| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_quota.h" |
| #include "xfs_utils.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_bmap.h" |
| #include "xfs_btree_trace.h" |
| #include "xfs_dir2_trace.h" |
| |
| |
| /* |
| * Allocate and initialise an xfs_inode. |
| */ |
| STATIC struct xfs_inode * |
| xfs_inode_alloc( |
| struct xfs_mount *mp, |
| xfs_ino_t ino) |
| { |
| struct xfs_inode *ip; |
| |
| /* |
| * if this didn't occur in transactions, we could use |
| * KM_MAYFAIL and return NULL here on ENOMEM. Set the |
| * code up to do this anyway. |
| */ |
| ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); |
| if (!ip) |
| return NULL; |
| |
| ASSERT(atomic_read(&ip->i_iocount) == 0); |
| ASSERT(atomic_read(&ip->i_pincount) == 0); |
| ASSERT(!spin_is_locked(&ip->i_flags_lock)); |
| ASSERT(completion_done(&ip->i_flush)); |
| |
| /* initialise the xfs inode */ |
| ip->i_ino = ino; |
| ip->i_mount = mp; |
| memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); |
| ip->i_afp = NULL; |
| memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); |
| ip->i_flags = 0; |
| ip->i_update_core = 0; |
| ip->i_update_size = 0; |
| ip->i_delayed_blks = 0; |
| memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); |
| ip->i_size = 0; |
| ip->i_new_size = 0; |
| |
| /* |
| * Initialize inode's trace buffers. |
| */ |
| #ifdef XFS_INODE_TRACE |
| ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS); |
| #endif |
| #ifdef XFS_BMAP_TRACE |
| ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS); |
| #endif |
| #ifdef XFS_BTREE_TRACE |
| ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS); |
| #endif |
| #ifdef XFS_RW_TRACE |
| ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS); |
| #endif |
| #ifdef XFS_ILOCK_TRACE |
| ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS); |
| #endif |
| #ifdef XFS_DIR2_TRACE |
| ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS); |
| #endif |
| /* |
| * Now initialise the VFS inode. We do this after the xfs_inode |
| * initialisation as internal failures will result in ->destroy_inode |
| * being called and that will pass down through the reclaim path and |
| * free the XFS inode. This path requires the XFS inode to already be |
| * initialised. Hence if this call fails, the xfs_inode has already |
| * been freed and we should not reference it at all in the error |
| * handling. |
| */ |
| if (!inode_init_always(mp->m_super, VFS_I(ip))) |
| return NULL; |
| |
| /* prevent anyone from using this yet */ |
| VFS_I(ip)->i_state = I_NEW|I_LOCK; |
| |
| return ip; |
| } |
| |
| /* |
| * Check the validity of the inode we just found it the cache |
| */ |
| static int |
| xfs_iget_cache_hit( |
| struct xfs_perag *pag, |
| struct xfs_inode *ip, |
| int flags, |
| int lock_flags) __releases(pag->pag_ici_lock) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| int error = EAGAIN; |
| |
| /* |
| * If INEW is set this inode is being set up |
| * If IRECLAIM is set this inode is being torn down |
| * Pause and try again. |
| */ |
| if (xfs_iflags_test(ip, (XFS_INEW|XFS_IRECLAIM))) { |
| XFS_STATS_INC(xs_ig_frecycle); |
| goto out_error; |
| } |
| |
| /* If IRECLAIMABLE is set, we've torn down the vfs inode part */ |
| if (xfs_iflags_test(ip, XFS_IRECLAIMABLE)) { |
| |
| /* |
| * If lookup is racing with unlink, then we should return an |
| * error immediately so we don't remove it from the reclaim |
| * list and potentially leak the inode. |
| */ |
| if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { |
| error = ENOENT; |
| goto out_error; |
| } |
| |
| xfs_itrace_exit_tag(ip, "xfs_iget.alloc"); |
| |
| /* |
| * We need to re-initialise the VFS inode as it has been |
| * 'freed' by the VFS. Do this here so we can deal with |
| * errors cleanly, then tag it so it can be set up correctly |
| * later. |
| */ |
| if (!inode_init_always(mp->m_super, VFS_I(ip))) { |
| error = ENOMEM; |
| goto out_error; |
| } |
| |
| /* |
| * We must set the XFS_INEW flag before clearing the |
| * XFS_IRECLAIMABLE flag so that if a racing lookup does |
| * not find the XFS_IRECLAIMABLE above but has the igrab() |
| * below succeed we can safely check XFS_INEW to detect |
| * that this inode is still being initialised. |
| */ |
| xfs_iflags_set(ip, XFS_INEW); |
| xfs_iflags_clear(ip, XFS_IRECLAIMABLE); |
| |
| /* clear the radix tree reclaim flag as well. */ |
| __xfs_inode_clear_reclaim_tag(mp, pag, ip); |
| } else if (!igrab(VFS_I(ip))) { |
| /* If the VFS inode is being torn down, pause and try again. */ |
| XFS_STATS_INC(xs_ig_frecycle); |
| goto out_error; |
| } else if (xfs_iflags_test(ip, XFS_INEW)) { |
| /* |
| * We are racing with another cache hit that is |
| * currently recycling this inode out of the XFS_IRECLAIMABLE |
| * state. Wait for the initialisation to complete before |
| * continuing. |
| */ |
| wait_on_inode(VFS_I(ip)); |
| } |
| |
| if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { |
| error = ENOENT; |
| iput(VFS_I(ip)); |
| goto out_error; |
| } |
| |
| /* We've got a live one. */ |
| read_unlock(&pag->pag_ici_lock); |
| |
| if (lock_flags != 0) |
| xfs_ilock(ip, lock_flags); |
| |
| xfs_iflags_clear(ip, XFS_ISTALE); |
| xfs_itrace_exit_tag(ip, "xfs_iget.found"); |
| XFS_STATS_INC(xs_ig_found); |
| return 0; |
| |
| out_error: |
| read_unlock(&pag->pag_ici_lock); |
| return error; |
| } |
| |
| |
| static int |
| xfs_iget_cache_miss( |
| struct xfs_mount *mp, |
| struct xfs_perag *pag, |
| xfs_trans_t *tp, |
| xfs_ino_t ino, |
| struct xfs_inode **ipp, |
| xfs_daddr_t bno, |
| int flags, |
| int lock_flags) __releases(pag->pag_ici_lock) |
| { |
| struct xfs_inode *ip; |
| int error; |
| unsigned long first_index, mask; |
| xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); |
| |
| ip = xfs_inode_alloc(mp, ino); |
| if (!ip) |
| return ENOMEM; |
| |
| error = xfs_iread(mp, tp, ip, bno, flags); |
| if (error) |
| goto out_destroy; |
| |
| xfs_itrace_exit_tag(ip, "xfs_iget.alloc"); |
| |
| if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { |
| error = ENOENT; |
| goto out_destroy; |
| } |
| |
| /* |
| * Preload the radix tree so we can insert safely under the |
| * write spinlock. Note that we cannot sleep inside the preload |
| * region. |
| */ |
| if (radix_tree_preload(GFP_KERNEL)) { |
| error = EAGAIN; |
| goto out_destroy; |
| } |
| |
| /* |
| * Because the inode hasn't been added to the radix-tree yet it can't |
| * be found by another thread, so we can do the non-sleeping lock here. |
| */ |
| if (lock_flags) { |
| if (!xfs_ilock_nowait(ip, lock_flags)) |
| BUG(); |
| } |
| |
| mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); |
| first_index = agino & mask; |
| write_lock(&pag->pag_ici_lock); |
| |
| /* insert the new inode */ |
| error = radix_tree_insert(&pag->pag_ici_root, agino, ip); |
| if (unlikely(error)) { |
| WARN_ON(error != -EEXIST); |
| XFS_STATS_INC(xs_ig_dup); |
| error = EAGAIN; |
| goto out_preload_end; |
| } |
| |
| /* These values _must_ be set before releasing the radix tree lock! */ |
| ip->i_udquot = ip->i_gdquot = NULL; |
| xfs_iflags_set(ip, XFS_INEW); |
| |
| write_unlock(&pag->pag_ici_lock); |
| radix_tree_preload_end(); |
| *ipp = ip; |
| return 0; |
| |
| out_preload_end: |
| write_unlock(&pag->pag_ici_lock); |
| radix_tree_preload_end(); |
| if (lock_flags) |
| xfs_iunlock(ip, lock_flags); |
| out_destroy: |
| xfs_destroy_inode(ip); |
| return error; |
| } |
| |
| /* |
| * Look up an inode by number in the given file system. |
| * The inode is looked up in the cache held in each AG. |
| * If the inode is found in the cache, initialise the vfs inode |
| * if necessary. |
| * |
| * If it is not in core, read it in from the file system's device, |
| * add it to the cache and initialise the vfs inode. |
| * |
| * The inode is locked according to the value of the lock_flags parameter. |
| * This flag parameter indicates how and if the inode's IO lock and inode lock |
| * should be taken. |
| * |
| * mp -- the mount point structure for the current file system. It points |
| * to the inode hash table. |
| * tp -- a pointer to the current transaction if there is one. This is |
| * simply passed through to the xfs_iread() call. |
| * ino -- the number of the inode desired. This is the unique identifier |
| * within the file system for the inode being requested. |
| * lock_flags -- flags indicating how to lock the inode. See the comment |
| * for xfs_ilock() for a list of valid values. |
| * bno -- the block number starting the buffer containing the inode, |
| * if known (as by bulkstat), else 0. |
| */ |
| int |
| xfs_iget( |
| xfs_mount_t *mp, |
| xfs_trans_t *tp, |
| xfs_ino_t ino, |
| uint flags, |
| uint lock_flags, |
| xfs_inode_t **ipp, |
| xfs_daddr_t bno) |
| { |
| xfs_inode_t *ip; |
| int error; |
| xfs_perag_t *pag; |
| xfs_agino_t agino; |
| |
| /* the radix tree exists only in inode capable AGs */ |
| if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi) |
| return EINVAL; |
| |
| /* get the perag structure and ensure that it's inode capable */ |
| pag = xfs_get_perag(mp, ino); |
| if (!pag->pagi_inodeok) |
| return EINVAL; |
| ASSERT(pag->pag_ici_init); |
| agino = XFS_INO_TO_AGINO(mp, ino); |
| |
| again: |
| error = 0; |
| read_lock(&pag->pag_ici_lock); |
| ip = radix_tree_lookup(&pag->pag_ici_root, agino); |
| |
| if (ip) { |
| error = xfs_iget_cache_hit(pag, ip, flags, lock_flags); |
| if (error) |
| goto out_error_or_again; |
| } else { |
| read_unlock(&pag->pag_ici_lock); |
| XFS_STATS_INC(xs_ig_missed); |
| |
| error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, bno, |
| flags, lock_flags); |
| if (error) |
| goto out_error_or_again; |
| } |
| xfs_put_perag(mp, pag); |
| |
| *ipp = ip; |
| |
| ASSERT(ip->i_df.if_ext_max == |
| XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t)); |
| /* |
| * If we have a real type for an on-disk inode, we can set ops(&unlock) |
| * now. If it's a new inode being created, xfs_ialloc will handle it. |
| */ |
| if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) |
| xfs_setup_inode(ip); |
| return 0; |
| |
| out_error_or_again: |
| if (error == EAGAIN) { |
| delay(1); |
| goto again; |
| } |
| xfs_put_perag(mp, pag); |
| return error; |
| } |
| |
| |
| /* |
| * Look for the inode corresponding to the given ino in the hash table. |
| * If it is there and its i_transp pointer matches tp, return it. |
| * Otherwise, return NULL. |
| */ |
| xfs_inode_t * |
| xfs_inode_incore(xfs_mount_t *mp, |
| xfs_ino_t ino, |
| xfs_trans_t *tp) |
| { |
| xfs_inode_t *ip; |
| xfs_perag_t *pag; |
| |
| pag = xfs_get_perag(mp, ino); |
| read_lock(&pag->pag_ici_lock); |
| ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino)); |
| read_unlock(&pag->pag_ici_lock); |
| xfs_put_perag(mp, pag); |
| |
| /* the returned inode must match the transaction */ |
| if (ip && (ip->i_transp != tp)) |
| return NULL; |
| return ip; |
| } |
| |
| /* |
| * Decrement reference count of an inode structure and unlock it. |
| * |
| * ip -- the inode being released |
| * lock_flags -- this parameter indicates the inode's locks to be |
| * to be released. See the comment on xfs_iunlock() for a list |
| * of valid values. |
| */ |
| void |
| xfs_iput(xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| xfs_itrace_entry(ip); |
| xfs_iunlock(ip, lock_flags); |
| IRELE(ip); |
| } |
| |
| /* |
| * Special iput for brand-new inodes that are still locked |
| */ |
| void |
| xfs_iput_new( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| struct inode *inode = VFS_I(ip); |
| |
| xfs_itrace_entry(ip); |
| |
| if ((ip->i_d.di_mode == 0)) { |
| ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); |
| make_bad_inode(inode); |
| } |
| if (inode->i_state & I_NEW) |
| unlock_new_inode(inode); |
| if (lock_flags) |
| xfs_iunlock(ip, lock_flags); |
| IRELE(ip); |
| } |
| |
| /* |
| * This is called free all the memory associated with an inode. |
| * It must free the inode itself and any buffers allocated for |
| * if_extents/if_data and if_broot. It must also free the lock |
| * associated with the inode. |
| * |
| * Note: because we don't initialise everything on reallocation out |
| * of the zone, we must ensure we nullify everything correctly before |
| * freeing the structure. |
| */ |
| void |
| xfs_ireclaim( |
| struct xfs_inode *ip) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_perag *pag; |
| |
| XFS_STATS_INC(xs_ig_reclaims); |
| |
| /* |
| * Remove the inode from the per-AG radix tree. It doesn't matter |
| * if it was never added to it because radix_tree_delete can deal |
| * with that case just fine. |
| */ |
| pag = xfs_get_perag(mp, ip->i_ino); |
| write_lock(&pag->pag_ici_lock); |
| radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino)); |
| write_unlock(&pag->pag_ici_lock); |
| xfs_put_perag(mp, pag); |
| |
| /* |
| * Here we do an (almost) spurious inode lock in order to coordinate |
| * with inode cache radix tree lookups. This is because the lookup |
| * can reference the inodes in the cache without taking references. |
| * |
| * We make that OK here by ensuring that we wait until the inode is |
| * unlocked after the lookup before we go ahead and free it. We get |
| * both the ilock and the iolock because the code may need to drop the |
| * ilock one but will still hold the iolock. |
| */ |
| xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); |
| xfs_qm_dqdetach(ip); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); |
| |
| switch (ip->i_d.di_mode & S_IFMT) { |
| case S_IFREG: |
| case S_IFDIR: |
| case S_IFLNK: |
| xfs_idestroy_fork(ip, XFS_DATA_FORK); |
| break; |
| } |
| |
| if (ip->i_afp) |
| xfs_idestroy_fork(ip, XFS_ATTR_FORK); |
| |
| #ifdef XFS_INODE_TRACE |
| ktrace_free(ip->i_trace); |
| #endif |
| #ifdef XFS_BMAP_TRACE |
| ktrace_free(ip->i_xtrace); |
| #endif |
| #ifdef XFS_BTREE_TRACE |
| ktrace_free(ip->i_btrace); |
| #endif |
| #ifdef XFS_RW_TRACE |
| ktrace_free(ip->i_rwtrace); |
| #endif |
| #ifdef XFS_ILOCK_TRACE |
| ktrace_free(ip->i_lock_trace); |
| #endif |
| #ifdef XFS_DIR2_TRACE |
| ktrace_free(ip->i_dir_trace); |
| #endif |
| if (ip->i_itemp) { |
| /* |
| * Only if we are shutting down the fs will we see an |
| * inode still in the AIL. If it is there, we should remove |
| * it to prevent a use-after-free from occurring. |
| */ |
| xfs_log_item_t *lip = &ip->i_itemp->ili_item; |
| struct xfs_ail *ailp = lip->li_ailp; |
| |
| ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) || |
| XFS_FORCED_SHUTDOWN(ip->i_mount)); |
| if (lip->li_flags & XFS_LI_IN_AIL) { |
| spin_lock(&ailp->xa_lock); |
| if (lip->li_flags & XFS_LI_IN_AIL) |
| xfs_trans_ail_delete(ailp, lip); |
| else |
| spin_unlock(&ailp->xa_lock); |
| } |
| xfs_inode_item_destroy(ip); |
| ip->i_itemp = NULL; |
| } |
| /* asserts to verify all state is correct here */ |
| ASSERT(atomic_read(&ip->i_iocount) == 0); |
| ASSERT(atomic_read(&ip->i_pincount) == 0); |
| ASSERT(!spin_is_locked(&ip->i_flags_lock)); |
| ASSERT(completion_done(&ip->i_flush)); |
| kmem_zone_free(xfs_inode_zone, ip); |
| } |
| |
| /* |
| * This is a wrapper routine around the xfs_ilock() routine |
| * used to centralize some grungy code. It is used in places |
| * that wish to lock the inode solely for reading the extents. |
| * The reason these places can't just call xfs_ilock(SHARED) |
| * is that the inode lock also guards to bringing in of the |
| * extents from disk for a file in b-tree format. If the inode |
| * is in b-tree format, then we need to lock the inode exclusively |
| * until the extents are read in. Locking it exclusively all |
| * the time would limit our parallelism unnecessarily, though. |
| * What we do instead is check to see if the extents have been |
| * read in yet, and only lock the inode exclusively if they |
| * have not. |
| * |
| * The function returns a value which should be given to the |
| * corresponding xfs_iunlock_map_shared(). This value is |
| * the mode in which the lock was actually taken. |
| */ |
| uint |
| xfs_ilock_map_shared( |
| xfs_inode_t *ip) |
| { |
| uint lock_mode; |
| |
| if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) && |
| ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) { |
| lock_mode = XFS_ILOCK_EXCL; |
| } else { |
| lock_mode = XFS_ILOCK_SHARED; |
| } |
| |
| xfs_ilock(ip, lock_mode); |
| |
| return lock_mode; |
| } |
| |
| /* |
| * This is simply the unlock routine to go with xfs_ilock_map_shared(). |
| * All it does is call xfs_iunlock() with the given lock_mode. |
| */ |
| void |
| xfs_iunlock_map_shared( |
| xfs_inode_t *ip, |
| unsigned int lock_mode) |
| { |
| xfs_iunlock(ip, lock_mode); |
| } |
| |
| /* |
| * The xfs inode contains 2 locks: a multi-reader lock called the |
| * i_iolock and a multi-reader lock called the i_lock. This routine |
| * allows either or both of the locks to be obtained. |
| * |
| * The 2 locks should always be ordered so that the IO lock is |
| * obtained first in order to prevent deadlock. |
| * |
| * ip -- the inode being locked |
| * lock_flags -- this parameter indicates the inode's locks |
| * to be locked. It can be: |
| * XFS_IOLOCK_SHARED, |
| * XFS_IOLOCK_EXCL, |
| * XFS_ILOCK_SHARED, |
| * XFS_ILOCK_EXCL, |
| * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, |
| * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, |
| * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, |
| * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
| */ |
| void |
| xfs_ilock( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); |
| |
| if (lock_flags & XFS_IOLOCK_EXCL) |
| mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); |
| else if (lock_flags & XFS_IOLOCK_SHARED) |
| mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); |
| |
| if (lock_flags & XFS_ILOCK_EXCL) |
| mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
| else if (lock_flags & XFS_ILOCK_SHARED) |
| mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
| |
| xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address); |
| } |
| |
| /* |
| * This is just like xfs_ilock(), except that the caller |
| * is guaranteed not to sleep. It returns 1 if it gets |
| * the requested locks and 0 otherwise. If the IO lock is |
| * obtained but the inode lock cannot be, then the IO lock |
| * is dropped before returning. |
| * |
| * ip -- the inode being locked |
| * lock_flags -- this parameter indicates the inode's locks to be |
| * to be locked. See the comment for xfs_ilock() for a list |
| * of valid values. |
| */ |
| int |
| xfs_ilock_nowait( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); |
| |
| if (lock_flags & XFS_IOLOCK_EXCL) { |
| if (!mrtryupdate(&ip->i_iolock)) |
| goto out; |
| } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| if (!mrtryaccess(&ip->i_iolock)) |
| goto out; |
| } |
| if (lock_flags & XFS_ILOCK_EXCL) { |
| if (!mrtryupdate(&ip->i_lock)) |
| goto out_undo_iolock; |
| } else if (lock_flags & XFS_ILOCK_SHARED) { |
| if (!mrtryaccess(&ip->i_lock)) |
| goto out_undo_iolock; |
| } |
| xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address); |
| return 1; |
| |
| out_undo_iolock: |
| if (lock_flags & XFS_IOLOCK_EXCL) |
| mrunlock_excl(&ip->i_iolock); |
| else if (lock_flags & XFS_IOLOCK_SHARED) |
| mrunlock_shared(&ip->i_iolock); |
| out: |
| return 0; |
| } |
| |
| /* |
| * xfs_iunlock() is used to drop the inode locks acquired with |
| * xfs_ilock() and xfs_ilock_nowait(). The caller must pass |
| * in the flags given to xfs_ilock() or xfs_ilock_nowait() so |
| * that we know which locks to drop. |
| * |
| * ip -- the inode being unlocked |
| * lock_flags -- this parameter indicates the inode's locks to be |
| * to be unlocked. See the comment for xfs_ilock() for a list |
| * of valid values for this parameter. |
| * |
| */ |
| void |
| xfs_iunlock( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY | |
| XFS_LOCK_DEP_MASK)) == 0); |
| ASSERT(lock_flags != 0); |
| |
| if (lock_flags & XFS_IOLOCK_EXCL) |
| mrunlock_excl(&ip->i_iolock); |
| else if (lock_flags & XFS_IOLOCK_SHARED) |
| mrunlock_shared(&ip->i_iolock); |
| |
| if (lock_flags & XFS_ILOCK_EXCL) |
| mrunlock_excl(&ip->i_lock); |
| else if (lock_flags & XFS_ILOCK_SHARED) |
| mrunlock_shared(&ip->i_lock); |
| |
| if ((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) && |
| !(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp) { |
| /* |
| * Let the AIL know that this item has been unlocked in case |
| * it is in the AIL and anyone is waiting on it. Don't do |
| * this if the caller has asked us not to. |
| */ |
| xfs_trans_unlocked_item(ip->i_itemp->ili_item.li_ailp, |
| (xfs_log_item_t*)(ip->i_itemp)); |
| } |
| xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address); |
| } |
| |
| /* |
| * give up write locks. the i/o lock cannot be held nested |
| * if it is being demoted. |
| */ |
| void |
| xfs_ilock_demote( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); |
| |
| if (lock_flags & XFS_ILOCK_EXCL) |
| mrdemote(&ip->i_lock); |
| if (lock_flags & XFS_IOLOCK_EXCL) |
| mrdemote(&ip->i_iolock); |
| } |
| |
| #ifdef DEBUG |
| /* |
| * Debug-only routine, without additional rw_semaphore APIs, we can |
| * now only answer requests regarding whether we hold the lock for write |
| * (reader state is outside our visibility, we only track writer state). |
| * |
| * Note: this means !xfs_isilocked would give false positives, so don't do that. |
| */ |
| int |
| xfs_isilocked( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| if ((lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) == |
| XFS_ILOCK_EXCL) { |
| if (!ip->i_lock.mr_writer) |
| return 0; |
| } |
| |
| if ((lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) == |
| XFS_IOLOCK_EXCL) { |
| if (!ip->i_iolock.mr_writer) |
| return 0; |
| } |
| |
| return 1; |
| } |
| #endif |
| |
| #ifdef XFS_INODE_TRACE |
| |
| #define KTRACE_ENTER(ip, vk, s, line, ra) \ |
| ktrace_enter((ip)->i_trace, \ |
| /* 0 */ (void *)(__psint_t)(vk), \ |
| /* 1 */ (void *)(s), \ |
| /* 2 */ (void *)(__psint_t) line, \ |
| /* 3 */ (void *)(__psint_t)atomic_read(&VFS_I(ip)->i_count), \ |
| /* 4 */ (void *)(ra), \ |
| /* 5 */ NULL, \ |
| /* 6 */ (void *)(__psint_t)current_cpu(), \ |
| /* 7 */ (void *)(__psint_t)current_pid(), \ |
| /* 8 */ (void *)__return_address, \ |
| /* 9 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL) |
| |
| /* |
| * Vnode tracing code. |
| */ |
| void |
| _xfs_itrace_entry(xfs_inode_t *ip, const char *func, inst_t *ra) |
| { |
| KTRACE_ENTER(ip, INODE_KTRACE_ENTRY, func, 0, ra); |
| } |
| |
| void |
| _xfs_itrace_exit(xfs_inode_t *ip, const char *func, inst_t *ra) |
| { |
| KTRACE_ENTER(ip, INODE_KTRACE_EXIT, func, 0, ra); |
| } |
| |
| void |
| xfs_itrace_hold(xfs_inode_t *ip, char *file, int line, inst_t *ra) |
| { |
| KTRACE_ENTER(ip, INODE_KTRACE_HOLD, file, line, ra); |
| } |
| |
| void |
| _xfs_itrace_ref(xfs_inode_t *ip, char *file, int line, inst_t *ra) |
| { |
| KTRACE_ENTER(ip, INODE_KTRACE_REF, file, line, ra); |
| } |
| |
| void |
| xfs_itrace_rele(xfs_inode_t *ip, char *file, int line, inst_t *ra) |
| { |
| KTRACE_ENTER(ip, INODE_KTRACE_RELE, file, line, ra); |
| } |
| #endif /* XFS_INODE_TRACE */ |