|  | /* | 
|  | * Copyright (C) 2010-2011 Neil Brown | 
|  | * Copyright (C) 2010-2014 Red Hat, Inc. All rights reserved. | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include "md.h" | 
|  | #include "raid1.h" | 
|  | #include "raid5.h" | 
|  | #include "raid10.h" | 
|  | #include "bitmap.h" | 
|  |  | 
|  | #include <linux/device-mapper.h> | 
|  |  | 
|  | #define DM_MSG_PREFIX "raid" | 
|  |  | 
|  | static bool devices_handle_discard_safely = false; | 
|  |  | 
|  | /* | 
|  | * The following flags are used by dm-raid.c to set up the array state. | 
|  | * They must be cleared before md_run is called. | 
|  | */ | 
|  | #define FirstUse 10             /* rdev flag */ | 
|  |  | 
|  | struct raid_dev { | 
|  | /* | 
|  | * Two DM devices, one to hold metadata and one to hold the | 
|  | * actual data/parity.  The reason for this is to not confuse | 
|  | * ti->len and give more flexibility in altering size and | 
|  | * characteristics. | 
|  | * | 
|  | * While it is possible for this device to be associated | 
|  | * with a different physical device than the data_dev, it | 
|  | * is intended for it to be the same. | 
|  | *    |--------- Physical Device ---------| | 
|  | *    |- meta_dev -|------ data_dev ------| | 
|  | */ | 
|  | struct dm_dev *meta_dev; | 
|  | struct dm_dev *data_dev; | 
|  | struct md_rdev rdev; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Flags for rs->print_flags field. | 
|  | */ | 
|  | #define DMPF_SYNC              0x1 | 
|  | #define DMPF_NOSYNC            0x2 | 
|  | #define DMPF_REBUILD           0x4 | 
|  | #define DMPF_DAEMON_SLEEP      0x8 | 
|  | #define DMPF_MIN_RECOVERY_RATE 0x10 | 
|  | #define DMPF_MAX_RECOVERY_RATE 0x20 | 
|  | #define DMPF_MAX_WRITE_BEHIND  0x40 | 
|  | #define DMPF_STRIPE_CACHE      0x80 | 
|  | #define DMPF_REGION_SIZE       0x100 | 
|  | #define DMPF_RAID10_COPIES     0x200 | 
|  | #define DMPF_RAID10_FORMAT     0x400 | 
|  |  | 
|  | struct raid_set { | 
|  | struct dm_target *ti; | 
|  |  | 
|  | uint32_t bitmap_loaded; | 
|  | uint32_t print_flags; | 
|  |  | 
|  | struct mddev md; | 
|  | struct raid_type *raid_type; | 
|  | struct dm_target_callbacks callbacks; | 
|  |  | 
|  | struct raid_dev dev[0]; | 
|  | }; | 
|  |  | 
|  | /* Supported raid types and properties. */ | 
|  | static struct raid_type { | 
|  | const char *name;		/* RAID algorithm. */ | 
|  | const char *descr;		/* Descriptor text for logging. */ | 
|  | const unsigned parity_devs;	/* # of parity devices. */ | 
|  | const unsigned minimal_devs;	/* minimal # of devices in set. */ | 
|  | const unsigned level;		/* RAID level. */ | 
|  | const unsigned algorithm;	/* RAID algorithm. */ | 
|  | } raid_types[] = { | 
|  | {"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */}, | 
|  | {"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */}, | 
|  | {"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0}, | 
|  | {"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, | 
|  | {"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, | 
|  | {"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, | 
|  | {"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, | 
|  | {"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, | 
|  | {"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, | 
|  | {"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE} | 
|  | }; | 
|  |  | 
|  | static char *raid10_md_layout_to_format(int layout) | 
|  | { | 
|  | /* | 
|  | * Bit 16 and 17 stand for "offset" and "use_far_sets" | 
|  | * Refer to MD's raid10.c for details | 
|  | */ | 
|  | if ((layout & 0x10000) && (layout & 0x20000)) | 
|  | return "offset"; | 
|  |  | 
|  | if ((layout & 0xFF) > 1) | 
|  | return "near"; | 
|  |  | 
|  | return "far"; | 
|  | } | 
|  |  | 
|  | static unsigned raid10_md_layout_to_copies(int layout) | 
|  | { | 
|  | if ((layout & 0xFF) > 1) | 
|  | return layout & 0xFF; | 
|  | return (layout >> 8) & 0xFF; | 
|  | } | 
|  |  | 
|  | static int raid10_format_to_md_layout(char *format, unsigned copies) | 
|  | { | 
|  | unsigned n = 1, f = 1; | 
|  |  | 
|  | if (!strcmp("near", format)) | 
|  | n = copies; | 
|  | else | 
|  | f = copies; | 
|  |  | 
|  | if (!strcmp("offset", format)) | 
|  | return 0x30000 | (f << 8) | n; | 
|  |  | 
|  | if (!strcmp("far", format)) | 
|  | return 0x20000 | (f << 8) | n; | 
|  |  | 
|  | return (f << 8) | n; | 
|  | } | 
|  |  | 
|  | static struct raid_type *get_raid_type(char *name) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(raid_types); i++) | 
|  | if (!strcmp(raid_types[i].name, name)) | 
|  | return &raid_types[i]; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs) | 
|  | { | 
|  | unsigned i; | 
|  | struct raid_set *rs; | 
|  |  | 
|  | if (raid_devs <= raid_type->parity_devs) { | 
|  | ti->error = "Insufficient number of devices"; | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL); | 
|  | if (!rs) { | 
|  | ti->error = "Cannot allocate raid context"; | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | mddev_init(&rs->md); | 
|  |  | 
|  | rs->ti = ti; | 
|  | rs->raid_type = raid_type; | 
|  | rs->md.raid_disks = raid_devs; | 
|  | rs->md.level = raid_type->level; | 
|  | rs->md.new_level = rs->md.level; | 
|  | rs->md.layout = raid_type->algorithm; | 
|  | rs->md.new_layout = rs->md.layout; | 
|  | rs->md.delta_disks = 0; | 
|  | rs->md.recovery_cp = 0; | 
|  |  | 
|  | for (i = 0; i < raid_devs; i++) | 
|  | md_rdev_init(&rs->dev[i].rdev); | 
|  |  | 
|  | /* | 
|  | * Remaining items to be initialized by further RAID params: | 
|  | *  rs->md.persistent | 
|  | *  rs->md.external | 
|  | *  rs->md.chunk_sectors | 
|  | *  rs->md.new_chunk_sectors | 
|  | *  rs->md.dev_sectors | 
|  | */ | 
|  |  | 
|  | return rs; | 
|  | } | 
|  |  | 
|  | static void context_free(struct raid_set *rs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < rs->md.raid_disks; i++) { | 
|  | if (rs->dev[i].meta_dev) | 
|  | dm_put_device(rs->ti, rs->dev[i].meta_dev); | 
|  | md_rdev_clear(&rs->dev[i].rdev); | 
|  | if (rs->dev[i].data_dev) | 
|  | dm_put_device(rs->ti, rs->dev[i].data_dev); | 
|  | } | 
|  |  | 
|  | kfree(rs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For every device we have two words | 
|  | *  <meta_dev>: meta device name or '-' if missing | 
|  | *  <data_dev>: data device name or '-' if missing | 
|  | * | 
|  | * The following are permitted: | 
|  | *    - - | 
|  | *    - <data_dev> | 
|  | *    <meta_dev> <data_dev> | 
|  | * | 
|  | * The following is not allowed: | 
|  | *    <meta_dev> - | 
|  | * | 
|  | * This code parses those words.  If there is a failure, | 
|  | * the caller must use context_free to unwind the operations. | 
|  | */ | 
|  | static int dev_parms(struct raid_set *rs, char **argv) | 
|  | { | 
|  | int i; | 
|  | int rebuild = 0; | 
|  | int metadata_available = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i = 0; i < rs->md.raid_disks; i++, argv += 2) { | 
|  | rs->dev[i].rdev.raid_disk = i; | 
|  |  | 
|  | rs->dev[i].meta_dev = NULL; | 
|  | rs->dev[i].data_dev = NULL; | 
|  |  | 
|  | /* | 
|  | * There are no offsets, since there is a separate device | 
|  | * for data and metadata. | 
|  | */ | 
|  | rs->dev[i].rdev.data_offset = 0; | 
|  | rs->dev[i].rdev.mddev = &rs->md; | 
|  |  | 
|  | if (strcmp(argv[0], "-")) { | 
|  | ret = dm_get_device(rs->ti, argv[0], | 
|  | dm_table_get_mode(rs->ti->table), | 
|  | &rs->dev[i].meta_dev); | 
|  | rs->ti->error = "RAID metadata device lookup failure"; | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); | 
|  | if (!rs->dev[i].rdev.sb_page) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (!strcmp(argv[1], "-")) { | 
|  | if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && | 
|  | (!rs->dev[i].rdev.recovery_offset)) { | 
|  | rs->ti->error = "Drive designated for rebuild not specified"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rs->ti->error = "No data device supplied with metadata device"; | 
|  | if (rs->dev[i].meta_dev) | 
|  | return -EINVAL; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = dm_get_device(rs->ti, argv[1], | 
|  | dm_table_get_mode(rs->ti->table), | 
|  | &rs->dev[i].data_dev); | 
|  | if (ret) { | 
|  | rs->ti->error = "RAID device lookup failure"; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (rs->dev[i].meta_dev) { | 
|  | metadata_available = 1; | 
|  | rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; | 
|  | } | 
|  | rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; | 
|  | list_add(&rs->dev[i].rdev.same_set, &rs->md.disks); | 
|  | if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) | 
|  | rebuild++; | 
|  | } | 
|  |  | 
|  | if (metadata_available) { | 
|  | rs->md.external = 0; | 
|  | rs->md.persistent = 1; | 
|  | rs->md.major_version = 2; | 
|  | } else if (rebuild && !rs->md.recovery_cp) { | 
|  | /* | 
|  | * Without metadata, we will not be able to tell if the array | 
|  | * is in-sync or not - we must assume it is not.  Therefore, | 
|  | * it is impossible to rebuild a drive. | 
|  | * | 
|  | * Even if there is metadata, the on-disk information may | 
|  | * indicate that the array is not in-sync and it will then | 
|  | * fail at that time. | 
|  | * | 
|  | * User could specify 'nosync' option if desperate. | 
|  | */ | 
|  | DMERR("Unable to rebuild drive while array is not in-sync"); | 
|  | rs->ti->error = "RAID device lookup failure"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * validate_region_size | 
|  | * @rs | 
|  | * @region_size:  region size in sectors.  If 0, pick a size (4MiB default). | 
|  | * | 
|  | * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). | 
|  | * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. | 
|  | * | 
|  | * Returns: 0 on success, -EINVAL on failure. | 
|  | */ | 
|  | static int validate_region_size(struct raid_set *rs, unsigned long region_size) | 
|  | { | 
|  | unsigned long min_region_size = rs->ti->len / (1 << 21); | 
|  |  | 
|  | if (!region_size) { | 
|  | /* | 
|  | * Choose a reasonable default.  All figures in sectors. | 
|  | */ | 
|  | if (min_region_size > (1 << 13)) { | 
|  | /* If not a power of 2, make it the next power of 2 */ | 
|  | if (min_region_size & (min_region_size - 1)) | 
|  | region_size = 1 << fls(region_size); | 
|  | DMINFO("Choosing default region size of %lu sectors", | 
|  | region_size); | 
|  | } else { | 
|  | DMINFO("Choosing default region size of 4MiB"); | 
|  | region_size = 1 << 13; /* sectors */ | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Validate user-supplied value. | 
|  | */ | 
|  | if (region_size > rs->ti->len) { | 
|  | rs->ti->error = "Supplied region size is too large"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (region_size < min_region_size) { | 
|  | DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", | 
|  | region_size, min_region_size); | 
|  | rs->ti->error = "Supplied region size is too small"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!is_power_of_2(region_size)) { | 
|  | rs->ti->error = "Region size is not a power of 2"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (region_size < rs->md.chunk_sectors) { | 
|  | rs->ti->error = "Region size is smaller than the chunk size"; | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert sectors to bytes. | 
|  | */ | 
|  | rs->md.bitmap_info.chunksize = (region_size << 9); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * validate_raid_redundancy | 
|  | * @rs | 
|  | * | 
|  | * Determine if there are enough devices in the array that haven't | 
|  | * failed (or are being rebuilt) to form a usable array. | 
|  | * | 
|  | * Returns: 0 on success, -EINVAL on failure. | 
|  | */ | 
|  | static int validate_raid_redundancy(struct raid_set *rs) | 
|  | { | 
|  | unsigned i, rebuild_cnt = 0; | 
|  | unsigned rebuilds_per_group = 0, copies, d; | 
|  | unsigned group_size, last_group_start; | 
|  |  | 
|  | for (i = 0; i < rs->md.raid_disks; i++) | 
|  | if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || | 
|  | !rs->dev[i].rdev.sb_page) | 
|  | rebuild_cnt++; | 
|  |  | 
|  | switch (rs->raid_type->level) { | 
|  | case 1: | 
|  | if (rebuild_cnt >= rs->md.raid_disks) | 
|  | goto too_many; | 
|  | break; | 
|  | case 4: | 
|  | case 5: | 
|  | case 6: | 
|  | if (rebuild_cnt > rs->raid_type->parity_devs) | 
|  | goto too_many; | 
|  | break; | 
|  | case 10: | 
|  | copies = raid10_md_layout_to_copies(rs->md.layout); | 
|  | if (rebuild_cnt < copies) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * It is possible to have a higher rebuild count for RAID10, | 
|  | * as long as the failed devices occur in different mirror | 
|  | * groups (i.e. different stripes). | 
|  | * | 
|  | * When checking "near" format, make sure no adjacent devices | 
|  | * have failed beyond what can be handled.  In addition to the | 
|  | * simple case where the number of devices is a multiple of the | 
|  | * number of copies, we must also handle cases where the number | 
|  | * of devices is not a multiple of the number of copies. | 
|  | * E.g.    dev1 dev2 dev3 dev4 dev5 | 
|  | *          A    A    B    B    C | 
|  | *          C    D    D    E    E | 
|  | */ | 
|  | if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) { | 
|  | for (i = 0; i < rs->md.raid_disks * copies; i++) { | 
|  | if (!(i % copies)) | 
|  | rebuilds_per_group = 0; | 
|  | d = i % rs->md.raid_disks; | 
|  | if ((!rs->dev[d].rdev.sb_page || | 
|  | !test_bit(In_sync, &rs->dev[d].rdev.flags)) && | 
|  | (++rebuilds_per_group >= copies)) | 
|  | goto too_many; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When checking "far" and "offset" formats, we need to ensure | 
|  | * that the device that holds its copy is not also dead or | 
|  | * being rebuilt.  (Note that "far" and "offset" formats only | 
|  | * support two copies right now.  These formats also only ever | 
|  | * use the 'use_far_sets' variant.) | 
|  | * | 
|  | * This check is somewhat complicated by the need to account | 
|  | * for arrays that are not a multiple of (far) copies.  This | 
|  | * results in the need to treat the last (potentially larger) | 
|  | * set differently. | 
|  | */ | 
|  | group_size = (rs->md.raid_disks / copies); | 
|  | last_group_start = (rs->md.raid_disks / group_size) - 1; | 
|  | last_group_start *= group_size; | 
|  | for (i = 0; i < rs->md.raid_disks; i++) { | 
|  | if (!(i % copies) && !(i > last_group_start)) | 
|  | rebuilds_per_group = 0; | 
|  | if ((!rs->dev[i].rdev.sb_page || | 
|  | !test_bit(In_sync, &rs->dev[i].rdev.flags)) && | 
|  | (++rebuilds_per_group >= copies)) | 
|  | goto too_many; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (rebuild_cnt) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | too_many: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Possible arguments are... | 
|  | *	<chunk_size> [optional_args] | 
|  | * | 
|  | * Argument definitions | 
|  | *    <chunk_size>			The number of sectors per disk that | 
|  | *                                      will form the "stripe" | 
|  | *    [[no]sync]			Force or prevent recovery of the | 
|  | *                                      entire array | 
|  | *    [devices_handle_discard_safely]	Allow discards on RAID4/5/6; useful if RAID | 
|  | *					member device(s) properly support TRIM/UNMAP | 
|  | *    [rebuild <idx>]			Rebuild the drive indicated by the index | 
|  | *    [daemon_sleep <ms>]		Time between bitmap daemon work to | 
|  | *                                      clear bits | 
|  | *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization | 
|  | *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization | 
|  | *    [write_mostly <idx>]		Indicate a write mostly drive via index | 
|  | *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm) | 
|  | *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs | 
|  | *    [region_size <sectors>]           Defines granularity of bitmap | 
|  | * | 
|  | * RAID10-only options: | 
|  | *    [raid10_copies <# copies>]        Number of copies.  (Default: 2) | 
|  | *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near) | 
|  | */ | 
|  | static int parse_raid_params(struct raid_set *rs, char **argv, | 
|  | unsigned num_raid_params) | 
|  | { | 
|  | char *raid10_format = "near"; | 
|  | unsigned raid10_copies = 2; | 
|  | unsigned i; | 
|  | unsigned long value, region_size = 0; | 
|  | sector_t sectors_per_dev = rs->ti->len; | 
|  | sector_t max_io_len; | 
|  | char *key; | 
|  |  | 
|  | /* | 
|  | * First, parse the in-order required arguments | 
|  | * "chunk_size" is the only argument of this type. | 
|  | */ | 
|  | if ((kstrtoul(argv[0], 10, &value) < 0)) { | 
|  | rs->ti->error = "Bad chunk size"; | 
|  | return -EINVAL; | 
|  | } else if (rs->raid_type->level == 1) { | 
|  | if (value) | 
|  | DMERR("Ignoring chunk size parameter for RAID 1"); | 
|  | value = 0; | 
|  | } else if (!is_power_of_2(value)) { | 
|  | rs->ti->error = "Chunk size must be a power of 2"; | 
|  | return -EINVAL; | 
|  | } else if (value < 8) { | 
|  | rs->ti->error = "Chunk size value is too small"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; | 
|  | argv++; | 
|  | num_raid_params--; | 
|  |  | 
|  | /* | 
|  | * We set each individual device as In_sync with a completed | 
|  | * 'recovery_offset'.  If there has been a device failure or | 
|  | * replacement then one of the following cases applies: | 
|  | * | 
|  | *   1) User specifies 'rebuild'. | 
|  | *      - Device is reset when param is read. | 
|  | *   2) A new device is supplied. | 
|  | *      - No matching superblock found, resets device. | 
|  | *   3) Device failure was transient and returns on reload. | 
|  | *      - Failure noticed, resets device for bitmap replay. | 
|  | *   4) Device hadn't completed recovery after previous failure. | 
|  | *      - Superblock is read and overrides recovery_offset. | 
|  | * | 
|  | * What is found in the superblocks of the devices is always | 
|  | * authoritative, unless 'rebuild' or '[no]sync' was specified. | 
|  | */ | 
|  | for (i = 0; i < rs->md.raid_disks; i++) { | 
|  | set_bit(In_sync, &rs->dev[i].rdev.flags); | 
|  | rs->dev[i].rdev.recovery_offset = MaxSector; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Second, parse the unordered optional arguments | 
|  | */ | 
|  | for (i = 0; i < num_raid_params; i++) { | 
|  | if (!strcasecmp(argv[i], "nosync")) { | 
|  | rs->md.recovery_cp = MaxSector; | 
|  | rs->print_flags |= DMPF_NOSYNC; | 
|  | continue; | 
|  | } | 
|  | if (!strcasecmp(argv[i], "sync")) { | 
|  | rs->md.recovery_cp = 0; | 
|  | rs->print_flags |= DMPF_SYNC; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* The rest of the optional arguments come in key/value pairs */ | 
|  | if ((i + 1) >= num_raid_params) { | 
|  | rs->ti->error = "Wrong number of raid parameters given"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | key = argv[i++]; | 
|  |  | 
|  | /* Parameters that take a string value are checked here. */ | 
|  | if (!strcasecmp(key, "raid10_format")) { | 
|  | if (rs->raid_type->level != 10) { | 
|  | rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; | 
|  | return -EINVAL; | 
|  | } | 
|  | if (strcmp("near", argv[i]) && | 
|  | strcmp("far", argv[i]) && | 
|  | strcmp("offset", argv[i])) { | 
|  | rs->ti->error = "Invalid 'raid10_format' value given"; | 
|  | return -EINVAL; | 
|  | } | 
|  | raid10_format = argv[i]; | 
|  | rs->print_flags |= DMPF_RAID10_FORMAT; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (kstrtoul(argv[i], 10, &value) < 0) { | 
|  | rs->ti->error = "Bad numerical argument given in raid params"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Parameters that take a numeric value are checked here */ | 
|  | if (!strcasecmp(key, "rebuild")) { | 
|  | if (value >= rs->md.raid_disks) { | 
|  | rs->ti->error = "Invalid rebuild index given"; | 
|  | return -EINVAL; | 
|  | } | 
|  | clear_bit(In_sync, &rs->dev[value].rdev.flags); | 
|  | rs->dev[value].rdev.recovery_offset = 0; | 
|  | rs->print_flags |= DMPF_REBUILD; | 
|  | } else if (!strcasecmp(key, "write_mostly")) { | 
|  | if (rs->raid_type->level != 1) { | 
|  | rs->ti->error = "write_mostly option is only valid for RAID1"; | 
|  | return -EINVAL; | 
|  | } | 
|  | if (value >= rs->md.raid_disks) { | 
|  | rs->ti->error = "Invalid write_mostly drive index given"; | 
|  | return -EINVAL; | 
|  | } | 
|  | set_bit(WriteMostly, &rs->dev[value].rdev.flags); | 
|  | } else if (!strcasecmp(key, "max_write_behind")) { | 
|  | if (rs->raid_type->level != 1) { | 
|  | rs->ti->error = "max_write_behind option is only valid for RAID1"; | 
|  | return -EINVAL; | 
|  | } | 
|  | rs->print_flags |= DMPF_MAX_WRITE_BEHIND; | 
|  |  | 
|  | /* | 
|  | * In device-mapper, we specify things in sectors, but | 
|  | * MD records this value in kB | 
|  | */ | 
|  | value /= 2; | 
|  | if (value > COUNTER_MAX) { | 
|  | rs->ti->error = "Max write-behind limit out of range"; | 
|  | return -EINVAL; | 
|  | } | 
|  | rs->md.bitmap_info.max_write_behind = value; | 
|  | } else if (!strcasecmp(key, "daemon_sleep")) { | 
|  | rs->print_flags |= DMPF_DAEMON_SLEEP; | 
|  | if (!value || (value > MAX_SCHEDULE_TIMEOUT)) { | 
|  | rs->ti->error = "daemon sleep period out of range"; | 
|  | return -EINVAL; | 
|  | } | 
|  | rs->md.bitmap_info.daemon_sleep = value; | 
|  | } else if (!strcasecmp(key, "stripe_cache")) { | 
|  | rs->print_flags |= DMPF_STRIPE_CACHE; | 
|  |  | 
|  | /* | 
|  | * In device-mapper, we specify things in sectors, but | 
|  | * MD records this value in kB | 
|  | */ | 
|  | value /= 2; | 
|  |  | 
|  | if ((rs->raid_type->level != 5) && | 
|  | (rs->raid_type->level != 6)) { | 
|  | rs->ti->error = "Inappropriate argument: stripe_cache"; | 
|  | return -EINVAL; | 
|  | } | 
|  | if (raid5_set_cache_size(&rs->md, (int)value)) { | 
|  | rs->ti->error = "Bad stripe_cache size"; | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (!strcasecmp(key, "min_recovery_rate")) { | 
|  | rs->print_flags |= DMPF_MIN_RECOVERY_RATE; | 
|  | if (value > INT_MAX) { | 
|  | rs->ti->error = "min_recovery_rate out of range"; | 
|  | return -EINVAL; | 
|  | } | 
|  | rs->md.sync_speed_min = (int)value; | 
|  | } else if (!strcasecmp(key, "max_recovery_rate")) { | 
|  | rs->print_flags |= DMPF_MAX_RECOVERY_RATE; | 
|  | if (value > INT_MAX) { | 
|  | rs->ti->error = "max_recovery_rate out of range"; | 
|  | return -EINVAL; | 
|  | } | 
|  | rs->md.sync_speed_max = (int)value; | 
|  | } else if (!strcasecmp(key, "region_size")) { | 
|  | rs->print_flags |= DMPF_REGION_SIZE; | 
|  | region_size = value; | 
|  | } else if (!strcasecmp(key, "raid10_copies") && | 
|  | (rs->raid_type->level == 10)) { | 
|  | if ((value < 2) || (value > 0xFF)) { | 
|  | rs->ti->error = "Bad value for 'raid10_copies'"; | 
|  | return -EINVAL; | 
|  | } | 
|  | rs->print_flags |= DMPF_RAID10_COPIES; | 
|  | raid10_copies = value; | 
|  | } else { | 
|  | DMERR("Unable to parse RAID parameter: %s", key); | 
|  | rs->ti->error = "Unable to parse RAID parameters"; | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (validate_region_size(rs, region_size)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (rs->md.chunk_sectors) | 
|  | max_io_len = rs->md.chunk_sectors; | 
|  | else | 
|  | max_io_len = region_size; | 
|  |  | 
|  | if (dm_set_target_max_io_len(rs->ti, max_io_len)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (rs->raid_type->level == 10) { | 
|  | if (raid10_copies > rs->md.raid_disks) { | 
|  | rs->ti->error = "Not enough devices to satisfy specification"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the format is not "near", we only support | 
|  | * two copies at the moment. | 
|  | */ | 
|  | if (strcmp("near", raid10_format) && (raid10_copies > 2)) { | 
|  | rs->ti->error = "Too many copies for given RAID10 format."; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* (Len * #mirrors) / #devices */ | 
|  | sectors_per_dev = rs->ti->len * raid10_copies; | 
|  | sector_div(sectors_per_dev, rs->md.raid_disks); | 
|  |  | 
|  | rs->md.layout = raid10_format_to_md_layout(raid10_format, | 
|  | raid10_copies); | 
|  | rs->md.new_layout = rs->md.layout; | 
|  | } else if ((rs->raid_type->level > 1) && | 
|  | sector_div(sectors_per_dev, | 
|  | (rs->md.raid_disks - rs->raid_type->parity_devs))) { | 
|  | rs->ti->error = "Target length not divisible by number of data devices"; | 
|  | return -EINVAL; | 
|  | } | 
|  | rs->md.dev_sectors = sectors_per_dev; | 
|  |  | 
|  | /* Assume there are no metadata devices until the drives are parsed */ | 
|  | rs->md.persistent = 0; | 
|  | rs->md.external = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void do_table_event(struct work_struct *ws) | 
|  | { | 
|  | struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); | 
|  |  | 
|  | dm_table_event(rs->ti->table); | 
|  | } | 
|  |  | 
|  | static int raid_is_congested(struct dm_target_callbacks *cb, int bits) | 
|  | { | 
|  | struct raid_set *rs = container_of(cb, struct raid_set, callbacks); | 
|  |  | 
|  | if (rs->raid_type->level == 1) | 
|  | return md_raid1_congested(&rs->md, bits); | 
|  |  | 
|  | if (rs->raid_type->level == 10) | 
|  | return md_raid10_congested(&rs->md, bits); | 
|  |  | 
|  | return md_raid5_congested(&rs->md, bits); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This structure is never routinely used by userspace, unlike md superblocks. | 
|  | * Devices with this superblock should only ever be accessed via device-mapper. | 
|  | */ | 
|  | #define DM_RAID_MAGIC 0x64526D44 | 
|  | struct dm_raid_superblock { | 
|  | __le32 magic;		/* "DmRd" */ | 
|  | __le32 features;	/* Used to indicate possible future changes */ | 
|  |  | 
|  | __le32 num_devices;	/* Number of devices in this array. (Max 64) */ | 
|  | __le32 array_position;	/* The position of this drive in the array */ | 
|  |  | 
|  | __le64 events;		/* Incremented by md when superblock updated */ | 
|  | __le64 failed_devices;	/* Bit field of devices to indicate failures */ | 
|  |  | 
|  | /* | 
|  | * This offset tracks the progress of the repair or replacement of | 
|  | * an individual drive. | 
|  | */ | 
|  | __le64 disk_recovery_offset; | 
|  |  | 
|  | /* | 
|  | * This offset tracks the progress of the initial array | 
|  | * synchronisation/parity calculation. | 
|  | */ | 
|  | __le64 array_resync_offset; | 
|  |  | 
|  | /* | 
|  | * RAID characteristics | 
|  | */ | 
|  | __le32 level; | 
|  | __le32 layout; | 
|  | __le32 stripe_sectors; | 
|  |  | 
|  | /* Remainder of a logical block is zero-filled when writing (see super_sync()). */ | 
|  | } __packed; | 
|  |  | 
|  | static int read_disk_sb(struct md_rdev *rdev, int size) | 
|  | { | 
|  | BUG_ON(!rdev->sb_page); | 
|  |  | 
|  | if (rdev->sb_loaded) | 
|  | return 0; | 
|  |  | 
|  | if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) { | 
|  | DMERR("Failed to read superblock of device at position %d", | 
|  | rdev->raid_disk); | 
|  | md_error(rdev->mddev, rdev); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rdev->sb_loaded = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void super_sync(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | int i; | 
|  | uint64_t failed_devices; | 
|  | struct dm_raid_superblock *sb; | 
|  | struct raid_set *rs = container_of(mddev, struct raid_set, md); | 
|  |  | 
|  | sb = page_address(rdev->sb_page); | 
|  | failed_devices = le64_to_cpu(sb->failed_devices); | 
|  |  | 
|  | for (i = 0; i < mddev->raid_disks; i++) | 
|  | if (!rs->dev[i].data_dev || | 
|  | test_bit(Faulty, &(rs->dev[i].rdev.flags))) | 
|  | failed_devices |= (1ULL << i); | 
|  |  | 
|  | memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); | 
|  |  | 
|  | sb->magic = cpu_to_le32(DM_RAID_MAGIC); | 
|  | sb->features = cpu_to_le32(0);	/* No features yet */ | 
|  |  | 
|  | sb->num_devices = cpu_to_le32(mddev->raid_disks); | 
|  | sb->array_position = cpu_to_le32(rdev->raid_disk); | 
|  |  | 
|  | sb->events = cpu_to_le64(mddev->events); | 
|  | sb->failed_devices = cpu_to_le64(failed_devices); | 
|  |  | 
|  | sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); | 
|  | sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); | 
|  |  | 
|  | sb->level = cpu_to_le32(mddev->level); | 
|  | sb->layout = cpu_to_le32(mddev->layout); | 
|  | sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * super_load | 
|  | * | 
|  | * This function creates a superblock if one is not found on the device | 
|  | * and will decide which superblock to use if there's a choice. | 
|  | * | 
|  | * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise | 
|  | */ | 
|  | static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) | 
|  | { | 
|  | int ret; | 
|  | struct dm_raid_superblock *sb; | 
|  | struct dm_raid_superblock *refsb; | 
|  | uint64_t events_sb, events_refsb; | 
|  |  | 
|  | rdev->sb_start = 0; | 
|  | rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); | 
|  | if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) { | 
|  | DMERR("superblock size of a logical block is no longer valid"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = read_disk_sb(rdev, rdev->sb_size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | sb = page_address(rdev->sb_page); | 
|  |  | 
|  | /* | 
|  | * Two cases that we want to write new superblocks and rebuild: | 
|  | * 1) New device (no matching magic number) | 
|  | * 2) Device specified for rebuild (!In_sync w/ offset == 0) | 
|  | */ | 
|  | if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || | 
|  | (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { | 
|  | super_sync(rdev->mddev, rdev); | 
|  |  | 
|  | set_bit(FirstUse, &rdev->flags); | 
|  |  | 
|  | /* Force writing of superblocks to disk */ | 
|  | set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags); | 
|  |  | 
|  | /* Any superblock is better than none, choose that if given */ | 
|  | return refdev ? 0 : 1; | 
|  | } | 
|  |  | 
|  | if (!refdev) | 
|  | return 1; | 
|  |  | 
|  | events_sb = le64_to_cpu(sb->events); | 
|  |  | 
|  | refsb = page_address(refdev->sb_page); | 
|  | events_refsb = le64_to_cpu(refsb->events); | 
|  |  | 
|  | return (events_sb > events_refsb) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | int role; | 
|  | struct raid_set *rs = container_of(mddev, struct raid_set, md); | 
|  | uint64_t events_sb; | 
|  | uint64_t failed_devices; | 
|  | struct dm_raid_superblock *sb; | 
|  | uint32_t new_devs = 0; | 
|  | uint32_t rebuilds = 0; | 
|  | struct md_rdev *r; | 
|  | struct dm_raid_superblock *sb2; | 
|  |  | 
|  | sb = page_address(rdev->sb_page); | 
|  | events_sb = le64_to_cpu(sb->events); | 
|  | failed_devices = le64_to_cpu(sb->failed_devices); | 
|  |  | 
|  | /* | 
|  | * Initialise to 1 if this is a new superblock. | 
|  | */ | 
|  | mddev->events = events_sb ? : 1; | 
|  |  | 
|  | /* | 
|  | * Reshaping is not currently allowed | 
|  | */ | 
|  | if (le32_to_cpu(sb->level) != mddev->level) { | 
|  | DMERR("Reshaping arrays not yet supported. (RAID level change)"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (le32_to_cpu(sb->layout) != mddev->layout) { | 
|  | DMERR("Reshaping arrays not yet supported. (RAID layout change)"); | 
|  | DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout); | 
|  | DMERR("  Old layout: %s w/ %d copies", | 
|  | raid10_md_layout_to_format(le32_to_cpu(sb->layout)), | 
|  | raid10_md_layout_to_copies(le32_to_cpu(sb->layout))); | 
|  | DMERR("  New layout: %s w/ %d copies", | 
|  | raid10_md_layout_to_format(mddev->layout), | 
|  | raid10_md_layout_to_copies(mddev->layout)); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) { | 
|  | DMERR("Reshaping arrays not yet supported. (stripe sectors change)"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* We can only change the number of devices in RAID1 right now */ | 
|  | if ((rs->raid_type->level != 1) && | 
|  | (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) { | 
|  | DMERR("Reshaping arrays not yet supported. (device count change)"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))) | 
|  | mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); | 
|  |  | 
|  | /* | 
|  | * During load, we set FirstUse if a new superblock was written. | 
|  | * There are two reasons we might not have a superblock: | 
|  | * 1) The array is brand new - in which case, all of the | 
|  | *    devices must have their In_sync bit set.  Also, | 
|  | *    recovery_cp must be 0, unless forced. | 
|  | * 2) This is a new device being added to an old array | 
|  | *    and the new device needs to be rebuilt - in which | 
|  | *    case the In_sync bit will /not/ be set and | 
|  | *    recovery_cp must be MaxSector. | 
|  | */ | 
|  | rdev_for_each(r, mddev) { | 
|  | if (!test_bit(In_sync, &r->flags)) { | 
|  | DMINFO("Device %d specified for rebuild: " | 
|  | "Clearing superblock", r->raid_disk); | 
|  | rebuilds++; | 
|  | } else if (test_bit(FirstUse, &r->flags)) | 
|  | new_devs++; | 
|  | } | 
|  |  | 
|  | if (!rebuilds) { | 
|  | if (new_devs == mddev->raid_disks) { | 
|  | DMINFO("Superblocks created for new array"); | 
|  | set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); | 
|  | } else if (new_devs) { | 
|  | DMERR("New device injected " | 
|  | "into existing array without 'rebuild' " | 
|  | "parameter specified"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (new_devs) { | 
|  | DMERR("'rebuild' devices cannot be " | 
|  | "injected into an array with other first-time devices"); | 
|  | return -EINVAL; | 
|  | } else if (mddev->recovery_cp != MaxSector) { | 
|  | DMERR("'rebuild' specified while array is not in-sync"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we set the Faulty bit for those devices that are | 
|  | * recorded in the superblock as failed. | 
|  | */ | 
|  | rdev_for_each(r, mddev) { | 
|  | if (!r->sb_page) | 
|  | continue; | 
|  | sb2 = page_address(r->sb_page); | 
|  | sb2->failed_devices = 0; | 
|  |  | 
|  | /* | 
|  | * Check for any device re-ordering. | 
|  | */ | 
|  | if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { | 
|  | role = le32_to_cpu(sb2->array_position); | 
|  | if (role != r->raid_disk) { | 
|  | if (rs->raid_type->level != 1) { | 
|  | rs->ti->error = "Cannot change device " | 
|  | "positions in RAID array"; | 
|  | return -EINVAL; | 
|  | } | 
|  | DMINFO("RAID1 device #%d now at position #%d", | 
|  | role, r->raid_disk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Partial recovery is performed on | 
|  | * returning failed devices. | 
|  | */ | 
|  | if (failed_devices & (1 << role)) | 
|  | set_bit(Faulty, &r->flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int super_validate(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct dm_raid_superblock *sb = page_address(rdev->sb_page); | 
|  |  | 
|  | /* | 
|  | * If mddev->events is not set, we know we have not yet initialized | 
|  | * the array. | 
|  | */ | 
|  | if (!mddev->events && super_init_validation(mddev, rdev)) | 
|  | return -EINVAL; | 
|  |  | 
|  | mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */ | 
|  | rdev->mddev->bitmap_info.default_offset = 4096 >> 9; | 
|  | if (!test_bit(FirstUse, &rdev->flags)) { | 
|  | rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); | 
|  | if (rdev->recovery_offset != MaxSector) | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a device comes back, set it as not In_sync and no longer faulty. | 
|  | */ | 
|  | if (test_bit(Faulty, &rdev->flags)) { | 
|  | clear_bit(Faulty, &rdev->flags); | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | rdev->saved_raid_disk = rdev->raid_disk; | 
|  | rdev->recovery_offset = 0; | 
|  | } | 
|  |  | 
|  | clear_bit(FirstUse, &rdev->flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Analyse superblocks and select the freshest. | 
|  | */ | 
|  | static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) | 
|  | { | 
|  | int ret; | 
|  | struct raid_dev *dev; | 
|  | struct md_rdev *rdev, *tmp, *freshest; | 
|  | struct mddev *mddev = &rs->md; | 
|  |  | 
|  | freshest = NULL; | 
|  | rdev_for_each_safe(rdev, tmp, mddev) { | 
|  | /* | 
|  | * Skipping super_load due to DMPF_SYNC will cause | 
|  | * the array to undergo initialization again as | 
|  | * though it were new.  This is the intended effect | 
|  | * of the "sync" directive. | 
|  | * | 
|  | * When reshaping capability is added, we must ensure | 
|  | * that the "sync" directive is disallowed during the | 
|  | * reshape. | 
|  | */ | 
|  | if (rs->print_flags & DMPF_SYNC) | 
|  | continue; | 
|  |  | 
|  | if (!rdev->meta_bdev) | 
|  | continue; | 
|  |  | 
|  | ret = super_load(rdev, freshest); | 
|  |  | 
|  | switch (ret) { | 
|  | case 1: | 
|  | freshest = rdev; | 
|  | break; | 
|  | case 0: | 
|  | break; | 
|  | default: | 
|  | dev = container_of(rdev, struct raid_dev, rdev); | 
|  | if (dev->meta_dev) | 
|  | dm_put_device(ti, dev->meta_dev); | 
|  |  | 
|  | dev->meta_dev = NULL; | 
|  | rdev->meta_bdev = NULL; | 
|  |  | 
|  | if (rdev->sb_page) | 
|  | put_page(rdev->sb_page); | 
|  |  | 
|  | rdev->sb_page = NULL; | 
|  |  | 
|  | rdev->sb_loaded = 0; | 
|  |  | 
|  | /* | 
|  | * We might be able to salvage the data device | 
|  | * even though the meta device has failed.  For | 
|  | * now, we behave as though '- -' had been | 
|  | * set for this device in the table. | 
|  | */ | 
|  | if (dev->data_dev) | 
|  | dm_put_device(ti, dev->data_dev); | 
|  |  | 
|  | dev->data_dev = NULL; | 
|  | rdev->bdev = NULL; | 
|  |  | 
|  | list_del(&rdev->same_set); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!freshest) | 
|  | return 0; | 
|  |  | 
|  | if (validate_raid_redundancy(rs)) { | 
|  | rs->ti->error = "Insufficient redundancy to activate array"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validation of the freshest device provides the source of | 
|  | * validation for the remaining devices. | 
|  | */ | 
|  | ti->error = "Unable to assemble array: Invalid superblocks"; | 
|  | if (super_validate(mddev, freshest)) | 
|  | return -EINVAL; | 
|  |  | 
|  | rdev_for_each(rdev, mddev) | 
|  | if ((rdev != freshest) && super_validate(mddev, rdev)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable/disable discard support on RAID set depending on | 
|  | * RAID level and discard properties of underlying RAID members. | 
|  | */ | 
|  | static void configure_discard_support(struct dm_target *ti, struct raid_set *rs) | 
|  | { | 
|  | int i; | 
|  | bool raid456; | 
|  |  | 
|  | /* Assume discards not supported until after checks below. */ | 
|  | ti->discards_supported = false; | 
|  |  | 
|  | /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */ | 
|  | raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6); | 
|  |  | 
|  | for (i = 0; i < rs->md.raid_disks; i++) { | 
|  | struct request_queue *q; | 
|  |  | 
|  | if (!rs->dev[i].rdev.bdev) | 
|  | continue; | 
|  |  | 
|  | q = bdev_get_queue(rs->dev[i].rdev.bdev); | 
|  | if (!q || !blk_queue_discard(q)) | 
|  | return; | 
|  |  | 
|  | if (raid456) { | 
|  | if (!q->limits.discard_zeroes_data) | 
|  | return; | 
|  | if (!devices_handle_discard_safely) { | 
|  | DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); | 
|  | DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* All RAID members properly support discards */ | 
|  | ti->discards_supported = true; | 
|  |  | 
|  | /* | 
|  | * RAID1 and RAID10 personalities require bio splitting, | 
|  | * RAID0/4/5/6 don't and process large discard bios properly. | 
|  | */ | 
|  | ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10); | 
|  | ti->num_discard_bios = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Construct a RAID4/5/6 mapping: | 
|  | * Args: | 
|  | *	<raid_type> <#raid_params> <raid_params>		\ | 
|  | *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> } | 
|  | * | 
|  | * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for | 
|  | * details on possible <raid_params>. | 
|  | */ | 
|  | static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) | 
|  | { | 
|  | int ret; | 
|  | struct raid_type *rt; | 
|  | unsigned long num_raid_params, num_raid_devs; | 
|  | struct raid_set *rs = NULL; | 
|  |  | 
|  | /* Must have at least <raid_type> <#raid_params> */ | 
|  | if (argc < 2) { | 
|  | ti->error = "Too few arguments"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* raid type */ | 
|  | rt = get_raid_type(argv[0]); | 
|  | if (!rt) { | 
|  | ti->error = "Unrecognised raid_type"; | 
|  | return -EINVAL; | 
|  | } | 
|  | argc--; | 
|  | argv++; | 
|  |  | 
|  | /* number of RAID parameters */ | 
|  | if (kstrtoul(argv[0], 10, &num_raid_params) < 0) { | 
|  | ti->error = "Cannot understand number of RAID parameters"; | 
|  | return -EINVAL; | 
|  | } | 
|  | argc--; | 
|  | argv++; | 
|  |  | 
|  | /* Skip over RAID params for now and find out # of devices */ | 
|  | if (num_raid_params + 1 > argc) { | 
|  | ti->error = "Arguments do not agree with counts given"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if ((kstrtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) || | 
|  | (num_raid_devs >= INT_MAX)) { | 
|  | ti->error = "Cannot understand number of raid devices"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rs = context_alloc(ti, rt, (unsigned)num_raid_devs); | 
|  | if (IS_ERR(rs)) | 
|  | return PTR_ERR(rs); | 
|  |  | 
|  | ret = parse_raid_params(rs, argv, (unsigned)num_raid_params); | 
|  | if (ret) | 
|  | goto bad; | 
|  |  | 
|  | ret = -EINVAL; | 
|  |  | 
|  | argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */ | 
|  | argv += num_raid_params + 1; | 
|  |  | 
|  | if (argc != (num_raid_devs * 2)) { | 
|  | ti->error = "Supplied RAID devices does not match the count given"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | ret = dev_parms(rs, argv); | 
|  | if (ret) | 
|  | goto bad; | 
|  |  | 
|  | rs->md.sync_super = super_sync; | 
|  | ret = analyse_superblocks(ti, rs); | 
|  | if (ret) | 
|  | goto bad; | 
|  |  | 
|  | INIT_WORK(&rs->md.event_work, do_table_event); | 
|  | ti->private = rs; | 
|  | ti->num_flush_bios = 1; | 
|  |  | 
|  | /* | 
|  | * Disable/enable discard support on RAID set. | 
|  | */ | 
|  | configure_discard_support(ti, rs); | 
|  |  | 
|  | mutex_lock(&rs->md.reconfig_mutex); | 
|  | ret = md_run(&rs->md); | 
|  | rs->md.in_sync = 0; /* Assume already marked dirty */ | 
|  | mutex_unlock(&rs->md.reconfig_mutex); | 
|  |  | 
|  | if (ret) { | 
|  | ti->error = "Fail to run raid array"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (ti->len != rs->md.array_sectors) { | 
|  | ti->error = "Array size does not match requested target length"; | 
|  | ret = -EINVAL; | 
|  | goto size_mismatch; | 
|  | } | 
|  | rs->callbacks.congested_fn = raid_is_congested; | 
|  | dm_table_add_target_callbacks(ti->table, &rs->callbacks); | 
|  |  | 
|  | mddev_suspend(&rs->md); | 
|  | return 0; | 
|  |  | 
|  | size_mismatch: | 
|  | md_stop(&rs->md); | 
|  | bad: | 
|  | context_free(rs); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void raid_dtr(struct dm_target *ti) | 
|  | { | 
|  | struct raid_set *rs = ti->private; | 
|  |  | 
|  | list_del_init(&rs->callbacks.list); | 
|  | md_stop(&rs->md); | 
|  | context_free(rs); | 
|  | } | 
|  |  | 
|  | static int raid_map(struct dm_target *ti, struct bio *bio) | 
|  | { | 
|  | struct raid_set *rs = ti->private; | 
|  | struct mddev *mddev = &rs->md; | 
|  |  | 
|  | mddev->pers->make_request(mddev, bio); | 
|  |  | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | static const char *decipher_sync_action(struct mddev *mddev) | 
|  | { | 
|  | if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) | 
|  | return "frozen"; | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || | 
|  | (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { | 
|  | if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) | 
|  | return "reshape"; | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
|  | if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) | 
|  | return "resync"; | 
|  | else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) | 
|  | return "check"; | 
|  | return "repair"; | 
|  | } | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) | 
|  | return "recover"; | 
|  | } | 
|  |  | 
|  | return "idle"; | 
|  | } | 
|  |  | 
|  | static void raid_status(struct dm_target *ti, status_type_t type, | 
|  | unsigned status_flags, char *result, unsigned maxlen) | 
|  | { | 
|  | struct raid_set *rs = ti->private; | 
|  | unsigned raid_param_cnt = 1; /* at least 1 for chunksize */ | 
|  | unsigned sz = 0; | 
|  | int i, array_in_sync = 0; | 
|  | sector_t sync; | 
|  |  | 
|  | switch (type) { | 
|  | case STATUSTYPE_INFO: | 
|  | DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks); | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery)) | 
|  | sync = rs->md.curr_resync_completed; | 
|  | else | 
|  | sync = rs->md.recovery_cp; | 
|  |  | 
|  | if (sync >= rs->md.resync_max_sectors) { | 
|  | /* | 
|  | * Sync complete. | 
|  | */ | 
|  | array_in_sync = 1; | 
|  | sync = rs->md.resync_max_sectors; | 
|  | } else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) { | 
|  | /* | 
|  | * If "check" or "repair" is occurring, the array has | 
|  | * undergone and initial sync and the health characters | 
|  | * should not be 'a' anymore. | 
|  | */ | 
|  | array_in_sync = 1; | 
|  | } else { | 
|  | /* | 
|  | * The array may be doing an initial sync, or it may | 
|  | * be rebuilding individual components.  If all the | 
|  | * devices are In_sync, then it is the array that is | 
|  | * being initialized. | 
|  | */ | 
|  | for (i = 0; i < rs->md.raid_disks; i++) | 
|  | if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) | 
|  | array_in_sync = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Status characters: | 
|  | *  'D' = Dead/Failed device | 
|  | *  'a' = Alive but not in-sync | 
|  | *  'A' = Alive and in-sync | 
|  | */ | 
|  | for (i = 0; i < rs->md.raid_disks; i++) { | 
|  | if (test_bit(Faulty, &rs->dev[i].rdev.flags)) | 
|  | DMEMIT("D"); | 
|  | else if (!array_in_sync || | 
|  | !test_bit(In_sync, &rs->dev[i].rdev.flags)) | 
|  | DMEMIT("a"); | 
|  | else | 
|  | DMEMIT("A"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In-sync ratio: | 
|  | *  The in-sync ratio shows the progress of: | 
|  | *   - Initializing the array | 
|  | *   - Rebuilding a subset of devices of the array | 
|  | *  The user can distinguish between the two by referring | 
|  | *  to the status characters. | 
|  | */ | 
|  | DMEMIT(" %llu/%llu", | 
|  | (unsigned long long) sync, | 
|  | (unsigned long long) rs->md.resync_max_sectors); | 
|  |  | 
|  | /* | 
|  | * Sync action: | 
|  | *   See Documentation/device-mapper/dm-raid.c for | 
|  | *   information on each of these states. | 
|  | */ | 
|  | DMEMIT(" %s", decipher_sync_action(&rs->md)); | 
|  |  | 
|  | /* | 
|  | * resync_mismatches/mismatch_cnt | 
|  | *   This field shows the number of discrepancies found when | 
|  | *   performing a "check" of the array. | 
|  | */ | 
|  | DMEMIT(" %llu", | 
|  | (strcmp(rs->md.last_sync_action, "check")) ? 0 : | 
|  | (unsigned long long) | 
|  | atomic64_read(&rs->md.resync_mismatches)); | 
|  | break; | 
|  | case STATUSTYPE_TABLE: | 
|  | /* The string you would use to construct this array */ | 
|  | for (i = 0; i < rs->md.raid_disks; i++) { | 
|  | if ((rs->print_flags & DMPF_REBUILD) && | 
|  | rs->dev[i].data_dev && | 
|  | !test_bit(In_sync, &rs->dev[i].rdev.flags)) | 
|  | raid_param_cnt += 2; /* for rebuilds */ | 
|  | if (rs->dev[i].data_dev && | 
|  | test_bit(WriteMostly, &rs->dev[i].rdev.flags)) | 
|  | raid_param_cnt += 2; | 
|  | } | 
|  |  | 
|  | raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2); | 
|  | if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)) | 
|  | raid_param_cnt--; | 
|  |  | 
|  | DMEMIT("%s %u %u", rs->raid_type->name, | 
|  | raid_param_cnt, rs->md.chunk_sectors); | 
|  |  | 
|  | if ((rs->print_flags & DMPF_SYNC) && | 
|  | (rs->md.recovery_cp == MaxSector)) | 
|  | DMEMIT(" sync"); | 
|  | if (rs->print_flags & DMPF_NOSYNC) | 
|  | DMEMIT(" nosync"); | 
|  |  | 
|  | for (i = 0; i < rs->md.raid_disks; i++) | 
|  | if ((rs->print_flags & DMPF_REBUILD) && | 
|  | rs->dev[i].data_dev && | 
|  | !test_bit(In_sync, &rs->dev[i].rdev.flags)) | 
|  | DMEMIT(" rebuild %u", i); | 
|  |  | 
|  | if (rs->print_flags & DMPF_DAEMON_SLEEP) | 
|  | DMEMIT(" daemon_sleep %lu", | 
|  | rs->md.bitmap_info.daemon_sleep); | 
|  |  | 
|  | if (rs->print_flags & DMPF_MIN_RECOVERY_RATE) | 
|  | DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min); | 
|  |  | 
|  | if (rs->print_flags & DMPF_MAX_RECOVERY_RATE) | 
|  | DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max); | 
|  |  | 
|  | for (i = 0; i < rs->md.raid_disks; i++) | 
|  | if (rs->dev[i].data_dev && | 
|  | test_bit(WriteMostly, &rs->dev[i].rdev.flags)) | 
|  | DMEMIT(" write_mostly %u", i); | 
|  |  | 
|  | if (rs->print_flags & DMPF_MAX_WRITE_BEHIND) | 
|  | DMEMIT(" max_write_behind %lu", | 
|  | rs->md.bitmap_info.max_write_behind); | 
|  |  | 
|  | if (rs->print_flags & DMPF_STRIPE_CACHE) { | 
|  | struct r5conf *conf = rs->md.private; | 
|  |  | 
|  | /* convert from kiB to sectors */ | 
|  | DMEMIT(" stripe_cache %d", | 
|  | conf ? conf->max_nr_stripes * 2 : 0); | 
|  | } | 
|  |  | 
|  | if (rs->print_flags & DMPF_REGION_SIZE) | 
|  | DMEMIT(" region_size %lu", | 
|  | rs->md.bitmap_info.chunksize >> 9); | 
|  |  | 
|  | if (rs->print_flags & DMPF_RAID10_COPIES) | 
|  | DMEMIT(" raid10_copies %u", | 
|  | raid10_md_layout_to_copies(rs->md.layout)); | 
|  |  | 
|  | if (rs->print_flags & DMPF_RAID10_FORMAT) | 
|  | DMEMIT(" raid10_format %s", | 
|  | raid10_md_layout_to_format(rs->md.layout)); | 
|  |  | 
|  | DMEMIT(" %d", rs->md.raid_disks); | 
|  | for (i = 0; i < rs->md.raid_disks; i++) { | 
|  | if (rs->dev[i].meta_dev) | 
|  | DMEMIT(" %s", rs->dev[i].meta_dev->name); | 
|  | else | 
|  | DMEMIT(" -"); | 
|  |  | 
|  | if (rs->dev[i].data_dev) | 
|  | DMEMIT(" %s", rs->dev[i].data_dev->name); | 
|  | else | 
|  | DMEMIT(" -"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int raid_message(struct dm_target *ti, unsigned argc, char **argv) | 
|  | { | 
|  | struct raid_set *rs = ti->private; | 
|  | struct mddev *mddev = &rs->md; | 
|  |  | 
|  | if (!strcasecmp(argv[0], "reshape")) { | 
|  | DMERR("Reshape not supported."); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!mddev->pers || !mddev->pers->sync_request) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!strcasecmp(argv[0], "frozen")) | 
|  | set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); | 
|  | else | 
|  | clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); | 
|  |  | 
|  | if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { | 
|  | if (mddev->sync_thread) { | 
|  | set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
|  | md_reap_sync_thread(mddev); | 
|  | } | 
|  | } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || | 
|  | test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) | 
|  | return -EBUSY; | 
|  | else if (!strcasecmp(argv[0], "resync")) | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | else if (!strcasecmp(argv[0], "recover")) { | 
|  | set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | } else { | 
|  | if (!strcasecmp(argv[0], "check")) | 
|  | set_bit(MD_RECOVERY_CHECK, &mddev->recovery); | 
|  | else if (!!strcasecmp(argv[0], "repair")) | 
|  | return -EINVAL; | 
|  | set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_SYNC, &mddev->recovery); | 
|  | } | 
|  | if (mddev->ro == 2) { | 
|  | /* A write to sync_action is enough to justify | 
|  | * canceling read-auto mode | 
|  | */ | 
|  | mddev->ro = 0; | 
|  | if (!mddev->suspended) | 
|  | md_wakeup_thread(mddev->sync_thread); | 
|  | } | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | if (!mddev->suspended) | 
|  | md_wakeup_thread(mddev->thread); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int raid_iterate_devices(struct dm_target *ti, | 
|  | iterate_devices_callout_fn fn, void *data) | 
|  | { | 
|  | struct raid_set *rs = ti->private; | 
|  | unsigned i; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i = 0; !ret && i < rs->md.raid_disks; i++) | 
|  | if (rs->dev[i].data_dev) | 
|  | ret = fn(ti, | 
|  | rs->dev[i].data_dev, | 
|  | 0, /* No offset on data devs */ | 
|  | rs->md.dev_sectors, | 
|  | data); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
|  | { | 
|  | struct raid_set *rs = ti->private; | 
|  | unsigned chunk_size = rs->md.chunk_sectors << 9; | 
|  | struct r5conf *conf = rs->md.private; | 
|  |  | 
|  | blk_limits_io_min(limits, chunk_size); | 
|  | blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded)); | 
|  | } | 
|  |  | 
|  | static void raid_presuspend(struct dm_target *ti) | 
|  | { | 
|  | struct raid_set *rs = ti->private; | 
|  |  | 
|  | md_stop_writes(&rs->md); | 
|  | } | 
|  |  | 
|  | static void raid_postsuspend(struct dm_target *ti) | 
|  | { | 
|  | struct raid_set *rs = ti->private; | 
|  |  | 
|  | mddev_suspend(&rs->md); | 
|  | } | 
|  |  | 
|  | static void attempt_restore_of_faulty_devices(struct raid_set *rs) | 
|  | { | 
|  | int i; | 
|  | uint64_t failed_devices, cleared_failed_devices = 0; | 
|  | unsigned long flags; | 
|  | struct dm_raid_superblock *sb; | 
|  | struct md_rdev *r; | 
|  |  | 
|  | for (i = 0; i < rs->md.raid_disks; i++) { | 
|  | r = &rs->dev[i].rdev; | 
|  | if (test_bit(Faulty, &r->flags) && r->sb_page && | 
|  | sync_page_io(r, 0, r->sb_size, r->sb_page, READ, 1)) { | 
|  | DMINFO("Faulty %s device #%d has readable super block." | 
|  | "  Attempting to revive it.", | 
|  | rs->raid_type->name, i); | 
|  |  | 
|  | /* | 
|  | * Faulty bit may be set, but sometimes the array can | 
|  | * be suspended before the personalities can respond | 
|  | * by removing the device from the array (i.e. calling | 
|  | * 'hot_remove_disk').  If they haven't yet removed | 
|  | * the failed device, its 'raid_disk' number will be | 
|  | * '>= 0' - meaning we must call this function | 
|  | * ourselves. | 
|  | */ | 
|  | if ((r->raid_disk >= 0) && | 
|  | (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0)) | 
|  | /* Failed to revive this device, try next */ | 
|  | continue; | 
|  |  | 
|  | r->raid_disk = i; | 
|  | r->saved_raid_disk = i; | 
|  | flags = r->flags; | 
|  | clear_bit(Faulty, &r->flags); | 
|  | clear_bit(WriteErrorSeen, &r->flags); | 
|  | clear_bit(In_sync, &r->flags); | 
|  | if (r->mddev->pers->hot_add_disk(r->mddev, r)) { | 
|  | r->raid_disk = -1; | 
|  | r->saved_raid_disk = -1; | 
|  | r->flags = flags; | 
|  | } else { | 
|  | r->recovery_offset = 0; | 
|  | cleared_failed_devices |= 1 << i; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (cleared_failed_devices) { | 
|  | rdev_for_each(r, &rs->md) { | 
|  | sb = page_address(r->sb_page); | 
|  | failed_devices = le64_to_cpu(sb->failed_devices); | 
|  | failed_devices &= ~cleared_failed_devices; | 
|  | sb->failed_devices = cpu_to_le64(failed_devices); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid_resume(struct dm_target *ti) | 
|  | { | 
|  | struct raid_set *rs = ti->private; | 
|  |  | 
|  | set_bit(MD_CHANGE_DEVS, &rs->md.flags); | 
|  | if (!rs->bitmap_loaded) { | 
|  | bitmap_load(&rs->md); | 
|  | rs->bitmap_loaded = 1; | 
|  | } else { | 
|  | /* | 
|  | * A secondary resume while the device is active. | 
|  | * Take this opportunity to check whether any failed | 
|  | * devices are reachable again. | 
|  | */ | 
|  | attempt_restore_of_faulty_devices(rs); | 
|  | } | 
|  |  | 
|  | clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); | 
|  | mddev_resume(&rs->md); | 
|  | } | 
|  |  | 
|  | static struct target_type raid_target = { | 
|  | .name = "raid", | 
|  | .version = {1, 6, 0}, | 
|  | .module = THIS_MODULE, | 
|  | .ctr = raid_ctr, | 
|  | .dtr = raid_dtr, | 
|  | .map = raid_map, | 
|  | .status = raid_status, | 
|  | .message = raid_message, | 
|  | .iterate_devices = raid_iterate_devices, | 
|  | .io_hints = raid_io_hints, | 
|  | .presuspend = raid_presuspend, | 
|  | .postsuspend = raid_postsuspend, | 
|  | .resume = raid_resume, | 
|  | }; | 
|  |  | 
|  | static int __init dm_raid_init(void) | 
|  | { | 
|  | DMINFO("Loading target version %u.%u.%u", | 
|  | raid_target.version[0], | 
|  | raid_target.version[1], | 
|  | raid_target.version[2]); | 
|  | return dm_register_target(&raid_target); | 
|  | } | 
|  |  | 
|  | static void __exit dm_raid_exit(void) | 
|  | { | 
|  | dm_unregister_target(&raid_target); | 
|  | } | 
|  |  | 
|  | module_init(dm_raid_init); | 
|  | module_exit(dm_raid_exit); | 
|  |  | 
|  | module_param(devices_handle_discard_safely, bool, 0644); | 
|  | MODULE_PARM_DESC(devices_handle_discard_safely, | 
|  | "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); | 
|  |  | 
|  | MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target"); | 
|  | MODULE_ALIAS("dm-raid1"); | 
|  | MODULE_ALIAS("dm-raid10"); | 
|  | MODULE_ALIAS("dm-raid4"); | 
|  | MODULE_ALIAS("dm-raid5"); | 
|  | MODULE_ALIAS("dm-raid6"); | 
|  | MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); | 
|  | MODULE_LICENSE("GPL"); |