| /* linux/include/linux/clocksource.h |
| * |
| * This file contains the structure definitions for clocksources. |
| * |
| * If you are not a clocksource, or timekeeping code, you should |
| * not be including this file! |
| */ |
| #ifndef _LINUX_CLOCKSOURCE_H |
| #define _LINUX_CLOCKSOURCE_H |
| |
| #include <linux/types.h> |
| #include <linux/timex.h> |
| #include <linux/time.h> |
| #include <linux/list.h> |
| #include <asm/div64.h> |
| #include <asm/io.h> |
| |
| /* clocksource cycle base type */ |
| typedef u64 cycle_t; |
| |
| /** |
| * struct clocksource - hardware abstraction for a free running counter |
| * Provides mostly state-free accessors to the underlying hardware. |
| * |
| * @name: ptr to clocksource name |
| * @list: list head for registration |
| * @rating: rating value for selection (higher is better) |
| * To avoid rating inflation the following |
| * list should give you a guide as to how |
| * to assign your clocksource a rating |
| * 1-99: Unfit for real use |
| * Only available for bootup and testing purposes. |
| * 100-199: Base level usability. |
| * Functional for real use, but not desired. |
| * 200-299: Good. |
| * A correct and usable clocksource. |
| * 300-399: Desired. |
| * A reasonably fast and accurate clocksource. |
| * 400-499: Perfect |
| * The ideal clocksource. A must-use where |
| * available. |
| * @read: returns a cycle value |
| * @mask: bitmask for two's complement |
| * subtraction of non 64 bit counters |
| * @mult: cycle to nanosecond multiplier |
| * @shift: cycle to nanosecond divisor (power of two) |
| * @update_callback: called when safe to alter clocksource values |
| * @is_continuous: defines if clocksource is free-running. |
| * @interval_cycles: Used internally by timekeeping core, please ignore. |
| * @interval_snsecs: Used internally by timekeeping core, please ignore. |
| */ |
| struct clocksource { |
| char *name; |
| struct list_head list; |
| int rating; |
| cycle_t (*read)(void); |
| cycle_t mask; |
| u32 mult; |
| u32 shift; |
| int (*update_callback)(void); |
| int is_continuous; |
| |
| /* timekeeping specific data, ignore */ |
| cycle_t interval_cycles; |
| u64 interval_snsecs; |
| }; |
| |
| /* simplify initialization of mask field */ |
| #define CLOCKSOURCE_MASK(bits) (cycle_t)(bits<64 ? ((1ULL<<bits)-1) : -1) |
| |
| /** |
| * clocksource_khz2mult - calculates mult from khz and shift |
| * @khz: Clocksource frequency in KHz |
| * @shift_constant: Clocksource shift factor |
| * |
| * Helper functions that converts a khz counter frequency to a timsource |
| * multiplier, given the clocksource shift value |
| */ |
| static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant) |
| { |
| /* khz = cyc/(Million ns) |
| * mult/2^shift = ns/cyc |
| * mult = ns/cyc * 2^shift |
| * mult = 1Million/khz * 2^shift |
| * mult = 1000000 * 2^shift / khz |
| * mult = (1000000<<shift) / khz |
| */ |
| u64 tmp = ((u64)1000000) << shift_constant; |
| |
| tmp += khz/2; /* round for do_div */ |
| do_div(tmp, khz); |
| |
| return (u32)tmp; |
| } |
| |
| /** |
| * clocksource_hz2mult - calculates mult from hz and shift |
| * @hz: Clocksource frequency in Hz |
| * @shift_constant: Clocksource shift factor |
| * |
| * Helper functions that converts a hz counter |
| * frequency to a timsource multiplier, given the |
| * clocksource shift value |
| */ |
| static inline u32 clocksource_hz2mult(u32 hz, u32 shift_constant) |
| { |
| /* hz = cyc/(Billion ns) |
| * mult/2^shift = ns/cyc |
| * mult = ns/cyc * 2^shift |
| * mult = 1Billion/hz * 2^shift |
| * mult = 1000000000 * 2^shift / hz |
| * mult = (1000000000<<shift) / hz |
| */ |
| u64 tmp = ((u64)1000000000) << shift_constant; |
| |
| tmp += hz/2; /* round for do_div */ |
| do_div(tmp, hz); |
| |
| return (u32)tmp; |
| } |
| |
| /** |
| * clocksource_read: - Access the clocksource's current cycle value |
| * @cs: pointer to clocksource being read |
| * |
| * Uses the clocksource to return the current cycle_t value |
| */ |
| static inline cycle_t clocksource_read(struct clocksource *cs) |
| { |
| return cs->read(); |
| } |
| |
| /** |
| * cyc2ns - converts clocksource cycles to nanoseconds |
| * @cs: Pointer to clocksource |
| * @cycles: Cycles |
| * |
| * Uses the clocksource and ntp ajdustment to convert cycle_ts to nanoseconds. |
| * |
| * XXX - This could use some mult_lxl_ll() asm optimization |
| */ |
| static inline s64 cyc2ns(struct clocksource *cs, cycle_t cycles) |
| { |
| u64 ret = (u64)cycles; |
| ret = (ret * cs->mult) >> cs->shift; |
| return ret; |
| } |
| |
| /** |
| * clocksource_calculate_interval - Calculates a clocksource interval struct |
| * |
| * @c: Pointer to clocksource. |
| * @length_nsec: Desired interval length in nanoseconds. |
| * |
| * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment |
| * pair and interval request. |
| * |
| * Unless you're the timekeeping code, you should not be using this! |
| */ |
| static inline void clocksource_calculate_interval(struct clocksource *c, |
| unsigned long length_nsec) |
| { |
| u64 tmp; |
| |
| /* XXX - All of this could use a whole lot of optimization */ |
| tmp = length_nsec; |
| tmp <<= c->shift; |
| tmp += c->mult/2; |
| do_div(tmp, c->mult); |
| |
| c->interval_cycles = (cycle_t)tmp; |
| if(c->interval_cycles == 0) |
| c->interval_cycles = 1; |
| |
| c->interval_snsecs = (u64)c->interval_cycles * c->mult; |
| } |
| |
| |
| /** |
| * error_aproximation - calculates an error adjustment for a given error |
| * |
| * @error: Error value (unsigned) |
| * @unit: Adjustment unit |
| * |
| * For a given error value, this function takes the adjustment unit |
| * and uses binary approximation to return a power of two adjustment value. |
| * |
| * This function is only for use by the the make_ntp_adj() function |
| * and you must hold a write on the xtime_lock when calling. |
| */ |
| static inline int error_aproximation(u64 error, u64 unit) |
| { |
| static int saved_adj = 0; |
| u64 adjusted_unit = unit << saved_adj; |
| |
| if (error > (adjusted_unit * 2)) { |
| /* large error, so increment the adjustment factor */ |
| saved_adj++; |
| } else if (error > adjusted_unit) { |
| /* just right, don't touch it */ |
| } else if (saved_adj) { |
| /* small error, so drop the adjustment factor */ |
| saved_adj--; |
| return 0; |
| } |
| |
| return saved_adj; |
| } |
| |
| |
| /** |
| * make_ntp_adj - Adjusts the specified clocksource for a given error |
| * |
| * @clock: Pointer to clock to be adjusted |
| * @cycles_delta: Current unacounted cycle delta |
| * @error: Pointer to current error value |
| * |
| * Returns clock shifted nanosecond adjustment to be applied against |
| * the accumulated time value (ie: xtime). |
| * |
| * If the error value is large enough, this function calulates the |
| * (power of two) adjustment value, and adjusts the clock's mult and |
| * interval_snsecs values accordingly. |
| * |
| * However, since there may be some unaccumulated cycles, to avoid |
| * time inconsistencies we must adjust the accumulation value |
| * accordingly. |
| * |
| * This is not very intuitive, so the following proof should help: |
| * The basic timeofday algorithm: base + cycle * mult |
| * Thus: |
| * new_base + cycle * new_mult = old_base + cycle * old_mult |
| * new_base = old_base + cycle * old_mult - cycle * new_mult |
| * new_base = old_base + cycle * (old_mult - new_mult) |
| * new_base - old_base = cycle * (old_mult - new_mult) |
| * base_delta = cycle * (old_mult - new_mult) |
| * base_delta = cycle * (mult_delta) |
| * |
| * Where mult_delta is the adjustment value made to mult |
| * |
| */ |
| static inline s64 make_ntp_adj(struct clocksource *clock, |
| cycles_t cycles_delta, s64* error) |
| { |
| s64 ret = 0; |
| if (*error > ((s64)clock->interval_cycles+1)/2) { |
| /* calculate adjustment value */ |
| int adjustment = error_aproximation(*error, |
| clock->interval_cycles); |
| /* adjust clock */ |
| clock->mult += 1 << adjustment; |
| clock->interval_snsecs += clock->interval_cycles << adjustment; |
| |
| /* adjust the base and error for the adjustment */ |
| ret = -(cycles_delta << adjustment); |
| *error -= clock->interval_cycles << adjustment; |
| /* XXX adj error for cycle_delta offset? */ |
| } else if ((-(*error)) > ((s64)clock->interval_cycles+1)/2) { |
| /* calculate adjustment value */ |
| int adjustment = error_aproximation(-(*error), |
| clock->interval_cycles); |
| /* adjust clock */ |
| clock->mult -= 1 << adjustment; |
| clock->interval_snsecs -= clock->interval_cycles << adjustment; |
| |
| /* adjust the base and error for the adjustment */ |
| ret = cycles_delta << adjustment; |
| *error += clock->interval_cycles << adjustment; |
| /* XXX adj error for cycle_delta offset? */ |
| } |
| return ret; |
| } |
| |
| |
| /* used to install a new clocksource */ |
| int clocksource_register(struct clocksource*); |
| void clocksource_reselect(void); |
| struct clocksource* clocksource_get_next(void); |
| |
| #endif /* _LINUX_CLOCKSOURCE_H */ |