|  | /* | 
|  | * Generic pidhash and scalable, time-bounded PID allocator | 
|  | * | 
|  | * (C) 2002-2003 William Irwin, IBM | 
|  | * (C) 2004 William Irwin, Oracle | 
|  | * (C) 2002-2004 Ingo Molnar, Red Hat | 
|  | * | 
|  | * pid-structures are backing objects for tasks sharing a given ID to chain | 
|  | * against. There is very little to them aside from hashing them and | 
|  | * parking tasks using given ID's on a list. | 
|  | * | 
|  | * The hash is always changed with the tasklist_lock write-acquired, | 
|  | * and the hash is only accessed with the tasklist_lock at least | 
|  | * read-acquired, so there's no additional SMP locking needed here. | 
|  | * | 
|  | * We have a list of bitmap pages, which bitmaps represent the PID space. | 
|  | * Allocating and freeing PIDs is completely lockless. The worst-case | 
|  | * allocation scenario when all but one out of 1 million PIDs possible are | 
|  | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | 
|  | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/pid_namespace.h> | 
|  |  | 
|  | #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) | 
|  | static struct hlist_head *pid_hash; | 
|  | static int pidhash_shift; | 
|  | static struct kmem_cache *pid_cachep; | 
|  |  | 
|  | int pid_max = PID_MAX_DEFAULT; | 
|  |  | 
|  | #define RESERVED_PIDS		300 | 
|  |  | 
|  | int pid_max_min = RESERVED_PIDS + 1; | 
|  | int pid_max_max = PID_MAX_LIMIT; | 
|  |  | 
|  | #define BITS_PER_PAGE		(PAGE_SIZE*8) | 
|  | #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1) | 
|  |  | 
|  | static inline int mk_pid(struct pid_namespace *pid_ns, | 
|  | struct pidmap *map, int off) | 
|  | { | 
|  | return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; | 
|  | } | 
|  |  | 
|  | #define find_next_offset(map, off)					\ | 
|  | find_next_zero_bit((map)->page, BITS_PER_PAGE, off) | 
|  |  | 
|  | /* | 
|  | * PID-map pages start out as NULL, they get allocated upon | 
|  | * first use and are never deallocated. This way a low pid_max | 
|  | * value does not cause lots of bitmaps to be allocated, but | 
|  | * the scheme scales to up to 4 million PIDs, runtime. | 
|  | */ | 
|  | struct pid_namespace init_pid_ns = { | 
|  | .kref = { | 
|  | .refcount       = ATOMIC_INIT(2), | 
|  | }, | 
|  | .pidmap = { | 
|  | [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } | 
|  | }, | 
|  | .last_pid = 0, | 
|  | .child_reaper = &init_task | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Note: disable interrupts while the pidmap_lock is held as an | 
|  | * interrupt might come in and do read_lock(&tasklist_lock). | 
|  | * | 
|  | * If we don't disable interrupts there is a nasty deadlock between | 
|  | * detach_pid()->free_pid() and another cpu that does | 
|  | * spin_lock(&pidmap_lock) followed by an interrupt routine that does | 
|  | * read_lock(&tasklist_lock); | 
|  | * | 
|  | * After we clean up the tasklist_lock and know there are no | 
|  | * irq handlers that take it we can leave the interrupts enabled. | 
|  | * For now it is easier to be safe than to prove it can't happen. | 
|  | */ | 
|  |  | 
|  | static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); | 
|  |  | 
|  | static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid) | 
|  | { | 
|  | struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE; | 
|  | int offset = pid & BITS_PER_PAGE_MASK; | 
|  |  | 
|  | clear_bit(offset, map->page); | 
|  | atomic_inc(&map->nr_free); | 
|  | } | 
|  |  | 
|  | static int alloc_pidmap(struct pid_namespace *pid_ns) | 
|  | { | 
|  | int i, offset, max_scan, pid, last = pid_ns->last_pid; | 
|  | struct pidmap *map; | 
|  |  | 
|  | pid = last + 1; | 
|  | if (pid >= pid_max) | 
|  | pid = RESERVED_PIDS; | 
|  | offset = pid & BITS_PER_PAGE_MASK; | 
|  | map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; | 
|  | max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; | 
|  | for (i = 0; i <= max_scan; ++i) { | 
|  | if (unlikely(!map->page)) { | 
|  | void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | /* | 
|  | * Free the page if someone raced with us | 
|  | * installing it: | 
|  | */ | 
|  | spin_lock_irq(&pidmap_lock); | 
|  | if (map->page) | 
|  | kfree(page); | 
|  | else | 
|  | map->page = page; | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  | if (unlikely(!map->page)) | 
|  | break; | 
|  | } | 
|  | if (likely(atomic_read(&map->nr_free))) { | 
|  | do { | 
|  | if (!test_and_set_bit(offset, map->page)) { | 
|  | atomic_dec(&map->nr_free); | 
|  | pid_ns->last_pid = pid; | 
|  | return pid; | 
|  | } | 
|  | offset = find_next_offset(map, offset); | 
|  | pid = mk_pid(pid_ns, map, offset); | 
|  | /* | 
|  | * find_next_offset() found a bit, the pid from it | 
|  | * is in-bounds, and if we fell back to the last | 
|  | * bitmap block and the final block was the same | 
|  | * as the starting point, pid is before last_pid. | 
|  | */ | 
|  | } while (offset < BITS_PER_PAGE && pid < pid_max && | 
|  | (i != max_scan || pid < last || | 
|  | !((last+1) & BITS_PER_PAGE_MASK))); | 
|  | } | 
|  | if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { | 
|  | ++map; | 
|  | offset = 0; | 
|  | } else { | 
|  | map = &pid_ns->pidmap[0]; | 
|  | offset = RESERVED_PIDS; | 
|  | if (unlikely(last == offset)) | 
|  | break; | 
|  | } | 
|  | pid = mk_pid(pid_ns, map, offset); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int next_pidmap(struct pid_namespace *pid_ns, int last) | 
|  | { | 
|  | int offset; | 
|  | struct pidmap *map, *end; | 
|  |  | 
|  | offset = (last + 1) & BITS_PER_PAGE_MASK; | 
|  | map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; | 
|  | end = &pid_ns->pidmap[PIDMAP_ENTRIES]; | 
|  | for (; map < end; map++, offset = 0) { | 
|  | if (unlikely(!map->page)) | 
|  | continue; | 
|  | offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); | 
|  | if (offset < BITS_PER_PAGE) | 
|  | return mk_pid(pid_ns, map, offset); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | fastcall void put_pid(struct pid *pid) | 
|  | { | 
|  | if (!pid) | 
|  | return; | 
|  | if ((atomic_read(&pid->count) == 1) || | 
|  | atomic_dec_and_test(&pid->count)) | 
|  | kmem_cache_free(pid_cachep, pid); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(put_pid); | 
|  |  | 
|  | static void delayed_put_pid(struct rcu_head *rhp) | 
|  | { | 
|  | struct pid *pid = container_of(rhp, struct pid, rcu); | 
|  | put_pid(pid); | 
|  | } | 
|  |  | 
|  | fastcall void free_pid(struct pid *pid) | 
|  | { | 
|  | /* We can be called with write_lock_irq(&tasklist_lock) held */ | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pidmap_lock, flags); | 
|  | hlist_del_rcu(&pid->pid_chain); | 
|  | spin_unlock_irqrestore(&pidmap_lock, flags); | 
|  |  | 
|  | free_pidmap(&init_pid_ns, pid->nr); | 
|  | call_rcu(&pid->rcu, delayed_put_pid); | 
|  | } | 
|  |  | 
|  | struct pid *alloc_pid(void) | 
|  | { | 
|  | struct pid *pid; | 
|  | enum pid_type type; | 
|  | int nr = -1; | 
|  |  | 
|  | pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL); | 
|  | if (!pid) | 
|  | goto out; | 
|  |  | 
|  | nr = alloc_pidmap(current->nsproxy->pid_ns); | 
|  | if (nr < 0) | 
|  | goto out_free; | 
|  |  | 
|  | atomic_set(&pid->count, 1); | 
|  | pid->nr = nr; | 
|  | for (type = 0; type < PIDTYPE_MAX; ++type) | 
|  | INIT_HLIST_HEAD(&pid->tasks[type]); | 
|  |  | 
|  | spin_lock_irq(&pidmap_lock); | 
|  | hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]); | 
|  | spin_unlock_irq(&pidmap_lock); | 
|  |  | 
|  | out: | 
|  | return pid; | 
|  |  | 
|  | out_free: | 
|  | kmem_cache_free(pid_cachep, pid); | 
|  | pid = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | struct pid * fastcall find_pid(int nr) | 
|  | { | 
|  | struct hlist_node *elem; | 
|  | struct pid *pid; | 
|  |  | 
|  | hlist_for_each_entry_rcu(pid, elem, | 
|  | &pid_hash[pid_hashfn(nr)], pid_chain) { | 
|  | if (pid->nr == nr) | 
|  | return pid; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(find_pid); | 
|  |  | 
|  | int fastcall attach_pid(struct task_struct *task, enum pid_type type, int nr) | 
|  | { | 
|  | struct pid_link *link; | 
|  | struct pid *pid; | 
|  |  | 
|  | link = &task->pids[type]; | 
|  | link->pid = pid = find_pid(nr); | 
|  | hlist_add_head_rcu(&link->node, &pid->tasks[type]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void fastcall detach_pid(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | struct pid_link *link; | 
|  | struct pid *pid; | 
|  | int tmp; | 
|  |  | 
|  | link = &task->pids[type]; | 
|  | pid = link->pid; | 
|  |  | 
|  | hlist_del_rcu(&link->node); | 
|  | link->pid = NULL; | 
|  |  | 
|  | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) | 
|  | if (!hlist_empty(&pid->tasks[tmp])) | 
|  | return; | 
|  |  | 
|  | free_pid(pid); | 
|  | } | 
|  |  | 
|  | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ | 
|  | void fastcall transfer_pid(struct task_struct *old, struct task_struct *new, | 
|  | enum pid_type type) | 
|  | { | 
|  | new->pids[type].pid = old->pids[type].pid; | 
|  | hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); | 
|  | old->pids[type].pid = NULL; | 
|  | } | 
|  |  | 
|  | struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type) | 
|  | { | 
|  | struct task_struct *result = NULL; | 
|  | if (pid) { | 
|  | struct hlist_node *first; | 
|  | first = rcu_dereference(pid->tasks[type].first); | 
|  | if (first) | 
|  | result = hlist_entry(first, struct task_struct, pids[(type)].node); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called under rcu_read_lock() or with tasklist_lock read-held. | 
|  | */ | 
|  | struct task_struct *find_task_by_pid_type(int type, int nr) | 
|  | { | 
|  | return pid_task(find_pid(nr), type); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(find_task_by_pid_type); | 
|  |  | 
|  | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | struct pid *pid; | 
|  | rcu_read_lock(); | 
|  | pid = get_pid(task->pids[type].pid); | 
|  | rcu_read_unlock(); | 
|  | return pid; | 
|  | } | 
|  |  | 
|  | struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type) | 
|  | { | 
|  | struct task_struct *result; | 
|  | rcu_read_lock(); | 
|  | result = pid_task(pid, type); | 
|  | if (result) | 
|  | get_task_struct(result); | 
|  | rcu_read_unlock(); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | struct pid *find_get_pid(pid_t nr) | 
|  | { | 
|  | struct pid *pid; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | pid = get_pid(find_pid(nr)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return pid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used by proc to find the first pid that is greater then or equal to nr. | 
|  | * | 
|  | * If there is a pid at nr this function is exactly the same as find_pid. | 
|  | */ | 
|  | struct pid *find_ge_pid(int nr) | 
|  | { | 
|  | struct pid *pid; | 
|  |  | 
|  | do { | 
|  | pid = find_pid(nr); | 
|  | if (pid) | 
|  | break; | 
|  | nr = next_pidmap(current->nsproxy->pid_ns, nr); | 
|  | } while (nr > 0); | 
|  |  | 
|  | return pid; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(find_get_pid); | 
|  |  | 
|  | int copy_pid_ns(int flags, struct task_struct *tsk) | 
|  | { | 
|  | struct pid_namespace *old_ns = tsk->nsproxy->pid_ns; | 
|  | int err = 0; | 
|  |  | 
|  | if (!old_ns) | 
|  | return 0; | 
|  |  | 
|  | get_pid_ns(old_ns); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void free_pid_ns(struct kref *kref) | 
|  | { | 
|  | struct pid_namespace *ns; | 
|  |  | 
|  | ns = container_of(kref, struct pid_namespace, kref); | 
|  | kfree(ns); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The pid hash table is scaled according to the amount of memory in the | 
|  | * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or | 
|  | * more. | 
|  | */ | 
|  | void __init pidhash_init(void) | 
|  | { | 
|  | int i, pidhash_size; | 
|  | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | 
|  |  | 
|  | pidhash_shift = max(4, fls(megabytes * 4)); | 
|  | pidhash_shift = min(12, pidhash_shift); | 
|  | pidhash_size = 1 << pidhash_shift; | 
|  |  | 
|  | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | 
|  | pidhash_size, pidhash_shift, | 
|  | pidhash_size * sizeof(struct hlist_head)); | 
|  |  | 
|  | pid_hash = alloc_bootmem(pidhash_size *	sizeof(*(pid_hash))); | 
|  | if (!pid_hash) | 
|  | panic("Could not alloc pidhash!\n"); | 
|  | for (i = 0; i < pidhash_size; i++) | 
|  | INIT_HLIST_HEAD(&pid_hash[i]); | 
|  | } | 
|  |  | 
|  | void __init pidmap_init(void) | 
|  | { | 
|  | init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | /* Reserve PID 0. We never call free_pidmap(0) */ | 
|  | set_bit(0, init_pid_ns.pidmap[0].page); | 
|  | atomic_dec(&init_pid_ns.pidmap[0].nr_free); | 
|  |  | 
|  | pid_cachep = kmem_cache_create("pid", sizeof(struct pid), | 
|  | __alignof__(struct pid), | 
|  | SLAB_PANIC, NULL, NULL); | 
|  | } |