|  | /* | 
|  | * LZMA2 decoder | 
|  | * | 
|  | * Authors: Lasse Collin <lasse.collin@tukaani.org> | 
|  | *          Igor Pavlov <http://7-zip.org/> | 
|  | * | 
|  | * This file has been put into the public domain. | 
|  | * You can do whatever you want with this file. | 
|  | */ | 
|  |  | 
|  | #include "xz_private.h" | 
|  | #include "xz_lzma2.h" | 
|  |  | 
|  | /* | 
|  | * Range decoder initialization eats the first five bytes of each LZMA chunk. | 
|  | */ | 
|  | #define RC_INIT_BYTES 5 | 
|  |  | 
|  | /* | 
|  | * Minimum number of usable input buffer to safely decode one LZMA symbol. | 
|  | * The worst case is that we decode 22 bits using probabilities and 26 | 
|  | * direct bits. This may decode at maximum of 20 bytes of input. However, | 
|  | * lzma_main() does an extra normalization before returning, thus we | 
|  | * need to put 21 here. | 
|  | */ | 
|  | #define LZMA_IN_REQUIRED 21 | 
|  |  | 
|  | /* | 
|  | * Dictionary (history buffer) | 
|  | * | 
|  | * These are always true: | 
|  | *    start <= pos <= full <= end | 
|  | *    pos <= limit <= end | 
|  | * | 
|  | * In multi-call mode, also these are true: | 
|  | *    end == size | 
|  | *    size <= size_max | 
|  | *    allocated <= size | 
|  | * | 
|  | * Most of these variables are size_t to support single-call mode, | 
|  | * in which the dictionary variables address the actual output | 
|  | * buffer directly. | 
|  | */ | 
|  | struct dictionary { | 
|  | /* Beginning of the history buffer */ | 
|  | uint8_t *buf; | 
|  |  | 
|  | /* Old position in buf (before decoding more data) */ | 
|  | size_t start; | 
|  |  | 
|  | /* Position in buf */ | 
|  | size_t pos; | 
|  |  | 
|  | /* | 
|  | * How full dictionary is. This is used to detect corrupt input that | 
|  | * would read beyond the beginning of the uncompressed stream. | 
|  | */ | 
|  | size_t full; | 
|  |  | 
|  | /* Write limit; we don't write to buf[limit] or later bytes. */ | 
|  | size_t limit; | 
|  |  | 
|  | /* | 
|  | * End of the dictionary buffer. In multi-call mode, this is | 
|  | * the same as the dictionary size. In single-call mode, this | 
|  | * indicates the size of the output buffer. | 
|  | */ | 
|  | size_t end; | 
|  |  | 
|  | /* | 
|  | * Size of the dictionary as specified in Block Header. This is used | 
|  | * together with "full" to detect corrupt input that would make us | 
|  | * read beyond the beginning of the uncompressed stream. | 
|  | */ | 
|  | uint32_t size; | 
|  |  | 
|  | /* | 
|  | * Maximum allowed dictionary size in multi-call mode. | 
|  | * This is ignored in single-call mode. | 
|  | */ | 
|  | uint32_t size_max; | 
|  |  | 
|  | /* | 
|  | * Amount of memory currently allocated for the dictionary. | 
|  | * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC, | 
|  | * size_max is always the same as the allocated size.) | 
|  | */ | 
|  | uint32_t allocated; | 
|  |  | 
|  | /* Operation mode */ | 
|  | enum xz_mode mode; | 
|  | }; | 
|  |  | 
|  | /* Range decoder */ | 
|  | struct rc_dec { | 
|  | uint32_t range; | 
|  | uint32_t code; | 
|  |  | 
|  | /* | 
|  | * Number of initializing bytes remaining to be read | 
|  | * by rc_read_init(). | 
|  | */ | 
|  | uint32_t init_bytes_left; | 
|  |  | 
|  | /* | 
|  | * Buffer from which we read our input. It can be either | 
|  | * temp.buf or the caller-provided input buffer. | 
|  | */ | 
|  | const uint8_t *in; | 
|  | size_t in_pos; | 
|  | size_t in_limit; | 
|  | }; | 
|  |  | 
|  | /* Probabilities for a length decoder. */ | 
|  | struct lzma_len_dec { | 
|  | /* Probability of match length being at least 10 */ | 
|  | uint16_t choice; | 
|  |  | 
|  | /* Probability of match length being at least 18 */ | 
|  | uint16_t choice2; | 
|  |  | 
|  | /* Probabilities for match lengths 2-9 */ | 
|  | uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS]; | 
|  |  | 
|  | /* Probabilities for match lengths 10-17 */ | 
|  | uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS]; | 
|  |  | 
|  | /* Probabilities for match lengths 18-273 */ | 
|  | uint16_t high[LEN_HIGH_SYMBOLS]; | 
|  | }; | 
|  |  | 
|  | struct lzma_dec { | 
|  | /* Distances of latest four matches */ | 
|  | uint32_t rep0; | 
|  | uint32_t rep1; | 
|  | uint32_t rep2; | 
|  | uint32_t rep3; | 
|  |  | 
|  | /* Types of the most recently seen LZMA symbols */ | 
|  | enum lzma_state state; | 
|  |  | 
|  | /* | 
|  | * Length of a match. This is updated so that dict_repeat can | 
|  | * be called again to finish repeating the whole match. | 
|  | */ | 
|  | uint32_t len; | 
|  |  | 
|  | /* | 
|  | * LZMA properties or related bit masks (number of literal | 
|  | * context bits, a mask dervied from the number of literal | 
|  | * position bits, and a mask dervied from the number | 
|  | * position bits) | 
|  | */ | 
|  | uint32_t lc; | 
|  | uint32_t literal_pos_mask; /* (1 << lp) - 1 */ | 
|  | uint32_t pos_mask;         /* (1 << pb) - 1 */ | 
|  |  | 
|  | /* If 1, it's a match. Otherwise it's a single 8-bit literal. */ | 
|  | uint16_t is_match[STATES][POS_STATES_MAX]; | 
|  |  | 
|  | /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */ | 
|  | uint16_t is_rep[STATES]; | 
|  |  | 
|  | /* | 
|  | * If 0, distance of a repeated match is rep0. | 
|  | * Otherwise check is_rep1. | 
|  | */ | 
|  | uint16_t is_rep0[STATES]; | 
|  |  | 
|  | /* | 
|  | * If 0, distance of a repeated match is rep1. | 
|  | * Otherwise check is_rep2. | 
|  | */ | 
|  | uint16_t is_rep1[STATES]; | 
|  |  | 
|  | /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */ | 
|  | uint16_t is_rep2[STATES]; | 
|  |  | 
|  | /* | 
|  | * If 1, the repeated match has length of one byte. Otherwise | 
|  | * the length is decoded from rep_len_decoder. | 
|  | */ | 
|  | uint16_t is_rep0_long[STATES][POS_STATES_MAX]; | 
|  |  | 
|  | /* | 
|  | * Probability tree for the highest two bits of the match | 
|  | * distance. There is a separate probability tree for match | 
|  | * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273]. | 
|  | */ | 
|  | uint16_t dist_slot[DIST_STATES][DIST_SLOTS]; | 
|  |  | 
|  | /* | 
|  | * Probility trees for additional bits for match distance | 
|  | * when the distance is in the range [4, 127]. | 
|  | */ | 
|  | uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END]; | 
|  |  | 
|  | /* | 
|  | * Probability tree for the lowest four bits of a match | 
|  | * distance that is equal to or greater than 128. | 
|  | */ | 
|  | uint16_t dist_align[ALIGN_SIZE]; | 
|  |  | 
|  | /* Length of a normal match */ | 
|  | struct lzma_len_dec match_len_dec; | 
|  |  | 
|  | /* Length of a repeated match */ | 
|  | struct lzma_len_dec rep_len_dec; | 
|  |  | 
|  | /* Probabilities of literals */ | 
|  | uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE]; | 
|  | }; | 
|  |  | 
|  | struct lzma2_dec { | 
|  | /* Position in xz_dec_lzma2_run(). */ | 
|  | enum lzma2_seq { | 
|  | SEQ_CONTROL, | 
|  | SEQ_UNCOMPRESSED_1, | 
|  | SEQ_UNCOMPRESSED_2, | 
|  | SEQ_COMPRESSED_0, | 
|  | SEQ_COMPRESSED_1, | 
|  | SEQ_PROPERTIES, | 
|  | SEQ_LZMA_PREPARE, | 
|  | SEQ_LZMA_RUN, | 
|  | SEQ_COPY | 
|  | } sequence; | 
|  |  | 
|  | /* Next position after decoding the compressed size of the chunk. */ | 
|  | enum lzma2_seq next_sequence; | 
|  |  | 
|  | /* Uncompressed size of LZMA chunk (2 MiB at maximum) */ | 
|  | uint32_t uncompressed; | 
|  |  | 
|  | /* | 
|  | * Compressed size of LZMA chunk or compressed/uncompressed | 
|  | * size of uncompressed chunk (64 KiB at maximum) | 
|  | */ | 
|  | uint32_t compressed; | 
|  |  | 
|  | /* | 
|  | * True if dictionary reset is needed. This is false before | 
|  | * the first chunk (LZMA or uncompressed). | 
|  | */ | 
|  | bool need_dict_reset; | 
|  |  | 
|  | /* | 
|  | * True if new LZMA properties are needed. This is false | 
|  | * before the first LZMA chunk. | 
|  | */ | 
|  | bool need_props; | 
|  | }; | 
|  |  | 
|  | struct xz_dec_lzma2 { | 
|  | /* | 
|  | * The order below is important on x86 to reduce code size and | 
|  | * it shouldn't hurt on other platforms. Everything up to and | 
|  | * including lzma.pos_mask are in the first 128 bytes on x86-32, | 
|  | * which allows using smaller instructions to access those | 
|  | * variables. On x86-64, fewer variables fit into the first 128 | 
|  | * bytes, but this is still the best order without sacrificing | 
|  | * the readability by splitting the structures. | 
|  | */ | 
|  | struct rc_dec rc; | 
|  | struct dictionary dict; | 
|  | struct lzma2_dec lzma2; | 
|  | struct lzma_dec lzma; | 
|  |  | 
|  | /* | 
|  | * Temporary buffer which holds small number of input bytes between | 
|  | * decoder calls. See lzma2_lzma() for details. | 
|  | */ | 
|  | struct { | 
|  | uint32_t size; | 
|  | uint8_t buf[3 * LZMA_IN_REQUIRED]; | 
|  | } temp; | 
|  | }; | 
|  |  | 
|  | /************** | 
|  | * Dictionary * | 
|  | **************/ | 
|  |  | 
|  | /* | 
|  | * Reset the dictionary state. When in single-call mode, set up the beginning | 
|  | * of the dictionary to point to the actual output buffer. | 
|  | */ | 
|  | static void dict_reset(struct dictionary *dict, struct xz_buf *b) | 
|  | { | 
|  | if (DEC_IS_SINGLE(dict->mode)) { | 
|  | dict->buf = b->out + b->out_pos; | 
|  | dict->end = b->out_size - b->out_pos; | 
|  | } | 
|  |  | 
|  | dict->start = 0; | 
|  | dict->pos = 0; | 
|  | dict->limit = 0; | 
|  | dict->full = 0; | 
|  | } | 
|  |  | 
|  | /* Set dictionary write limit */ | 
|  | static void dict_limit(struct dictionary *dict, size_t out_max) | 
|  | { | 
|  | if (dict->end - dict->pos <= out_max) | 
|  | dict->limit = dict->end; | 
|  | else | 
|  | dict->limit = dict->pos + out_max; | 
|  | } | 
|  |  | 
|  | /* Return true if at least one byte can be written into the dictionary. */ | 
|  | static inline bool dict_has_space(const struct dictionary *dict) | 
|  | { | 
|  | return dict->pos < dict->limit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a byte from the dictionary at the given distance. The distance is | 
|  | * assumed to valid, or as a special case, zero when the dictionary is | 
|  | * still empty. This special case is needed for single-call decoding to | 
|  | * avoid writing a '\0' to the end of the destination buffer. | 
|  | */ | 
|  | static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist) | 
|  | { | 
|  | size_t offset = dict->pos - dist - 1; | 
|  |  | 
|  | if (dist >= dict->pos) | 
|  | offset += dict->end; | 
|  |  | 
|  | return dict->full > 0 ? dict->buf[offset] : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put one byte into the dictionary. It is assumed that there is space for it. | 
|  | */ | 
|  | static inline void dict_put(struct dictionary *dict, uint8_t byte) | 
|  | { | 
|  | dict->buf[dict->pos++] = byte; | 
|  |  | 
|  | if (dict->full < dict->pos) | 
|  | dict->full = dict->pos; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Repeat given number of bytes from the given distance. If the distance is | 
|  | * invalid, false is returned. On success, true is returned and *len is | 
|  | * updated to indicate how many bytes were left to be repeated. | 
|  | */ | 
|  | static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist) | 
|  | { | 
|  | size_t back; | 
|  | uint32_t left; | 
|  |  | 
|  | if (dist >= dict->full || dist >= dict->size) | 
|  | return false; | 
|  |  | 
|  | left = min_t(size_t, dict->limit - dict->pos, *len); | 
|  | *len -= left; | 
|  |  | 
|  | back = dict->pos - dist - 1; | 
|  | if (dist >= dict->pos) | 
|  | back += dict->end; | 
|  |  | 
|  | do { | 
|  | dict->buf[dict->pos++] = dict->buf[back++]; | 
|  | if (back == dict->end) | 
|  | back = 0; | 
|  | } while (--left > 0); | 
|  |  | 
|  | if (dict->full < dict->pos) | 
|  | dict->full = dict->pos; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Copy uncompressed data as is from input to dictionary and output buffers. */ | 
|  | static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b, | 
|  | uint32_t *left) | 
|  | { | 
|  | size_t copy_size; | 
|  |  | 
|  | while (*left > 0 && b->in_pos < b->in_size | 
|  | && b->out_pos < b->out_size) { | 
|  | copy_size = min(b->in_size - b->in_pos, | 
|  | b->out_size - b->out_pos); | 
|  | if (copy_size > dict->end - dict->pos) | 
|  | copy_size = dict->end - dict->pos; | 
|  | if (copy_size > *left) | 
|  | copy_size = *left; | 
|  |  | 
|  | *left -= copy_size; | 
|  |  | 
|  | memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size); | 
|  | dict->pos += copy_size; | 
|  |  | 
|  | if (dict->full < dict->pos) | 
|  | dict->full = dict->pos; | 
|  |  | 
|  | if (DEC_IS_MULTI(dict->mode)) { | 
|  | if (dict->pos == dict->end) | 
|  | dict->pos = 0; | 
|  |  | 
|  | memcpy(b->out + b->out_pos, b->in + b->in_pos, | 
|  | copy_size); | 
|  | } | 
|  |  | 
|  | dict->start = dict->pos; | 
|  |  | 
|  | b->out_pos += copy_size; | 
|  | b->in_pos += copy_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush pending data from dictionary to b->out. It is assumed that there is | 
|  | * enough space in b->out. This is guaranteed because caller uses dict_limit() | 
|  | * before decoding data into the dictionary. | 
|  | */ | 
|  | static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b) | 
|  | { | 
|  | size_t copy_size = dict->pos - dict->start; | 
|  |  | 
|  | if (DEC_IS_MULTI(dict->mode)) { | 
|  | if (dict->pos == dict->end) | 
|  | dict->pos = 0; | 
|  |  | 
|  | memcpy(b->out + b->out_pos, dict->buf + dict->start, | 
|  | copy_size); | 
|  | } | 
|  |  | 
|  | dict->start = dict->pos; | 
|  | b->out_pos += copy_size; | 
|  | return copy_size; | 
|  | } | 
|  |  | 
|  | /***************** | 
|  | * Range decoder * | 
|  | *****************/ | 
|  |  | 
|  | /* Reset the range decoder. */ | 
|  | static void rc_reset(struct rc_dec *rc) | 
|  | { | 
|  | rc->range = (uint32_t)-1; | 
|  | rc->code = 0; | 
|  | rc->init_bytes_left = RC_INIT_BYTES; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the first five initial bytes into rc->code if they haven't been | 
|  | * read already. (Yes, the first byte gets completely ignored.) | 
|  | */ | 
|  | static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b) | 
|  | { | 
|  | while (rc->init_bytes_left > 0) { | 
|  | if (b->in_pos == b->in_size) | 
|  | return false; | 
|  |  | 
|  | rc->code = (rc->code << 8) + b->in[b->in_pos++]; | 
|  | --rc->init_bytes_left; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return true if there may not be enough input for the next decoding loop. */ | 
|  | static inline bool rc_limit_exceeded(const struct rc_dec *rc) | 
|  | { | 
|  | return rc->in_pos > rc->in_limit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if it is possible (from point of view of range decoder) that | 
|  | * we have reached the end of the LZMA chunk. | 
|  | */ | 
|  | static inline bool rc_is_finished(const struct rc_dec *rc) | 
|  | { | 
|  | return rc->code == 0; | 
|  | } | 
|  |  | 
|  | /* Read the next input byte if needed. */ | 
|  | static __always_inline void rc_normalize(struct rc_dec *rc) | 
|  | { | 
|  | if (rc->range < RC_TOP_VALUE) { | 
|  | rc->range <<= RC_SHIFT_BITS; | 
|  | rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode one bit. In some versions, this function has been splitted in three | 
|  | * functions so that the compiler is supposed to be able to more easily avoid | 
|  | * an extra branch. In this particular version of the LZMA decoder, this | 
|  | * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3 | 
|  | * on x86). Using a non-splitted version results in nicer looking code too. | 
|  | * | 
|  | * NOTE: This must return an int. Do not make it return a bool or the speed | 
|  | * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care, | 
|  | * and it generates 10-20 % faster code than GCC 3.x from this file anyway.) | 
|  | */ | 
|  | static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob) | 
|  | { | 
|  | uint32_t bound; | 
|  | int bit; | 
|  |  | 
|  | rc_normalize(rc); | 
|  | bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob; | 
|  | if (rc->code < bound) { | 
|  | rc->range = bound; | 
|  | *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS; | 
|  | bit = 0; | 
|  | } else { | 
|  | rc->range -= bound; | 
|  | rc->code -= bound; | 
|  | *prob -= *prob >> RC_MOVE_BITS; | 
|  | bit = 1; | 
|  | } | 
|  |  | 
|  | return bit; | 
|  | } | 
|  |  | 
|  | /* Decode a bittree starting from the most significant bit. */ | 
|  | static __always_inline uint32_t rc_bittree(struct rc_dec *rc, | 
|  | uint16_t *probs, uint32_t limit) | 
|  | { | 
|  | uint32_t symbol = 1; | 
|  |  | 
|  | do { | 
|  | if (rc_bit(rc, &probs[symbol])) | 
|  | symbol = (symbol << 1) + 1; | 
|  | else | 
|  | symbol <<= 1; | 
|  | } while (symbol < limit); | 
|  |  | 
|  | return symbol; | 
|  | } | 
|  |  | 
|  | /* Decode a bittree starting from the least significant bit. */ | 
|  | static __always_inline void rc_bittree_reverse(struct rc_dec *rc, | 
|  | uint16_t *probs, | 
|  | uint32_t *dest, uint32_t limit) | 
|  | { | 
|  | uint32_t symbol = 1; | 
|  | uint32_t i = 0; | 
|  |  | 
|  | do { | 
|  | if (rc_bit(rc, &probs[symbol])) { | 
|  | symbol = (symbol << 1) + 1; | 
|  | *dest += 1 << i; | 
|  | } else { | 
|  | symbol <<= 1; | 
|  | } | 
|  | } while (++i < limit); | 
|  | } | 
|  |  | 
|  | /* Decode direct bits (fixed fifty-fifty probability) */ | 
|  | static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit) | 
|  | { | 
|  | uint32_t mask; | 
|  |  | 
|  | do { | 
|  | rc_normalize(rc); | 
|  | rc->range >>= 1; | 
|  | rc->code -= rc->range; | 
|  | mask = (uint32_t)0 - (rc->code >> 31); | 
|  | rc->code += rc->range & mask; | 
|  | *dest = (*dest << 1) + (mask + 1); | 
|  | } while (--limit > 0); | 
|  | } | 
|  |  | 
|  | /******** | 
|  | * LZMA * | 
|  | ********/ | 
|  |  | 
|  | /* Get pointer to literal coder probability array. */ | 
|  | static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s) | 
|  | { | 
|  | uint32_t prev_byte = dict_get(&s->dict, 0); | 
|  | uint32_t low = prev_byte >> (8 - s->lzma.lc); | 
|  | uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc; | 
|  | return s->lzma.literal[low + high]; | 
|  | } | 
|  |  | 
|  | /* Decode a literal (one 8-bit byte) */ | 
|  | static void lzma_literal(struct xz_dec_lzma2 *s) | 
|  | { | 
|  | uint16_t *probs; | 
|  | uint32_t symbol; | 
|  | uint32_t match_byte; | 
|  | uint32_t match_bit; | 
|  | uint32_t offset; | 
|  | uint32_t i; | 
|  |  | 
|  | probs = lzma_literal_probs(s); | 
|  |  | 
|  | if (lzma_state_is_literal(s->lzma.state)) { | 
|  | symbol = rc_bittree(&s->rc, probs, 0x100); | 
|  | } else { | 
|  | symbol = 1; | 
|  | match_byte = dict_get(&s->dict, s->lzma.rep0) << 1; | 
|  | offset = 0x100; | 
|  |  | 
|  | do { | 
|  | match_bit = match_byte & offset; | 
|  | match_byte <<= 1; | 
|  | i = offset + match_bit + symbol; | 
|  |  | 
|  | if (rc_bit(&s->rc, &probs[i])) { | 
|  | symbol = (symbol << 1) + 1; | 
|  | offset &= match_bit; | 
|  | } else { | 
|  | symbol <<= 1; | 
|  | offset &= ~match_bit; | 
|  | } | 
|  | } while (symbol < 0x100); | 
|  | } | 
|  |  | 
|  | dict_put(&s->dict, (uint8_t)symbol); | 
|  | lzma_state_literal(&s->lzma.state); | 
|  | } | 
|  |  | 
|  | /* Decode the length of the match into s->lzma.len. */ | 
|  | static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l, | 
|  | uint32_t pos_state) | 
|  | { | 
|  | uint16_t *probs; | 
|  | uint32_t limit; | 
|  |  | 
|  | if (!rc_bit(&s->rc, &l->choice)) { | 
|  | probs = l->low[pos_state]; | 
|  | limit = LEN_LOW_SYMBOLS; | 
|  | s->lzma.len = MATCH_LEN_MIN; | 
|  | } else { | 
|  | if (!rc_bit(&s->rc, &l->choice2)) { | 
|  | probs = l->mid[pos_state]; | 
|  | limit = LEN_MID_SYMBOLS; | 
|  | s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; | 
|  | } else { | 
|  | probs = l->high; | 
|  | limit = LEN_HIGH_SYMBOLS; | 
|  | s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS | 
|  | + LEN_MID_SYMBOLS; | 
|  | } | 
|  | } | 
|  |  | 
|  | s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit; | 
|  | } | 
|  |  | 
|  | /* Decode a match. The distance will be stored in s->lzma.rep0. */ | 
|  | static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state) | 
|  | { | 
|  | uint16_t *probs; | 
|  | uint32_t dist_slot; | 
|  | uint32_t limit; | 
|  |  | 
|  | lzma_state_match(&s->lzma.state); | 
|  |  | 
|  | s->lzma.rep3 = s->lzma.rep2; | 
|  | s->lzma.rep2 = s->lzma.rep1; | 
|  | s->lzma.rep1 = s->lzma.rep0; | 
|  |  | 
|  | lzma_len(s, &s->lzma.match_len_dec, pos_state); | 
|  |  | 
|  | probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)]; | 
|  | dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS; | 
|  |  | 
|  | if (dist_slot < DIST_MODEL_START) { | 
|  | s->lzma.rep0 = dist_slot; | 
|  | } else { | 
|  | limit = (dist_slot >> 1) - 1; | 
|  | s->lzma.rep0 = 2 + (dist_slot & 1); | 
|  |  | 
|  | if (dist_slot < DIST_MODEL_END) { | 
|  | s->lzma.rep0 <<= limit; | 
|  | probs = s->lzma.dist_special + s->lzma.rep0 | 
|  | - dist_slot - 1; | 
|  | rc_bittree_reverse(&s->rc, probs, | 
|  | &s->lzma.rep0, limit); | 
|  | } else { | 
|  | rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS); | 
|  | s->lzma.rep0 <<= ALIGN_BITS; | 
|  | rc_bittree_reverse(&s->rc, s->lzma.dist_align, | 
|  | &s->lzma.rep0, ALIGN_BITS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode a repeated match. The distance is one of the four most recently | 
|  | * seen matches. The distance will be stored in s->lzma.rep0. | 
|  | */ | 
|  | static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) { | 
|  | if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[ | 
|  | s->lzma.state][pos_state])) { | 
|  | lzma_state_short_rep(&s->lzma.state); | 
|  | s->lzma.len = 1; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) { | 
|  | tmp = s->lzma.rep1; | 
|  | } else { | 
|  | if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) { | 
|  | tmp = s->lzma.rep2; | 
|  | } else { | 
|  | tmp = s->lzma.rep3; | 
|  | s->lzma.rep3 = s->lzma.rep2; | 
|  | } | 
|  |  | 
|  | s->lzma.rep2 = s->lzma.rep1; | 
|  | } | 
|  |  | 
|  | s->lzma.rep1 = s->lzma.rep0; | 
|  | s->lzma.rep0 = tmp; | 
|  | } | 
|  |  | 
|  | lzma_state_long_rep(&s->lzma.state); | 
|  | lzma_len(s, &s->lzma.rep_len_dec, pos_state); | 
|  | } | 
|  |  | 
|  | /* LZMA decoder core */ | 
|  | static bool lzma_main(struct xz_dec_lzma2 *s) | 
|  | { | 
|  | uint32_t pos_state; | 
|  |  | 
|  | /* | 
|  | * If the dictionary was reached during the previous call, try to | 
|  | * finish the possibly pending repeat in the dictionary. | 
|  | */ | 
|  | if (dict_has_space(&s->dict) && s->lzma.len > 0) | 
|  | dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0); | 
|  |  | 
|  | /* | 
|  | * Decode more LZMA symbols. One iteration may consume up to | 
|  | * LZMA_IN_REQUIRED - 1 bytes. | 
|  | */ | 
|  | while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) { | 
|  | pos_state = s->dict.pos & s->lzma.pos_mask; | 
|  |  | 
|  | if (!rc_bit(&s->rc, &s->lzma.is_match[ | 
|  | s->lzma.state][pos_state])) { | 
|  | lzma_literal(s); | 
|  | } else { | 
|  | if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state])) | 
|  | lzma_rep_match(s, pos_state); | 
|  | else | 
|  | lzma_match(s, pos_state); | 
|  |  | 
|  | if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Having the range decoder always normalized when we are outside | 
|  | * this function makes it easier to correctly handle end of the chunk. | 
|  | */ | 
|  | rc_normalize(&s->rc); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the LZMA decoder and range decoder state. Dictionary is nore reset | 
|  | * here, because LZMA state may be reset without resetting the dictionary. | 
|  | */ | 
|  | static void lzma_reset(struct xz_dec_lzma2 *s) | 
|  | { | 
|  | uint16_t *probs; | 
|  | size_t i; | 
|  |  | 
|  | s->lzma.state = STATE_LIT_LIT; | 
|  | s->lzma.rep0 = 0; | 
|  | s->lzma.rep1 = 0; | 
|  | s->lzma.rep2 = 0; | 
|  | s->lzma.rep3 = 0; | 
|  |  | 
|  | /* | 
|  | * All probabilities are initialized to the same value. This hack | 
|  | * makes the code smaller by avoiding a separate loop for each | 
|  | * probability array. | 
|  | * | 
|  | * This could be optimized so that only that part of literal | 
|  | * probabilities that are actually required. In the common case | 
|  | * we would write 12 KiB less. | 
|  | */ | 
|  | probs = s->lzma.is_match[0]; | 
|  | for (i = 0; i < PROBS_TOTAL; ++i) | 
|  | probs[i] = RC_BIT_MODEL_TOTAL / 2; | 
|  |  | 
|  | rc_reset(&s->rc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks | 
|  | * from the decoded lp and pb values. On success, the LZMA decoder state is | 
|  | * reset and true is returned. | 
|  | */ | 
|  | static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props) | 
|  | { | 
|  | if (props > (4 * 5 + 4) * 9 + 8) | 
|  | return false; | 
|  |  | 
|  | s->lzma.pos_mask = 0; | 
|  | while (props >= 9 * 5) { | 
|  | props -= 9 * 5; | 
|  | ++s->lzma.pos_mask; | 
|  | } | 
|  |  | 
|  | s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1; | 
|  |  | 
|  | s->lzma.literal_pos_mask = 0; | 
|  | while (props >= 9) { | 
|  | props -= 9; | 
|  | ++s->lzma.literal_pos_mask; | 
|  | } | 
|  |  | 
|  | s->lzma.lc = props; | 
|  |  | 
|  | if (s->lzma.lc + s->lzma.literal_pos_mask > 4) | 
|  | return false; | 
|  |  | 
|  | s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1; | 
|  |  | 
|  | lzma_reset(s); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /********* | 
|  | * LZMA2 * | 
|  | *********/ | 
|  |  | 
|  | /* | 
|  | * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't | 
|  | * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This | 
|  | * wrapper function takes care of making the LZMA decoder's assumption safe. | 
|  | * | 
|  | * As long as there is plenty of input left to be decoded in the current LZMA | 
|  | * chunk, we decode directly from the caller-supplied input buffer until | 
|  | * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into | 
|  | * s->temp.buf, which (hopefully) gets filled on the next call to this | 
|  | * function. We decode a few bytes from the temporary buffer so that we can | 
|  | * continue decoding from the caller-supplied input buffer again. | 
|  | */ | 
|  | static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b) | 
|  | { | 
|  | size_t in_avail; | 
|  | uint32_t tmp; | 
|  |  | 
|  | in_avail = b->in_size - b->in_pos; | 
|  | if (s->temp.size > 0 || s->lzma2.compressed == 0) { | 
|  | tmp = 2 * LZMA_IN_REQUIRED - s->temp.size; | 
|  | if (tmp > s->lzma2.compressed - s->temp.size) | 
|  | tmp = s->lzma2.compressed - s->temp.size; | 
|  | if (tmp > in_avail) | 
|  | tmp = in_avail; | 
|  |  | 
|  | memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp); | 
|  |  | 
|  | if (s->temp.size + tmp == s->lzma2.compressed) { | 
|  | memzero(s->temp.buf + s->temp.size + tmp, | 
|  | sizeof(s->temp.buf) | 
|  | - s->temp.size - tmp); | 
|  | s->rc.in_limit = s->temp.size + tmp; | 
|  | } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) { | 
|  | s->temp.size += tmp; | 
|  | b->in_pos += tmp; | 
|  | return true; | 
|  | } else { | 
|  | s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED; | 
|  | } | 
|  |  | 
|  | s->rc.in = s->temp.buf; | 
|  | s->rc.in_pos = 0; | 
|  |  | 
|  | if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp) | 
|  | return false; | 
|  |  | 
|  | s->lzma2.compressed -= s->rc.in_pos; | 
|  |  | 
|  | if (s->rc.in_pos < s->temp.size) { | 
|  | s->temp.size -= s->rc.in_pos; | 
|  | memmove(s->temp.buf, s->temp.buf + s->rc.in_pos, | 
|  | s->temp.size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | b->in_pos += s->rc.in_pos - s->temp.size; | 
|  | s->temp.size = 0; | 
|  | } | 
|  |  | 
|  | in_avail = b->in_size - b->in_pos; | 
|  | if (in_avail >= LZMA_IN_REQUIRED) { | 
|  | s->rc.in = b->in; | 
|  | s->rc.in_pos = b->in_pos; | 
|  |  | 
|  | if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED) | 
|  | s->rc.in_limit = b->in_pos + s->lzma2.compressed; | 
|  | else | 
|  | s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED; | 
|  |  | 
|  | if (!lzma_main(s)) | 
|  | return false; | 
|  |  | 
|  | in_avail = s->rc.in_pos - b->in_pos; | 
|  | if (in_avail > s->lzma2.compressed) | 
|  | return false; | 
|  |  | 
|  | s->lzma2.compressed -= in_avail; | 
|  | b->in_pos = s->rc.in_pos; | 
|  | } | 
|  |  | 
|  | in_avail = b->in_size - b->in_pos; | 
|  | if (in_avail < LZMA_IN_REQUIRED) { | 
|  | if (in_avail > s->lzma2.compressed) | 
|  | in_avail = s->lzma2.compressed; | 
|  |  | 
|  | memcpy(s->temp.buf, b->in + b->in_pos, in_avail); | 
|  | s->temp.size = in_avail; | 
|  | b->in_pos += in_avail; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take care of the LZMA2 control layer, and forward the job of actual LZMA | 
|  | * decoding or copying of uncompressed chunks to other functions. | 
|  | */ | 
|  | XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, | 
|  | struct xz_buf *b) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) { | 
|  | switch (s->lzma2.sequence) { | 
|  | case SEQ_CONTROL: | 
|  | /* | 
|  | * LZMA2 control byte | 
|  | * | 
|  | * Exact values: | 
|  | *   0x00   End marker | 
|  | *   0x01   Dictionary reset followed by | 
|  | *          an uncompressed chunk | 
|  | *   0x02   Uncompressed chunk (no dictionary reset) | 
|  | * | 
|  | * Highest three bits (s->control & 0xE0): | 
|  | *   0xE0   Dictionary reset, new properties and state | 
|  | *          reset, followed by LZMA compressed chunk | 
|  | *   0xC0   New properties and state reset, followed | 
|  | *          by LZMA compressed chunk (no dictionary | 
|  | *          reset) | 
|  | *   0xA0   State reset using old properties, | 
|  | *          followed by LZMA compressed chunk (no | 
|  | *          dictionary reset) | 
|  | *   0x80   LZMA chunk (no dictionary or state reset) | 
|  | * | 
|  | * For LZMA compressed chunks, the lowest five bits | 
|  | * (s->control & 1F) are the highest bits of the | 
|  | * uncompressed size (bits 16-20). | 
|  | * | 
|  | * A new LZMA2 stream must begin with a dictionary | 
|  | * reset. The first LZMA chunk must set new | 
|  | * properties and reset the LZMA state. | 
|  | * | 
|  | * Values that don't match anything described above | 
|  | * are invalid and we return XZ_DATA_ERROR. | 
|  | */ | 
|  | tmp = b->in[b->in_pos++]; | 
|  |  | 
|  | if (tmp == 0x00) | 
|  | return XZ_STREAM_END; | 
|  |  | 
|  | if (tmp >= 0xE0 || tmp == 0x01) { | 
|  | s->lzma2.need_props = true; | 
|  | s->lzma2.need_dict_reset = false; | 
|  | dict_reset(&s->dict, b); | 
|  | } else if (s->lzma2.need_dict_reset) { | 
|  | return XZ_DATA_ERROR; | 
|  | } | 
|  |  | 
|  | if (tmp >= 0x80) { | 
|  | s->lzma2.uncompressed = (tmp & 0x1F) << 16; | 
|  | s->lzma2.sequence = SEQ_UNCOMPRESSED_1; | 
|  |  | 
|  | if (tmp >= 0xC0) { | 
|  | /* | 
|  | * When there are new properties, | 
|  | * state reset is done at | 
|  | * SEQ_PROPERTIES. | 
|  | */ | 
|  | s->lzma2.need_props = false; | 
|  | s->lzma2.next_sequence | 
|  | = SEQ_PROPERTIES; | 
|  |  | 
|  | } else if (s->lzma2.need_props) { | 
|  | return XZ_DATA_ERROR; | 
|  |  | 
|  | } else { | 
|  | s->lzma2.next_sequence | 
|  | = SEQ_LZMA_PREPARE; | 
|  | if (tmp >= 0xA0) | 
|  | lzma_reset(s); | 
|  | } | 
|  | } else { | 
|  | if (tmp > 0x02) | 
|  | return XZ_DATA_ERROR; | 
|  |  | 
|  | s->lzma2.sequence = SEQ_COMPRESSED_0; | 
|  | s->lzma2.next_sequence = SEQ_COPY; | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case SEQ_UNCOMPRESSED_1: | 
|  | s->lzma2.uncompressed | 
|  | += (uint32_t)b->in[b->in_pos++] << 8; | 
|  | s->lzma2.sequence = SEQ_UNCOMPRESSED_2; | 
|  | break; | 
|  |  | 
|  | case SEQ_UNCOMPRESSED_2: | 
|  | s->lzma2.uncompressed | 
|  | += (uint32_t)b->in[b->in_pos++] + 1; | 
|  | s->lzma2.sequence = SEQ_COMPRESSED_0; | 
|  | break; | 
|  |  | 
|  | case SEQ_COMPRESSED_0: | 
|  | s->lzma2.compressed | 
|  | = (uint32_t)b->in[b->in_pos++] << 8; | 
|  | s->lzma2.sequence = SEQ_COMPRESSED_1; | 
|  | break; | 
|  |  | 
|  | case SEQ_COMPRESSED_1: | 
|  | s->lzma2.compressed | 
|  | += (uint32_t)b->in[b->in_pos++] + 1; | 
|  | s->lzma2.sequence = s->lzma2.next_sequence; | 
|  | break; | 
|  |  | 
|  | case SEQ_PROPERTIES: | 
|  | if (!lzma_props(s, b->in[b->in_pos++])) | 
|  | return XZ_DATA_ERROR; | 
|  |  | 
|  | s->lzma2.sequence = SEQ_LZMA_PREPARE; | 
|  |  | 
|  | case SEQ_LZMA_PREPARE: | 
|  | if (s->lzma2.compressed < RC_INIT_BYTES) | 
|  | return XZ_DATA_ERROR; | 
|  |  | 
|  | if (!rc_read_init(&s->rc, b)) | 
|  | return XZ_OK; | 
|  |  | 
|  | s->lzma2.compressed -= RC_INIT_BYTES; | 
|  | s->lzma2.sequence = SEQ_LZMA_RUN; | 
|  |  | 
|  | case SEQ_LZMA_RUN: | 
|  | /* | 
|  | * Set dictionary limit to indicate how much we want | 
|  | * to be encoded at maximum. Decode new data into the | 
|  | * dictionary. Flush the new data from dictionary to | 
|  | * b->out. Check if we finished decoding this chunk. | 
|  | * In case the dictionary got full but we didn't fill | 
|  | * the output buffer yet, we may run this loop | 
|  | * multiple times without changing s->lzma2.sequence. | 
|  | */ | 
|  | dict_limit(&s->dict, min_t(size_t, | 
|  | b->out_size - b->out_pos, | 
|  | s->lzma2.uncompressed)); | 
|  | if (!lzma2_lzma(s, b)) | 
|  | return XZ_DATA_ERROR; | 
|  |  | 
|  | s->lzma2.uncompressed -= dict_flush(&s->dict, b); | 
|  |  | 
|  | if (s->lzma2.uncompressed == 0) { | 
|  | if (s->lzma2.compressed > 0 || s->lzma.len > 0 | 
|  | || !rc_is_finished(&s->rc)) | 
|  | return XZ_DATA_ERROR; | 
|  |  | 
|  | rc_reset(&s->rc); | 
|  | s->lzma2.sequence = SEQ_CONTROL; | 
|  |  | 
|  | } else if (b->out_pos == b->out_size | 
|  | || (b->in_pos == b->in_size | 
|  | && s->temp.size | 
|  | < s->lzma2.compressed)) { | 
|  | return XZ_OK; | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case SEQ_COPY: | 
|  | dict_uncompressed(&s->dict, b, &s->lzma2.compressed); | 
|  | if (s->lzma2.compressed > 0) | 
|  | return XZ_OK; | 
|  |  | 
|  | s->lzma2.sequence = SEQ_CONTROL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return XZ_OK; | 
|  | } | 
|  |  | 
|  | XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode, | 
|  | uint32_t dict_max) | 
|  | { | 
|  | struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL); | 
|  | if (s == NULL) | 
|  | return NULL; | 
|  |  | 
|  | s->dict.mode = mode; | 
|  | s->dict.size_max = dict_max; | 
|  |  | 
|  | if (DEC_IS_PREALLOC(mode)) { | 
|  | s->dict.buf = vmalloc(dict_max); | 
|  | if (s->dict.buf == NULL) { | 
|  | kfree(s); | 
|  | return NULL; | 
|  | } | 
|  | } else if (DEC_IS_DYNALLOC(mode)) { | 
|  | s->dict.buf = NULL; | 
|  | s->dict.allocated = 0; | 
|  | } | 
|  |  | 
|  | return s; | 
|  | } | 
|  |  | 
|  | XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props) | 
|  | { | 
|  | /* This limits dictionary size to 3 GiB to keep parsing simpler. */ | 
|  | if (props > 39) | 
|  | return XZ_OPTIONS_ERROR; | 
|  |  | 
|  | s->dict.size = 2 + (props & 1); | 
|  | s->dict.size <<= (props >> 1) + 11; | 
|  |  | 
|  | if (DEC_IS_MULTI(s->dict.mode)) { | 
|  | if (s->dict.size > s->dict.size_max) | 
|  | return XZ_MEMLIMIT_ERROR; | 
|  |  | 
|  | s->dict.end = s->dict.size; | 
|  |  | 
|  | if (DEC_IS_DYNALLOC(s->dict.mode)) { | 
|  | if (s->dict.allocated < s->dict.size) { | 
|  | vfree(s->dict.buf); | 
|  | s->dict.buf = vmalloc(s->dict.size); | 
|  | if (s->dict.buf == NULL) { | 
|  | s->dict.allocated = 0; | 
|  | return XZ_MEM_ERROR; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | s->lzma.len = 0; | 
|  |  | 
|  | s->lzma2.sequence = SEQ_CONTROL; | 
|  | s->lzma2.need_dict_reset = true; | 
|  |  | 
|  | s->temp.size = 0; | 
|  |  | 
|  | return XZ_OK; | 
|  | } | 
|  |  | 
|  | XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s) | 
|  | { | 
|  | if (DEC_IS_MULTI(s->dict.mode)) | 
|  | vfree(s->dict.buf); | 
|  |  | 
|  | kfree(s); | 
|  | } |