blob: db7e186dae56d4c0dda0d3ba59c5408867ef7371 [file] [log] [blame]
/*
* Copyright (C) 2016-2018 Netronome Systems, Inc.
*
* This software is dual licensed under the GNU General License Version 2,
* June 1991 as shown in the file COPYING in the top-level directory of this
* source tree or the BSD 2-Clause License provided below. You have the
* option to license this software under the complete terms of either license.
*
* The BSD 2-Clause License:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/bpf.h>
#include <linux/bpf_verifier.h>
#include <linux/kernel.h>
#include <linux/pkt_cls.h>
#include "../nfp_app.h"
#include "../nfp_main.h"
#include "fw.h"
#include "main.h"
#define pr_vlog(env, fmt, ...) \
bpf_verifier_log_write(env, "[nfp] " fmt, ##__VA_ARGS__)
struct nfp_insn_meta *
nfp_bpf_goto_meta(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
unsigned int insn_idx, unsigned int n_insns)
{
unsigned int forward, backward, i;
backward = meta->n - insn_idx;
forward = insn_idx - meta->n;
if (min(forward, backward) > n_insns - insn_idx - 1) {
backward = n_insns - insn_idx - 1;
meta = nfp_prog_last_meta(nfp_prog);
}
if (min(forward, backward) > insn_idx && backward > insn_idx) {
forward = insn_idx;
meta = nfp_prog_first_meta(nfp_prog);
}
if (forward < backward)
for (i = 0; i < forward; i++)
meta = nfp_meta_next(meta);
else
for (i = 0; i < backward; i++)
meta = nfp_meta_prev(meta);
return meta;
}
static void
nfp_record_adjust_head(struct nfp_app_bpf *bpf, struct nfp_prog *nfp_prog,
struct nfp_insn_meta *meta,
const struct bpf_reg_state *reg2)
{
unsigned int location = UINT_MAX;
int imm;
/* Datapath usually can give us guarantees on how much adjust head
* can be done without the need for any checks. Optimize the simple
* case where there is only one adjust head by a constant.
*/
if (reg2->type != SCALAR_VALUE || !tnum_is_const(reg2->var_off))
goto exit_set_location;
imm = reg2->var_off.value;
/* Translator will skip all checks, we need to guarantee min pkt len */
if (imm > ETH_ZLEN - ETH_HLEN)
goto exit_set_location;
if (imm > (int)bpf->adjust_head.guaranteed_add ||
imm < -bpf->adjust_head.guaranteed_sub)
goto exit_set_location;
if (nfp_prog->adjust_head_location) {
/* Only one call per program allowed */
if (nfp_prog->adjust_head_location != meta->n)
goto exit_set_location;
if (meta->arg2.reg.var_off.value != imm)
goto exit_set_location;
}
location = meta->n;
exit_set_location:
nfp_prog->adjust_head_location = location;
}
static bool nfp_bpf_map_update_value_ok(struct bpf_verifier_env *env)
{
const struct bpf_reg_state *reg1 = cur_regs(env) + BPF_REG_1;
const struct bpf_reg_state *reg3 = cur_regs(env) + BPF_REG_3;
struct bpf_offloaded_map *offmap;
struct bpf_func_state *state;
struct nfp_bpf_map *nfp_map;
int off, i;
state = env->cur_state->frame[reg3->frameno];
/* We need to record each time update happens with non-zero words,
* in case such word is used in atomic operations.
* Implicitly depend on nfp_bpf_stack_arg_ok(reg3) being run before.
*/
offmap = map_to_offmap(reg1->map_ptr);
nfp_map = offmap->dev_priv;
off = reg3->off + reg3->var_off.value;
for (i = 0; i < offmap->map.value_size; i++) {
struct bpf_stack_state *stack_entry;
unsigned int soff;
soff = -(off + i) - 1;
stack_entry = &state->stack[soff / BPF_REG_SIZE];
if (stack_entry->slot_type[soff % BPF_REG_SIZE] == STACK_ZERO)
continue;
if (nfp_map->use_map[i / 4].type == NFP_MAP_USE_ATOMIC_CNT) {
pr_vlog(env, "value at offset %d/%d may be non-zero, bpf_map_update_elem() is required to initialize atomic counters to zero to avoid offload endian issues\n",
i, soff);
return false;
}
nfp_map->use_map[i / 4].non_zero_update = 1;
}
return true;
}
static int
nfp_bpf_stack_arg_ok(const char *fname, struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
struct nfp_bpf_reg_state *old_arg)
{
s64 off, old_off;
if (reg->type != PTR_TO_STACK) {
pr_vlog(env, "%s: unsupported ptr type %d\n",
fname, reg->type);
return false;
}
if (!tnum_is_const(reg->var_off)) {
pr_vlog(env, "%s: variable pointer\n", fname);
return false;
}
off = reg->var_off.value + reg->off;
if (-off % 4) {
pr_vlog(env, "%s: unaligned stack pointer %lld\n", fname, -off);
return false;
}
/* Rest of the checks is only if we re-parse the same insn */
if (!old_arg)
return true;
old_off = old_arg->reg.var_off.value + old_arg->reg.off;
old_arg->var_off |= off != old_off;
return true;
}
static bool
nfp_bpf_map_call_ok(const char *fname, struct bpf_verifier_env *env,
struct nfp_insn_meta *meta,
u32 helper_tgt, const struct bpf_reg_state *reg1)
{
if (!helper_tgt) {
pr_vlog(env, "%s: not supported by FW\n", fname);
return false;
}
return true;
}
static int
nfp_bpf_check_call(struct nfp_prog *nfp_prog, struct bpf_verifier_env *env,
struct nfp_insn_meta *meta)
{
const struct bpf_reg_state *reg1 = cur_regs(env) + BPF_REG_1;
const struct bpf_reg_state *reg2 = cur_regs(env) + BPF_REG_2;
const struct bpf_reg_state *reg3 = cur_regs(env) + BPF_REG_3;
struct nfp_app_bpf *bpf = nfp_prog->bpf;
u32 func_id = meta->insn.imm;
switch (func_id) {
case BPF_FUNC_xdp_adjust_head:
if (!bpf->adjust_head.off_max) {
pr_vlog(env, "adjust_head not supported by FW\n");
return -EOPNOTSUPP;
}
if (!(bpf->adjust_head.flags & NFP_BPF_ADJUST_HEAD_NO_META)) {
pr_vlog(env, "adjust_head: FW requires shifting metadata, not supported by the driver\n");
return -EOPNOTSUPP;
}
nfp_record_adjust_head(bpf, nfp_prog, meta, reg2);
break;
case BPF_FUNC_xdp_adjust_tail:
if (!bpf->adjust_tail) {
pr_vlog(env, "adjust_tail not supported by FW\n");
return -EOPNOTSUPP;
}
break;
case BPF_FUNC_map_lookup_elem:
if (!nfp_bpf_map_call_ok("map_lookup", env, meta,
bpf->helpers.map_lookup, reg1) ||
!nfp_bpf_stack_arg_ok("map_lookup", env, reg2,
meta->func_id ? &meta->arg2 : NULL))
return -EOPNOTSUPP;
break;
case BPF_FUNC_map_update_elem:
if (!nfp_bpf_map_call_ok("map_update", env, meta,
bpf->helpers.map_update, reg1) ||
!nfp_bpf_stack_arg_ok("map_update", env, reg2,
meta->func_id ? &meta->arg2 : NULL) ||
!nfp_bpf_stack_arg_ok("map_update", env, reg3, NULL) ||
!nfp_bpf_map_update_value_ok(env))
return -EOPNOTSUPP;
break;
case BPF_FUNC_map_delete_elem:
if (!nfp_bpf_map_call_ok("map_delete", env, meta,
bpf->helpers.map_delete, reg1) ||
!nfp_bpf_stack_arg_ok("map_delete", env, reg2,
meta->func_id ? &meta->arg2 : NULL))
return -EOPNOTSUPP;
break;
case BPF_FUNC_get_prandom_u32:
if (bpf->pseudo_random)
break;
pr_vlog(env, "bpf_get_prandom_u32(): FW doesn't support random number generation\n");
return -EOPNOTSUPP;
case BPF_FUNC_perf_event_output:
BUILD_BUG_ON(NFP_BPF_SCALAR_VALUE != SCALAR_VALUE ||
NFP_BPF_MAP_VALUE != PTR_TO_MAP_VALUE ||
NFP_BPF_STACK != PTR_TO_STACK ||
NFP_BPF_PACKET_DATA != PTR_TO_PACKET);
if (!bpf->helpers.perf_event_output) {
pr_vlog(env, "event_output: not supported by FW\n");
return -EOPNOTSUPP;
}
/* Force current CPU to make sure we can report the event
* wherever we get the control message from FW.
*/
if (reg3->var_off.mask & BPF_F_INDEX_MASK ||
(reg3->var_off.value & BPF_F_INDEX_MASK) !=
BPF_F_CURRENT_CPU) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg3->var_off);
pr_vlog(env, "event_output: must use BPF_F_CURRENT_CPU, var_off: %s\n",
tn_buf);
return -EOPNOTSUPP;
}
/* Save space in meta, we don't care about arguments other
* than 4th meta, shove it into arg1.
*/
reg1 = cur_regs(env) + BPF_REG_4;
if (reg1->type != SCALAR_VALUE /* NULL ptr */ &&
reg1->type != PTR_TO_STACK &&
reg1->type != PTR_TO_MAP_VALUE &&
reg1->type != PTR_TO_PACKET) {
pr_vlog(env, "event_output: unsupported ptr type: %d\n",
reg1->type);
return -EOPNOTSUPP;
}
if (reg1->type == PTR_TO_STACK &&
!nfp_bpf_stack_arg_ok("event_output", env, reg1, NULL))
return -EOPNOTSUPP;
/* Warn user that on offload NFP may return success even if map
* is not going to accept the event, since the event output is
* fully async and device won't know the state of the map.
* There is also FW limitation on the event length.
*
* Lost events will not show up on the perf ring, driver
* won't see them at all. Events may also get reordered.
*/
dev_warn_once(&nfp_prog->bpf->app->pf->pdev->dev,
"bpf: note: return codes and behavior of bpf_event_output() helper differs for offloaded programs!\n");
pr_vlog(env, "warning: return codes and behavior of event_output helper differ for offload!\n");
if (!meta->func_id)
break;
if (reg1->type != meta->arg1.type) {
pr_vlog(env, "event_output: ptr type changed: %d %d\n",
meta->arg1.type, reg1->type);
return -EINVAL;
}
break;
default:
pr_vlog(env, "unsupported function id: %d\n", func_id);
return -EOPNOTSUPP;
}
meta->func_id = func_id;
meta->arg1 = *reg1;
meta->arg2.reg = *reg2;
return 0;
}
static int
nfp_bpf_check_exit(struct nfp_prog *nfp_prog,
struct bpf_verifier_env *env)
{
const struct bpf_reg_state *reg0 = cur_regs(env) + BPF_REG_0;
u64 imm;
if (nfp_prog->type == BPF_PROG_TYPE_XDP)
return 0;
if (!(reg0->type == SCALAR_VALUE && tnum_is_const(reg0->var_off))) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg0->var_off);
pr_vlog(env, "unsupported exit state: %d, var_off: %s\n",
reg0->type, tn_buf);
return -EINVAL;
}
imm = reg0->var_off.value;
if (nfp_prog->type == BPF_PROG_TYPE_SCHED_CLS &&
imm <= TC_ACT_REDIRECT &&
imm != TC_ACT_SHOT && imm != TC_ACT_STOLEN &&
imm != TC_ACT_QUEUED) {
pr_vlog(env, "unsupported exit state: %d, imm: %llx\n",
reg0->type, imm);
return -EINVAL;
}
return 0;
}
static int
nfp_bpf_check_stack_access(struct nfp_prog *nfp_prog,
struct nfp_insn_meta *meta,
const struct bpf_reg_state *reg,
struct bpf_verifier_env *env)
{
s32 old_off, new_off;
if (!tnum_is_const(reg->var_off)) {
pr_vlog(env, "variable ptr stack access\n");
return -EINVAL;
}
if (meta->ptr.type == NOT_INIT)
return 0;
old_off = meta->ptr.off + meta->ptr.var_off.value;
new_off = reg->off + reg->var_off.value;
meta->ptr_not_const |= old_off != new_off;
if (!meta->ptr_not_const)
return 0;
if (old_off % 4 == new_off % 4)
return 0;
pr_vlog(env, "stack access changed location was:%d is:%d\n",
old_off, new_off);
return -EINVAL;
}
static const char *nfp_bpf_map_use_name(enum nfp_bpf_map_use use)
{
static const char * const names[] = {
[NFP_MAP_UNUSED] = "unused",
[NFP_MAP_USE_READ] = "read",
[NFP_MAP_USE_WRITE] = "write",
[NFP_MAP_USE_ATOMIC_CNT] = "atomic",
};
if (use >= ARRAY_SIZE(names) || !names[use])
return "unknown";
return names[use];
}
static int
nfp_bpf_map_mark_used_one(struct bpf_verifier_env *env,
struct nfp_bpf_map *nfp_map,
unsigned int off, enum nfp_bpf_map_use use)
{
if (nfp_map->use_map[off / 4].type != NFP_MAP_UNUSED &&
nfp_map->use_map[off / 4].type != use) {
pr_vlog(env, "map value use type conflict %s vs %s off: %u\n",
nfp_bpf_map_use_name(nfp_map->use_map[off / 4].type),
nfp_bpf_map_use_name(use), off);
return -EOPNOTSUPP;
}
if (nfp_map->use_map[off / 4].non_zero_update &&
use == NFP_MAP_USE_ATOMIC_CNT) {
pr_vlog(env, "atomic counter in map value may already be initialized to non-zero value off: %u\n",
off);
return -EOPNOTSUPP;
}
nfp_map->use_map[off / 4].type = use;
return 0;
}
static int
nfp_bpf_map_mark_used(struct bpf_verifier_env *env, struct nfp_insn_meta *meta,
const struct bpf_reg_state *reg,
enum nfp_bpf_map_use use)
{
struct bpf_offloaded_map *offmap;
struct nfp_bpf_map *nfp_map;
unsigned int size, off;
int i, err;
if (!tnum_is_const(reg->var_off)) {
pr_vlog(env, "map value offset is variable\n");
return -EOPNOTSUPP;
}
off = reg->var_off.value + meta->insn.off + reg->off;
size = BPF_LDST_BYTES(&meta->insn);
offmap = map_to_offmap(reg->map_ptr);
nfp_map = offmap->dev_priv;
if (off + size > offmap->map.value_size) {
pr_vlog(env, "map value access out-of-bounds\n");
return -EINVAL;
}
for (i = 0; i < size; i += 4 - (off + i) % 4) {
err = nfp_bpf_map_mark_used_one(env, nfp_map, off + i, use);
if (err)
return err;
}
return 0;
}
static int
nfp_bpf_check_ptr(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
struct bpf_verifier_env *env, u8 reg_no)
{
const struct bpf_reg_state *reg = cur_regs(env) + reg_no;
int err;
if (reg->type != PTR_TO_CTX &&
reg->type != PTR_TO_STACK &&
reg->type != PTR_TO_MAP_VALUE &&
reg->type != PTR_TO_PACKET) {
pr_vlog(env, "unsupported ptr type: %d\n", reg->type);
return -EINVAL;
}
if (reg->type == PTR_TO_STACK) {
err = nfp_bpf_check_stack_access(nfp_prog, meta, reg, env);
if (err)
return err;
}
if (reg->type == PTR_TO_MAP_VALUE) {
if (is_mbpf_load(meta)) {
err = nfp_bpf_map_mark_used(env, meta, reg,
NFP_MAP_USE_READ);
if (err)
return err;
}
if (is_mbpf_store(meta)) {
pr_vlog(env, "map writes not supported\n");
return -EOPNOTSUPP;
}
if (is_mbpf_xadd(meta)) {
err = nfp_bpf_map_mark_used(env, meta, reg,
NFP_MAP_USE_ATOMIC_CNT);
if (err)
return err;
}
}
if (meta->ptr.type != NOT_INIT && meta->ptr.type != reg->type) {
pr_vlog(env, "ptr type changed for instruction %d -> %d\n",
meta->ptr.type, reg->type);
return -EINVAL;
}
meta->ptr = *reg;
return 0;
}
static int
nfp_bpf_check_store(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
struct bpf_verifier_env *env)
{
const struct bpf_reg_state *reg = cur_regs(env) + meta->insn.dst_reg;
if (reg->type == PTR_TO_CTX) {
if (nfp_prog->type == BPF_PROG_TYPE_XDP) {
/* XDP ctx accesses must be 4B in size */
switch (meta->insn.off) {
case offsetof(struct xdp_md, rx_queue_index):
if (nfp_prog->bpf->queue_select)
goto exit_check_ptr;
pr_vlog(env, "queue selection not supported by FW\n");
return -EOPNOTSUPP;
}
}
pr_vlog(env, "unsupported store to context field\n");
return -EOPNOTSUPP;
}
exit_check_ptr:
return nfp_bpf_check_ptr(nfp_prog, meta, env, meta->insn.dst_reg);
}
static int
nfp_bpf_check_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
struct bpf_verifier_env *env)
{
const struct bpf_reg_state *sreg = cur_regs(env) + meta->insn.src_reg;
const struct bpf_reg_state *dreg = cur_regs(env) + meta->insn.dst_reg;
if (dreg->type != PTR_TO_MAP_VALUE) {
pr_vlog(env, "atomic add not to a map value pointer: %d\n",
dreg->type);
return -EOPNOTSUPP;
}
if (sreg->type != SCALAR_VALUE) {
pr_vlog(env, "atomic add not of a scalar: %d\n", sreg->type);
return -EOPNOTSUPP;
}
meta->xadd_over_16bit |=
sreg->var_off.value > 0xffff || sreg->var_off.mask > 0xffff;
meta->xadd_maybe_16bit |=
(sreg->var_off.value & ~sreg->var_off.mask) <= 0xffff;
return nfp_bpf_check_ptr(nfp_prog, meta, env, meta->insn.dst_reg);
}
static int
nfp_bpf_check_alu(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
struct bpf_verifier_env *env)
{
const struct bpf_reg_state *sreg =
cur_regs(env) + meta->insn.src_reg;
const struct bpf_reg_state *dreg =
cur_regs(env) + meta->insn.dst_reg;
meta->umin_src = min(meta->umin_src, sreg->umin_value);
meta->umax_src = max(meta->umax_src, sreg->umax_value);
meta->umin_dst = min(meta->umin_dst, dreg->umin_value);
meta->umax_dst = max(meta->umax_dst, dreg->umax_value);
/* NFP supports u16 and u32 multiplication.
*
* For ALU64, if either operand is beyond u32's value range, we reject
* it. One thing to note, if the source operand is BPF_K, then we need
* to check "imm" field directly, and we'd reject it if it is negative.
* Because for ALU64, "imm" (with s32 type) is expected to be sign
* extended to s64 which NFP mul doesn't support.
*
* For ALU32, it is fine for "imm" be negative though, because the
* result is 32-bits and there is no difference on the low halve of
* the result for signed/unsigned mul, so we will get correct result.
*/
if (is_mbpf_mul(meta)) {
if (meta->umax_dst > U32_MAX) {
pr_vlog(env, "multiplier is not within u32 value range\n");
return -EINVAL;
}
if (mbpf_src(meta) == BPF_X && meta->umax_src > U32_MAX) {
pr_vlog(env, "multiplicand is not within u32 value range\n");
return -EINVAL;
}
if (mbpf_class(meta) == BPF_ALU64 &&
mbpf_src(meta) == BPF_K && meta->insn.imm < 0) {
pr_vlog(env, "sign extended multiplicand won't be within u32 value range\n");
return -EINVAL;
}
}
/* NFP doesn't have divide instructions, we support divide by constant
* through reciprocal multiplication. Given NFP support multiplication
* no bigger than u32, we'd require divisor and dividend no bigger than
* that as well.
*
* Also eBPF doesn't support signed divide and has enforced this on C
* language level by failing compilation. However LLVM assembler hasn't
* enforced this, so it is possible for negative constant to leak in as
* a BPF_K operand through assembly code, we reject such cases as well.
*/
if (is_mbpf_div(meta)) {
if (meta->umax_dst > U32_MAX) {
pr_vlog(env, "dividend is not within u32 value range\n");
return -EINVAL;
}
if (mbpf_src(meta) == BPF_X) {
if (meta->umin_src != meta->umax_src) {
pr_vlog(env, "divisor is not constant\n");
return -EINVAL;
}
if (meta->umax_src > U32_MAX) {
pr_vlog(env, "divisor is not within u32 value range\n");
return -EINVAL;
}
}
if (mbpf_src(meta) == BPF_K && meta->insn.imm < 0) {
pr_vlog(env, "divide by negative constant is not supported\n");
return -EINVAL;
}
}
return 0;
}
static int
nfp_verify_insn(struct bpf_verifier_env *env, int insn_idx, int prev_insn_idx)
{
struct nfp_prog *nfp_prog = env->prog->aux->offload->dev_priv;
struct nfp_insn_meta *meta = nfp_prog->verifier_meta;
meta = nfp_bpf_goto_meta(nfp_prog, meta, insn_idx, env->prog->len);
nfp_prog->verifier_meta = meta;
if (!nfp_bpf_supported_opcode(meta->insn.code)) {
pr_vlog(env, "instruction %#02x not supported\n",
meta->insn.code);
return -EINVAL;
}
if (meta->insn.src_reg >= MAX_BPF_REG ||
meta->insn.dst_reg >= MAX_BPF_REG) {
pr_vlog(env, "program uses extended registers - jit hardening?\n");
return -EINVAL;
}
if (meta->insn.code == (BPF_JMP | BPF_CALL))
return nfp_bpf_check_call(nfp_prog, env, meta);
if (meta->insn.code == (BPF_JMP | BPF_EXIT))
return nfp_bpf_check_exit(nfp_prog, env);
if (is_mbpf_load(meta))
return nfp_bpf_check_ptr(nfp_prog, meta, env,
meta->insn.src_reg);
if (is_mbpf_store(meta))
return nfp_bpf_check_store(nfp_prog, meta, env);
if (is_mbpf_xadd(meta))
return nfp_bpf_check_xadd(nfp_prog, meta, env);
if (is_mbpf_alu(meta))
return nfp_bpf_check_alu(nfp_prog, meta, env);
return 0;
}
const struct bpf_prog_offload_ops nfp_bpf_analyzer_ops = {
.insn_hook = nfp_verify_insn,
};