blob: 76a4b58ec77172873e53e50abc3a6a02efeb1a9c [file] [log] [blame]
/*
* Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
* Author: Chris Zhong <zyw@rock-chips.com>
* Kever Yang <kever.yang@rock-chips.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* The ROCKCHIP Type-C PHY has two PLL clocks. The first PLL clock
* is used for USB3, the second PLL clock is used for DP. This Type-C PHY has
* 3 working modes: USB3 only mode, DP only mode, and USB3+DP mode.
* At USB3 only mode, both PLL clocks need to be initialized, this allows the
* PHY to switch mode between USB3 and USB3+DP, without disconnecting the USB
* device.
* In The DP only mode, only the DP PLL needs to be powered on, and the 4 lanes
* are all used for DP.
*
* This driver gets extcon cable state and property, then decides which mode to
* select:
*
* 1. USB3 only mode:
* EXTCON_USB or EXTCON_USB_HOST state is true, and
* EXTCON_PROP_USB_SS property is true.
* EXTCON_DISP_DP state is false.
*
* 2. DP only mode:
* EXTCON_DISP_DP state is true, and
* EXTCON_PROP_USB_SS property is false.
* If EXTCON_USB_HOST state is true, it is DP + USB2 mode, since the USB2 phy
* is a separate phy, so this case is still DP only mode.
*
* 3. USB3+DP mode:
* EXTCON_USB_HOST and EXTCON_DISP_DP are both true, and
* EXTCON_PROP_USB_SS property is true.
*
* This Type-C PHY driver supports normal and flip orientation. The orientation
* is reported by the EXTCON_PROP_USB_TYPEC_POLARITY property: true is flip
* orientation, false is normal orientation.
*
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/extcon.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/mfd/syscon.h>
#include <linux/phy/phy.h>
#define CMN_SSM_BANDGAP (0x21 << 2)
#define CMN_SSM_BIAS (0x22 << 2)
#define CMN_PLLSM0_PLLEN (0x29 << 2)
#define CMN_PLLSM0_PLLPRE (0x2a << 2)
#define CMN_PLLSM0_PLLVREF (0x2b << 2)
#define CMN_PLLSM0_PLLLOCK (0x2c << 2)
#define CMN_PLLSM1_PLLEN (0x31 << 2)
#define CMN_PLLSM1_PLLPRE (0x32 << 2)
#define CMN_PLLSM1_PLLVREF (0x33 << 2)
#define CMN_PLLSM1_PLLLOCK (0x34 << 2)
#define CMN_PLLSM1_USER_DEF_CTRL (0x37 << 2)
#define CMN_ICAL_OVRD (0xc1 << 2)
#define CMN_PLL0_VCOCAL_OVRD (0x83 << 2)
#define CMN_PLL0_VCOCAL_INIT (0x84 << 2)
#define CMN_PLL0_VCOCAL_ITER (0x85 << 2)
#define CMN_PLL0_LOCK_REFCNT_START (0x90 << 2)
#define CMN_PLL0_LOCK_PLLCNT_START (0x92 << 2)
#define CMN_PLL0_LOCK_PLLCNT_THR (0x93 << 2)
#define CMN_PLL0_INTDIV (0x94 << 2)
#define CMN_PLL0_FRACDIV (0x95 << 2)
#define CMN_PLL0_HIGH_THR (0x96 << 2)
#define CMN_PLL0_DSM_DIAG (0x97 << 2)
#define CMN_PLL0_SS_CTRL1 (0x98 << 2)
#define CMN_PLL0_SS_CTRL2 (0x99 << 2)
#define CMN_PLL1_VCOCAL_START (0xa1 << 2)
#define CMN_PLL1_VCOCAL_OVRD (0xa3 << 2)
#define CMN_PLL1_VCOCAL_INIT (0xa4 << 2)
#define CMN_PLL1_VCOCAL_ITER (0xa5 << 2)
#define CMN_PLL1_LOCK_REFCNT_START (0xb0 << 2)
#define CMN_PLL1_LOCK_PLLCNT_START (0xb2 << 2)
#define CMN_PLL1_LOCK_PLLCNT_THR (0xb3 << 2)
#define CMN_PLL1_INTDIV (0xb4 << 2)
#define CMN_PLL1_FRACDIV (0xb5 << 2)
#define CMN_PLL1_HIGH_THR (0xb6 << 2)
#define CMN_PLL1_DSM_DIAG (0xb7 << 2)
#define CMN_PLL1_SS_CTRL1 (0xb8 << 2)
#define CMN_PLL1_SS_CTRL2 (0xb9 << 2)
#define CMN_RXCAL_OVRD (0xd1 << 2)
#define CMN_TXPUCAL_CTRL (0xe0 << 2)
#define CMN_TXPUCAL_OVRD (0xe1 << 2)
#define CMN_TXPDCAL_CTRL (0xf0 << 2)
#define CMN_TXPDCAL_OVRD (0xf1 << 2)
/* For CMN_TXPUCAL_CTRL, CMN_TXPDCAL_CTRL */
#define CMN_TXPXCAL_START BIT(15)
#define CMN_TXPXCAL_DONE BIT(14)
#define CMN_TXPXCAL_NO_RESPONSE BIT(13)
#define CMN_TXPXCAL_CURRENT_RESPONSE BIT(12)
#define CMN_TXPU_ADJ_CTRL (0x108 << 2)
#define CMN_TXPD_ADJ_CTRL (0x10c << 2)
/*
* For CMN_TXPUCAL_CTRL, CMN_TXPDCAL_CTRL,
* CMN_TXPU_ADJ_CTRL, CMN_TXPDCAL_CTRL
*
* NOTE: some of these registers are documented to be 2's complement
* signed numbers, but then documented to be always positive. Weird.
* In such a case, using CMN_CALIB_CODE_POS() avoids the unnecessary
* sign extension.
*/
#define CMN_CALIB_CODE_WIDTH 7
#define CMN_CALIB_CODE_OFFSET 0
#define CMN_CALIB_CODE_MASK GENMASK(CMN_CALIB_CODE_WIDTH, 0)
#define CMN_CALIB_CODE(x) \
sign_extend32((x) >> CMN_CALIB_CODE_OFFSET, CMN_CALIB_CODE_WIDTH)
#define CMN_CALIB_CODE_POS_MASK GENMASK(CMN_CALIB_CODE_WIDTH - 1, 0)
#define CMN_CALIB_CODE_POS(x) \
(((x) >> CMN_CALIB_CODE_OFFSET) & CMN_CALIB_CODE_POS_MASK)
#define CMN_DIAG_PLL0_FBH_OVRD (0x1c0 << 2)
#define CMN_DIAG_PLL0_FBL_OVRD (0x1c1 << 2)
#define CMN_DIAG_PLL0_OVRD (0x1c2 << 2)
#define CMN_DIAG_PLL0_V2I_TUNE (0x1c5 << 2)
#define CMN_DIAG_PLL0_CP_TUNE (0x1c6 << 2)
#define CMN_DIAG_PLL0_LF_PROG (0x1c7 << 2)
#define CMN_DIAG_PLL1_FBH_OVRD (0x1d0 << 2)
#define CMN_DIAG_PLL1_FBL_OVRD (0x1d1 << 2)
#define CMN_DIAG_PLL1_OVRD (0x1d2 << 2)
#define CMN_DIAG_PLL1_V2I_TUNE (0x1d5 << 2)
#define CMN_DIAG_PLL1_CP_TUNE (0x1d6 << 2)
#define CMN_DIAG_PLL1_LF_PROG (0x1d7 << 2)
#define CMN_DIAG_PLL1_PTATIS_TUNE1 (0x1d8 << 2)
#define CMN_DIAG_PLL1_PTATIS_TUNE2 (0x1d9 << 2)
#define CMN_DIAG_PLL1_INCLK_CTRL (0x1da << 2)
#define CMN_DIAG_HSCLK_SEL (0x1e0 << 2)
#define XCVR_PSM_RCTRL(n) ((0x4001 | ((n) << 9)) << 2)
#define XCVR_PSM_CAL_TMR(n) ((0x4002 | ((n) << 9)) << 2)
#define XCVR_PSM_A0IN_TMR(n) ((0x4003 | ((n) << 9)) << 2)
#define TX_TXCC_CAL_SCLR_MULT(n) ((0x4047 | ((n) << 9)) << 2)
#define TX_TXCC_CPOST_MULT_00(n) ((0x404c | ((n) << 9)) << 2)
#define TX_TXCC_CPOST_MULT_01(n) ((0x404d | ((n) << 9)) << 2)
#define TX_TXCC_CPOST_MULT_10(n) ((0x404e | ((n) << 9)) << 2)
#define TX_TXCC_CPOST_MULT_11(n) ((0x404f | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_000(n) ((0x4050 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_001(n) ((0x4051 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_010(n) ((0x4052 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_011(n) ((0x4053 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_100(n) ((0x4054 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_101(n) ((0x4055 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_110(n) ((0x4056 | ((n) << 9)) << 2)
#define TX_TXCC_MGNFS_MULT_111(n) ((0x4057 | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_000(n) ((0x4058 | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_001(n) ((0x4059 | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_010(n) ((0x405a | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_011(n) ((0x405b | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_100(n) ((0x405c | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_101(n) ((0x405d | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_110(n) ((0x405e | ((n) << 9)) << 2)
#define TX_TXCC_MGNLS_MULT_111(n) ((0x405f | ((n) << 9)) << 2)
#define XCVR_DIAG_PLLDRC_CTRL(n) ((0x40e0 | ((n) << 9)) << 2)
#define XCVR_DIAG_BIDI_CTRL(n) ((0x40e8 | ((n) << 9)) << 2)
#define XCVR_DIAG_LANE_FCM_EN_MGN(n) ((0x40f2 | ((n) << 9)) << 2)
#define TX_PSC_A0(n) ((0x4100 | ((n) << 9)) << 2)
#define TX_PSC_A1(n) ((0x4101 | ((n) << 9)) << 2)
#define TX_PSC_A2(n) ((0x4102 | ((n) << 9)) << 2)
#define TX_PSC_A3(n) ((0x4103 | ((n) << 9)) << 2)
#define TX_RCVDET_CTRL(n) ((0x4120 | ((n) << 9)) << 2)
#define TX_RCVDET_EN_TMR(n) ((0x4122 | ((n) << 9)) << 2)
#define TX_RCVDET_ST_TMR(n) ((0x4123 | ((n) << 9)) << 2)
#define TX_DIAG_TX_DRV(n) ((0x41e1 | ((n) << 9)) << 2)
#define TX_DIAG_BGREF_PREDRV_DELAY (0x41e7 << 2)
/* Use this for "n" in macros like "_MULT_XXX" to target the aux channel */
#define AUX_CH_LANE 8
#define TX_ANA_CTRL_REG_1 (0x5020 << 2)
#define TXDA_DP_AUX_EN BIT(15)
#define AUXDA_SE_EN BIT(14)
#define TXDA_CAL_LATCH_EN BIT(13)
#define AUXDA_POLARITY BIT(12)
#define TXDA_DRV_POWER_ISOLATION_EN BIT(11)
#define TXDA_DRV_POWER_EN_PH_2_N BIT(10)
#define TXDA_DRV_POWER_EN_PH_1_N BIT(9)
#define TXDA_BGREF_EN BIT(8)
#define TXDA_DRV_LDO_EN BIT(7)
#define TXDA_DECAP_EN_DEL BIT(6)
#define TXDA_DECAP_EN BIT(5)
#define TXDA_UPHY_SUPPLY_EN_DEL BIT(4)
#define TXDA_UPHY_SUPPLY_EN BIT(3)
#define TXDA_LOW_LEAKAGE_EN BIT(2)
#define TXDA_DRV_IDLE_LOWI_EN BIT(1)
#define TXDA_DRV_CMN_MODE_EN BIT(0)
#define TX_ANA_CTRL_REG_2 (0x5021 << 2)
#define AUXDA_DEBOUNCING_CLK BIT(15)
#define TXDA_LPBK_RECOVERED_CLK_EN BIT(14)
#define TXDA_LPBK_ISI_GEN_EN BIT(13)
#define TXDA_LPBK_SERIAL_EN BIT(12)
#define TXDA_LPBK_LINE_EN BIT(11)
#define TXDA_DRV_LDO_REDC_SINKIQ BIT(10)
#define XCVR_DECAP_EN_DEL BIT(9)
#define XCVR_DECAP_EN BIT(8)
#define TXDA_MPHY_ENABLE_HS_NT BIT(7)
#define TXDA_MPHY_SA_MODE BIT(6)
#define TXDA_DRV_LDO_RBYR_FB_EN BIT(5)
#define TXDA_DRV_RST_PULL_DOWN BIT(4)
#define TXDA_DRV_LDO_BG_FB_EN BIT(3)
#define TXDA_DRV_LDO_BG_REF_EN BIT(2)
#define TXDA_DRV_PREDRV_EN_DEL BIT(1)
#define TXDA_DRV_PREDRV_EN BIT(0)
#define TXDA_COEFF_CALC_CTRL (0x5022 << 2)
#define TX_HIGH_Z BIT(6)
#define TX_VMARGIN_OFFSET 3
#define TX_VMARGIN_MASK 0x7
#define LOW_POWER_SWING_EN BIT(2)
#define TX_FCM_DRV_MAIN_EN BIT(1)
#define TX_FCM_FULL_MARGIN BIT(0)
#define TX_DIG_CTRL_REG_2 (0x5024 << 2)
#define TX_HIGH_Z_TM_EN BIT(15)
#define TX_RESCAL_CODE_OFFSET 0
#define TX_RESCAL_CODE_MASK 0x3f
#define TXDA_CYA_AUXDA_CYA (0x5025 << 2)
#define TX_ANA_CTRL_REG_3 (0x5026 << 2)
#define TX_ANA_CTRL_REG_4 (0x5027 << 2)
#define TX_ANA_CTRL_REG_5 (0x5029 << 2)
#define RX_PSC_A0(n) ((0x8000 | ((n) << 9)) << 2)
#define RX_PSC_A1(n) ((0x8001 | ((n) << 9)) << 2)
#define RX_PSC_A2(n) ((0x8002 | ((n) << 9)) << 2)
#define RX_PSC_A3(n) ((0x8003 | ((n) << 9)) << 2)
#define RX_PSC_CAL(n) ((0x8006 | ((n) << 9)) << 2)
#define RX_PSC_RDY(n) ((0x8007 | ((n) << 9)) << 2)
#define RX_IQPI_ILL_CAL_OVRD (0x8023 << 2)
#define RX_EPI_ILL_CAL_OVRD (0x8033 << 2)
#define RX_SDCAL0_OVRD (0x8041 << 2)
#define RX_SDCAL1_OVRD (0x8049 << 2)
#define RX_SLC_INIT (0x806d << 2)
#define RX_SLC_RUN (0x806e << 2)
#define RX_CDRLF_CNFG2 (0x8081 << 2)
#define RX_SIGDET_HL_FILT_TMR(n) ((0x8090 | ((n) << 9)) << 2)
#define RX_SLC_IOP0_OVRD (0x8101 << 2)
#define RX_SLC_IOP1_OVRD (0x8105 << 2)
#define RX_SLC_QOP0_OVRD (0x8109 << 2)
#define RX_SLC_QOP1_OVRD (0x810d << 2)
#define RX_SLC_EOP0_OVRD (0x8111 << 2)
#define RX_SLC_EOP1_OVRD (0x8115 << 2)
#define RX_SLC_ION0_OVRD (0x8119 << 2)
#define RX_SLC_ION1_OVRD (0x811d << 2)
#define RX_SLC_QON0_OVRD (0x8121 << 2)
#define RX_SLC_QON1_OVRD (0x8125 << 2)
#define RX_SLC_EON0_OVRD (0x8129 << 2)
#define RX_SLC_EON1_OVRD (0x812d << 2)
#define RX_SLC_IEP0_OVRD (0x8131 << 2)
#define RX_SLC_IEP1_OVRD (0x8135 << 2)
#define RX_SLC_QEP0_OVRD (0x8139 << 2)
#define RX_SLC_QEP1_OVRD (0x813d << 2)
#define RX_SLC_EEP0_OVRD (0x8141 << 2)
#define RX_SLC_EEP1_OVRD (0x8145 << 2)
#define RX_SLC_IEN0_OVRD (0x8149 << 2)
#define RX_SLC_IEN1_OVRD (0x814d << 2)
#define RX_SLC_QEN0_OVRD (0x8151 << 2)
#define RX_SLC_QEN1_OVRD (0x8155 << 2)
#define RX_SLC_EEN0_OVRD (0x8159 << 2)
#define RX_SLC_EEN1_OVRD (0x815d << 2)
#define RX_REE_CTRL_DATA_MASK(n) ((0x81bb | ((n) << 9)) << 2)
#define RX_DIAG_SIGDET_TUNE(n) ((0x81dc | ((n) << 9)) << 2)
#define RX_DIAG_SC2C_DELAY (0x81e1 << 2)
#define PMA_LANE_CFG (0xc000 << 2)
#define PIPE_CMN_CTRL1 (0xc001 << 2)
#define PIPE_CMN_CTRL2 (0xc002 << 2)
#define PIPE_COM_LOCK_CFG1 (0xc003 << 2)
#define PIPE_COM_LOCK_CFG2 (0xc004 << 2)
#define PIPE_RCV_DET_INH (0xc005 << 2)
#define DP_MODE_CTL (0xc008 << 2)
#define DP_CLK_CTL (0xc009 << 2)
#define STS (0xc00F << 2)
#define PHY_ISO_CMN_CTRL (0xc010 << 2)
#define PHY_DP_TX_CTL (0xc408 << 2)
#define PMA_CMN_CTRL1 (0xc800 << 2)
#define PHY_PMA_ISO_CMN_CTRL (0xc810 << 2)
#define PHY_ISOLATION_CTRL (0xc81f << 2)
#define PHY_PMA_ISO_XCVR_CTRL(n) ((0xcc11 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_LINK_MODE(n) ((0xcc12 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_PWRST_CTRL(n) ((0xcc13 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_TX_DATA_LO(n) ((0xcc14 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_TX_DATA_HI(n) ((0xcc15 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_RX_DATA_LO(n) ((0xcc16 | ((n) << 6)) << 2)
#define PHY_PMA_ISO_RX_DATA_HI(n) ((0xcc17 | ((n) << 6)) << 2)
#define TX_BIST_CTRL(n) ((0x4140 | ((n) << 9)) << 2)
#define TX_BIST_UDDWR(n) ((0x4141 | ((n) << 9)) << 2)
/*
* Selects which PLL clock will be driven on the analog high speed
* clock 0: PLL 0 div 1
* clock 1: PLL 1 div 2
*/
#define CLK_PLL_CONFIG 0X30
#define CLK_PLL_MASK 0x33
#define CMN_READY BIT(0)
#define DP_PLL_CLOCK_ENABLE BIT(2)
#define DP_PLL_ENABLE BIT(0)
#define DP_PLL_DATA_RATE_RBR ((2 << 12) | (4 << 8))
#define DP_PLL_DATA_RATE_HBR ((2 << 12) | (4 << 8))
#define DP_PLL_DATA_RATE_HBR2 ((1 << 12) | (2 << 8))
#define DP_MODE_A0 BIT(4)
#define DP_MODE_A2 BIT(6)
#define DP_MODE_ENTER_A0 0xc101
#define DP_MODE_ENTER_A2 0xc104
#define PHY_MODE_SET_TIMEOUT 100000
#define PIN_ASSIGN_C_E 0x51d9
#define PIN_ASSIGN_D_F 0x5100
#define MODE_DISCONNECT 0
#define MODE_UFP_USB BIT(0)
#define MODE_DFP_USB BIT(1)
#define MODE_DFP_DP BIT(2)
struct usb3phy_reg {
u32 offset;
u32 enable_bit;
u32 write_enable;
};
/**
* struct rockchip_usb3phy_port_cfg: usb3-phy port configuration.
* @reg: the base address for usb3-phy config.
* @typec_conn_dir: the register of type-c connector direction.
* @usb3tousb2_en: the register of type-c force usb2 to usb2 enable.
* @external_psm: the register of type-c phy external psm clock.
* @pipe_status: the register of type-c phy pipe status.
* @usb3_host_disable: the register of type-c usb3 host disable.
* @usb3_host_port: the register of type-c usb3 host port.
* @uphy_dp_sel: the register of type-c phy DP select control.
*/
struct rockchip_usb3phy_port_cfg {
unsigned int reg;
struct usb3phy_reg typec_conn_dir;
struct usb3phy_reg usb3tousb2_en;
struct usb3phy_reg external_psm;
struct usb3phy_reg pipe_status;
struct usb3phy_reg usb3_host_disable;
struct usb3phy_reg usb3_host_port;
struct usb3phy_reg uphy_dp_sel;
};
struct rockchip_typec_phy {
struct device *dev;
void __iomem *base;
struct extcon_dev *extcon;
struct regmap *grf_regs;
struct clk *clk_core;
struct clk *clk_ref;
struct reset_control *uphy_rst;
struct reset_control *pipe_rst;
struct reset_control *tcphy_rst;
const struct rockchip_usb3phy_port_cfg *port_cfgs;
/* mutex to protect access to individual PHYs */
struct mutex lock;
bool flip;
u8 mode;
};
struct phy_reg {
u16 value;
u32 addr;
};
struct phy_reg usb3_pll_cfg[] = {
{ 0xf0, CMN_PLL0_VCOCAL_INIT },
{ 0x18, CMN_PLL0_VCOCAL_ITER },
{ 0xd0, CMN_PLL0_INTDIV },
{ 0x4a4a, CMN_PLL0_FRACDIV },
{ 0x34, CMN_PLL0_HIGH_THR },
{ 0x1ee, CMN_PLL0_SS_CTRL1 },
{ 0x7f03, CMN_PLL0_SS_CTRL2 },
{ 0x20, CMN_PLL0_DSM_DIAG },
{ 0, CMN_DIAG_PLL0_OVRD },
{ 0, CMN_DIAG_PLL0_FBH_OVRD },
{ 0, CMN_DIAG_PLL0_FBL_OVRD },
{ 0x7, CMN_DIAG_PLL0_V2I_TUNE },
{ 0x45, CMN_DIAG_PLL0_CP_TUNE },
{ 0x8, CMN_DIAG_PLL0_LF_PROG },
};
struct phy_reg dp_pll_cfg[] = {
{ 0xf0, CMN_PLL1_VCOCAL_INIT },
{ 0x18, CMN_PLL1_VCOCAL_ITER },
{ 0x30b9, CMN_PLL1_VCOCAL_START },
{ 0x21c, CMN_PLL1_INTDIV },
{ 0, CMN_PLL1_FRACDIV },
{ 0x5, CMN_PLL1_HIGH_THR },
{ 0x35, CMN_PLL1_SS_CTRL1 },
{ 0x7f1e, CMN_PLL1_SS_CTRL2 },
{ 0x20, CMN_PLL1_DSM_DIAG },
{ 0, CMN_PLLSM1_USER_DEF_CTRL },
{ 0, CMN_DIAG_PLL1_OVRD },
{ 0, CMN_DIAG_PLL1_FBH_OVRD },
{ 0, CMN_DIAG_PLL1_FBL_OVRD },
{ 0x6, CMN_DIAG_PLL1_V2I_TUNE },
{ 0x45, CMN_DIAG_PLL1_CP_TUNE },
{ 0x8, CMN_DIAG_PLL1_LF_PROG },
{ 0x100, CMN_DIAG_PLL1_PTATIS_TUNE1 },
{ 0x7, CMN_DIAG_PLL1_PTATIS_TUNE2 },
{ 0x4, CMN_DIAG_PLL1_INCLK_CTRL },
};
static const struct rockchip_usb3phy_port_cfg rk3399_usb3phy_port_cfgs[] = {
{
.reg = 0xff7c0000,
.typec_conn_dir = { 0xe580, 0, 16 },
.usb3tousb2_en = { 0xe580, 3, 19 },
.external_psm = { 0xe588, 14, 30 },
.pipe_status = { 0xe5c0, 0, 0 },
.usb3_host_disable = { 0x2434, 0, 16 },
.usb3_host_port = { 0x2434, 12, 28 },
.uphy_dp_sel = { 0x6268, 19, 19 },
},
{
.reg = 0xff800000,
.typec_conn_dir = { 0xe58c, 0, 16 },
.usb3tousb2_en = { 0xe58c, 3, 19 },
.external_psm = { 0xe594, 14, 30 },
.pipe_status = { 0xe5c0, 16, 16 },
.usb3_host_disable = { 0x2444, 0, 16 },
.usb3_host_port = { 0x2444, 12, 28 },
.uphy_dp_sel = { 0x6268, 3, 19 },
},
{ /* sentinel */ }
};
static void tcphy_cfg_24m(struct rockchip_typec_phy *tcphy)
{
u32 i, rdata;
/*
* cmn_ref_clk_sel = 3, select the 24Mhz for clk parent
* cmn_psm_clk_dig_div = 2, set the clk division to 2
*/
writel(0x830, tcphy->base + PMA_CMN_CTRL1);
for (i = 0; i < 4; i++) {
/*
* The following PHY configuration assumes a 24 MHz reference
* clock.
*/
writel(0x90, tcphy->base + XCVR_DIAG_LANE_FCM_EN_MGN(i));
writel(0x960, tcphy->base + TX_RCVDET_EN_TMR(i));
writel(0x30, tcphy->base + TX_RCVDET_ST_TMR(i));
}
rdata = readl(tcphy->base + CMN_DIAG_HSCLK_SEL);
rdata &= ~CLK_PLL_MASK;
rdata |= CLK_PLL_CONFIG;
writel(rdata, tcphy->base + CMN_DIAG_HSCLK_SEL);
}
static void tcphy_cfg_usb3_pll(struct rockchip_typec_phy *tcphy)
{
u32 i;
/* load the configuration of PLL0 */
for (i = 0; i < ARRAY_SIZE(usb3_pll_cfg); i++)
writel(usb3_pll_cfg[i].value,
tcphy->base + usb3_pll_cfg[i].addr);
}
static void tcphy_cfg_dp_pll(struct rockchip_typec_phy *tcphy)
{
u32 i;
/* set the default mode to RBR */
writel(DP_PLL_CLOCK_ENABLE | DP_PLL_ENABLE | DP_PLL_DATA_RATE_RBR,
tcphy->base + DP_CLK_CTL);
/* load the configuration of PLL1 */
for (i = 0; i < ARRAY_SIZE(dp_pll_cfg); i++)
writel(dp_pll_cfg[i].value, tcphy->base + dp_pll_cfg[i].addr);
}
static void tcphy_tx_usb3_cfg_lane(struct rockchip_typec_phy *tcphy, u32 lane)
{
writel(0x7799, tcphy->base + TX_PSC_A0(lane));
writel(0x7798, tcphy->base + TX_PSC_A1(lane));
writel(0x5098, tcphy->base + TX_PSC_A2(lane));
writel(0x5098, tcphy->base + TX_PSC_A3(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_000(lane));
writel(0xbf, tcphy->base + XCVR_DIAG_BIDI_CTRL(lane));
}
static void tcphy_rx_usb3_cfg_lane(struct rockchip_typec_phy *tcphy, u32 lane)
{
writel(0xa6fd, tcphy->base + RX_PSC_A0(lane));
writel(0xa6fd, tcphy->base + RX_PSC_A1(lane));
writel(0xa410, tcphy->base + RX_PSC_A2(lane));
writel(0x2410, tcphy->base + RX_PSC_A3(lane));
writel(0x23ff, tcphy->base + RX_PSC_CAL(lane));
writel(0x13, tcphy->base + RX_SIGDET_HL_FILT_TMR(lane));
writel(0x03e7, tcphy->base + RX_REE_CTRL_DATA_MASK(lane));
writel(0x1004, tcphy->base + RX_DIAG_SIGDET_TUNE(lane));
writel(0x2010, tcphy->base + RX_PSC_RDY(lane));
writel(0xfb, tcphy->base + XCVR_DIAG_BIDI_CTRL(lane));
}
static void tcphy_dp_cfg_lane(struct rockchip_typec_phy *tcphy, u32 lane)
{
u16 rdata;
writel(0xbefc, tcphy->base + XCVR_PSM_RCTRL(lane));
writel(0x6799, tcphy->base + TX_PSC_A0(lane));
writel(0x6798, tcphy->base + TX_PSC_A1(lane));
writel(0x98, tcphy->base + TX_PSC_A2(lane));
writel(0x98, tcphy->base + TX_PSC_A3(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_000(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_001(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_010(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_011(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_100(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_101(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_110(lane));
writel(0, tcphy->base + TX_TXCC_MGNFS_MULT_111(lane));
writel(0, tcphy->base + TX_TXCC_CPOST_MULT_10(lane));
writel(0, tcphy->base + TX_TXCC_CPOST_MULT_01(lane));
writel(0, tcphy->base + TX_TXCC_CPOST_MULT_00(lane));
writel(0, tcphy->base + TX_TXCC_CPOST_MULT_11(lane));
writel(0x128, tcphy->base + TX_TXCC_CAL_SCLR_MULT(lane));
writel(0x400, tcphy->base + TX_DIAG_TX_DRV(lane));
rdata = readl(tcphy->base + XCVR_DIAG_PLLDRC_CTRL(lane));
rdata = (rdata & 0x8fff) | 0x6000;
writel(rdata, tcphy->base + XCVR_DIAG_PLLDRC_CTRL(lane));
}
static inline int property_enable(struct rockchip_typec_phy *tcphy,
const struct usb3phy_reg *reg, bool en)
{
u32 mask = 1 << reg->write_enable;
u32 val = en << reg->enable_bit;
return regmap_write(tcphy->grf_regs, reg->offset, val | mask);
}
static void tcphy_dp_aux_set_flip(struct rockchip_typec_phy *tcphy)
{
u16 tx_ana_ctrl_reg_1;
/*
* Select the polarity of the xcvr:
* 1, Reverses the polarity (If TYPEC, Pulls ups aux_p and pull
* down aux_m)
* 0, Normal polarity (if TYPEC, pulls up aux_m and pulls down
* aux_p)
*/
tx_ana_ctrl_reg_1 = readl(tcphy->base + TX_ANA_CTRL_REG_1);
if (!tcphy->flip)
tx_ana_ctrl_reg_1 |= AUXDA_POLARITY;
else
tx_ana_ctrl_reg_1 &= ~AUXDA_POLARITY;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
}
static void tcphy_dp_aux_calibration(struct rockchip_typec_phy *tcphy)
{
u16 val;
u16 tx_ana_ctrl_reg_1;
u16 tx_ana_ctrl_reg_2;
s32 pu_calib_code, pd_calib_code;
s32 pu_adj, pd_adj;
u16 calib;
/*
* Calculate calibration code as per docs: use an average of the
* pull down and pull up. Then add in adjustments.
*/
val = readl(tcphy->base + CMN_TXPUCAL_CTRL);
pu_calib_code = CMN_CALIB_CODE_POS(val);
val = readl(tcphy->base + CMN_TXPDCAL_CTRL);
pd_calib_code = CMN_CALIB_CODE_POS(val);
val = readl(tcphy->base + CMN_TXPU_ADJ_CTRL);
pu_adj = CMN_CALIB_CODE(val);
val = readl(tcphy->base + CMN_TXPD_ADJ_CTRL);
pd_adj = CMN_CALIB_CODE(val);
calib = (pu_calib_code + pd_calib_code) / 2 + pu_adj + pd_adj;
/* disable txda_cal_latch_en for rewrite the calibration values */
tx_ana_ctrl_reg_1 = readl(tcphy->base + TX_ANA_CTRL_REG_1);
tx_ana_ctrl_reg_1 &= ~TXDA_CAL_LATCH_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
/* write the calibration, then delay 10 ms as sample in docs */
val = readl(tcphy->base + TX_DIG_CTRL_REG_2);
val &= ~(TX_RESCAL_CODE_MASK << TX_RESCAL_CODE_OFFSET);
val |= calib << TX_RESCAL_CODE_OFFSET;
writel(val, tcphy->base + TX_DIG_CTRL_REG_2);
usleep_range(10000, 10050);
/*
* Enable signal for latch that sample and holds calibration values.
* Activate this signal for 1 clock cycle to sample new calibration
* values.
*/
tx_ana_ctrl_reg_1 |= TXDA_CAL_LATCH_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
usleep_range(150, 200);
/* set TX Voltage Level and TX Deemphasis to 0 */
writel(0, tcphy->base + PHY_DP_TX_CTL);
/* re-enable decap */
tx_ana_ctrl_reg_2 = XCVR_DECAP_EN;
writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2);
udelay(1);
tx_ana_ctrl_reg_2 |= XCVR_DECAP_EN_DEL;
writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2);
writel(0, tcphy->base + TX_ANA_CTRL_REG_3);
tx_ana_ctrl_reg_1 |= TXDA_UPHY_SUPPLY_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
udelay(1);
tx_ana_ctrl_reg_1 |= TXDA_UPHY_SUPPLY_EN_DEL;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
writel(0, tcphy->base + TX_ANA_CTRL_REG_5);
/*
* Programs txda_drv_ldo_prog[15:0], Sets driver LDO
* voltage 16'h1001 for DP-AUX-TX and RX
*/
writel(0x1001, tcphy->base + TX_ANA_CTRL_REG_4);
/* re-enables Bandgap reference for LDO */
tx_ana_ctrl_reg_1 |= TXDA_DRV_LDO_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
udelay(5);
tx_ana_ctrl_reg_1 |= TXDA_BGREF_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
/*
* re-enables the transmitter pre-driver, driver data selection MUX,
* and receiver detect circuits.
*/
tx_ana_ctrl_reg_2 |= TXDA_DRV_PREDRV_EN;
writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2);
udelay(1);
tx_ana_ctrl_reg_2 |= TXDA_DRV_PREDRV_EN_DEL;
writel(tx_ana_ctrl_reg_2, tcphy->base + TX_ANA_CTRL_REG_2);
/*
* Do all the undocumented magic:
* - Turn on TXDA_DP_AUX_EN, whatever that is, even though sample
* never shows this going on.
* - Turn on TXDA_DECAP_EN (and TXDA_DECAP_EN_DEL) even though
* docs say for aux it's always 0.
* - Turn off the LDO and BGREF, which we just spent time turning
* on above (???).
*
* Without this magic, things seem worse.
*/
tx_ana_ctrl_reg_1 |= TXDA_DP_AUX_EN;
tx_ana_ctrl_reg_1 |= TXDA_DECAP_EN;
tx_ana_ctrl_reg_1 &= ~TXDA_DRV_LDO_EN;
tx_ana_ctrl_reg_1 &= ~TXDA_BGREF_EN;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
udelay(1);
tx_ana_ctrl_reg_1 |= TXDA_DECAP_EN_DEL;
writel(tx_ana_ctrl_reg_1, tcphy->base + TX_ANA_CTRL_REG_1);
/*
* Undo the work we did to set the LDO voltage.
* This doesn't seem to help nor hurt, but it kinda goes with the
* undocumented magic above.
*/
writel(0, tcphy->base + TX_ANA_CTRL_REG_4);
/* Don't set voltage swing to 400 mV peak to peak (differential) */
writel(0, tcphy->base + TXDA_COEFF_CALC_CTRL);
/* Init TXDA_CYA_AUXDA_CYA for unknown magic reasons */
writel(0, tcphy->base + TXDA_CYA_AUXDA_CYA);
/*
* More undocumented magic, presumably the goal of which is to
* make the "auxda_source_aux_oen" be ignored and instead to decide
* about "high impedance state" based on what software puts in the
* register TXDA_COEFF_CALC_CTRL (see TX_HIGH_Z). Since we only
* program that register once and we don't set the bit TX_HIGH_Z,
* presumably the goal here is that we should never put the analog
* driver in high impedance state.
*/
val = readl(tcphy->base + TX_DIG_CTRL_REG_2);
val |= TX_HIGH_Z_TM_EN;
writel(val, tcphy->base + TX_DIG_CTRL_REG_2);
}
static int tcphy_phy_init(struct rockchip_typec_phy *tcphy, u8 mode)
{
const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs;
int ret, i;
u32 val;
ret = clk_prepare_enable(tcphy->clk_core);
if (ret) {
dev_err(tcphy->dev, "Failed to prepare_enable core clock\n");
return ret;
}
ret = clk_prepare_enable(tcphy->clk_ref);
if (ret) {
dev_err(tcphy->dev, "Failed to prepare_enable ref clock\n");
goto err_clk_core;
}
reset_control_deassert(tcphy->tcphy_rst);
property_enable(tcphy, &cfg->typec_conn_dir, tcphy->flip);
tcphy_dp_aux_set_flip(tcphy);
tcphy_cfg_24m(tcphy);
if (mode == MODE_DFP_DP) {
tcphy_cfg_dp_pll(tcphy);
for (i = 0; i < 4; i++)
tcphy_dp_cfg_lane(tcphy, i);
writel(PIN_ASSIGN_C_E, tcphy->base + PMA_LANE_CFG);
} else {
tcphy_cfg_usb3_pll(tcphy);
tcphy_cfg_dp_pll(tcphy);
if (tcphy->flip) {
tcphy_tx_usb3_cfg_lane(tcphy, 3);
tcphy_rx_usb3_cfg_lane(tcphy, 2);
tcphy_dp_cfg_lane(tcphy, 0);
tcphy_dp_cfg_lane(tcphy, 1);
} else {
tcphy_tx_usb3_cfg_lane(tcphy, 0);
tcphy_rx_usb3_cfg_lane(tcphy, 1);
tcphy_dp_cfg_lane(tcphy, 2);
tcphy_dp_cfg_lane(tcphy, 3);
}
writel(PIN_ASSIGN_D_F, tcphy->base + PMA_LANE_CFG);
}
writel(DP_MODE_ENTER_A2, tcphy->base + DP_MODE_CTL);
reset_control_deassert(tcphy->uphy_rst);
ret = readx_poll_timeout(readl, tcphy->base + PMA_CMN_CTRL1,
val, val & CMN_READY, 10,
PHY_MODE_SET_TIMEOUT);
if (ret < 0) {
dev_err(tcphy->dev, "wait pma ready timeout\n");
ret = -ETIMEDOUT;
goto err_wait_pma;
}
reset_control_deassert(tcphy->pipe_rst);
return 0;
err_wait_pma:
reset_control_assert(tcphy->uphy_rst);
reset_control_assert(tcphy->tcphy_rst);
clk_disable_unprepare(tcphy->clk_ref);
err_clk_core:
clk_disable_unprepare(tcphy->clk_core);
return ret;
}
static void tcphy_phy_deinit(struct rockchip_typec_phy *tcphy)
{
reset_control_assert(tcphy->tcphy_rst);
reset_control_assert(tcphy->uphy_rst);
reset_control_assert(tcphy->pipe_rst);
clk_disable_unprepare(tcphy->clk_core);
clk_disable_unprepare(tcphy->clk_ref);
}
static int tcphy_get_mode(struct rockchip_typec_phy *tcphy)
{
struct extcon_dev *edev = tcphy->extcon;
union extcon_property_value property;
unsigned int id;
bool ufp, dp;
u8 mode;
int ret;
if (!edev)
return MODE_DFP_USB;
ufp = extcon_get_state(edev, EXTCON_USB);
dp = extcon_get_state(edev, EXTCON_DISP_DP);
mode = MODE_DFP_USB;
id = EXTCON_USB_HOST;
if (ufp) {
mode = MODE_UFP_USB;
id = EXTCON_USB;
} else if (dp) {
mode = MODE_DFP_DP;
id = EXTCON_DISP_DP;
ret = extcon_get_property(edev, id, EXTCON_PROP_USB_SS,
&property);
if (ret) {
dev_err(tcphy->dev, "get superspeed property failed\n");
return ret;
}
if (property.intval)
mode |= MODE_DFP_USB;
}
ret = extcon_get_property(edev, id, EXTCON_PROP_USB_TYPEC_POLARITY,
&property);
if (ret) {
dev_err(tcphy->dev, "get polarity property failed\n");
return ret;
}
tcphy->flip = property.intval ? 1 : 0;
return mode;
}
static int tcphy_cfg_usb3_to_usb2_only(struct rockchip_typec_phy *tcphy,
bool value)
{
const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs;
property_enable(tcphy, &cfg->usb3tousb2_en, value);
property_enable(tcphy, &cfg->usb3_host_disable, value);
property_enable(tcphy, &cfg->usb3_host_port, !value);
return 0;
}
static int rockchip_usb3_phy_power_on(struct phy *phy)
{
struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy);
const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs;
const struct usb3phy_reg *reg = &cfg->pipe_status;
int timeout, new_mode, ret = 0;
u32 val;
mutex_lock(&tcphy->lock);
new_mode = tcphy_get_mode(tcphy);
if (new_mode < 0) {
ret = new_mode;
goto unlock_ret;
}
/* DP-only mode; fall back to USB2 */
if (!(new_mode & (MODE_DFP_USB | MODE_UFP_USB))) {
tcphy_cfg_usb3_to_usb2_only(tcphy, true);
goto unlock_ret;
}
if (tcphy->mode == new_mode)
goto unlock_ret;
if (tcphy->mode == MODE_DISCONNECT) {
ret = tcphy_phy_init(tcphy, new_mode);
if (ret)
goto unlock_ret;
}
/* wait TCPHY for pipe ready */
for (timeout = 0; timeout < 100; timeout++) {
regmap_read(tcphy->grf_regs, reg->offset, &val);
if (!(val & BIT(reg->enable_bit))) {
tcphy->mode |= new_mode & (MODE_DFP_USB | MODE_UFP_USB);
/* enable usb3 host */
tcphy_cfg_usb3_to_usb2_only(tcphy, false);
goto unlock_ret;
}
usleep_range(10, 20);
}
if (tcphy->mode == MODE_DISCONNECT)
tcphy_phy_deinit(tcphy);
ret = -ETIMEDOUT;
unlock_ret:
mutex_unlock(&tcphy->lock);
return ret;
}
static int rockchip_usb3_phy_power_off(struct phy *phy)
{
struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy);
mutex_lock(&tcphy->lock);
tcphy_cfg_usb3_to_usb2_only(tcphy, false);
if (tcphy->mode == MODE_DISCONNECT)
goto unlock;
tcphy->mode &= ~(MODE_UFP_USB | MODE_DFP_USB);
if (tcphy->mode == MODE_DISCONNECT)
tcphy_phy_deinit(tcphy);
unlock:
mutex_unlock(&tcphy->lock);
return 0;
}
static const struct phy_ops rockchip_usb3_phy_ops = {
.power_on = rockchip_usb3_phy_power_on,
.power_off = rockchip_usb3_phy_power_off,
.owner = THIS_MODULE,
};
static int rockchip_dp_phy_power_on(struct phy *phy)
{
struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy);
const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs;
int new_mode, ret = 0;
u32 val;
mutex_lock(&tcphy->lock);
new_mode = tcphy_get_mode(tcphy);
if (new_mode < 0) {
ret = new_mode;
goto unlock_ret;
}
if (!(new_mode & MODE_DFP_DP)) {
ret = -ENODEV;
goto unlock_ret;
}
if (tcphy->mode == new_mode)
goto unlock_ret;
/*
* If the PHY has been power on, but the mode is not DP only mode,
* re-init the PHY for setting all of 4 lanes to DP.
*/
if (new_mode == MODE_DFP_DP && tcphy->mode != MODE_DISCONNECT) {
tcphy_phy_deinit(tcphy);
ret = tcphy_phy_init(tcphy, new_mode);
} else if (tcphy->mode == MODE_DISCONNECT) {
ret = tcphy_phy_init(tcphy, new_mode);
}
if (ret)
goto unlock_ret;
property_enable(tcphy, &cfg->uphy_dp_sel, 1);
ret = readx_poll_timeout(readl, tcphy->base + DP_MODE_CTL,
val, val & DP_MODE_A2, 1000,
PHY_MODE_SET_TIMEOUT);
if (ret < 0) {
dev_err(tcphy->dev, "failed to wait TCPHY enter A2\n");
goto power_on_finish;
}
tcphy_dp_aux_calibration(tcphy);
writel(DP_MODE_ENTER_A0, tcphy->base + DP_MODE_CTL);
ret = readx_poll_timeout(readl, tcphy->base + DP_MODE_CTL,
val, val & DP_MODE_A0, 1000,
PHY_MODE_SET_TIMEOUT);
if (ret < 0) {
writel(DP_MODE_ENTER_A2, tcphy->base + DP_MODE_CTL);
dev_err(tcphy->dev, "failed to wait TCPHY enter A0\n");
goto power_on_finish;
}
tcphy->mode |= MODE_DFP_DP;
power_on_finish:
if (tcphy->mode == MODE_DISCONNECT)
tcphy_phy_deinit(tcphy);
unlock_ret:
mutex_unlock(&tcphy->lock);
return ret;
}
static int rockchip_dp_phy_power_off(struct phy *phy)
{
struct rockchip_typec_phy *tcphy = phy_get_drvdata(phy);
mutex_lock(&tcphy->lock);
if (tcphy->mode == MODE_DISCONNECT)
goto unlock;
tcphy->mode &= ~MODE_DFP_DP;
writel(DP_MODE_ENTER_A2, tcphy->base + DP_MODE_CTL);
if (tcphy->mode == MODE_DISCONNECT)
tcphy_phy_deinit(tcphy);
unlock:
mutex_unlock(&tcphy->lock);
return 0;
}
static const struct phy_ops rockchip_dp_phy_ops = {
.power_on = rockchip_dp_phy_power_on,
.power_off = rockchip_dp_phy_power_off,
.owner = THIS_MODULE,
};
static int tcphy_parse_dt(struct rockchip_typec_phy *tcphy,
struct device *dev)
{
tcphy->grf_regs = syscon_regmap_lookup_by_phandle(dev->of_node,
"rockchip,grf");
if (IS_ERR(tcphy->grf_regs)) {
dev_err(dev, "could not find grf dt node\n");
return PTR_ERR(tcphy->grf_regs);
}
tcphy->clk_core = devm_clk_get(dev, "tcpdcore");
if (IS_ERR(tcphy->clk_core)) {
dev_err(dev, "could not get uphy core clock\n");
return PTR_ERR(tcphy->clk_core);
}
tcphy->clk_ref = devm_clk_get(dev, "tcpdphy-ref");
if (IS_ERR(tcphy->clk_ref)) {
dev_err(dev, "could not get uphy ref clock\n");
return PTR_ERR(tcphy->clk_ref);
}
tcphy->uphy_rst = devm_reset_control_get(dev, "uphy");
if (IS_ERR(tcphy->uphy_rst)) {
dev_err(dev, "no uphy_rst reset control found\n");
return PTR_ERR(tcphy->uphy_rst);
}
tcphy->pipe_rst = devm_reset_control_get(dev, "uphy-pipe");
if (IS_ERR(tcphy->pipe_rst)) {
dev_err(dev, "no pipe_rst reset control found\n");
return PTR_ERR(tcphy->pipe_rst);
}
tcphy->tcphy_rst = devm_reset_control_get(dev, "uphy-tcphy");
if (IS_ERR(tcphy->tcphy_rst)) {
dev_err(dev, "no tcphy_rst reset control found\n");
return PTR_ERR(tcphy->tcphy_rst);
}
return 0;
}
static void typec_phy_pre_init(struct rockchip_typec_phy *tcphy)
{
const struct rockchip_usb3phy_port_cfg *cfg = tcphy->port_cfgs;
reset_control_assert(tcphy->tcphy_rst);
reset_control_assert(tcphy->uphy_rst);
reset_control_assert(tcphy->pipe_rst);
/* select external psm clock */
property_enable(tcphy, &cfg->external_psm, 1);
property_enable(tcphy, &cfg->usb3tousb2_en, 0);
tcphy->mode = MODE_DISCONNECT;
}
static int rockchip_typec_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct device_node *child_np;
struct rockchip_typec_phy *tcphy;
struct phy_provider *phy_provider;
struct resource *res;
const struct rockchip_usb3phy_port_cfg *phy_cfgs;
const struct of_device_id *match;
int index, ret;
tcphy = devm_kzalloc(dev, sizeof(*tcphy), GFP_KERNEL);
if (!tcphy)
return -ENOMEM;
match = of_match_device(dev->driver->of_match_table, dev);
if (!match || !match->data) {
dev_err(dev, "phy configs are not assigned!\n");
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tcphy->base = devm_ioremap_resource(dev, res);
if (IS_ERR(tcphy->base))
return PTR_ERR(tcphy->base);
phy_cfgs = match->data;
/* find out a proper config which can be matched with dt. */
index = 0;
while (phy_cfgs[index].reg) {
if (phy_cfgs[index].reg == res->start) {
tcphy->port_cfgs = &phy_cfgs[index];
break;
}
++index;
}
if (!tcphy->port_cfgs) {
dev_err(dev, "no phy-config can be matched with %s node\n",
np->name);
return -EINVAL;
}
ret = tcphy_parse_dt(tcphy, dev);
if (ret)
return ret;
tcphy->dev = dev;
platform_set_drvdata(pdev, tcphy);
mutex_init(&tcphy->lock);
typec_phy_pre_init(tcphy);
tcphy->extcon = extcon_get_edev_by_phandle(dev, 0);
if (IS_ERR(tcphy->extcon)) {
if (PTR_ERR(tcphy->extcon) == -ENODEV) {
tcphy->extcon = NULL;
} else {
if (PTR_ERR(tcphy->extcon) != -EPROBE_DEFER)
dev_err(dev, "Invalid or missing extcon\n");
return PTR_ERR(tcphy->extcon);
}
}
pm_runtime_enable(dev);
for_each_available_child_of_node(np, child_np) {
struct phy *phy;
if (!of_node_cmp(child_np->name, "dp-port"))
phy = devm_phy_create(dev, child_np,
&rockchip_dp_phy_ops);
else if (!of_node_cmp(child_np->name, "usb3-port"))
phy = devm_phy_create(dev, child_np,
&rockchip_usb3_phy_ops);
else
continue;
if (IS_ERR(phy)) {
dev_err(dev, "failed to create phy: %s\n",
child_np->name);
pm_runtime_disable(dev);
return PTR_ERR(phy);
}
phy_set_drvdata(phy, tcphy);
}
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
dev_err(dev, "Failed to register phy provider\n");
pm_runtime_disable(dev);
return PTR_ERR(phy_provider);
}
return 0;
}
static int rockchip_typec_phy_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct of_device_id rockchip_typec_phy_dt_ids[] = {
{
.compatible = "rockchip,rk3399-typec-phy",
.data = &rk3399_usb3phy_port_cfgs
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rockchip_typec_phy_dt_ids);
static struct platform_driver rockchip_typec_phy_driver = {
.probe = rockchip_typec_phy_probe,
.remove = rockchip_typec_phy_remove,
.driver = {
.name = "rockchip-typec-phy",
.of_match_table = rockchip_typec_phy_dt_ids,
},
};
module_platform_driver(rockchip_typec_phy_driver);
MODULE_AUTHOR("Chris Zhong <zyw@rock-chips.com>");
MODULE_AUTHOR("Kever Yang <kever.yang@rock-chips.com>");
MODULE_DESCRIPTION("Rockchip USB TYPE-C PHY driver");
MODULE_LICENSE("GPL v2");