| /******************************************************************************* |
| * |
| * Module Name: utmath - Integer math support routines |
| * |
| ******************************************************************************/ |
| |
| /* |
| * Copyright (C) 2000 - 2008, Intel Corp. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions, and the following disclaimer, |
| * without modification. |
| * 2. Redistributions in binary form must reproduce at minimum a disclaimer |
| * substantially similar to the "NO WARRANTY" disclaimer below |
| * ("Disclaimer") and any redistribution must be conditioned upon |
| * including a substantially similar Disclaimer requirement for further |
| * binary redistribution. |
| * 3. Neither the names of the above-listed copyright holders nor the names |
| * of any contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * Alternatively, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") version 2 as published by the Free |
| * Software Foundation. |
| * |
| * NO WARRANTY |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGES. |
| */ |
| |
| #include <acpi/acpi.h> |
| |
| #define _COMPONENT ACPI_UTILITIES |
| ACPI_MODULE_NAME("utmath") |
| |
| /* |
| * Support for double-precision integer divide. This code is included here |
| * in order to support kernel environments where the double-precision math |
| * library is not available. |
| */ |
| #ifndef ACPI_USE_NATIVE_DIVIDE |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_ut_short_divide |
| * |
| * PARAMETERS: Dividend - 64-bit dividend |
| * Divisor - 32-bit divisor |
| * out_quotient - Pointer to where the quotient is returned |
| * out_remainder - Pointer to where the remainder is returned |
| * |
| * RETURN: Status (Checks for divide-by-zero) |
| * |
| * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits) |
| * divide and modulo. The result is a 64-bit quotient and a |
| * 32-bit remainder. |
| * |
| ******************************************************************************/ |
| acpi_status |
| acpi_ut_short_divide(acpi_integer dividend, |
| u32 divisor, |
| acpi_integer * out_quotient, u32 * out_remainder) |
| { |
| union uint64_overlay dividend_ovl; |
| union uint64_overlay quotient; |
| u32 remainder32; |
| |
| ACPI_FUNCTION_TRACE(ut_short_divide); |
| |
| /* Always check for a zero divisor */ |
| |
| if (divisor == 0) { |
| ACPI_ERROR((AE_INFO, "Divide by zero")); |
| return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); |
| } |
| |
| dividend_ovl.full = dividend; |
| |
| /* |
| * The quotient is 64 bits, the remainder is always 32 bits, |
| * and is generated by the second divide. |
| */ |
| ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor, |
| quotient.part.hi, remainder32); |
| ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor, |
| quotient.part.lo, remainder32); |
| |
| /* Return only what was requested */ |
| |
| if (out_quotient) { |
| *out_quotient = quotient.full; |
| } |
| if (out_remainder) { |
| *out_remainder = remainder32; |
| } |
| |
| return_ACPI_STATUS(AE_OK); |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_ut_divide |
| * |
| * PARAMETERS: in_dividend - Dividend |
| * in_divisor - Divisor |
| * out_quotient - Pointer to where the quotient is returned |
| * out_remainder - Pointer to where the remainder is returned |
| * |
| * RETURN: Status (Checks for divide-by-zero) |
| * |
| * DESCRIPTION: Perform a divide and modulo. |
| * |
| ******************************************************************************/ |
| |
| acpi_status |
| acpi_ut_divide(acpi_integer in_dividend, |
| acpi_integer in_divisor, |
| acpi_integer * out_quotient, acpi_integer * out_remainder) |
| { |
| union uint64_overlay dividend; |
| union uint64_overlay divisor; |
| union uint64_overlay quotient; |
| union uint64_overlay remainder; |
| union uint64_overlay normalized_dividend; |
| union uint64_overlay normalized_divisor; |
| u32 partial1; |
| union uint64_overlay partial2; |
| union uint64_overlay partial3; |
| |
| ACPI_FUNCTION_TRACE(ut_divide); |
| |
| /* Always check for a zero divisor */ |
| |
| if (in_divisor == 0) { |
| ACPI_ERROR((AE_INFO, "Divide by zero")); |
| return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); |
| } |
| |
| divisor.full = in_divisor; |
| dividend.full = in_dividend; |
| if (divisor.part.hi == 0) { |
| /* |
| * 1) Simplest case is where the divisor is 32 bits, we can |
| * just do two divides |
| */ |
| remainder.part.hi = 0; |
| |
| /* |
| * The quotient is 64 bits, the remainder is always 32 bits, |
| * and is generated by the second divide. |
| */ |
| ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo, |
| quotient.part.hi, partial1); |
| ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo, |
| quotient.part.lo, remainder.part.lo); |
| } |
| |
| else { |
| /* |
| * 2) The general case where the divisor is a full 64 bits |
| * is more difficult |
| */ |
| quotient.part.hi = 0; |
| normalized_dividend = dividend; |
| normalized_divisor = divisor; |
| |
| /* Normalize the operands (shift until the divisor is < 32 bits) */ |
| |
| do { |
| ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi, |
| normalized_divisor.part.lo); |
| ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi, |
| normalized_dividend.part.lo); |
| |
| } while (normalized_divisor.part.hi != 0); |
| |
| /* Partial divide */ |
| |
| ACPI_DIV_64_BY_32(normalized_dividend.part.hi, |
| normalized_dividend.part.lo, |
| normalized_divisor.part.lo, |
| quotient.part.lo, partial1); |
| |
| /* |
| * The quotient is always 32 bits, and simply requires adjustment. |
| * The 64-bit remainder must be generated. |
| */ |
| partial1 = quotient.part.lo * divisor.part.hi; |
| partial2.full = |
| (acpi_integer) quotient.part.lo * divisor.part.lo; |
| partial3.full = (acpi_integer) partial2.part.hi + partial1; |
| |
| remainder.part.hi = partial3.part.lo; |
| remainder.part.lo = partial2.part.lo; |
| |
| if (partial3.part.hi == 0) { |
| if (partial3.part.lo >= dividend.part.hi) { |
| if (partial3.part.lo == dividend.part.hi) { |
| if (partial2.part.lo > dividend.part.lo) { |
| quotient.part.lo--; |
| remainder.full -= divisor.full; |
| } |
| } else { |
| quotient.part.lo--; |
| remainder.full -= divisor.full; |
| } |
| } |
| |
| remainder.full = remainder.full - dividend.full; |
| remainder.part.hi = (u32) - ((s32) remainder.part.hi); |
| remainder.part.lo = (u32) - ((s32) remainder.part.lo); |
| |
| if (remainder.part.lo) { |
| remainder.part.hi--; |
| } |
| } |
| } |
| |
| /* Return only what was requested */ |
| |
| if (out_quotient) { |
| *out_quotient = quotient.full; |
| } |
| if (out_remainder) { |
| *out_remainder = remainder.full; |
| } |
| |
| return_ACPI_STATUS(AE_OK); |
| } |
| |
| #else |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_ut_short_divide, acpi_ut_divide |
| * |
| * PARAMETERS: See function headers above |
| * |
| * DESCRIPTION: Native versions of the ut_divide functions. Use these if either |
| * 1) The target is a 64-bit platform and therefore 64-bit |
| * integer math is supported directly by the machine. |
| * 2) The target is a 32-bit or 16-bit platform, and the |
| * double-precision integer math library is available to |
| * perform the divide. |
| * |
| ******************************************************************************/ |
| acpi_status |
| acpi_ut_short_divide(acpi_integer in_dividend, |
| u32 divisor, |
| acpi_integer * out_quotient, u32 * out_remainder) |
| { |
| |
| ACPI_FUNCTION_TRACE(ut_short_divide); |
| |
| /* Always check for a zero divisor */ |
| |
| if (divisor == 0) { |
| ACPI_ERROR((AE_INFO, "Divide by zero")); |
| return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); |
| } |
| |
| /* Return only what was requested */ |
| |
| if (out_quotient) { |
| *out_quotient = in_dividend / divisor; |
| } |
| if (out_remainder) { |
| *out_remainder = (u32) (in_dividend % divisor); |
| } |
| |
| return_ACPI_STATUS(AE_OK); |
| } |
| |
| acpi_status |
| acpi_ut_divide(acpi_integer in_dividend, |
| acpi_integer in_divisor, |
| acpi_integer * out_quotient, acpi_integer * out_remainder) |
| { |
| ACPI_FUNCTION_TRACE(ut_divide); |
| |
| /* Always check for a zero divisor */ |
| |
| if (in_divisor == 0) { |
| ACPI_ERROR((AE_INFO, "Divide by zero")); |
| return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); |
| } |
| |
| /* Return only what was requested */ |
| |
| if (out_quotient) { |
| *out_quotient = in_dividend / in_divisor; |
| } |
| if (out_remainder) { |
| *out_remainder = in_dividend % in_divisor; |
| } |
| |
| return_ACPI_STATUS(AE_OK); |
| } |
| |
| #endif |