| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| |
| /* COMMON Applications Kept Enhanced (CAKE) discipline |
| * |
| * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com> |
| * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk> |
| * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com> |
| * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de> |
| * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk> |
| * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au> |
| * |
| * The CAKE Principles: |
| * (or, how to have your cake and eat it too) |
| * |
| * This is a combination of several shaping, AQM and FQ techniques into one |
| * easy-to-use package: |
| * |
| * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE |
| * equipment and bloated MACs. This operates in deficit mode (as in sch_fq), |
| * eliminating the need for any sort of burst parameter (eg. token bucket |
| * depth). Burst support is limited to that necessary to overcome scheduling |
| * latency. |
| * |
| * - A Diffserv-aware priority queue, giving more priority to certain classes, |
| * up to a specified fraction of bandwidth. Above that bandwidth threshold, |
| * the priority is reduced to avoid starving other tins. |
| * |
| * - Each priority tin has a separate Flow Queue system, to isolate traffic |
| * flows from each other. This prevents a burst on one flow from increasing |
| * the delay to another. Flows are distributed to queues using a |
| * set-associative hash function. |
| * |
| * - Each queue is actively managed by Cobalt, which is a combination of the |
| * Codel and Blue AQM algorithms. This serves flows fairly, and signals |
| * congestion early via ECN (if available) and/or packet drops, to keep |
| * latency low. The codel parameters are auto-tuned based on the bandwidth |
| * setting, as is necessary at low bandwidths. |
| * |
| * The configuration parameters are kept deliberately simple for ease of use. |
| * Everything has sane defaults. Complete generality of configuration is *not* |
| * a goal. |
| * |
| * The priority queue operates according to a weighted DRR scheme, combined with |
| * a bandwidth tracker which reuses the shaper logic to detect which side of the |
| * bandwidth sharing threshold the tin is operating. This determines whether a |
| * priority-based weight (high) or a bandwidth-based weight (low) is used for |
| * that tin in the current pass. |
| * |
| * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly |
| * granted us permission to leverage. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/jiffies.h> |
| #include <linux/string.h> |
| #include <linux/in.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/skbuff.h> |
| #include <linux/jhash.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/reciprocal_div.h> |
| #include <net/netlink.h> |
| #include <linux/if_vlan.h> |
| #include <net/pkt_sched.h> |
| #include <net/pkt_cls.h> |
| #include <net/tcp.h> |
| #include <net/flow_dissector.h> |
| |
| #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
| #include <net/netfilter/nf_conntrack_core.h> |
| #endif |
| |
| #define CAKE_SET_WAYS (8) |
| #define CAKE_MAX_TINS (8) |
| #define CAKE_QUEUES (1024) |
| #define CAKE_FLOW_MASK 63 |
| #define CAKE_FLOW_NAT_FLAG 64 |
| |
| /* struct cobalt_params - contains codel and blue parameters |
| * @interval: codel initial drop rate |
| * @target: maximum persistent sojourn time & blue update rate |
| * @mtu_time: serialisation delay of maximum-size packet |
| * @p_inc: increment of blue drop probability (0.32 fxp) |
| * @p_dec: decrement of blue drop probability (0.32 fxp) |
| */ |
| struct cobalt_params { |
| u64 interval; |
| u64 target; |
| u64 mtu_time; |
| u32 p_inc; |
| u32 p_dec; |
| }; |
| |
| /* struct cobalt_vars - contains codel and blue variables |
| * @count: codel dropping frequency |
| * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1 |
| * @drop_next: time to drop next packet, or when we dropped last |
| * @blue_timer: Blue time to next drop |
| * @p_drop: BLUE drop probability (0.32 fxp) |
| * @dropping: set if in dropping state |
| * @ecn_marked: set if marked |
| */ |
| struct cobalt_vars { |
| u32 count; |
| u32 rec_inv_sqrt; |
| ktime_t drop_next; |
| ktime_t blue_timer; |
| u32 p_drop; |
| bool dropping; |
| bool ecn_marked; |
| }; |
| |
| enum { |
| CAKE_SET_NONE = 0, |
| CAKE_SET_SPARSE, |
| CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */ |
| CAKE_SET_BULK, |
| CAKE_SET_DECAYING |
| }; |
| |
| struct cake_flow { |
| /* this stuff is all needed per-flow at dequeue time */ |
| struct sk_buff *head; |
| struct sk_buff *tail; |
| struct list_head flowchain; |
| s32 deficit; |
| u32 dropped; |
| struct cobalt_vars cvars; |
| u16 srchost; /* index into cake_host table */ |
| u16 dsthost; |
| u8 set; |
| }; /* please try to keep this structure <= 64 bytes */ |
| |
| struct cake_host { |
| u32 srchost_tag; |
| u32 dsthost_tag; |
| u16 srchost_refcnt; |
| u16 dsthost_refcnt; |
| }; |
| |
| struct cake_heap_entry { |
| u16 t:3, b:10; |
| }; |
| |
| struct cake_tin_data { |
| struct cake_flow flows[CAKE_QUEUES]; |
| u32 backlogs[CAKE_QUEUES]; |
| u32 tags[CAKE_QUEUES]; /* for set association */ |
| u16 overflow_idx[CAKE_QUEUES]; |
| struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */ |
| u16 flow_quantum; |
| |
| struct cobalt_params cparams; |
| u32 drop_overlimit; |
| u16 bulk_flow_count; |
| u16 sparse_flow_count; |
| u16 decaying_flow_count; |
| u16 unresponsive_flow_count; |
| |
| u32 max_skblen; |
| |
| struct list_head new_flows; |
| struct list_head old_flows; |
| struct list_head decaying_flows; |
| |
| /* time_next = time_this + ((len * rate_ns) >> rate_shft) */ |
| ktime_t time_next_packet; |
| u64 tin_rate_ns; |
| u64 tin_rate_bps; |
| u16 tin_rate_shft; |
| |
| u16 tin_quantum_prio; |
| u16 tin_quantum_band; |
| s32 tin_deficit; |
| u32 tin_backlog; |
| u32 tin_dropped; |
| u32 tin_ecn_mark; |
| |
| u32 packets; |
| u64 bytes; |
| |
| u32 ack_drops; |
| |
| /* moving averages */ |
| u64 avge_delay; |
| u64 peak_delay; |
| u64 base_delay; |
| |
| /* hash function stats */ |
| u32 way_directs; |
| u32 way_hits; |
| u32 way_misses; |
| u32 way_collisions; |
| }; /* number of tins is small, so size of this struct doesn't matter much */ |
| |
| struct cake_sched_data { |
| struct tcf_proto __rcu *filter_list; /* optional external classifier */ |
| struct tcf_block *block; |
| struct cake_tin_data *tins; |
| |
| struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS]; |
| u16 overflow_timeout; |
| |
| u16 tin_cnt; |
| u8 tin_mode; |
| u8 flow_mode; |
| u8 ack_filter; |
| u8 atm_mode; |
| |
| /* time_next = time_this + ((len * rate_ns) >> rate_shft) */ |
| u16 rate_shft; |
| ktime_t time_next_packet; |
| ktime_t failsafe_next_packet; |
| u64 rate_ns; |
| u64 rate_bps; |
| u16 rate_flags; |
| s16 rate_overhead; |
| u16 rate_mpu; |
| u64 interval; |
| u64 target; |
| |
| /* resource tracking */ |
| u32 buffer_used; |
| u32 buffer_max_used; |
| u32 buffer_limit; |
| u32 buffer_config_limit; |
| |
| /* indices for dequeue */ |
| u16 cur_tin; |
| u16 cur_flow; |
| |
| struct qdisc_watchdog watchdog; |
| const u8 *tin_index; |
| const u8 *tin_order; |
| |
| /* bandwidth capacity estimate */ |
| ktime_t last_packet_time; |
| ktime_t avg_window_begin; |
| u64 avg_packet_interval; |
| u64 avg_window_bytes; |
| u64 avg_peak_bandwidth; |
| ktime_t last_reconfig_time; |
| |
| /* packet length stats */ |
| u32 avg_netoff; |
| u16 max_netlen; |
| u16 max_adjlen; |
| u16 min_netlen; |
| u16 min_adjlen; |
| }; |
| |
| enum { |
| CAKE_FLAG_OVERHEAD = BIT(0), |
| CAKE_FLAG_AUTORATE_INGRESS = BIT(1), |
| CAKE_FLAG_INGRESS = BIT(2), |
| CAKE_FLAG_WASH = BIT(3), |
| CAKE_FLAG_SPLIT_GSO = BIT(4) |
| }; |
| |
| /* COBALT operates the Codel and BLUE algorithms in parallel, in order to |
| * obtain the best features of each. Codel is excellent on flows which |
| * respond to congestion signals in a TCP-like way. BLUE is more effective on |
| * unresponsive flows. |
| */ |
| |
| struct cobalt_skb_cb { |
| ktime_t enqueue_time; |
| u32 adjusted_len; |
| }; |
| |
| static u64 us_to_ns(u64 us) |
| { |
| return us * NSEC_PER_USEC; |
| } |
| |
| static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb) |
| { |
| qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb)); |
| return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data; |
| } |
| |
| static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb) |
| { |
| return get_cobalt_cb(skb)->enqueue_time; |
| } |
| |
| static void cobalt_set_enqueue_time(struct sk_buff *skb, |
| ktime_t now) |
| { |
| get_cobalt_cb(skb)->enqueue_time = now; |
| } |
| |
| static u16 quantum_div[CAKE_QUEUES + 1] = {0}; |
| |
| /* Diffserv lookup tables */ |
| |
| static const u8 precedence[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 2, 2, 2, 2, 2, 2, 2, 2, |
| 3, 3, 3, 3, 3, 3, 3, 3, |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 5, 5, 5, 5, 5, 5, 5, 5, |
| 6, 6, 6, 6, 6, 6, 6, 6, |
| 7, 7, 7, 7, 7, 7, 7, 7, |
| }; |
| |
| static const u8 diffserv8[] = { |
| 2, 5, 1, 2, 4, 2, 2, 2, |
| 0, 2, 1, 2, 1, 2, 1, 2, |
| 5, 2, 4, 2, 4, 2, 4, 2, |
| 3, 2, 3, 2, 3, 2, 3, 2, |
| 6, 2, 3, 2, 3, 2, 3, 2, |
| 6, 2, 2, 2, 6, 2, 6, 2, |
| 7, 2, 2, 2, 2, 2, 2, 2, |
| 7, 2, 2, 2, 2, 2, 2, 2, |
| }; |
| |
| static const u8 diffserv4[] = { |
| 0, 2, 0, 0, 2, 0, 0, 0, |
| 1, 0, 0, 0, 0, 0, 0, 0, |
| 2, 0, 2, 0, 2, 0, 2, 0, |
| 2, 0, 2, 0, 2, 0, 2, 0, |
| 3, 0, 2, 0, 2, 0, 2, 0, |
| 3, 0, 0, 0, 3, 0, 3, 0, |
| 3, 0, 0, 0, 0, 0, 0, 0, |
| 3, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| |
| static const u8 diffserv3[] = { |
| 0, 0, 0, 0, 2, 0, 0, 0, |
| 1, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 2, 0, 2, 0, |
| 2, 0, 0, 0, 0, 0, 0, 0, |
| 2, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| |
| static const u8 besteffort[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| |
| /* tin priority order for stats dumping */ |
| |
| static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7}; |
| static const u8 bulk_order[] = {1, 0, 2, 3}; |
| |
| #define REC_INV_SQRT_CACHE (16) |
| static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0}; |
| |
| /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots |
| * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2) |
| * |
| * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32 |
| */ |
| |
| static void cobalt_newton_step(struct cobalt_vars *vars) |
| { |
| u32 invsqrt, invsqrt2; |
| u64 val; |
| |
| invsqrt = vars->rec_inv_sqrt; |
| invsqrt2 = ((u64)invsqrt * invsqrt) >> 32; |
| val = (3LL << 32) - ((u64)vars->count * invsqrt2); |
| |
| val >>= 2; /* avoid overflow in following multiply */ |
| val = (val * invsqrt) >> (32 - 2 + 1); |
| |
| vars->rec_inv_sqrt = val; |
| } |
| |
| static void cobalt_invsqrt(struct cobalt_vars *vars) |
| { |
| if (vars->count < REC_INV_SQRT_CACHE) |
| vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count]; |
| else |
| cobalt_newton_step(vars); |
| } |
| |
| /* There is a big difference in timing between the accurate values placed in |
| * the cache and the approximations given by a single Newton step for small |
| * count values, particularly when stepping from count 1 to 2 or vice versa. |
| * Above 16, a single Newton step gives sufficient accuracy in either |
| * direction, given the precision stored. |
| * |
| * The magnitude of the error when stepping up to count 2 is such as to give |
| * the value that *should* have been produced at count 4. |
| */ |
| |
| static void cobalt_cache_init(void) |
| { |
| struct cobalt_vars v; |
| |
| memset(&v, 0, sizeof(v)); |
| v.rec_inv_sqrt = ~0U; |
| cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt; |
| |
| for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) { |
| cobalt_newton_step(&v); |
| cobalt_newton_step(&v); |
| cobalt_newton_step(&v); |
| cobalt_newton_step(&v); |
| |
| cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt; |
| } |
| } |
| |
| static void cobalt_vars_init(struct cobalt_vars *vars) |
| { |
| memset(vars, 0, sizeof(*vars)); |
| |
| if (!cobalt_rec_inv_sqrt_cache[0]) { |
| cobalt_cache_init(); |
| cobalt_rec_inv_sqrt_cache[0] = ~0; |
| } |
| } |
| |
| /* CoDel control_law is t + interval/sqrt(count) |
| * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid |
| * both sqrt() and divide operation. |
| */ |
| static ktime_t cobalt_control(ktime_t t, |
| u64 interval, |
| u32 rec_inv_sqrt) |
| { |
| return ktime_add_ns(t, reciprocal_scale(interval, |
| rec_inv_sqrt)); |
| } |
| |
| /* Call this when a packet had to be dropped due to queue overflow. Returns |
| * true if the BLUE state was quiescent before but active after this call. |
| */ |
| static bool cobalt_queue_full(struct cobalt_vars *vars, |
| struct cobalt_params *p, |
| ktime_t now) |
| { |
| bool up = false; |
| |
| if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) { |
| up = !vars->p_drop; |
| vars->p_drop += p->p_inc; |
| if (vars->p_drop < p->p_inc) |
| vars->p_drop = ~0; |
| vars->blue_timer = now; |
| } |
| vars->dropping = true; |
| vars->drop_next = now; |
| if (!vars->count) |
| vars->count = 1; |
| |
| return up; |
| } |
| |
| /* Call this when the queue was serviced but turned out to be empty. Returns |
| * true if the BLUE state was active before but quiescent after this call. |
| */ |
| static bool cobalt_queue_empty(struct cobalt_vars *vars, |
| struct cobalt_params *p, |
| ktime_t now) |
| { |
| bool down = false; |
| |
| if (vars->p_drop && |
| ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) { |
| if (vars->p_drop < p->p_dec) |
| vars->p_drop = 0; |
| else |
| vars->p_drop -= p->p_dec; |
| vars->blue_timer = now; |
| down = !vars->p_drop; |
| } |
| vars->dropping = false; |
| |
| if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) { |
| vars->count--; |
| cobalt_invsqrt(vars); |
| vars->drop_next = cobalt_control(vars->drop_next, |
| p->interval, |
| vars->rec_inv_sqrt); |
| } |
| |
| return down; |
| } |
| |
| /* Call this with a freshly dequeued packet for possible congestion marking. |
| * Returns true as an instruction to drop the packet, false for delivery. |
| */ |
| static bool cobalt_should_drop(struct cobalt_vars *vars, |
| struct cobalt_params *p, |
| ktime_t now, |
| struct sk_buff *skb, |
| u32 bulk_flows) |
| { |
| bool next_due, over_target, drop = false; |
| ktime_t schedule; |
| u64 sojourn; |
| |
| /* The 'schedule' variable records, in its sign, whether 'now' is before or |
| * after 'drop_next'. This allows 'drop_next' to be updated before the next |
| * scheduling decision is actually branched, without destroying that |
| * information. Similarly, the first 'schedule' value calculated is preserved |
| * in the boolean 'next_due'. |
| * |
| * As for 'drop_next', we take advantage of the fact that 'interval' is both |
| * the delay between first exceeding 'target' and the first signalling event, |
| * *and* the scaling factor for the signalling frequency. It's therefore very |
| * natural to use a single mechanism for both purposes, and eliminates a |
| * significant amount of reference Codel's spaghetti code. To help with this, |
| * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close |
| * as possible to 1.0 in fixed-point. |
| */ |
| |
| sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb))); |
| schedule = ktime_sub(now, vars->drop_next); |
| over_target = sojourn > p->target && |
| sojourn > p->mtu_time * bulk_flows * 2 && |
| sojourn > p->mtu_time * 4; |
| next_due = vars->count && ktime_to_ns(schedule) >= 0; |
| |
| vars->ecn_marked = false; |
| |
| if (over_target) { |
| if (!vars->dropping) { |
| vars->dropping = true; |
| vars->drop_next = cobalt_control(now, |
| p->interval, |
| vars->rec_inv_sqrt); |
| } |
| if (!vars->count) |
| vars->count = 1; |
| } else if (vars->dropping) { |
| vars->dropping = false; |
| } |
| |
| if (next_due && vars->dropping) { |
| /* Use ECN mark if possible, otherwise drop */ |
| drop = !(vars->ecn_marked = INET_ECN_set_ce(skb)); |
| |
| vars->count++; |
| if (!vars->count) |
| vars->count--; |
| cobalt_invsqrt(vars); |
| vars->drop_next = cobalt_control(vars->drop_next, |
| p->interval, |
| vars->rec_inv_sqrt); |
| schedule = ktime_sub(now, vars->drop_next); |
| } else { |
| while (next_due) { |
| vars->count--; |
| cobalt_invsqrt(vars); |
| vars->drop_next = cobalt_control(vars->drop_next, |
| p->interval, |
| vars->rec_inv_sqrt); |
| schedule = ktime_sub(now, vars->drop_next); |
| next_due = vars->count && ktime_to_ns(schedule) >= 0; |
| } |
| } |
| |
| /* Simple BLUE implementation. Lack of ECN is deliberate. */ |
| if (vars->p_drop) |
| drop |= (prandom_u32() < vars->p_drop); |
| |
| /* Overload the drop_next field as an activity timeout */ |
| if (!vars->count) |
| vars->drop_next = ktime_add_ns(now, p->interval); |
| else if (ktime_to_ns(schedule) > 0 && !drop) |
| vars->drop_next = now; |
| |
| return drop; |
| } |
| |
| static void cake_update_flowkeys(struct flow_keys *keys, |
| const struct sk_buff *skb) |
| { |
| #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
| struct nf_conntrack_tuple tuple = {}; |
| bool rev = !skb->_nfct; |
| |
| if (tc_skb_protocol(skb) != htons(ETH_P_IP)) |
| return; |
| |
| if (!nf_ct_get_tuple_skb(&tuple, skb)) |
| return; |
| |
| keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip; |
| keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip; |
| |
| if (keys->ports.ports) { |
| keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all; |
| keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all; |
| } |
| #endif |
| } |
| |
| /* Cake has several subtle multiple bit settings. In these cases you |
| * would be matching triple isolate mode as well. |
| */ |
| |
| static bool cake_dsrc(int flow_mode) |
| { |
| return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC; |
| } |
| |
| static bool cake_ddst(int flow_mode) |
| { |
| return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST; |
| } |
| |
| static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb, |
| int flow_mode, u16 flow_override, u16 host_override) |
| { |
| u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0; |
| u16 reduced_hash, srchost_idx, dsthost_idx; |
| struct flow_keys keys, host_keys; |
| |
| if (unlikely(flow_mode == CAKE_FLOW_NONE)) |
| return 0; |
| |
| /* If both overrides are set we can skip packet dissection entirely */ |
| if ((flow_override || !(flow_mode & CAKE_FLOW_FLOWS)) && |
| (host_override || !(flow_mode & CAKE_FLOW_HOSTS))) |
| goto skip_hash; |
| |
| skb_flow_dissect_flow_keys(skb, &keys, |
| FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); |
| |
| if (flow_mode & CAKE_FLOW_NAT_FLAG) |
| cake_update_flowkeys(&keys, skb); |
| |
| /* flow_hash_from_keys() sorts the addresses by value, so we have |
| * to preserve their order in a separate data structure to treat |
| * src and dst host addresses as independently selectable. |
| */ |
| host_keys = keys; |
| host_keys.ports.ports = 0; |
| host_keys.basic.ip_proto = 0; |
| host_keys.keyid.keyid = 0; |
| host_keys.tags.flow_label = 0; |
| |
| switch (host_keys.control.addr_type) { |
| case FLOW_DISSECTOR_KEY_IPV4_ADDRS: |
| host_keys.addrs.v4addrs.src = 0; |
| dsthost_hash = flow_hash_from_keys(&host_keys); |
| host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; |
| host_keys.addrs.v4addrs.dst = 0; |
| srchost_hash = flow_hash_from_keys(&host_keys); |
| break; |
| |
| case FLOW_DISSECTOR_KEY_IPV6_ADDRS: |
| memset(&host_keys.addrs.v6addrs.src, 0, |
| sizeof(host_keys.addrs.v6addrs.src)); |
| dsthost_hash = flow_hash_from_keys(&host_keys); |
| host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; |
| memset(&host_keys.addrs.v6addrs.dst, 0, |
| sizeof(host_keys.addrs.v6addrs.dst)); |
| srchost_hash = flow_hash_from_keys(&host_keys); |
| break; |
| |
| default: |
| dsthost_hash = 0; |
| srchost_hash = 0; |
| } |
| |
| /* This *must* be after the above switch, since as a |
| * side-effect it sorts the src and dst addresses. |
| */ |
| if (flow_mode & CAKE_FLOW_FLOWS) |
| flow_hash = flow_hash_from_keys(&keys); |
| |
| skip_hash: |
| if (flow_override) |
| flow_hash = flow_override - 1; |
| if (host_override) { |
| dsthost_hash = host_override - 1; |
| srchost_hash = host_override - 1; |
| } |
| |
| if (!(flow_mode & CAKE_FLOW_FLOWS)) { |
| if (flow_mode & CAKE_FLOW_SRC_IP) |
| flow_hash ^= srchost_hash; |
| |
| if (flow_mode & CAKE_FLOW_DST_IP) |
| flow_hash ^= dsthost_hash; |
| } |
| |
| reduced_hash = flow_hash % CAKE_QUEUES; |
| |
| /* set-associative hashing */ |
| /* fast path if no hash collision (direct lookup succeeds) */ |
| if (likely(q->tags[reduced_hash] == flow_hash && |
| q->flows[reduced_hash].set)) { |
| q->way_directs++; |
| } else { |
| u32 inner_hash = reduced_hash % CAKE_SET_WAYS; |
| u32 outer_hash = reduced_hash - inner_hash; |
| bool allocate_src = false; |
| bool allocate_dst = false; |
| u32 i, k; |
| |
| /* check if any active queue in the set is reserved for |
| * this flow. |
| */ |
| for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; |
| i++, k = (k + 1) % CAKE_SET_WAYS) { |
| if (q->tags[outer_hash + k] == flow_hash) { |
| if (i) |
| q->way_hits++; |
| |
| if (!q->flows[outer_hash + k].set) { |
| /* need to increment host refcnts */ |
| allocate_src = cake_dsrc(flow_mode); |
| allocate_dst = cake_ddst(flow_mode); |
| } |
| |
| goto found; |
| } |
| } |
| |
| /* no queue is reserved for this flow, look for an |
| * empty one. |
| */ |
| for (i = 0; i < CAKE_SET_WAYS; |
| i++, k = (k + 1) % CAKE_SET_WAYS) { |
| if (!q->flows[outer_hash + k].set) { |
| q->way_misses++; |
| allocate_src = cake_dsrc(flow_mode); |
| allocate_dst = cake_ddst(flow_mode); |
| goto found; |
| } |
| } |
| |
| /* With no empty queues, default to the original |
| * queue, accept the collision, update the host tags. |
| */ |
| q->way_collisions++; |
| q->hosts[q->flows[reduced_hash].srchost].srchost_refcnt--; |
| q->hosts[q->flows[reduced_hash].dsthost].dsthost_refcnt--; |
| allocate_src = cake_dsrc(flow_mode); |
| allocate_dst = cake_ddst(flow_mode); |
| found: |
| /* reserve queue for future packets in same flow */ |
| reduced_hash = outer_hash + k; |
| q->tags[reduced_hash] = flow_hash; |
| |
| if (allocate_src) { |
| srchost_idx = srchost_hash % CAKE_QUEUES; |
| inner_hash = srchost_idx % CAKE_SET_WAYS; |
| outer_hash = srchost_idx - inner_hash; |
| for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; |
| i++, k = (k + 1) % CAKE_SET_WAYS) { |
| if (q->hosts[outer_hash + k].srchost_tag == |
| srchost_hash) |
| goto found_src; |
| } |
| for (i = 0; i < CAKE_SET_WAYS; |
| i++, k = (k + 1) % CAKE_SET_WAYS) { |
| if (!q->hosts[outer_hash + k].srchost_refcnt) |
| break; |
| } |
| q->hosts[outer_hash + k].srchost_tag = srchost_hash; |
| found_src: |
| srchost_idx = outer_hash + k; |
| q->hosts[srchost_idx].srchost_refcnt++; |
| q->flows[reduced_hash].srchost = srchost_idx; |
| } |
| |
| if (allocate_dst) { |
| dsthost_idx = dsthost_hash % CAKE_QUEUES; |
| inner_hash = dsthost_idx % CAKE_SET_WAYS; |
| outer_hash = dsthost_idx - inner_hash; |
| for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; |
| i++, k = (k + 1) % CAKE_SET_WAYS) { |
| if (q->hosts[outer_hash + k].dsthost_tag == |
| dsthost_hash) |
| goto found_dst; |
| } |
| for (i = 0; i < CAKE_SET_WAYS; |
| i++, k = (k + 1) % CAKE_SET_WAYS) { |
| if (!q->hosts[outer_hash + k].dsthost_refcnt) |
| break; |
| } |
| q->hosts[outer_hash + k].dsthost_tag = dsthost_hash; |
| found_dst: |
| dsthost_idx = outer_hash + k; |
| q->hosts[dsthost_idx].dsthost_refcnt++; |
| q->flows[reduced_hash].dsthost = dsthost_idx; |
| } |
| } |
| |
| return reduced_hash; |
| } |
| |
| /* helper functions : might be changed when/if skb use a standard list_head */ |
| /* remove one skb from head of slot queue */ |
| |
| static struct sk_buff *dequeue_head(struct cake_flow *flow) |
| { |
| struct sk_buff *skb = flow->head; |
| |
| if (skb) { |
| flow->head = skb->next; |
| skb->next = NULL; |
| } |
| |
| return skb; |
| } |
| |
| /* add skb to flow queue (tail add) */ |
| |
| static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb) |
| { |
| if (!flow->head) |
| flow->head = skb; |
| else |
| flow->tail->next = skb; |
| flow->tail = skb; |
| skb->next = NULL; |
| } |
| |
| static struct iphdr *cake_get_iphdr(const struct sk_buff *skb, |
| struct ipv6hdr *buf) |
| { |
| unsigned int offset = skb_network_offset(skb); |
| struct iphdr *iph; |
| |
| iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf); |
| |
| if (!iph) |
| return NULL; |
| |
| if (iph->version == 4 && iph->protocol == IPPROTO_IPV6) |
| return skb_header_pointer(skb, offset + iph->ihl * 4, |
| sizeof(struct ipv6hdr), buf); |
| |
| else if (iph->version == 4) |
| return iph; |
| |
| else if (iph->version == 6) |
| return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr), |
| buf); |
| |
| return NULL; |
| } |
| |
| static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb, |
| void *buf, unsigned int bufsize) |
| { |
| unsigned int offset = skb_network_offset(skb); |
| const struct ipv6hdr *ipv6h; |
| const struct tcphdr *tcph; |
| const struct iphdr *iph; |
| struct ipv6hdr _ipv6h; |
| struct tcphdr _tcph; |
| |
| ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); |
| |
| if (!ipv6h) |
| return NULL; |
| |
| if (ipv6h->version == 4) { |
| iph = (struct iphdr *)ipv6h; |
| offset += iph->ihl * 4; |
| |
| /* special-case 6in4 tunnelling, as that is a common way to get |
| * v6 connectivity in the home |
| */ |
| if (iph->protocol == IPPROTO_IPV6) { |
| ipv6h = skb_header_pointer(skb, offset, |
| sizeof(_ipv6h), &_ipv6h); |
| |
| if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) |
| return NULL; |
| |
| offset += sizeof(struct ipv6hdr); |
| |
| } else if (iph->protocol != IPPROTO_TCP) { |
| return NULL; |
| } |
| |
| } else if (ipv6h->version == 6) { |
| if (ipv6h->nexthdr != IPPROTO_TCP) |
| return NULL; |
| |
| offset += sizeof(struct ipv6hdr); |
| } else { |
| return NULL; |
| } |
| |
| tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); |
| if (!tcph) |
| return NULL; |
| |
| return skb_header_pointer(skb, offset, |
| min(__tcp_hdrlen(tcph), bufsize), buf); |
| } |
| |
| static const void *cake_get_tcpopt(const struct tcphdr *tcph, |
| int code, int *oplen) |
| { |
| /* inspired by tcp_parse_options in tcp_input.c */ |
| int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr); |
| const u8 *ptr = (const u8 *)(tcph + 1); |
| |
| while (length > 0) { |
| int opcode = *ptr++; |
| int opsize; |
| |
| if (opcode == TCPOPT_EOL) |
| break; |
| if (opcode == TCPOPT_NOP) { |
| length--; |
| continue; |
| } |
| opsize = *ptr++; |
| if (opsize < 2 || opsize > length) |
| break; |
| |
| if (opcode == code) { |
| *oplen = opsize; |
| return ptr; |
| } |
| |
| ptr += opsize - 2; |
| length -= opsize; |
| } |
| |
| return NULL; |
| } |
| |
| /* Compare two SACK sequences. A sequence is considered greater if it SACKs more |
| * bytes than the other. In the case where both sequences ACKs bytes that the |
| * other doesn't, A is considered greater. DSACKs in A also makes A be |
| * considered greater. |
| * |
| * @return -1, 0 or 1 as normal compare functions |
| */ |
| static int cake_tcph_sack_compare(const struct tcphdr *tcph_a, |
| const struct tcphdr *tcph_b) |
| { |
| const struct tcp_sack_block_wire *sack_a, *sack_b; |
| u32 ack_seq_a = ntohl(tcph_a->ack_seq); |
| u32 bytes_a = 0, bytes_b = 0; |
| int oplen_a, oplen_b; |
| bool first = true; |
| |
| sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a); |
| sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b); |
| |
| /* pointers point to option contents */ |
| oplen_a -= TCPOLEN_SACK_BASE; |
| oplen_b -= TCPOLEN_SACK_BASE; |
| |
| if (sack_a && oplen_a >= sizeof(*sack_a) && |
| (!sack_b || oplen_b < sizeof(*sack_b))) |
| return -1; |
| else if (sack_b && oplen_b >= sizeof(*sack_b) && |
| (!sack_a || oplen_a < sizeof(*sack_a))) |
| return 1; |
| else if ((!sack_a || oplen_a < sizeof(*sack_a)) && |
| (!sack_b || oplen_b < sizeof(*sack_b))) |
| return 0; |
| |
| while (oplen_a >= sizeof(*sack_a)) { |
| const struct tcp_sack_block_wire *sack_tmp = sack_b; |
| u32 start_a = get_unaligned_be32(&sack_a->start_seq); |
| u32 end_a = get_unaligned_be32(&sack_a->end_seq); |
| int oplen_tmp = oplen_b; |
| bool found = false; |
| |
| /* DSACK; always considered greater to prevent dropping */ |
| if (before(start_a, ack_seq_a)) |
| return -1; |
| |
| bytes_a += end_a - start_a; |
| |
| while (oplen_tmp >= sizeof(*sack_tmp)) { |
| u32 start_b = get_unaligned_be32(&sack_tmp->start_seq); |
| u32 end_b = get_unaligned_be32(&sack_tmp->end_seq); |
| |
| /* first time through we count the total size */ |
| if (first) |
| bytes_b += end_b - start_b; |
| |
| if (!after(start_b, start_a) && !before(end_b, end_a)) { |
| found = true; |
| if (!first) |
| break; |
| } |
| oplen_tmp -= sizeof(*sack_tmp); |
| sack_tmp++; |
| } |
| |
| if (!found) |
| return -1; |
| |
| oplen_a -= sizeof(*sack_a); |
| sack_a++; |
| first = false; |
| } |
| |
| /* If we made it this far, all ranges SACKed by A are covered by B, so |
| * either the SACKs are equal, or B SACKs more bytes. |
| */ |
| return bytes_b > bytes_a ? 1 : 0; |
| } |
| |
| static void cake_tcph_get_tstamp(const struct tcphdr *tcph, |
| u32 *tsval, u32 *tsecr) |
| { |
| const u8 *ptr; |
| int opsize; |
| |
| ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize); |
| |
| if (ptr && opsize == TCPOLEN_TIMESTAMP) { |
| *tsval = get_unaligned_be32(ptr); |
| *tsecr = get_unaligned_be32(ptr + 4); |
| } |
| } |
| |
| static bool cake_tcph_may_drop(const struct tcphdr *tcph, |
| u32 tstamp_new, u32 tsecr_new) |
| { |
| /* inspired by tcp_parse_options in tcp_input.c */ |
| int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr); |
| const u8 *ptr = (const u8 *)(tcph + 1); |
| u32 tstamp, tsecr; |
| |
| /* 3 reserved flags must be unset to avoid future breakage |
| * ACK must be set |
| * ECE/CWR are handled separately |
| * All other flags URG/PSH/RST/SYN/FIN must be unset |
| * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero) |
| * 0x00C00000 = CWR/ECE (handled separately) |
| * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000 |
| */ |
| if (((tcp_flag_word(tcph) & |
| cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK)) |
| return false; |
| |
| while (length > 0) { |
| int opcode = *ptr++; |
| int opsize; |
| |
| if (opcode == TCPOPT_EOL) |
| break; |
| if (opcode == TCPOPT_NOP) { |
| length--; |
| continue; |
| } |
| opsize = *ptr++; |
| if (opsize < 2 || opsize > length) |
| break; |
| |
| switch (opcode) { |
| case TCPOPT_MD5SIG: /* doesn't influence state */ |
| break; |
| |
| case TCPOPT_SACK: /* stricter checking performed later */ |
| if (opsize % 8 != 2) |
| return false; |
| break; |
| |
| case TCPOPT_TIMESTAMP: |
| /* only drop timestamps lower than new */ |
| if (opsize != TCPOLEN_TIMESTAMP) |
| return false; |
| tstamp = get_unaligned_be32(ptr); |
| tsecr = get_unaligned_be32(ptr + 4); |
| if (after(tstamp, tstamp_new) || |
| after(tsecr, tsecr_new)) |
| return false; |
| break; |
| |
| case TCPOPT_MSS: /* these should only be set on SYN */ |
| case TCPOPT_WINDOW: |
| case TCPOPT_SACK_PERM: |
| case TCPOPT_FASTOPEN: |
| case TCPOPT_EXP: |
| default: /* don't drop if any unknown options are present */ |
| return false; |
| } |
| |
| ptr += opsize - 2; |
| length -= opsize; |
| } |
| |
| return true; |
| } |
| |
| static struct sk_buff *cake_ack_filter(struct cake_sched_data *q, |
| struct cake_flow *flow) |
| { |
| bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE; |
| struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL; |
| struct sk_buff *skb_check, *skb_prev = NULL; |
| const struct ipv6hdr *ipv6h, *ipv6h_check; |
| unsigned char _tcph[64], _tcph_check[64]; |
| const struct tcphdr *tcph, *tcph_check; |
| const struct iphdr *iph, *iph_check; |
| struct ipv6hdr _iph, _iph_check; |
| const struct sk_buff *skb; |
| int seglen, num_found = 0; |
| u32 tstamp = 0, tsecr = 0; |
| __be32 elig_flags = 0; |
| int sack_comp; |
| |
| /* no other possible ACKs to filter */ |
| if (flow->head == flow->tail) |
| return NULL; |
| |
| skb = flow->tail; |
| tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph)); |
| iph = cake_get_iphdr(skb, &_iph); |
| if (!tcph) |
| return NULL; |
| |
| cake_tcph_get_tstamp(tcph, &tstamp, &tsecr); |
| |
| /* the 'triggering' packet need only have the ACK flag set. |
| * also check that SYN is not set, as there won't be any previous ACKs. |
| */ |
| if ((tcp_flag_word(tcph) & |
| (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK) |
| return NULL; |
| |
| /* the 'triggering' ACK is at the tail of the queue, we have already |
| * returned if it is the only packet in the flow. loop through the rest |
| * of the queue looking for pure ACKs with the same 5-tuple as the |
| * triggering one. |
| */ |
| for (skb_check = flow->head; |
| skb_check && skb_check != skb; |
| skb_prev = skb_check, skb_check = skb_check->next) { |
| iph_check = cake_get_iphdr(skb_check, &_iph_check); |
| tcph_check = cake_get_tcphdr(skb_check, &_tcph_check, |
| sizeof(_tcph_check)); |
| |
| /* only TCP packets with matching 5-tuple are eligible, and only |
| * drop safe headers |
| */ |
| if (!tcph_check || iph->version != iph_check->version || |
| tcph_check->source != tcph->source || |
| tcph_check->dest != tcph->dest) |
| continue; |
| |
| if (iph_check->version == 4) { |
| if (iph_check->saddr != iph->saddr || |
| iph_check->daddr != iph->daddr) |
| continue; |
| |
| seglen = ntohs(iph_check->tot_len) - |
| (4 * iph_check->ihl); |
| } else if (iph_check->version == 6) { |
| ipv6h = (struct ipv6hdr *)iph; |
| ipv6h_check = (struct ipv6hdr *)iph_check; |
| |
| if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) || |
| ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr)) |
| continue; |
| |
| seglen = ntohs(ipv6h_check->payload_len); |
| } else { |
| WARN_ON(1); /* shouldn't happen */ |
| continue; |
| } |
| |
| /* If the ECE/CWR flags changed from the previous eligible |
| * packet in the same flow, we should no longer be dropping that |
| * previous packet as this would lose information. |
| */ |
| if (elig_ack && (tcp_flag_word(tcph_check) & |
| (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) { |
| elig_ack = NULL; |
| elig_ack_prev = NULL; |
| num_found--; |
| } |
| |
| /* Check TCP options and flags, don't drop ACKs with segment |
| * data, and don't drop ACKs with a higher cumulative ACK |
| * counter than the triggering packet. Check ACK seqno here to |
| * avoid parsing SACK options of packets we are going to exclude |
| * anyway. |
| */ |
| if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) || |
| (seglen - __tcp_hdrlen(tcph_check)) != 0 || |
| after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq))) |
| continue; |
| |
| /* Check SACK options. The triggering packet must SACK more data |
| * than the ACK under consideration, or SACK the same range but |
| * have a larger cumulative ACK counter. The latter is a |
| * pathological case, but is contained in the following check |
| * anyway, just to be safe. |
| */ |
| sack_comp = cake_tcph_sack_compare(tcph_check, tcph); |
| |
| if (sack_comp < 0 || |
| (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) && |
| sack_comp == 0)) |
| continue; |
| |
| /* At this point we have found an eligible pure ACK to drop; if |
| * we are in aggressive mode, we are done. Otherwise, keep |
| * searching unless this is the second eligible ACK we |
| * found. |
| * |
| * Since we want to drop ACK closest to the head of the queue, |
| * save the first eligible ACK we find, even if we need to loop |
| * again. |
| */ |
| if (!elig_ack) { |
| elig_ack = skb_check; |
| elig_ack_prev = skb_prev; |
| elig_flags = (tcp_flag_word(tcph_check) |
| & (TCP_FLAG_ECE | TCP_FLAG_CWR)); |
| } |
| |
| if (num_found++ > 0) |
| goto found; |
| } |
| |
| /* We made it through the queue without finding two eligible ACKs . If |
| * we found a single eligible ACK we can drop it in aggressive mode if |
| * we can guarantee that this does not interfere with ECN flag |
| * information. We ensure this by dropping it only if the enqueued |
| * packet is consecutive with the eligible ACK, and their flags match. |
| */ |
| if (elig_ack && aggressive && elig_ack->next == skb && |
| (elig_flags == (tcp_flag_word(tcph) & |
| (TCP_FLAG_ECE | TCP_FLAG_CWR)))) |
| goto found; |
| |
| return NULL; |
| |
| found: |
| if (elig_ack_prev) |
| elig_ack_prev->next = elig_ack->next; |
| else |
| flow->head = elig_ack->next; |
| |
| elig_ack->next = NULL; |
| |
| return elig_ack; |
| } |
| |
| static u64 cake_ewma(u64 avg, u64 sample, u32 shift) |
| { |
| avg -= avg >> shift; |
| avg += sample >> shift; |
| return avg; |
| } |
| |
| static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off) |
| { |
| if (q->rate_flags & CAKE_FLAG_OVERHEAD) |
| len -= off; |
| |
| if (q->max_netlen < len) |
| q->max_netlen = len; |
| if (q->min_netlen > len) |
| q->min_netlen = len; |
| |
| len += q->rate_overhead; |
| |
| if (len < q->rate_mpu) |
| len = q->rate_mpu; |
| |
| if (q->atm_mode == CAKE_ATM_ATM) { |
| len += 47; |
| len /= 48; |
| len *= 53; |
| } else if (q->atm_mode == CAKE_ATM_PTM) { |
| /* Add one byte per 64 bytes or part thereof. |
| * This is conservative and easier to calculate than the |
| * precise value. |
| */ |
| len += (len + 63) / 64; |
| } |
| |
| if (q->max_adjlen < len) |
| q->max_adjlen = len; |
| if (q->min_adjlen > len) |
| q->min_adjlen = len; |
| |
| return len; |
| } |
| |
| static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb) |
| { |
| const struct skb_shared_info *shinfo = skb_shinfo(skb); |
| unsigned int hdr_len, last_len = 0; |
| u32 off = skb_network_offset(skb); |
| u32 len = qdisc_pkt_len(skb); |
| u16 segs = 1; |
| |
| q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8); |
| |
| if (!shinfo->gso_size) |
| return cake_calc_overhead(q, len, off); |
| |
| /* borrowed from qdisc_pkt_len_init() */ |
| hdr_len = skb_transport_header(skb) - skb_mac_header(skb); |
| |
| /* + transport layer */ |
| if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | |
| SKB_GSO_TCPV6))) { |
| const struct tcphdr *th; |
| struct tcphdr _tcphdr; |
| |
| th = skb_header_pointer(skb, skb_transport_offset(skb), |
| sizeof(_tcphdr), &_tcphdr); |
| if (likely(th)) |
| hdr_len += __tcp_hdrlen(th); |
| } else { |
| struct udphdr _udphdr; |
| |
| if (skb_header_pointer(skb, skb_transport_offset(skb), |
| sizeof(_udphdr), &_udphdr)) |
| hdr_len += sizeof(struct udphdr); |
| } |
| |
| if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) |
| segs = DIV_ROUND_UP(skb->len - hdr_len, |
| shinfo->gso_size); |
| else |
| segs = shinfo->gso_segs; |
| |
| len = shinfo->gso_size + hdr_len; |
| last_len = skb->len - shinfo->gso_size * (segs - 1); |
| |
| return (cake_calc_overhead(q, len, off) * (segs - 1) + |
| cake_calc_overhead(q, last_len, off)); |
| } |
| |
| static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j) |
| { |
| struct cake_heap_entry ii = q->overflow_heap[i]; |
| struct cake_heap_entry jj = q->overflow_heap[j]; |
| |
| q->overflow_heap[i] = jj; |
| q->overflow_heap[j] = ii; |
| |
| q->tins[ii.t].overflow_idx[ii.b] = j; |
| q->tins[jj.t].overflow_idx[jj.b] = i; |
| } |
| |
| static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i) |
| { |
| struct cake_heap_entry ii = q->overflow_heap[i]; |
| |
| return q->tins[ii.t].backlogs[ii.b]; |
| } |
| |
| static void cake_heapify(struct cake_sched_data *q, u16 i) |
| { |
| static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES; |
| u32 mb = cake_heap_get_backlog(q, i); |
| u32 m = i; |
| |
| while (m < a) { |
| u32 l = m + m + 1; |
| u32 r = l + 1; |
| |
| if (l < a) { |
| u32 lb = cake_heap_get_backlog(q, l); |
| |
| if (lb > mb) { |
| m = l; |
| mb = lb; |
| } |
| } |
| |
| if (r < a) { |
| u32 rb = cake_heap_get_backlog(q, r); |
| |
| if (rb > mb) { |
| m = r; |
| mb = rb; |
| } |
| } |
| |
| if (m != i) { |
| cake_heap_swap(q, i, m); |
| i = m; |
| } else { |
| break; |
| } |
| } |
| } |
| |
| static void cake_heapify_up(struct cake_sched_data *q, u16 i) |
| { |
| while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) { |
| u16 p = (i - 1) >> 1; |
| u32 ib = cake_heap_get_backlog(q, i); |
| u32 pb = cake_heap_get_backlog(q, p); |
| |
| if (ib > pb) { |
| cake_heap_swap(q, i, p); |
| i = p; |
| } else { |
| break; |
| } |
| } |
| } |
| |
| static int cake_advance_shaper(struct cake_sched_data *q, |
| struct cake_tin_data *b, |
| struct sk_buff *skb, |
| ktime_t now, bool drop) |
| { |
| u32 len = get_cobalt_cb(skb)->adjusted_len; |
| |
| /* charge packet bandwidth to this tin |
| * and to the global shaper. |
| */ |
| if (q->rate_ns) { |
| u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft; |
| u64 global_dur = (len * q->rate_ns) >> q->rate_shft; |
| u64 failsafe_dur = global_dur + (global_dur >> 1); |
| |
| if (ktime_before(b->time_next_packet, now)) |
| b->time_next_packet = ktime_add_ns(b->time_next_packet, |
| tin_dur); |
| |
| else if (ktime_before(b->time_next_packet, |
| ktime_add_ns(now, tin_dur))) |
| b->time_next_packet = ktime_add_ns(now, tin_dur); |
| |
| q->time_next_packet = ktime_add_ns(q->time_next_packet, |
| global_dur); |
| if (!drop) |
| q->failsafe_next_packet = \ |
| ktime_add_ns(q->failsafe_next_packet, |
| failsafe_dur); |
| } |
| return len; |
| } |
| |
| static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| ktime_t now = ktime_get(); |
| u32 idx = 0, tin = 0, len; |
| struct cake_heap_entry qq; |
| struct cake_tin_data *b; |
| struct cake_flow *flow; |
| struct sk_buff *skb; |
| |
| if (!q->overflow_timeout) { |
| int i; |
| /* Build fresh max-heap */ |
| for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--) |
| cake_heapify(q, i); |
| } |
| q->overflow_timeout = 65535; |
| |
| /* select longest queue for pruning */ |
| qq = q->overflow_heap[0]; |
| tin = qq.t; |
| idx = qq.b; |
| |
| b = &q->tins[tin]; |
| flow = &b->flows[idx]; |
| skb = dequeue_head(flow); |
| if (unlikely(!skb)) { |
| /* heap has gone wrong, rebuild it next time */ |
| q->overflow_timeout = 0; |
| return idx + (tin << 16); |
| } |
| |
| if (cobalt_queue_full(&flow->cvars, &b->cparams, now)) |
| b->unresponsive_flow_count++; |
| |
| len = qdisc_pkt_len(skb); |
| q->buffer_used -= skb->truesize; |
| b->backlogs[idx] -= len; |
| b->tin_backlog -= len; |
| sch->qstats.backlog -= len; |
| qdisc_tree_reduce_backlog(sch, 1, len); |
| |
| flow->dropped++; |
| b->tin_dropped++; |
| sch->qstats.drops++; |
| |
| if (q->rate_flags & CAKE_FLAG_INGRESS) |
| cake_advance_shaper(q, b, skb, now, true); |
| |
| __qdisc_drop(skb, to_free); |
| sch->q.qlen--; |
| |
| cake_heapify(q, 0); |
| |
| return idx + (tin << 16); |
| } |
| |
| static u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash) |
| { |
| int wlen = skb_network_offset(skb); |
| u8 dscp; |
| |
| switch (tc_skb_protocol(skb)) { |
| case htons(ETH_P_IP): |
| wlen += sizeof(struct iphdr); |
| if (!pskb_may_pull(skb, wlen) || |
| skb_try_make_writable(skb, wlen)) |
| return 0; |
| |
| dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; |
| if (wash && dscp) |
| ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0); |
| return dscp; |
| |
| case htons(ETH_P_IPV6): |
| wlen += sizeof(struct ipv6hdr); |
| if (!pskb_may_pull(skb, wlen) || |
| skb_try_make_writable(skb, wlen)) |
| return 0; |
| |
| dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; |
| if (wash && dscp) |
| ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0); |
| return dscp; |
| |
| case htons(ETH_P_ARP): |
| return 0x38; /* CS7 - Net Control */ |
| |
| default: |
| /* If there is no Diffserv field, treat as best-effort */ |
| return 0; |
| } |
| } |
| |
| static struct cake_tin_data *cake_select_tin(struct Qdisc *sch, |
| struct sk_buff *skb) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| u32 tin; |
| u8 dscp; |
| |
| /* Tin selection: Default to diffserv-based selection, allow overriding |
| * using firewall marks or skb->priority. |
| */ |
| dscp = cake_handle_diffserv(skb, |
| q->rate_flags & CAKE_FLAG_WASH); |
| |
| if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT) |
| tin = 0; |
| |
| else if (TC_H_MAJ(skb->priority) == sch->handle && |
| TC_H_MIN(skb->priority) > 0 && |
| TC_H_MIN(skb->priority) <= q->tin_cnt) |
| tin = q->tin_order[TC_H_MIN(skb->priority) - 1]; |
| |
| else { |
| tin = q->tin_index[dscp]; |
| |
| if (unlikely(tin >= q->tin_cnt)) |
| tin = 0; |
| } |
| |
| return &q->tins[tin]; |
| } |
| |
| static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t, |
| struct sk_buff *skb, int flow_mode, int *qerr) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| struct tcf_proto *filter; |
| struct tcf_result res; |
| u16 flow = 0, host = 0; |
| int result; |
| |
| filter = rcu_dereference_bh(q->filter_list); |
| if (!filter) |
| goto hash; |
| |
| *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; |
| result = tcf_classify(skb, filter, &res, false); |
| |
| if (result >= 0) { |
| #ifdef CONFIG_NET_CLS_ACT |
| switch (result) { |
| case TC_ACT_STOLEN: |
| case TC_ACT_QUEUED: |
| case TC_ACT_TRAP: |
| *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; |
| /* fall through */ |
| case TC_ACT_SHOT: |
| return 0; |
| } |
| #endif |
| if (TC_H_MIN(res.classid) <= CAKE_QUEUES) |
| flow = TC_H_MIN(res.classid); |
| if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16)) |
| host = TC_H_MAJ(res.classid) >> 16; |
| } |
| hash: |
| *t = cake_select_tin(sch, skb); |
| return cake_hash(*t, skb, flow_mode, flow, host) + 1; |
| } |
| |
| static void cake_reconfigure(struct Qdisc *sch); |
| |
| static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch, |
| struct sk_buff **to_free) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| int len = qdisc_pkt_len(skb); |
| int uninitialized_var(ret); |
| struct sk_buff *ack = NULL; |
| ktime_t now = ktime_get(); |
| struct cake_tin_data *b; |
| struct cake_flow *flow; |
| u32 idx; |
| |
| /* choose flow to insert into */ |
| idx = cake_classify(sch, &b, skb, q->flow_mode, &ret); |
| if (idx == 0) { |
| if (ret & __NET_XMIT_BYPASS) |
| qdisc_qstats_drop(sch); |
| __qdisc_drop(skb, to_free); |
| return ret; |
| } |
| idx--; |
| flow = &b->flows[idx]; |
| |
| /* ensure shaper state isn't stale */ |
| if (!b->tin_backlog) { |
| if (ktime_before(b->time_next_packet, now)) |
| b->time_next_packet = now; |
| |
| if (!sch->q.qlen) { |
| if (ktime_before(q->time_next_packet, now)) { |
| q->failsafe_next_packet = now; |
| q->time_next_packet = now; |
| } else if (ktime_after(q->time_next_packet, now) && |
| ktime_after(q->failsafe_next_packet, now)) { |
| u64 next = \ |
| min(ktime_to_ns(q->time_next_packet), |
| ktime_to_ns( |
| q->failsafe_next_packet)); |
| sch->qstats.overlimits++; |
| qdisc_watchdog_schedule_ns(&q->watchdog, next); |
| } |
| } |
| } |
| |
| if (unlikely(len > b->max_skblen)) |
| b->max_skblen = len; |
| |
| if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) { |
| struct sk_buff *segs, *nskb; |
| netdev_features_t features = netif_skb_features(skb); |
| unsigned int slen = 0, numsegs = 0; |
| |
| segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); |
| if (IS_ERR_OR_NULL(segs)) |
| return qdisc_drop(skb, sch, to_free); |
| |
| while (segs) { |
| nskb = segs->next; |
| segs->next = NULL; |
| qdisc_skb_cb(segs)->pkt_len = segs->len; |
| cobalt_set_enqueue_time(segs, now); |
| get_cobalt_cb(segs)->adjusted_len = cake_overhead(q, |
| segs); |
| flow_queue_add(flow, segs); |
| |
| sch->q.qlen++; |
| numsegs++; |
| slen += segs->len; |
| q->buffer_used += segs->truesize; |
| b->packets++; |
| segs = nskb; |
| } |
| |
| /* stats */ |
| b->bytes += slen; |
| b->backlogs[idx] += slen; |
| b->tin_backlog += slen; |
| sch->qstats.backlog += slen; |
| q->avg_window_bytes += slen; |
| |
| qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen); |
| consume_skb(skb); |
| } else { |
| /* not splitting */ |
| cobalt_set_enqueue_time(skb, now); |
| get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb); |
| flow_queue_add(flow, skb); |
| |
| if (q->ack_filter) |
| ack = cake_ack_filter(q, flow); |
| |
| if (ack) { |
| b->ack_drops++; |
| sch->qstats.drops++; |
| b->bytes += qdisc_pkt_len(ack); |
| len -= qdisc_pkt_len(ack); |
| q->buffer_used += skb->truesize - ack->truesize; |
| if (q->rate_flags & CAKE_FLAG_INGRESS) |
| cake_advance_shaper(q, b, ack, now, true); |
| |
| qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack)); |
| consume_skb(ack); |
| } else { |
| sch->q.qlen++; |
| q->buffer_used += skb->truesize; |
| } |
| |
| /* stats */ |
| b->packets++; |
| b->bytes += len; |
| b->backlogs[idx] += len; |
| b->tin_backlog += len; |
| sch->qstats.backlog += len; |
| q->avg_window_bytes += len; |
| } |
| |
| if (q->overflow_timeout) |
| cake_heapify_up(q, b->overflow_idx[idx]); |
| |
| /* incoming bandwidth capacity estimate */ |
| if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) { |
| u64 packet_interval = \ |
| ktime_to_ns(ktime_sub(now, q->last_packet_time)); |
| |
| if (packet_interval > NSEC_PER_SEC) |
| packet_interval = NSEC_PER_SEC; |
| |
| /* filter out short-term bursts, eg. wifi aggregation */ |
| q->avg_packet_interval = \ |
| cake_ewma(q->avg_packet_interval, |
| packet_interval, |
| (packet_interval > q->avg_packet_interval ? |
| 2 : 8)); |
| |
| q->last_packet_time = now; |
| |
| if (packet_interval > q->avg_packet_interval) { |
| u64 window_interval = \ |
| ktime_to_ns(ktime_sub(now, |
| q->avg_window_begin)); |
| u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC; |
| |
| b = div64_u64(b, window_interval); |
| q->avg_peak_bandwidth = |
| cake_ewma(q->avg_peak_bandwidth, b, |
| b > q->avg_peak_bandwidth ? 2 : 8); |
| q->avg_window_bytes = 0; |
| q->avg_window_begin = now; |
| |
| if (ktime_after(now, |
| ktime_add_ms(q->last_reconfig_time, |
| 250))) { |
| q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4; |
| cake_reconfigure(sch); |
| } |
| } |
| } else { |
| q->avg_window_bytes = 0; |
| q->last_packet_time = now; |
| } |
| |
| /* flowchain */ |
| if (!flow->set || flow->set == CAKE_SET_DECAYING) { |
| struct cake_host *srchost = &b->hosts[flow->srchost]; |
| struct cake_host *dsthost = &b->hosts[flow->dsthost]; |
| u16 host_load = 1; |
| |
| if (!flow->set) { |
| list_add_tail(&flow->flowchain, &b->new_flows); |
| } else { |
| b->decaying_flow_count--; |
| list_move_tail(&flow->flowchain, &b->new_flows); |
| } |
| flow->set = CAKE_SET_SPARSE; |
| b->sparse_flow_count++; |
| |
| if (cake_dsrc(q->flow_mode)) |
| host_load = max(host_load, srchost->srchost_refcnt); |
| |
| if (cake_ddst(q->flow_mode)) |
| host_load = max(host_load, dsthost->dsthost_refcnt); |
| |
| flow->deficit = (b->flow_quantum * |
| quantum_div[host_load]) >> 16; |
| } else if (flow->set == CAKE_SET_SPARSE_WAIT) { |
| /* this flow was empty, accounted as a sparse flow, but actually |
| * in the bulk rotation. |
| */ |
| flow->set = CAKE_SET_BULK; |
| b->sparse_flow_count--; |
| b->bulk_flow_count++; |
| } |
| |
| if (q->buffer_used > q->buffer_max_used) |
| q->buffer_max_used = q->buffer_used; |
| |
| if (q->buffer_used > q->buffer_limit) { |
| u32 dropped = 0; |
| |
| while (q->buffer_used > q->buffer_limit) { |
| dropped++; |
| cake_drop(sch, to_free); |
| } |
| b->drop_overlimit += dropped; |
| } |
| return NET_XMIT_SUCCESS; |
| } |
| |
| static struct sk_buff *cake_dequeue_one(struct Qdisc *sch) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| struct cake_tin_data *b = &q->tins[q->cur_tin]; |
| struct cake_flow *flow = &b->flows[q->cur_flow]; |
| struct sk_buff *skb = NULL; |
| u32 len; |
| |
| if (flow->head) { |
| skb = dequeue_head(flow); |
| len = qdisc_pkt_len(skb); |
| b->backlogs[q->cur_flow] -= len; |
| b->tin_backlog -= len; |
| sch->qstats.backlog -= len; |
| q->buffer_used -= skb->truesize; |
| sch->q.qlen--; |
| |
| if (q->overflow_timeout) |
| cake_heapify(q, b->overflow_idx[q->cur_flow]); |
| } |
| return skb; |
| } |
| |
| /* Discard leftover packets from a tin no longer in use. */ |
| static void cake_clear_tin(struct Qdisc *sch, u16 tin) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| struct sk_buff *skb; |
| |
| q->cur_tin = tin; |
| for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++) |
| while (!!(skb = cake_dequeue_one(sch))) |
| kfree_skb(skb); |
| } |
| |
| static struct sk_buff *cake_dequeue(struct Qdisc *sch) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| struct cake_tin_data *b = &q->tins[q->cur_tin]; |
| struct cake_host *srchost, *dsthost; |
| ktime_t now = ktime_get(); |
| struct cake_flow *flow; |
| struct list_head *head; |
| bool first_flow = true; |
| struct sk_buff *skb; |
| u16 host_load; |
| u64 delay; |
| u32 len; |
| |
| begin: |
| if (!sch->q.qlen) |
| return NULL; |
| |
| /* global hard shaper */ |
| if (ktime_after(q->time_next_packet, now) && |
| ktime_after(q->failsafe_next_packet, now)) { |
| u64 next = min(ktime_to_ns(q->time_next_packet), |
| ktime_to_ns(q->failsafe_next_packet)); |
| |
| sch->qstats.overlimits++; |
| qdisc_watchdog_schedule_ns(&q->watchdog, next); |
| return NULL; |
| } |
| |
| /* Choose a class to work on. */ |
| if (!q->rate_ns) { |
| /* In unlimited mode, can't rely on shaper timings, just balance |
| * with DRR |
| */ |
| bool wrapped = false, empty = true; |
| |
| while (b->tin_deficit < 0 || |
| !(b->sparse_flow_count + b->bulk_flow_count)) { |
| if (b->tin_deficit <= 0) |
| b->tin_deficit += b->tin_quantum_band; |
| if (b->sparse_flow_count + b->bulk_flow_count) |
| empty = false; |
| |
| q->cur_tin++; |
| b++; |
| if (q->cur_tin >= q->tin_cnt) { |
| q->cur_tin = 0; |
| b = q->tins; |
| |
| if (wrapped) { |
| /* It's possible for q->qlen to be |
| * nonzero when we actually have no |
| * packets anywhere. |
| */ |
| if (empty) |
| return NULL; |
| } else { |
| wrapped = true; |
| } |
| } |
| } |
| } else { |
| /* In shaped mode, choose: |
| * - Highest-priority tin with queue and meeting schedule, or |
| * - The earliest-scheduled tin with queue. |
| */ |
| ktime_t best_time = KTIME_MAX; |
| int tin, best_tin = 0; |
| |
| for (tin = 0; tin < q->tin_cnt; tin++) { |
| b = q->tins + tin; |
| if ((b->sparse_flow_count + b->bulk_flow_count) > 0) { |
| ktime_t time_to_pkt = \ |
| ktime_sub(b->time_next_packet, now); |
| |
| if (ktime_to_ns(time_to_pkt) <= 0 || |
| ktime_compare(time_to_pkt, |
| best_time) <= 0) { |
| best_time = time_to_pkt; |
| best_tin = tin; |
| } |
| } |
| } |
| |
| q->cur_tin = best_tin; |
| b = q->tins + best_tin; |
| |
| /* No point in going further if no packets to deliver. */ |
| if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count))) |
| return NULL; |
| } |
| |
| retry: |
| /* service this class */ |
| head = &b->decaying_flows; |
| if (!first_flow || list_empty(head)) { |
| head = &b->new_flows; |
| if (list_empty(head)) { |
| head = &b->old_flows; |
| if (unlikely(list_empty(head))) { |
| head = &b->decaying_flows; |
| if (unlikely(list_empty(head))) |
| goto begin; |
| } |
| } |
| } |
| flow = list_first_entry(head, struct cake_flow, flowchain); |
| q->cur_flow = flow - b->flows; |
| first_flow = false; |
| |
| /* triple isolation (modified DRR++) */ |
| srchost = &b->hosts[flow->srchost]; |
| dsthost = &b->hosts[flow->dsthost]; |
| host_load = 1; |
| |
| if (cake_dsrc(q->flow_mode)) |
| host_load = max(host_load, srchost->srchost_refcnt); |
| |
| if (cake_ddst(q->flow_mode)) |
| host_load = max(host_load, dsthost->dsthost_refcnt); |
| |
| WARN_ON(host_load > CAKE_QUEUES); |
| |
| /* flow isolation (DRR++) */ |
| if (flow->deficit <= 0) { |
| /* The shifted prandom_u32() is a way to apply dithering to |
| * avoid accumulating roundoff errors |
| */ |
| flow->deficit += (b->flow_quantum * quantum_div[host_load] + |
| (prandom_u32() >> 16)) >> 16; |
| list_move_tail(&flow->flowchain, &b->old_flows); |
| |
| /* Keep all flows with deficits out of the sparse and decaying |
| * rotations. No non-empty flow can go into the decaying |
| * rotation, so they can't get deficits |
| */ |
| if (flow->set == CAKE_SET_SPARSE) { |
| if (flow->head) { |
| b->sparse_flow_count--; |
| b->bulk_flow_count++; |
| flow->set = CAKE_SET_BULK; |
| } else { |
| /* we've moved it to the bulk rotation for |
| * correct deficit accounting but we still want |
| * to count it as a sparse flow, not a bulk one. |
| */ |
| flow->set = CAKE_SET_SPARSE_WAIT; |
| } |
| } |
| goto retry; |
| } |
| |
| /* Retrieve a packet via the AQM */ |
| while (1) { |
| skb = cake_dequeue_one(sch); |
| if (!skb) { |
| /* this queue was actually empty */ |
| if (cobalt_queue_empty(&flow->cvars, &b->cparams, now)) |
| b->unresponsive_flow_count--; |
| |
| if (flow->cvars.p_drop || flow->cvars.count || |
| ktime_before(now, flow->cvars.drop_next)) { |
| /* keep in the flowchain until the state has |
| * decayed to rest |
| */ |
| list_move_tail(&flow->flowchain, |
| &b->decaying_flows); |
| if (flow->set == CAKE_SET_BULK) { |
| b->bulk_flow_count--; |
| b->decaying_flow_count++; |
| } else if (flow->set == CAKE_SET_SPARSE || |
| flow->set == CAKE_SET_SPARSE_WAIT) { |
| b->sparse_flow_count--; |
| b->decaying_flow_count++; |
| } |
| flow->set = CAKE_SET_DECAYING; |
| } else { |
| /* remove empty queue from the flowchain */ |
| list_del_init(&flow->flowchain); |
| if (flow->set == CAKE_SET_SPARSE || |
| flow->set == CAKE_SET_SPARSE_WAIT) |
| b->sparse_flow_count--; |
| else if (flow->set == CAKE_SET_BULK) |
| b->bulk_flow_count--; |
| else |
| b->decaying_flow_count--; |
| |
| flow->set = CAKE_SET_NONE; |
| srchost->srchost_refcnt--; |
| dsthost->dsthost_refcnt--; |
| } |
| goto begin; |
| } |
| |
| /* Last packet in queue may be marked, shouldn't be dropped */ |
| if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb, |
| (b->bulk_flow_count * |
| !!(q->rate_flags & |
| CAKE_FLAG_INGRESS))) || |
| !flow->head) |
| break; |
| |
| /* drop this packet, get another one */ |
| if (q->rate_flags & CAKE_FLAG_INGRESS) { |
| len = cake_advance_shaper(q, b, skb, |
| now, true); |
| flow->deficit -= len; |
| b->tin_deficit -= len; |
| } |
| flow->dropped++; |
| b->tin_dropped++; |
| qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb)); |
| qdisc_qstats_drop(sch); |
| kfree_skb(skb); |
| if (q->rate_flags & CAKE_FLAG_INGRESS) |
| goto retry; |
| } |
| |
| b->tin_ecn_mark += !!flow->cvars.ecn_marked; |
| qdisc_bstats_update(sch, skb); |
| |
| /* collect delay stats */ |
| delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb))); |
| b->avge_delay = cake_ewma(b->avge_delay, delay, 8); |
| b->peak_delay = cake_ewma(b->peak_delay, delay, |
| delay > b->peak_delay ? 2 : 8); |
| b->base_delay = cake_ewma(b->base_delay, delay, |
| delay < b->base_delay ? 2 : 8); |
| |
| len = cake_advance_shaper(q, b, skb, now, false); |
| flow->deficit -= len; |
| b->tin_deficit -= len; |
| |
| if (ktime_after(q->time_next_packet, now) && sch->q.qlen) { |
| u64 next = min(ktime_to_ns(q->time_next_packet), |
| ktime_to_ns(q->failsafe_next_packet)); |
| |
| qdisc_watchdog_schedule_ns(&q->watchdog, next); |
| } else if (!sch->q.qlen) { |
| int i; |
| |
| for (i = 0; i < q->tin_cnt; i++) { |
| if (q->tins[i].decaying_flow_count) { |
| ktime_t next = \ |
| ktime_add_ns(now, |
| q->tins[i].cparams.target); |
| |
| qdisc_watchdog_schedule_ns(&q->watchdog, |
| ktime_to_ns(next)); |
| break; |
| } |
| } |
| } |
| |
| if (q->overflow_timeout) |
| q->overflow_timeout--; |
| |
| return skb; |
| } |
| |
| static void cake_reset(struct Qdisc *sch) |
| { |
| u32 c; |
| |
| for (c = 0; c < CAKE_MAX_TINS; c++) |
| cake_clear_tin(sch, c); |
| } |
| |
| static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = { |
| [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 }, |
| [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 }, |
| [TCA_CAKE_ATM] = { .type = NLA_U32 }, |
| [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 }, |
| [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 }, |
| [TCA_CAKE_RTT] = { .type = NLA_U32 }, |
| [TCA_CAKE_TARGET] = { .type = NLA_U32 }, |
| [TCA_CAKE_AUTORATE] = { .type = NLA_U32 }, |
| [TCA_CAKE_MEMORY] = { .type = NLA_U32 }, |
| [TCA_CAKE_NAT] = { .type = NLA_U32 }, |
| [TCA_CAKE_RAW] = { .type = NLA_U32 }, |
| [TCA_CAKE_WASH] = { .type = NLA_U32 }, |
| [TCA_CAKE_MPU] = { .type = NLA_U32 }, |
| [TCA_CAKE_INGRESS] = { .type = NLA_U32 }, |
| [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 }, |
| }; |
| |
| static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu, |
| u64 target_ns, u64 rtt_est_ns) |
| { |
| /* convert byte-rate into time-per-byte |
| * so it will always unwedge in reasonable time. |
| */ |
| static const u64 MIN_RATE = 64; |
| u32 byte_target = mtu; |
| u64 byte_target_ns; |
| u8 rate_shft = 0; |
| u64 rate_ns = 0; |
| |
| b->flow_quantum = 1514; |
| if (rate) { |
| b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL); |
| rate_shft = 34; |
| rate_ns = ((u64)NSEC_PER_SEC) << rate_shft; |
| rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate)); |
| while (!!(rate_ns >> 34)) { |
| rate_ns >>= 1; |
| rate_shft--; |
| } |
| } /* else unlimited, ie. zero delay */ |
| |
| b->tin_rate_bps = rate; |
| b->tin_rate_ns = rate_ns; |
| b->tin_rate_shft = rate_shft; |
| |
| byte_target_ns = (byte_target * rate_ns) >> rate_shft; |
| |
| b->cparams.target = max((byte_target_ns * 3) / 2, target_ns); |
| b->cparams.interval = max(rtt_est_ns + |
| b->cparams.target - target_ns, |
| b->cparams.target * 2); |
| b->cparams.mtu_time = byte_target_ns; |
| b->cparams.p_inc = 1 << 24; /* 1/256 */ |
| b->cparams.p_dec = 1 << 20; /* 1/4096 */ |
| } |
| |
| static int cake_config_besteffort(struct Qdisc *sch) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| struct cake_tin_data *b = &q->tins[0]; |
| u32 mtu = psched_mtu(qdisc_dev(sch)); |
| u64 rate = q->rate_bps; |
| |
| q->tin_cnt = 1; |
| |
| q->tin_index = besteffort; |
| q->tin_order = normal_order; |
| |
| cake_set_rate(b, rate, mtu, |
| us_to_ns(q->target), us_to_ns(q->interval)); |
| b->tin_quantum_band = 65535; |
| b->tin_quantum_prio = 65535; |
| |
| return 0; |
| } |
| |
| static int cake_config_precedence(struct Qdisc *sch) |
| { |
| /* convert high-level (user visible) parameters into internal format */ |
| struct cake_sched_data *q = qdisc_priv(sch); |
| u32 mtu = psched_mtu(qdisc_dev(sch)); |
| u64 rate = q->rate_bps; |
| u32 quantum1 = 256; |
| u32 quantum2 = 256; |
| u32 i; |
| |
| q->tin_cnt = 8; |
| q->tin_index = precedence; |
| q->tin_order = normal_order; |
| |
| for (i = 0; i < q->tin_cnt; i++) { |
| struct cake_tin_data *b = &q->tins[i]; |
| |
| cake_set_rate(b, rate, mtu, us_to_ns(q->target), |
| us_to_ns(q->interval)); |
| |
| b->tin_quantum_prio = max_t(u16, 1U, quantum1); |
| b->tin_quantum_band = max_t(u16, 1U, quantum2); |
| |
| /* calculate next class's parameters */ |
| rate *= 7; |
| rate >>= 3; |
| |
| quantum1 *= 3; |
| quantum1 >>= 1; |
| |
| quantum2 *= 7; |
| quantum2 >>= 3; |
| } |
| |
| return 0; |
| } |
| |
| /* List of known Diffserv codepoints: |
| * |
| * Least Effort (CS1) |
| * Best Effort (CS0) |
| * Max Reliability & LLT "Lo" (TOS1) |
| * Max Throughput (TOS2) |
| * Min Delay (TOS4) |
| * LLT "La" (TOS5) |
| * Assured Forwarding 1 (AF1x) - x3 |
| * Assured Forwarding 2 (AF2x) - x3 |
| * Assured Forwarding 3 (AF3x) - x3 |
| * Assured Forwarding 4 (AF4x) - x3 |
| * Precedence Class 2 (CS2) |
| * Precedence Class 3 (CS3) |
| * Precedence Class 4 (CS4) |
| * Precedence Class 5 (CS5) |
| * Precedence Class 6 (CS6) |
| * Precedence Class 7 (CS7) |
| * Voice Admit (VA) |
| * Expedited Forwarding (EF) |
| |
| * Total 25 codepoints. |
| */ |
| |
| /* List of traffic classes in RFC 4594: |
| * (roughly descending order of contended priority) |
| * (roughly ascending order of uncontended throughput) |
| * |
| * Network Control (CS6,CS7) - routing traffic |
| * Telephony (EF,VA) - aka. VoIP streams |
| * Signalling (CS5) - VoIP setup |
| * Multimedia Conferencing (AF4x) - aka. video calls |
| * Realtime Interactive (CS4) - eg. games |
| * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch |
| * Broadcast Video (CS3) |
| * Low Latency Data (AF2x,TOS4) - eg. database |
| * Ops, Admin, Management (CS2,TOS1) - eg. ssh |
| * Standard Service (CS0 & unrecognised codepoints) |
| * High Throughput Data (AF1x,TOS2) - eg. web traffic |
| * Low Priority Data (CS1) - eg. BitTorrent |
| |
| * Total 12 traffic classes. |
| */ |
| |
| static int cake_config_diffserv8(struct Qdisc *sch) |
| { |
| /* Pruned list of traffic classes for typical applications: |
| * |
| * Network Control (CS6, CS7) |
| * Minimum Latency (EF, VA, CS5, CS4) |
| * Interactive Shell (CS2, TOS1) |
| * Low Latency Transactions (AF2x, TOS4) |
| * Video Streaming (AF4x, AF3x, CS3) |
| * Bog Standard (CS0 etc.) |
| * High Throughput (AF1x, TOS2) |
| * Background Traffic (CS1) |
| * |
| * Total 8 traffic classes. |
| */ |
| |
| struct cake_sched_data *q = qdisc_priv(sch); |
| u32 mtu = psched_mtu(qdisc_dev(sch)); |
| u64 rate = q->rate_bps; |
| u32 quantum1 = 256; |
| u32 quantum2 = 256; |
| u32 i; |
| |
| q->tin_cnt = 8; |
| |
| /* codepoint to class mapping */ |
| q->tin_index = diffserv8; |
| q->tin_order = normal_order; |
| |
| /* class characteristics */ |
| for (i = 0; i < q->tin_cnt; i++) { |
| struct cake_tin_data *b = &q->tins[i]; |
| |
| cake_set_rate(b, rate, mtu, us_to_ns(q->target), |
| us_to_ns(q->interval)); |
| |
| b->tin_quantum_prio = max_t(u16, 1U, quantum1); |
| b->tin_quantum_band = max_t(u16, 1U, quantum2); |
| |
| /* calculate next class's parameters */ |
| rate *= 7; |
| rate >>= 3; |
| |
| quantum1 *= 3; |
| quantum1 >>= 1; |
| |
| quantum2 *= 7; |
| quantum2 >>= 3; |
| } |
| |
| return 0; |
| } |
| |
| static int cake_config_diffserv4(struct Qdisc *sch) |
| { |
| /* Further pruned list of traffic classes for four-class system: |
| * |
| * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4) |
| * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1) |
| * Best Effort (CS0, AF1x, TOS2, and those not specified) |
| * Background Traffic (CS1) |
| * |
| * Total 4 traffic classes. |
| */ |
| |
| struct cake_sched_data *q = qdisc_priv(sch); |
| u32 mtu = psched_mtu(qdisc_dev(sch)); |
| u64 rate = q->rate_bps; |
| u32 quantum = 1024; |
| |
| q->tin_cnt = 4; |
| |
| /* codepoint to class mapping */ |
| q->tin_index = diffserv4; |
| q->tin_order = bulk_order; |
| |
| /* class characteristics */ |
| cake_set_rate(&q->tins[0], rate, mtu, |
| us_to_ns(q->target), us_to_ns(q->interval)); |
| cake_set_rate(&q->tins[1], rate >> 4, mtu, |
| us_to_ns(q->target), us_to_ns(q->interval)); |
| cake_set_rate(&q->tins[2], rate >> 1, mtu, |
| us_to_ns(q->target), us_to_ns(q->interval)); |
| cake_set_rate(&q->tins[3], rate >> 2, mtu, |
| us_to_ns(q->target), us_to_ns(q->interval)); |
| |
| /* priority weights */ |
| q->tins[0].tin_quantum_prio = quantum; |
| q->tins[1].tin_quantum_prio = quantum >> 4; |
| q->tins[2].tin_quantum_prio = quantum << 2; |
| q->tins[3].tin_quantum_prio = quantum << 4; |
| |
| /* bandwidth-sharing weights */ |
| q->tins[0].tin_quantum_band = quantum; |
| q->tins[1].tin_quantum_band = quantum >> 4; |
| q->tins[2].tin_quantum_band = quantum >> 1; |
| q->tins[3].tin_quantum_band = quantum >> 2; |
| |
| return 0; |
| } |
| |
| static int cake_config_diffserv3(struct Qdisc *sch) |
| { |
| /* Simplified Diffserv structure with 3 tins. |
| * Low Priority (CS1) |
| * Best Effort |
| * Latency Sensitive (TOS4, VA, EF, CS6, CS7) |
| */ |
| struct cake_sched_data *q = qdisc_priv(sch); |
| u32 mtu = psched_mtu(qdisc_dev(sch)); |
| u64 rate = q->rate_bps; |
| u32 quantum = 1024; |
| |
| q->tin_cnt = 3; |
| |
| /* codepoint to class mapping */ |
| q->tin_index = diffserv3; |
| q->tin_order = bulk_order; |
| |
| /* class characteristics */ |
| cake_set_rate(&q->tins[0], rate, mtu, |
| us_to_ns(q->target), us_to_ns(q->interval)); |
| cake_set_rate(&q->tins[1], rate >> 4, mtu, |
| us_to_ns(q->target), us_to_ns(q->interval)); |
| cake_set_rate(&q->tins[2], rate >> 2, mtu, |
| us_to_ns(q->target), us_to_ns(q->interval)); |
| |
| /* priority weights */ |
| q->tins[0].tin_quantum_prio = quantum; |
| q->tins[1].tin_quantum_prio = quantum >> 4; |
| q->tins[2].tin_quantum_prio = quantum << 4; |
| |
| /* bandwidth-sharing weights */ |
| q->tins[0].tin_quantum_band = quantum; |
| q->tins[1].tin_quantum_band = quantum >> 4; |
| q->tins[2].tin_quantum_band = quantum >> 2; |
| |
| return 0; |
| } |
| |
| static void cake_reconfigure(struct Qdisc *sch) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| int c, ft; |
| |
| switch (q->tin_mode) { |
| case CAKE_DIFFSERV_BESTEFFORT: |
| ft = cake_config_besteffort(sch); |
| break; |
| |
| case CAKE_DIFFSERV_PRECEDENCE: |
| ft = cake_config_precedence(sch); |
| break; |
| |
| case CAKE_DIFFSERV_DIFFSERV8: |
| ft = cake_config_diffserv8(sch); |
| break; |
| |
| case CAKE_DIFFSERV_DIFFSERV4: |
| ft = cake_config_diffserv4(sch); |
| break; |
| |
| case CAKE_DIFFSERV_DIFFSERV3: |
| default: |
| ft = cake_config_diffserv3(sch); |
| break; |
| } |
| |
| for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) { |
| cake_clear_tin(sch, c); |
| q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time; |
| } |
| |
| q->rate_ns = q->tins[ft].tin_rate_ns; |
| q->rate_shft = q->tins[ft].tin_rate_shft; |
| |
| if (q->buffer_config_limit) { |
| q->buffer_limit = q->buffer_config_limit; |
| } else if (q->rate_bps) { |
| u64 t = q->rate_bps * q->interval; |
| |
| do_div(t, USEC_PER_SEC / 4); |
| q->buffer_limit = max_t(u32, t, 4U << 20); |
| } else { |
| q->buffer_limit = ~0; |
| } |
| |
| sch->flags &= ~TCQ_F_CAN_BYPASS; |
| |
| q->buffer_limit = min(q->buffer_limit, |
| max(sch->limit * psched_mtu(qdisc_dev(sch)), |
| q->buffer_config_limit)); |
| } |
| |
| static int cake_change(struct Qdisc *sch, struct nlattr *opt, |
| struct netlink_ext_ack *extack) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| struct nlattr *tb[TCA_CAKE_MAX + 1]; |
| int err; |
| |
| if (!opt) |
| return -EINVAL; |
| |
| err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, extack); |
| if (err < 0) |
| return err; |
| |
| if (tb[TCA_CAKE_NAT]) { |
| #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
| q->flow_mode &= ~CAKE_FLOW_NAT_FLAG; |
| q->flow_mode |= CAKE_FLOW_NAT_FLAG * |
| !!nla_get_u32(tb[TCA_CAKE_NAT]); |
| #else |
| NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT], |
| "No conntrack support in kernel"); |
| return -EOPNOTSUPP; |
| #endif |
| } |
| |
| if (tb[TCA_CAKE_BASE_RATE64]) |
| q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]); |
| |
| if (tb[TCA_CAKE_DIFFSERV_MODE]) |
| q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]); |
| |
| if (tb[TCA_CAKE_WASH]) { |
| if (!!nla_get_u32(tb[TCA_CAKE_WASH])) |
| q->rate_flags |= CAKE_FLAG_WASH; |
| else |
| q->rate_flags &= ~CAKE_FLAG_WASH; |
| } |
| |
| if (tb[TCA_CAKE_FLOW_MODE]) |
| q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) | |
| (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) & |
| CAKE_FLOW_MASK)); |
| |
| if (tb[TCA_CAKE_ATM]) |
| q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]); |
| |
| if (tb[TCA_CAKE_OVERHEAD]) { |
| q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]); |
| q->rate_flags |= CAKE_FLAG_OVERHEAD; |
| |
| q->max_netlen = 0; |
| q->max_adjlen = 0; |
| q->min_netlen = ~0; |
| q->min_adjlen = ~0; |
| } |
| |
| if (tb[TCA_CAKE_RAW]) { |
| q->rate_flags &= ~CAKE_FLAG_OVERHEAD; |
| |
| q->max_netlen = 0; |
| q->max_adjlen = 0; |
| q->min_netlen = ~0; |
| q->min_adjlen = ~0; |
| } |
| |
| if (tb[TCA_CAKE_MPU]) |
| q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]); |
| |
| if (tb[TCA_CAKE_RTT]) { |
| q->interval = nla_get_u32(tb[TCA_CAKE_RTT]); |
| |
| if (!q->interval) |
| q->interval = 1; |
| } |
| |
| if (tb[TCA_CAKE_TARGET]) { |
| q->target = nla_get_u32(tb[TCA_CAKE_TARGET]); |
| |
| if (!q->target) |
| q->target = 1; |
| } |
| |
| if (tb[TCA_CAKE_AUTORATE]) { |
| if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE])) |
| q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS; |
| else |
| q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS; |
| } |
| |
| if (tb[TCA_CAKE_INGRESS]) { |
| if (!!nla_get_u32(tb[TCA_CAKE_INGRESS])) |
| q->rate_flags |= CAKE_FLAG_INGRESS; |
| else |
| q->rate_flags &= ~CAKE_FLAG_INGRESS; |
| } |
| |
| if (tb[TCA_CAKE_ACK_FILTER]) |
| q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]); |
| |
| if (tb[TCA_CAKE_MEMORY]) |
| q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]); |
| |
| if (tb[TCA_CAKE_SPLIT_GSO]) { |
| if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO])) |
| q->rate_flags |= CAKE_FLAG_SPLIT_GSO; |
| else |
| q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO; |
| } |
| |
| if (q->tins) { |
| sch_tree_lock(sch); |
| cake_reconfigure(sch); |
| sch_tree_unlock(sch); |
| } |
| |
| return 0; |
| } |
| |
| static void cake_destroy(struct Qdisc *sch) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| |
| qdisc_watchdog_cancel(&q->watchdog); |
| tcf_block_put(q->block); |
| kvfree(q->tins); |
| } |
| |
| static int cake_init(struct Qdisc *sch, struct nlattr *opt, |
| struct netlink_ext_ack *extack) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| int i, j, err; |
| |
| sch->limit = 10240; |
| q->tin_mode = CAKE_DIFFSERV_DIFFSERV3; |
| q->flow_mode = CAKE_FLOW_TRIPLE; |
| |
| q->rate_bps = 0; /* unlimited by default */ |
| |
| q->interval = 100000; /* 100ms default */ |
| q->target = 5000; /* 5ms: codel RFC argues |
| * for 5 to 10% of interval |
| */ |
| q->rate_flags |= CAKE_FLAG_SPLIT_GSO; |
| q->cur_tin = 0; |
| q->cur_flow = 0; |
| |
| qdisc_watchdog_init(&q->watchdog, sch); |
| |
| if (opt) { |
| int err = cake_change(sch, opt, extack); |
| |
| if (err) |
| return err; |
| } |
| |
| err = tcf_block_get(&q->block, &q->filter_list, sch, extack); |
| if (err) |
| return err; |
| |
| quantum_div[0] = ~0; |
| for (i = 1; i <= CAKE_QUEUES; i++) |
| quantum_div[i] = 65535 / i; |
| |
| q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data), |
| GFP_KERNEL); |
| if (!q->tins) |
| goto nomem; |
| |
| for (i = 0; i < CAKE_MAX_TINS; i++) { |
| struct cake_tin_data *b = q->tins + i; |
| |
| INIT_LIST_HEAD(&b->new_flows); |
| INIT_LIST_HEAD(&b->old_flows); |
| INIT_LIST_HEAD(&b->decaying_flows); |
| b->sparse_flow_count = 0; |
| b->bulk_flow_count = 0; |
| b->decaying_flow_count = 0; |
| |
| for (j = 0; j < CAKE_QUEUES; j++) { |
| struct cake_flow *flow = b->flows + j; |
| u32 k = j * CAKE_MAX_TINS + i; |
| |
| INIT_LIST_HEAD(&flow->flowchain); |
| cobalt_vars_init(&flow->cvars); |
| |
| q->overflow_heap[k].t = i; |
| q->overflow_heap[k].b = j; |
| b->overflow_idx[j] = k; |
| } |
| } |
| |
| cake_reconfigure(sch); |
| q->avg_peak_bandwidth = q->rate_bps; |
| q->min_netlen = ~0; |
| q->min_adjlen = ~0; |
| return 0; |
| |
| nomem: |
| cake_destroy(sch); |
| return -ENOMEM; |
| } |
| |
| static int cake_dump(struct Qdisc *sch, struct sk_buff *skb) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| struct nlattr *opts; |
| |
| opts = nla_nest_start(skb, TCA_OPTIONS); |
| if (!opts) |
| goto nla_put_failure; |
| |
| if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps, |
| TCA_CAKE_PAD)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, |
| q->flow_mode & CAKE_FLOW_MASK)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_AUTORATE, |
| !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS))) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_INGRESS, |
| !!(q->rate_flags & CAKE_FLAG_INGRESS))) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_NAT, |
| !!(q->flow_mode & CAKE_FLOW_NAT_FLAG))) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_WASH, |
| !!(q->rate_flags & CAKE_FLAG_WASH))) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead)) |
| goto nla_put_failure; |
| |
| if (!(q->rate_flags & CAKE_FLAG_OVERHEAD)) |
| if (nla_put_u32(skb, TCA_CAKE_RAW, 0)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO, |
| !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO))) |
| goto nla_put_failure; |
| |
| return nla_nest_end(skb, opts); |
| |
| nla_put_failure: |
| return -1; |
| } |
| |
| static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d) |
| { |
| struct nlattr *stats = nla_nest_start(d->skb, TCA_STATS_APP); |
| struct cake_sched_data *q = qdisc_priv(sch); |
| struct nlattr *tstats, *ts; |
| int i; |
| |
| if (!stats) |
| return -1; |
| |
| #define PUT_STAT_U32(attr, data) do { \ |
| if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ |
| goto nla_put_failure; \ |
| } while (0) |
| #define PUT_STAT_U64(attr, data) do { \ |
| if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \ |
| data, TCA_CAKE_STATS_PAD)) \ |
| goto nla_put_failure; \ |
| } while (0) |
| |
| PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth); |
| PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit); |
| PUT_STAT_U32(MEMORY_USED, q->buffer_max_used); |
| PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16)); |
| PUT_STAT_U32(MAX_NETLEN, q->max_netlen); |
| PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen); |
| PUT_STAT_U32(MIN_NETLEN, q->min_netlen); |
| PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen); |
| |
| #undef PUT_STAT_U32 |
| #undef PUT_STAT_U64 |
| |
| tstats = nla_nest_start(d->skb, TCA_CAKE_STATS_TIN_STATS); |
| if (!tstats) |
| goto nla_put_failure; |
| |
| #define PUT_TSTAT_U32(attr, data) do { \ |
| if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \ |
| goto nla_put_failure; \ |
| } while (0) |
| #define PUT_TSTAT_U64(attr, data) do { \ |
| if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \ |
| data, TCA_CAKE_TIN_STATS_PAD)) \ |
| goto nla_put_failure; \ |
| } while (0) |
| |
| for (i = 0; i < q->tin_cnt; i++) { |
| struct cake_tin_data *b = &q->tins[q->tin_order[i]]; |
| |
| ts = nla_nest_start(d->skb, i + 1); |
| if (!ts) |
| goto nla_put_failure; |
| |
| PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps); |
| PUT_TSTAT_U64(SENT_BYTES64, b->bytes); |
| PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog); |
| |
| PUT_TSTAT_U32(TARGET_US, |
| ktime_to_us(ns_to_ktime(b->cparams.target))); |
| PUT_TSTAT_U32(INTERVAL_US, |
| ktime_to_us(ns_to_ktime(b->cparams.interval))); |
| |
| PUT_TSTAT_U32(SENT_PACKETS, b->packets); |
| PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped); |
| PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark); |
| PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops); |
| |
| PUT_TSTAT_U32(PEAK_DELAY_US, |
| ktime_to_us(ns_to_ktime(b->peak_delay))); |
| PUT_TSTAT_U32(AVG_DELAY_US, |
| ktime_to_us(ns_to_ktime(b->avge_delay))); |
| PUT_TSTAT_U32(BASE_DELAY_US, |
| ktime_to_us(ns_to_ktime(b->base_delay))); |
| |
| PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits); |
| PUT_TSTAT_U32(WAY_MISSES, b->way_misses); |
| PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions); |
| |
| PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count + |
| b->decaying_flow_count); |
| PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count); |
| PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count); |
| PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen); |
| |
| PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum); |
| nla_nest_end(d->skb, ts); |
| } |
| |
| #undef PUT_TSTAT_U32 |
| #undef PUT_TSTAT_U64 |
| |
| nla_nest_end(d->skb, tstats); |
| return nla_nest_end(d->skb, stats); |
| |
| nla_put_failure: |
| nla_nest_cancel(d->skb, stats); |
| return -1; |
| } |
| |
| static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg) |
| { |
| return NULL; |
| } |
| |
| static unsigned long cake_find(struct Qdisc *sch, u32 classid) |
| { |
| return 0; |
| } |
| |
| static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent, |
| u32 classid) |
| { |
| return 0; |
| } |
| |
| static void cake_unbind(struct Qdisc *q, unsigned long cl) |
| { |
| } |
| |
| static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl, |
| struct netlink_ext_ack *extack) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| |
| if (cl) |
| return NULL; |
| return q->block; |
| } |
| |
| static int cake_dump_class(struct Qdisc *sch, unsigned long cl, |
| struct sk_buff *skb, struct tcmsg *tcm) |
| { |
| tcm->tcm_handle |= TC_H_MIN(cl); |
| return 0; |
| } |
| |
| static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl, |
| struct gnet_dump *d) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| const struct cake_flow *flow = NULL; |
| struct gnet_stats_queue qs = { 0 }; |
| struct nlattr *stats; |
| u32 idx = cl - 1; |
| |
| if (idx < CAKE_QUEUES * q->tin_cnt) { |
| const struct cake_tin_data *b = \ |
| &q->tins[q->tin_order[idx / CAKE_QUEUES]]; |
| const struct sk_buff *skb; |
| |
| flow = &b->flows[idx % CAKE_QUEUES]; |
| |
| if (flow->head) { |
| sch_tree_lock(sch); |
| skb = flow->head; |
| while (skb) { |
| qs.qlen++; |
| skb = skb->next; |
| } |
| sch_tree_unlock(sch); |
| } |
| qs.backlog = b->backlogs[idx % CAKE_QUEUES]; |
| qs.drops = flow->dropped; |
| } |
| if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0) |
| return -1; |
| if (flow) { |
| ktime_t now = ktime_get(); |
| |
| stats = nla_nest_start(d->skb, TCA_STATS_APP); |
| if (!stats) |
| return -1; |
| |
| #define PUT_STAT_U32(attr, data) do { \ |
| if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ |
| goto nla_put_failure; \ |
| } while (0) |
| #define PUT_STAT_S32(attr, data) do { \ |
| if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ |
| goto nla_put_failure; \ |
| } while (0) |
| |
| PUT_STAT_S32(DEFICIT, flow->deficit); |
| PUT_STAT_U32(DROPPING, flow->cvars.dropping); |
| PUT_STAT_U32(COBALT_COUNT, flow->cvars.count); |
| PUT_STAT_U32(P_DROP, flow->cvars.p_drop); |
| if (flow->cvars.p_drop) { |
| PUT_STAT_S32(BLUE_TIMER_US, |
| ktime_to_us( |
| ktime_sub(now, |
| flow->cvars.blue_timer))); |
| } |
| if (flow->cvars.dropping) { |
| PUT_STAT_S32(DROP_NEXT_US, |
| ktime_to_us( |
| ktime_sub(now, |
| flow->cvars.drop_next))); |
| } |
| |
| if (nla_nest_end(d->skb, stats) < 0) |
| return -1; |
| } |
| |
| return 0; |
| |
| nla_put_failure: |
| nla_nest_cancel(d->skb, stats); |
| return -1; |
| } |
| |
| static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg) |
| { |
| struct cake_sched_data *q = qdisc_priv(sch); |
| unsigned int i, j; |
| |
| if (arg->stop) |
| return; |
| |
| for (i = 0; i < q->tin_cnt; i++) { |
| struct cake_tin_data *b = &q->tins[q->tin_order[i]]; |
| |
| for (j = 0; j < CAKE_QUEUES; j++) { |
| if (list_empty(&b->flows[j].flowchain) || |
| arg->count < arg->skip) { |
| arg->count++; |
| continue; |
| } |
| if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) { |
| arg->stop = 1; |
| break; |
| } |
| arg->count++; |
| } |
| } |
| } |
| |
| static const struct Qdisc_class_ops cake_class_ops = { |
| .leaf = cake_leaf, |
| .find = cake_find, |
| .tcf_block = cake_tcf_block, |
| .bind_tcf = cake_bind, |
| .unbind_tcf = cake_unbind, |
| .dump = cake_dump_class, |
| .dump_stats = cake_dump_class_stats, |
| .walk = cake_walk, |
| }; |
| |
| static struct Qdisc_ops cake_qdisc_ops __read_mostly = { |
| .cl_ops = &cake_class_ops, |
| .id = "cake", |
| .priv_size = sizeof(struct cake_sched_data), |
| .enqueue = cake_enqueue, |
| .dequeue = cake_dequeue, |
| .peek = qdisc_peek_dequeued, |
| .init = cake_init, |
| .reset = cake_reset, |
| .destroy = cake_destroy, |
| .change = cake_change, |
| .dump = cake_dump, |
| .dump_stats = cake_dump_stats, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init cake_module_init(void) |
| { |
| return register_qdisc(&cake_qdisc_ops); |
| } |
| |
| static void __exit cake_module_exit(void) |
| { |
| unregister_qdisc(&cake_qdisc_ops); |
| } |
| |
| module_init(cake_module_init) |
| module_exit(cake_module_exit) |
| MODULE_AUTHOR("Jonathan Morton"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_DESCRIPTION("The CAKE shaper."); |