC) && | 
|  | !ext4_should_journal_data(inode) && | 
|  | !ext4_nonda_switch(inode->i_sb)) { | 
|  | do { | 
|  | ret = __block_page_mkwrite(vma, vmf, | 
|  | ext4_da_get_block_prep); | 
|  | } while (ret == -ENOSPC && | 
|  | ext4_should_retry_alloc(inode->i_sb, &retries)); | 
|  | goto out_ret; | 
|  | } | 
|  |  | 
|  | lock_page(page); | 
|  | size = i_size_read(inode); | 
|  | /* Page got truncated from under us? */ | 
|  | if (page->mapping != mapping || page_offset(page) > size) { | 
|  | unlock_page(page); | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (page->index == size >> PAGE_CACHE_SHIFT) | 
|  | len = size & ~PAGE_CACHE_MASK; | 
|  | else | 
|  | len = PAGE_CACHE_SIZE; | 
|  | /* | 
|  | * Return if we have all the buffers mapped. This avoids the need to do | 
|  | * journal_start/journal_stop which can block and take a long time | 
|  | */ | 
|  | if (page_has_buffers(page)) { | 
|  | if (!ext4_walk_page_buffers(NULL, page_buffers(page), | 
|  | 0, len, NULL, | 
|  | ext4_bh_unmapped)) { | 
|  | /* Wait so that we don't change page under IO */ | 
|  | wait_for_stable_page(page); | 
|  | ret = VM_FAULT_LOCKED; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | unlock_page(page); | 
|  | /* OK, we need to fill the hole... */ | 
|  | if (ext4_should_dioread_nolock(inode)) | 
|  | get_block = ext4_get_block_write; | 
|  | else | 
|  | get_block = ext4_get_block; | 
|  | retry_alloc: | 
|  | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, | 
|  | ext4_writepage_trans_blocks(inode)); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | goto out; | 
|  | } | 
|  | ret = __block_page_mkwrite(vma, vmf, get_block); | 
|  | if (!ret && ext4_should_journal_data(inode)) { | 
|  | if (ext4_walk_page_buffers(handle, page_buffers(page), 0, | 
|  | PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { | 
|  | unlock_page(page); | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | ext4_journal_stop(handle); | 
|  | goto out; | 
|  | } | 
|  | ext4_set_inode_state(inode, EXT4_STATE_JDATA); | 
|  | } | 
|  | ext4_journal_stop(handle); | 
|  | if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) | 
|  | goto retry_alloc; | 
|  | out_ret: | 
|  | ret = block_page_mkwrite_return(ret); | 
|  | out: | 
|  | sb_end_pagefault(inode->i_sb); | 
|  | return ret; | 
|  | } |