| /* |
| * Persistent Memory Driver |
| * |
| * Copyright (c) 2014-2015, Intel Corporation. |
| * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>. |
| * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <asm/cacheflush.h> |
| #include <linux/blkdev.h> |
| #include <linux/hdreg.h> |
| #include <linux/init.h> |
| #include <linux/platform_device.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/badblocks.h> |
| #include <linux/memremap.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pfn_t.h> |
| #include <linux/slab.h> |
| #include <linux/pmem.h> |
| #include <linux/nd.h> |
| #include "pfn.h" |
| #include "nd.h" |
| |
| struct pmem_device { |
| /* One contiguous memory region per device */ |
| phys_addr_t phys_addr; |
| /* when non-zero this device is hosting a 'pfn' instance */ |
| phys_addr_t data_offset; |
| u64 pfn_flags; |
| void __pmem *virt_addr; |
| /* immutable base size of the namespace */ |
| size_t size; |
| /* trim size when namespace capacity has been section aligned */ |
| u32 pfn_pad; |
| struct badblocks bb; |
| }; |
| |
| static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset, |
| unsigned int len) |
| { |
| struct device *dev = pmem->bb.dev; |
| sector_t sector; |
| long cleared; |
| |
| sector = (offset - pmem->data_offset) / 512; |
| cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len); |
| |
| if (cleared > 0 && cleared / 512) { |
| dev_dbg(dev, "%s: %llx clear %ld sector%s\n", |
| __func__, (unsigned long long) sector, |
| cleared / 512, cleared / 512 > 1 ? "s" : ""); |
| badblocks_clear(&pmem->bb, sector, cleared / 512); |
| } |
| invalidate_pmem(pmem->virt_addr + offset, len); |
| } |
| |
| static int pmem_do_bvec(struct pmem_device *pmem, struct page *page, |
| unsigned int len, unsigned int off, int rw, |
| sector_t sector) |
| { |
| int rc = 0; |
| bool bad_pmem = false; |
| void *mem = kmap_atomic(page); |
| phys_addr_t pmem_off = sector * 512 + pmem->data_offset; |
| void __pmem *pmem_addr = pmem->virt_addr + pmem_off; |
| |
| if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) |
| bad_pmem = true; |
| |
| if (rw == READ) { |
| if (unlikely(bad_pmem)) |
| rc = -EIO; |
| else { |
| rc = memcpy_from_pmem(mem + off, pmem_addr, len); |
| flush_dcache_page(page); |
| } |
| } else { |
| /* |
| * Note that we write the data both before and after |
| * clearing poison. The write before clear poison |
| * handles situations where the latest written data is |
| * preserved and the clear poison operation simply marks |
| * the address range as valid without changing the data. |
| * In this case application software can assume that an |
| * interrupted write will either return the new good |
| * data or an error. |
| * |
| * However, if pmem_clear_poison() leaves the data in an |
| * indeterminate state we need to perform the write |
| * after clear poison. |
| */ |
| flush_dcache_page(page); |
| memcpy_to_pmem(pmem_addr, mem + off, len); |
| if (unlikely(bad_pmem)) { |
| pmem_clear_poison(pmem, pmem_off, len); |
| memcpy_to_pmem(pmem_addr, mem + off, len); |
| } |
| } |
| |
| kunmap_atomic(mem); |
| return rc; |
| } |
| |
| static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio) |
| { |
| int rc = 0; |
| bool do_acct; |
| unsigned long start; |
| struct bio_vec bvec; |
| struct bvec_iter iter; |
| struct pmem_device *pmem = q->queuedata; |
| |
| do_acct = nd_iostat_start(bio, &start); |
| bio_for_each_segment(bvec, bio, iter) { |
| rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len, |
| bvec.bv_offset, bio_data_dir(bio), |
| iter.bi_sector); |
| if (rc) { |
| bio->bi_error = rc; |
| break; |
| } |
| } |
| if (do_acct) |
| nd_iostat_end(bio, start); |
| |
| if (bio_data_dir(bio)) |
| wmb_pmem(); |
| |
| bio_endio(bio); |
| return BLK_QC_T_NONE; |
| } |
| |
| static int pmem_rw_page(struct block_device *bdev, sector_t sector, |
| struct page *page, int rw) |
| { |
| struct pmem_device *pmem = bdev->bd_queue->queuedata; |
| int rc; |
| |
| rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector); |
| if (rw & WRITE) |
| wmb_pmem(); |
| |
| /* |
| * The ->rw_page interface is subtle and tricky. The core |
| * retries on any error, so we can only invoke page_endio() in |
| * the successful completion case. Otherwise, we'll see crashes |
| * caused by double completion. |
| */ |
| if (rc == 0) |
| page_endio(page, rw & WRITE, 0); |
| |
| return rc; |
| } |
| |
| static long pmem_direct_access(struct block_device *bdev, sector_t sector, |
| void __pmem **kaddr, pfn_t *pfn, long size) |
| { |
| struct pmem_device *pmem = bdev->bd_queue->queuedata; |
| resource_size_t offset = sector * 512 + pmem->data_offset; |
| |
| if (unlikely(is_bad_pmem(&pmem->bb, sector, size))) |
| return -EIO; |
| *kaddr = pmem->virt_addr + offset; |
| *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags); |
| |
| /* |
| * If badblocks are present, limit known good range to the |
| * requested range. |
| */ |
| if (unlikely(pmem->bb.count)) |
| return size; |
| return pmem->size - pmem->pfn_pad - offset; |
| } |
| |
| static const struct block_device_operations pmem_fops = { |
| .owner = THIS_MODULE, |
| .rw_page = pmem_rw_page, |
| .direct_access = pmem_direct_access, |
| .revalidate_disk = nvdimm_revalidate_disk, |
| }; |
| |
| static void pmem_release_queue(void *q) |
| { |
| blk_cleanup_queue(q); |
| } |
| |
| void pmem_release_disk(void *disk) |
| { |
| del_gendisk(disk); |
| put_disk(disk); |
| } |
| |
| static int pmem_attach_disk(struct device *dev, |
| struct nd_namespace_common *ndns) |
| { |
| struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); |
| struct vmem_altmap __altmap, *altmap = NULL; |
| struct resource *res = &nsio->res; |
| struct nd_pfn *nd_pfn = NULL; |
| int nid = dev_to_node(dev); |
| struct nd_pfn_sb *pfn_sb; |
| struct pmem_device *pmem; |
| struct resource pfn_res; |
| struct request_queue *q; |
| struct gendisk *disk; |
| void *addr; |
| |
| /* while nsio_rw_bytes is active, parse a pfn info block if present */ |
| if (is_nd_pfn(dev)) { |
| nd_pfn = to_nd_pfn(dev); |
| altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap); |
| if (IS_ERR(altmap)) |
| return PTR_ERR(altmap); |
| } |
| |
| /* we're attaching a block device, disable raw namespace access */ |
| devm_nsio_disable(dev, nsio); |
| |
| pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL); |
| if (!pmem) |
| return -ENOMEM; |
| |
| dev_set_drvdata(dev, pmem); |
| pmem->phys_addr = res->start; |
| pmem->size = resource_size(res); |
| if (!arch_has_wmb_pmem()) |
| dev_warn(dev, "unable to guarantee persistence of writes\n"); |
| |
| if (!devm_request_mem_region(dev, res->start, resource_size(res), |
| dev_name(dev))) { |
| dev_warn(dev, "could not reserve region %pR\n", res); |
| return -EBUSY; |
| } |
| |
| q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev)); |
| if (!q) |
| return -ENOMEM; |
| |
| pmem->pfn_flags = PFN_DEV; |
| if (is_nd_pfn(dev)) { |
| addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter, |
| altmap); |
| pfn_sb = nd_pfn->pfn_sb; |
| pmem->data_offset = le64_to_cpu(pfn_sb->dataoff); |
| pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res); |
| pmem->pfn_flags |= PFN_MAP; |
| res = &pfn_res; /* for badblocks populate */ |
| res->start += pmem->data_offset; |
| } else if (pmem_should_map_pages(dev)) { |
| addr = devm_memremap_pages(dev, &nsio->res, |
| &q->q_usage_counter, NULL); |
| pmem->pfn_flags |= PFN_MAP; |
| } else |
| addr = devm_memremap(dev, pmem->phys_addr, |
| pmem->size, ARCH_MEMREMAP_PMEM); |
| |
| /* |
| * At release time the queue must be dead before |
| * devm_memremap_pages is unwound |
| */ |
| if (devm_add_action(dev, pmem_release_queue, q)) { |
| blk_cleanup_queue(q); |
| return -ENOMEM; |
| } |
| |
| if (IS_ERR(addr)) |
| return PTR_ERR(addr); |
| pmem->virt_addr = (void __pmem *) addr; |
| |
| blk_queue_make_request(q, pmem_make_request); |
| blk_queue_physical_block_size(q, PAGE_SIZE); |
| blk_queue_max_hw_sectors(q, UINT_MAX); |
| blk_queue_bounce_limit(q, BLK_BOUNCE_ANY); |
| queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); |
| queue_flag_set_unlocked(QUEUE_FLAG_DAX, q); |
| q->queuedata = pmem; |
| |
| disk = alloc_disk_node(0, nid); |
| if (!disk) |
| return -ENOMEM; |
| if (devm_add_action(dev, pmem_release_disk, disk)) { |
| put_disk(disk); |
| return -ENOMEM; |
| } |
| |
| disk->fops = &pmem_fops; |
| disk->queue = q; |
| disk->flags = GENHD_FL_EXT_DEVT; |
| nvdimm_namespace_disk_name(ndns, disk->disk_name); |
| set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset) |
| / 512); |
| if (devm_init_badblocks(dev, &pmem->bb)) |
| return -ENOMEM; |
| nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb, res); |
| disk->bb = &pmem->bb; |
| device_add_disk(dev, disk); |
| revalidate_disk(disk); |
| |
| return 0; |
| } |
| |
| static int nd_pmem_probe(struct device *dev) |
| { |
| struct nd_namespace_common *ndns; |
| |
| ndns = nvdimm_namespace_common_probe(dev); |
| if (IS_ERR(ndns)) |
| return PTR_ERR(ndns); |
| |
| if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev))) |
| return -ENXIO; |
| |
| if (is_nd_btt(dev)) |
| return nvdimm_namespace_attach_btt(ndns); |
| |
| if (is_nd_pfn(dev)) |
| return pmem_attach_disk(dev, ndns); |
| |
| /* if we find a valid info-block we'll come back as that personality */ |
| if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0 |
| || nd_dax_probe(dev, ndns) == 0) |
| return -ENXIO; |
| |
| /* ...otherwise we're just a raw pmem device */ |
| return pmem_attach_disk(dev, ndns); |
| } |
| |
| static int nd_pmem_remove(struct device *dev) |
| { |
| if (is_nd_btt(dev)) |
| nvdimm_namespace_detach_btt(to_nd_btt(dev)); |
| return 0; |
| } |
| |
| static void nd_pmem_notify(struct device *dev, enum nvdimm_event event) |
| { |
| struct nd_region *nd_region = to_nd_region(dev->parent); |
| struct pmem_device *pmem = dev_get_drvdata(dev); |
| resource_size_t offset = 0, end_trunc = 0; |
| struct nd_namespace_common *ndns; |
| struct nd_namespace_io *nsio; |
| struct resource res; |
| |
| if (event != NVDIMM_REVALIDATE_POISON) |
| return; |
| |
| if (is_nd_btt(dev)) { |
| struct nd_btt *nd_btt = to_nd_btt(dev); |
| |
| ndns = nd_btt->ndns; |
| } else if (is_nd_pfn(dev)) { |
| struct nd_pfn *nd_pfn = to_nd_pfn(dev); |
| struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb; |
| |
| ndns = nd_pfn->ndns; |
| offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad); |
| end_trunc = __le32_to_cpu(pfn_sb->end_trunc); |
| } else |
| ndns = to_ndns(dev); |
| |
| nsio = to_nd_namespace_io(&ndns->dev); |
| res.start = nsio->res.start + offset; |
| res.end = nsio->res.end - end_trunc; |
| nvdimm_badblocks_populate(nd_region, &pmem->bb, &res); |
| } |
| |
| MODULE_ALIAS("pmem"); |
| MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO); |
| MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM); |
| static struct nd_device_driver nd_pmem_driver = { |
| .probe = nd_pmem_probe, |
| .remove = nd_pmem_remove, |
| .notify = nd_pmem_notify, |
| .drv = { |
| .name = "nd_pmem", |
| }, |
| .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM, |
| }; |
| |
| static int __init pmem_init(void) |
| { |
| return nd_driver_register(&nd_pmem_driver); |
| } |
| module_init(pmem_init); |
| |
| static void pmem_exit(void) |
| { |
| driver_unregister(&nd_pmem_driver.drv); |
| } |
| module_exit(pmem_exit); |
| |
| MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>"); |
| MODULE_LICENSE("GPL v2"); |