| /* |
| * Real Time Clock interface for Linux |
| * |
| * Copyright (C) 1996 Paul Gortmaker |
| * |
| * This driver allows use of the real time clock (built into |
| * nearly all computers) from user space. It exports the /dev/rtc |
| * interface supporting various ioctl() and also the |
| * /proc/driver/rtc pseudo-file for status information. |
| * |
| * The ioctls can be used to set the interrupt behaviour and |
| * generation rate from the RTC via IRQ 8. Then the /dev/rtc |
| * interface can be used to make use of these timer interrupts, |
| * be they interval or alarm based. |
| * |
| * The /dev/rtc interface will block on reads until an interrupt |
| * has been received. If a RTC interrupt has already happened, |
| * it will output an unsigned long and then block. The output value |
| * contains the interrupt status in the low byte and the number of |
| * interrupts since the last read in the remaining high bytes. The |
| * /dev/rtc interface can also be used with the select(2) call. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Based on other minimal char device drivers, like Alan's |
| * watchdog, Ted's random, etc. etc. |
| * |
| * 1.07 Paul Gortmaker. |
| * 1.08 Miquel van Smoorenburg: disallow certain things on the |
| * DEC Alpha as the CMOS clock is also used for other things. |
| * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup. |
| * 1.09a Pete Zaitcev: Sun SPARC |
| * 1.09b Jeff Garzik: Modularize, init cleanup |
| * 1.09c Jeff Garzik: SMP cleanup |
| * 1.10 Paul Barton-Davis: add support for async I/O |
| * 1.10a Andrea Arcangeli: Alpha updates |
| * 1.10b Andrew Morton: SMP lock fix |
| * 1.10c Cesar Barros: SMP locking fixes and cleanup |
| * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit |
| * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness. |
| * 1.11 Takashi Iwai: Kernel access functions |
| * rtc_register/rtc_unregister/rtc_control |
| * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init |
| * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer |
| * CONFIG_HPET_EMULATE_RTC |
| * 1.12ac Alan Cox: Allow read access to the day of week register |
| */ |
| |
| #define RTC_VERSION "1.12ac" |
| |
| #define RTC_IO_EXTENT 0x8 |
| |
| /* |
| * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with |
| * interrupts disabled. Due to the index-port/data-port (0x70/0x71) |
| * design of the RTC, we don't want two different things trying to |
| * get to it at once. (e.g. the periodic 11 min sync from time.c vs. |
| * this driver.) |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/miscdevice.h> |
| #include <linux/ioport.h> |
| #include <linux/fcntl.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/init.h> |
| #include <linux/poll.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/spinlock.h> |
| #include <linux/sysctl.h> |
| #include <linux/wait.h> |
| #include <linux/bcd.h> |
| #include <linux/delay.h> |
| |
| #include <asm/current.h> |
| #include <asm/uaccess.h> |
| #include <asm/system.h> |
| |
| #if defined(__i386__) |
| #include <asm/hpet.h> |
| #endif |
| |
| #ifdef __sparc__ |
| #include <linux/pci.h> |
| #include <asm/ebus.h> |
| #ifdef __sparc_v9__ |
| #include <asm/isa.h> |
| #endif |
| |
| static unsigned long rtc_port; |
| static int rtc_irq = PCI_IRQ_NONE; |
| #endif |
| |
| #ifdef CONFIG_HPET_RTC_IRQ |
| #undef RTC_IRQ |
| #endif |
| |
| #ifdef RTC_IRQ |
| static int rtc_has_irq = 1; |
| #endif |
| |
| #ifndef CONFIG_HPET_EMULATE_RTC |
| #define is_hpet_enabled() 0 |
| #define hpet_set_alarm_time(hrs, min, sec) 0 |
| #define hpet_set_periodic_freq(arg) 0 |
| #define hpet_mask_rtc_irq_bit(arg) 0 |
| #define hpet_set_rtc_irq_bit(arg) 0 |
| #define hpet_rtc_timer_init() do { } while (0) |
| #define hpet_rtc_dropped_irq() 0 |
| static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) {return 0;} |
| #else |
| extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs); |
| #endif |
| |
| /* |
| * We sponge a minor off of the misc major. No need slurping |
| * up another valuable major dev number for this. If you add |
| * an ioctl, make sure you don't conflict with SPARC's RTC |
| * ioctls. |
| */ |
| |
| static struct fasync_struct *rtc_async_queue; |
| |
| static DECLARE_WAIT_QUEUE_HEAD(rtc_wait); |
| |
| #ifdef RTC_IRQ |
| static struct timer_list rtc_irq_timer; |
| #endif |
| |
| static ssize_t rtc_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos); |
| |
| static int rtc_ioctl(struct inode *inode, struct file *file, |
| unsigned int cmd, unsigned long arg); |
| |
| #ifdef RTC_IRQ |
| static unsigned int rtc_poll(struct file *file, poll_table *wait); |
| #endif |
| |
| static void get_rtc_alm_time (struct rtc_time *alm_tm); |
| #ifdef RTC_IRQ |
| static void rtc_dropped_irq(unsigned long data); |
| |
| static void set_rtc_irq_bit_locked(unsigned char bit); |
| static void mask_rtc_irq_bit_locked(unsigned char bit); |
| |
| static inline void set_rtc_irq_bit(unsigned char bit) |
| { |
| spin_lock_irq(&rtc_lock); |
| set_rtc_irq_bit_locked(bit); |
| spin_unlock_irq(&rtc_lock); |
| } |
| |
| static void mask_rtc_irq_bit(unsigned char bit) |
| { |
| spin_lock_irq(&rtc_lock); |
| mask_rtc_irq_bit_locked(bit); |
| spin_unlock_irq(&rtc_lock); |
| } |
| #endif |
| |
| static int rtc_proc_open(struct inode *inode, struct file *file); |
| |
| /* |
| * Bits in rtc_status. (6 bits of room for future expansion) |
| */ |
| |
| #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */ |
| #define RTC_TIMER_ON 0x02 /* missed irq timer active */ |
| |
| /* |
| * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is |
| * protected by the big kernel lock. However, ioctl can still disable the timer |
| * in rtc_status and then with del_timer after the interrupt has read |
| * rtc_status but before mod_timer is called, which would then reenable the |
| * timer (but you would need to have an awful timing before you'd trip on it) |
| */ |
| static unsigned long rtc_status = 0; /* bitmapped status byte. */ |
| static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */ |
| static unsigned long rtc_irq_data = 0; /* our output to the world */ |
| static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */ |
| |
| #ifdef RTC_IRQ |
| /* |
| * rtc_task_lock nests inside rtc_lock. |
| */ |
| static DEFINE_SPINLOCK(rtc_task_lock); |
| static rtc_task_t *rtc_callback = NULL; |
| #endif |
| |
| /* |
| * If this driver ever becomes modularised, it will be really nice |
| * to make the epoch retain its value across module reload... |
| */ |
| |
| static unsigned long epoch = 1900; /* year corresponding to 0x00 */ |
| |
| static const unsigned char days_in_mo[] = |
| {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; |
| |
| /* |
| * Returns true if a clock update is in progress |
| */ |
| static inline unsigned char rtc_is_updating(void) |
| { |
| unsigned char uip; |
| |
| spin_lock_irq(&rtc_lock); |
| uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); |
| spin_unlock_irq(&rtc_lock); |
| return uip; |
| } |
| |
| #ifdef RTC_IRQ |
| /* |
| * A very tiny interrupt handler. It runs with SA_INTERRUPT set, |
| * but there is possibility of conflicting with the set_rtc_mmss() |
| * call (the rtc irq and the timer irq can easily run at the same |
| * time in two different CPUs). So we need to serialize |
| * accesses to the chip with the rtc_lock spinlock that each |
| * architecture should implement in the timer code. |
| * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.) |
| */ |
| |
| irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| /* |
| * Can be an alarm interrupt, update complete interrupt, |
| * or a periodic interrupt. We store the status in the |
| * low byte and the number of interrupts received since |
| * the last read in the remainder of rtc_irq_data. |
| */ |
| |
| spin_lock (&rtc_lock); |
| rtc_irq_data += 0x100; |
| rtc_irq_data &= ~0xff; |
| if (is_hpet_enabled()) { |
| /* |
| * In this case it is HPET RTC interrupt handler |
| * calling us, with the interrupt information |
| * passed as arg1, instead of irq. |
| */ |
| rtc_irq_data |= (unsigned long)irq & 0xF0; |
| } else { |
| rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); |
| } |
| |
| if (rtc_status & RTC_TIMER_ON) |
| mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); |
| |
| spin_unlock (&rtc_lock); |
| |
| /* Now do the rest of the actions */ |
| spin_lock(&rtc_task_lock); |
| if (rtc_callback) |
| rtc_callback->func(rtc_callback->private_data); |
| spin_unlock(&rtc_task_lock); |
| wake_up_interruptible(&rtc_wait); |
| |
| kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); |
| |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| /* |
| * sysctl-tuning infrastructure. |
| */ |
| static ctl_table rtc_table[] = { |
| { |
| .ctl_name = 1, |
| .procname = "max-user-freq", |
| .data = &rtc_max_user_freq, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec, |
| }, |
| { .ctl_name = 0 } |
| }; |
| |
| static ctl_table rtc_root[] = { |
| { |
| .ctl_name = 1, |
| .procname = "rtc", |
| .maxlen = 0, |
| .mode = 0555, |
| .child = rtc_table, |
| }, |
| { .ctl_name = 0 } |
| }; |
| |
| static ctl_table dev_root[] = { |
| { |
| .ctl_name = CTL_DEV, |
| .procname = "dev", |
| .maxlen = 0, |
| .mode = 0555, |
| .child = rtc_root, |
| }, |
| { .ctl_name = 0 } |
| }; |
| |
| static struct ctl_table_header *sysctl_header; |
| |
| static int __init init_sysctl(void) |
| { |
| sysctl_header = register_sysctl_table(dev_root, 0); |
| return 0; |
| } |
| |
| static void __exit cleanup_sysctl(void) |
| { |
| unregister_sysctl_table(sysctl_header); |
| } |
| |
| /* |
| * Now all the various file operations that we export. |
| */ |
| |
| static ssize_t rtc_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| #ifndef RTC_IRQ |
| return -EIO; |
| #else |
| DECLARE_WAITQUEUE(wait, current); |
| unsigned long data; |
| ssize_t retval; |
| |
| if (rtc_has_irq == 0) |
| return -EIO; |
| |
| if (count < sizeof(unsigned)) |
| return -EINVAL; |
| |
| add_wait_queue(&rtc_wait, &wait); |
| |
| do { |
| /* First make it right. Then make it fast. Putting this whole |
| * block within the parentheses of a while would be too |
| * confusing. And no, xchg() is not the answer. */ |
| |
| __set_current_state(TASK_INTERRUPTIBLE); |
| |
| spin_lock_irq (&rtc_lock); |
| data = rtc_irq_data; |
| rtc_irq_data = 0; |
| spin_unlock_irq (&rtc_lock); |
| |
| if (data != 0) |
| break; |
| |
| if (file->f_flags & O_NONBLOCK) { |
| retval = -EAGAIN; |
| goto out; |
| } |
| if (signal_pending(current)) { |
| retval = -ERESTARTSYS; |
| goto out; |
| } |
| schedule(); |
| } while (1); |
| |
| if (count < sizeof(unsigned long)) |
| retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int); |
| else |
| retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long); |
| out: |
| current->state = TASK_RUNNING; |
| remove_wait_queue(&rtc_wait, &wait); |
| |
| return retval; |
| #endif |
| } |
| |
| static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) |
| { |
| struct rtc_time wtime; |
| |
| #ifdef RTC_IRQ |
| if (rtc_has_irq == 0) { |
| switch (cmd) { |
| case RTC_AIE_OFF: |
| case RTC_AIE_ON: |
| case RTC_PIE_OFF: |
| case RTC_PIE_ON: |
| case RTC_UIE_OFF: |
| case RTC_UIE_ON: |
| case RTC_IRQP_READ: |
| case RTC_IRQP_SET: |
| return -EINVAL; |
| }; |
| } |
| #endif |
| |
| switch (cmd) { |
| #ifdef RTC_IRQ |
| case RTC_AIE_OFF: /* Mask alarm int. enab. bit */ |
| { |
| mask_rtc_irq_bit(RTC_AIE); |
| return 0; |
| } |
| case RTC_AIE_ON: /* Allow alarm interrupts. */ |
| { |
| set_rtc_irq_bit(RTC_AIE); |
| return 0; |
| } |
| case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ |
| { |
| unsigned long flags; /* can be called from isr via rtc_control() */ |
| spin_lock_irqsave (&rtc_lock, flags); |
| mask_rtc_irq_bit_locked(RTC_PIE); |
| if (rtc_status & RTC_TIMER_ON) { |
| rtc_status &= ~RTC_TIMER_ON; |
| del_timer(&rtc_irq_timer); |
| } |
| spin_unlock_irqrestore (&rtc_lock, flags); |
| return 0; |
| } |
| case RTC_PIE_ON: /* Allow periodic ints */ |
| { |
| unsigned long flags; /* can be called from isr via rtc_control() */ |
| /* |
| * We don't really want Joe User enabling more |
| * than 64Hz of interrupts on a multi-user machine. |
| */ |
| if (!kernel && (rtc_freq > rtc_max_user_freq) && |
| (!capable(CAP_SYS_RESOURCE))) |
| return -EACCES; |
| |
| spin_lock_irqsave (&rtc_lock, flags); |
| if (!(rtc_status & RTC_TIMER_ON)) { |
| rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100; |
| add_timer(&rtc_irq_timer); |
| rtc_status |= RTC_TIMER_ON; |
| } |
| set_rtc_irq_bit_locked(RTC_PIE); |
| spin_unlock_irqrestore (&rtc_lock, flags); |
| return 0; |
| } |
| case RTC_UIE_OFF: /* Mask ints from RTC updates. */ |
| { |
| mask_rtc_irq_bit(RTC_UIE); |
| return 0; |
| } |
| case RTC_UIE_ON: /* Allow ints for RTC updates. */ |
| { |
| set_rtc_irq_bit(RTC_UIE); |
| return 0; |
| } |
| #endif |
| case RTC_ALM_READ: /* Read the present alarm time */ |
| { |
| /* |
| * This returns a struct rtc_time. Reading >= 0xc0 |
| * means "don't care" or "match all". Only the tm_hour, |
| * tm_min, and tm_sec values are filled in. |
| */ |
| memset(&wtime, 0, sizeof(struct rtc_time)); |
| get_rtc_alm_time(&wtime); |
| break; |
| } |
| case RTC_ALM_SET: /* Store a time into the alarm */ |
| { |
| /* |
| * This expects a struct rtc_time. Writing 0xff means |
| * "don't care" or "match all". Only the tm_hour, |
| * tm_min and tm_sec are used. |
| */ |
| unsigned char hrs, min, sec; |
| struct rtc_time alm_tm; |
| |
| if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg, |
| sizeof(struct rtc_time))) |
| return -EFAULT; |
| |
| hrs = alm_tm.tm_hour; |
| min = alm_tm.tm_min; |
| sec = alm_tm.tm_sec; |
| |
| spin_lock_irq(&rtc_lock); |
| if (hpet_set_alarm_time(hrs, min, sec)) { |
| /* |
| * Fallthru and set alarm time in CMOS too, |
| * so that we will get proper value in RTC_ALM_READ |
| */ |
| } |
| if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || |
| RTC_ALWAYS_BCD) |
| { |
| if (sec < 60) BIN_TO_BCD(sec); |
| else sec = 0xff; |
| |
| if (min < 60) BIN_TO_BCD(min); |
| else min = 0xff; |
| |
| if (hrs < 24) BIN_TO_BCD(hrs); |
| else hrs = 0xff; |
| } |
| CMOS_WRITE(hrs, RTC_HOURS_ALARM); |
| CMOS_WRITE(min, RTC_MINUTES_ALARM); |
| CMOS_WRITE(sec, RTC_SECONDS_ALARM); |
| spin_unlock_irq(&rtc_lock); |
| |
| return 0; |
| } |
| case RTC_RD_TIME: /* Read the time/date from RTC */ |
| { |
| memset(&wtime, 0, sizeof(struct rtc_time)); |
| rtc_get_rtc_time(&wtime); |
| break; |
| } |
| case RTC_SET_TIME: /* Set the RTC */ |
| { |
| struct rtc_time rtc_tm; |
| unsigned char mon, day, hrs, min, sec, leap_yr; |
| unsigned char save_control, save_freq_select; |
| unsigned int yrs; |
| #ifdef CONFIG_MACH_DECSTATION |
| unsigned int real_yrs; |
| #endif |
| |
| if (!capable(CAP_SYS_TIME)) |
| return -EACCES; |
| |
| if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg, |
| sizeof(struct rtc_time))) |
| return -EFAULT; |
| |
| yrs = rtc_tm.tm_year + 1900; |
| mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ |
| day = rtc_tm.tm_mday; |
| hrs = rtc_tm.tm_hour; |
| min = rtc_tm.tm_min; |
| sec = rtc_tm.tm_sec; |
| |
| if (yrs < 1970) |
| return -EINVAL; |
| |
| leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); |
| |
| if ((mon > 12) || (day == 0)) |
| return -EINVAL; |
| |
| if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) |
| return -EINVAL; |
| |
| if ((hrs >= 24) || (min >= 60) || (sec >= 60)) |
| return -EINVAL; |
| |
| if ((yrs -= epoch) > 255) /* They are unsigned */ |
| return -EINVAL; |
| |
| spin_lock_irq(&rtc_lock); |
| #ifdef CONFIG_MACH_DECSTATION |
| real_yrs = yrs; |
| yrs = 72; |
| |
| /* |
| * We want to keep the year set to 73 until March |
| * for non-leap years, so that Feb, 29th is handled |
| * correctly. |
| */ |
| if (!leap_yr && mon < 3) { |
| real_yrs--; |
| yrs = 73; |
| } |
| #endif |
| /* These limits and adjustments are independent of |
| * whether the chip is in binary mode or not. |
| */ |
| if (yrs > 169) { |
| spin_unlock_irq(&rtc_lock); |
| return -EINVAL; |
| } |
| if (yrs >= 100) |
| yrs -= 100; |
| |
| if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) |
| || RTC_ALWAYS_BCD) { |
| BIN_TO_BCD(sec); |
| BIN_TO_BCD(min); |
| BIN_TO_BCD(hrs); |
| BIN_TO_BCD(day); |
| BIN_TO_BCD(mon); |
| BIN_TO_BCD(yrs); |
| } |
| |
| save_control = CMOS_READ(RTC_CONTROL); |
| CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); |
| save_freq_select = CMOS_READ(RTC_FREQ_SELECT); |
| CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); |
| |
| #ifdef CONFIG_MACH_DECSTATION |
| CMOS_WRITE(real_yrs, RTC_DEC_YEAR); |
| #endif |
| CMOS_WRITE(yrs, RTC_YEAR); |
| CMOS_WRITE(mon, RTC_MONTH); |
| CMOS_WRITE(day, RTC_DAY_OF_MONTH); |
| CMOS_WRITE(hrs, RTC_HOURS); |
| CMOS_WRITE(min, RTC_MINUTES); |
| CMOS_WRITE(sec, RTC_SECONDS); |
| |
| CMOS_WRITE(save_control, RTC_CONTROL); |
| CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); |
| |
| spin_unlock_irq(&rtc_lock); |
| return 0; |
| } |
| #ifdef RTC_IRQ |
| case RTC_IRQP_READ: /* Read the periodic IRQ rate. */ |
| { |
| return put_user(rtc_freq, (unsigned long __user *)arg); |
| } |
| case RTC_IRQP_SET: /* Set periodic IRQ rate. */ |
| { |
| int tmp = 0; |
| unsigned char val; |
| unsigned long flags; /* can be called from isr via rtc_control() */ |
| |
| /* |
| * The max we can do is 8192Hz. |
| */ |
| if ((arg < 2) || (arg > 8192)) |
| return -EINVAL; |
| /* |
| * We don't really want Joe User generating more |
| * than 64Hz of interrupts on a multi-user machine. |
| */ |
| if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE))) |
| return -EACCES; |
| |
| while (arg > (1<<tmp)) |
| tmp++; |
| |
| /* |
| * Check that the input was really a power of 2. |
| */ |
| if (arg != (1<<tmp)) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| if (hpet_set_periodic_freq(arg)) { |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| return 0; |
| } |
| rtc_freq = arg; |
| |
| val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0; |
| val |= (16 - tmp); |
| CMOS_WRITE(val, RTC_FREQ_SELECT); |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| return 0; |
| } |
| #endif |
| case RTC_EPOCH_READ: /* Read the epoch. */ |
| { |
| return put_user (epoch, (unsigned long __user *)arg); |
| } |
| case RTC_EPOCH_SET: /* Set the epoch. */ |
| { |
| /* |
| * There were no RTC clocks before 1900. |
| */ |
| if (arg < 1900) |
| return -EINVAL; |
| |
| if (!capable(CAP_SYS_TIME)) |
| return -EACCES; |
| |
| epoch = arg; |
| return 0; |
| } |
| default: |
| return -ENOTTY; |
| } |
| return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; |
| } |
| |
| static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| return rtc_do_ioctl(cmd, arg, 0); |
| } |
| |
| /* |
| * We enforce only one user at a time here with the open/close. |
| * Also clear the previous interrupt data on an open, and clean |
| * up things on a close. |
| */ |
| |
| /* We use rtc_lock to protect against concurrent opens. So the BKL is not |
| * needed here. Or anywhere else in this driver. */ |
| static int rtc_open(struct inode *inode, struct file *file) |
| { |
| spin_lock_irq (&rtc_lock); |
| |
| if(rtc_status & RTC_IS_OPEN) |
| goto out_busy; |
| |
| rtc_status |= RTC_IS_OPEN; |
| |
| rtc_irq_data = 0; |
| spin_unlock_irq (&rtc_lock); |
| return 0; |
| |
| out_busy: |
| spin_unlock_irq (&rtc_lock); |
| return -EBUSY; |
| } |
| |
| static int rtc_fasync (int fd, struct file *filp, int on) |
| |
| { |
| return fasync_helper (fd, filp, on, &rtc_async_queue); |
| } |
| |
| static int rtc_release(struct inode *inode, struct file *file) |
| { |
| #ifdef RTC_IRQ |
| unsigned char tmp; |
| |
| if (rtc_has_irq == 0) |
| goto no_irq; |
| |
| /* |
| * Turn off all interrupts once the device is no longer |
| * in use, and clear the data. |
| */ |
| |
| spin_lock_irq(&rtc_lock); |
| if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { |
| tmp = CMOS_READ(RTC_CONTROL); |
| tmp &= ~RTC_PIE; |
| tmp &= ~RTC_AIE; |
| tmp &= ~RTC_UIE; |
| CMOS_WRITE(tmp, RTC_CONTROL); |
| CMOS_READ(RTC_INTR_FLAGS); |
| } |
| if (rtc_status & RTC_TIMER_ON) { |
| rtc_status &= ~RTC_TIMER_ON; |
| del_timer(&rtc_irq_timer); |
| } |
| spin_unlock_irq(&rtc_lock); |
| |
| if (file->f_flags & FASYNC) { |
| rtc_fasync (-1, file, 0); |
| } |
| no_irq: |
| #endif |
| |
| spin_lock_irq (&rtc_lock); |
| rtc_irq_data = 0; |
| rtc_status &= ~RTC_IS_OPEN; |
| spin_unlock_irq (&rtc_lock); |
| return 0; |
| } |
| |
| #ifdef RTC_IRQ |
| /* Called without the kernel lock - fine */ |
| static unsigned int rtc_poll(struct file *file, poll_table *wait) |
| { |
| unsigned long l; |
| |
| if (rtc_has_irq == 0) |
| return 0; |
| |
| poll_wait(file, &rtc_wait, wait); |
| |
| spin_lock_irq (&rtc_lock); |
| l = rtc_irq_data; |
| spin_unlock_irq (&rtc_lock); |
| |
| if (l != 0) |
| return POLLIN | POLLRDNORM; |
| return 0; |
| } |
| #endif |
| |
| /* |
| * exported stuffs |
| */ |
| |
| EXPORT_SYMBOL(rtc_register); |
| EXPORT_SYMBOL(rtc_unregister); |
| EXPORT_SYMBOL(rtc_control); |
| |
| int rtc_register(rtc_task_t *task) |
| { |
| #ifndef RTC_IRQ |
| return -EIO; |
| #else |
| if (task == NULL || task->func == NULL) |
| return -EINVAL; |
| spin_lock_irq(&rtc_lock); |
| if (rtc_status & RTC_IS_OPEN) { |
| spin_unlock_irq(&rtc_lock); |
| return -EBUSY; |
| } |
| spin_lock(&rtc_task_lock); |
| if (rtc_callback) { |
| spin_unlock(&rtc_task_lock); |
| spin_unlock_irq(&rtc_lock); |
| return -EBUSY; |
| } |
| rtc_status |= RTC_IS_OPEN; |
| rtc_callback = task; |
| spin_unlock(&rtc_task_lock); |
| spin_unlock_irq(&rtc_lock); |
| return 0; |
| #endif |
| } |
| |
| int rtc_unregister(rtc_task_t *task) |
| { |
| #ifndef RTC_IRQ |
| return -EIO; |
| #else |
| unsigned char tmp; |
| |
| spin_lock_irq(&rtc_lock); |
| spin_lock(&rtc_task_lock); |
| if (rtc_callback != task) { |
| spin_unlock(&rtc_task_lock); |
| spin_unlock_irq(&rtc_lock); |
| return -ENXIO; |
| } |
| rtc_callback = NULL; |
| |
| /* disable controls */ |
| if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { |
| tmp = CMOS_READ(RTC_CONTROL); |
| tmp &= ~RTC_PIE; |
| tmp &= ~RTC_AIE; |
| tmp &= ~RTC_UIE; |
| CMOS_WRITE(tmp, RTC_CONTROL); |
| CMOS_READ(RTC_INTR_FLAGS); |
| } |
| if (rtc_status & RTC_TIMER_ON) { |
| rtc_status &= ~RTC_TIMER_ON; |
| del_timer(&rtc_irq_timer); |
| } |
| rtc_status &= ~RTC_IS_OPEN; |
| spin_unlock(&rtc_task_lock); |
| spin_unlock_irq(&rtc_lock); |
| return 0; |
| #endif |
| } |
| |
| int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg) |
| { |
| #ifndef RTC_IRQ |
| return -EIO; |
| #else |
| unsigned long flags; |
| if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET) |
| return -EINVAL; |
| spin_lock_irqsave(&rtc_task_lock, flags); |
| if (rtc_callback != task) { |
| spin_unlock_irqrestore(&rtc_task_lock, flags); |
| return -ENXIO; |
| } |
| spin_unlock_irqrestore(&rtc_task_lock, flags); |
| return rtc_do_ioctl(cmd, arg, 1); |
| #endif |
| } |
| |
| |
| /* |
| * The various file operations we support. |
| */ |
| |
| static struct file_operations rtc_fops = { |
| .owner = THIS_MODULE, |
| .llseek = no_llseek, |
| .read = rtc_read, |
| #ifdef RTC_IRQ |
| .poll = rtc_poll, |
| #endif |
| .ioctl = rtc_ioctl, |
| .open = rtc_open, |
| .release = rtc_release, |
| .fasync = rtc_fasync, |
| }; |
| |
| static struct miscdevice rtc_dev = { |
| .minor = RTC_MINOR, |
| .name = "rtc", |
| .fops = &rtc_fops, |
| }; |
| |
| static struct file_operations rtc_proc_fops = { |
| .owner = THIS_MODULE, |
| .open = rtc_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| #if defined(RTC_IRQ) && !defined(__sparc__) |
| static irqreturn_t (*rtc_int_handler_ptr)(int irq, void *dev_id, struct pt_regs *regs); |
| #endif |
| |
| static int __init rtc_init(void) |
| { |
| struct proc_dir_entry *ent; |
| #if defined(__alpha__) || defined(__mips__) |
| unsigned int year, ctrl; |
| char *guess = NULL; |
| #endif |
| #ifdef __sparc__ |
| struct linux_ebus *ebus; |
| struct linux_ebus_device *edev; |
| #ifdef __sparc_v9__ |
| struct sparc_isa_bridge *isa_br; |
| struct sparc_isa_device *isa_dev; |
| #endif |
| #endif |
| |
| #ifdef __sparc__ |
| for_each_ebus(ebus) { |
| for_each_ebusdev(edev, ebus) { |
| if(strcmp(edev->prom_node->name, "rtc") == 0) { |
| rtc_port = edev->resource[0].start; |
| rtc_irq = edev->irqs[0]; |
| goto found; |
| } |
| } |
| } |
| #ifdef __sparc_v9__ |
| for_each_isa(isa_br) { |
| for_each_isadev(isa_dev, isa_br) { |
| if (strcmp(isa_dev->prom_node->name, "rtc") == 0) { |
| rtc_port = isa_dev->resource.start; |
| rtc_irq = isa_dev->irq; |
| goto found; |
| } |
| } |
| } |
| #endif |
| printk(KERN_ERR "rtc_init: no PC rtc found\n"); |
| return -EIO; |
| |
| found: |
| if (rtc_irq == PCI_IRQ_NONE) { |
| rtc_has_irq = 0; |
| goto no_irq; |
| } |
| |
| /* |
| * XXX Interrupt pin #7 in Espresso is shared between RTC and |
| * PCI Slot 2 INTA# (and some INTx# in Slot 1). |
| */ |
| if (request_irq(rtc_irq, rtc_interrupt, SA_SHIRQ, "rtc", (void *)&rtc_port)) { |
| printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq); |
| return -EIO; |
| } |
| no_irq: |
| #else |
| if (!request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc")) { |
| printk(KERN_ERR "rtc: I/O port %d is not free.\n", RTC_PORT (0)); |
| return -EIO; |
| } |
| |
| #ifdef RTC_IRQ |
| if (is_hpet_enabled()) { |
| rtc_int_handler_ptr = hpet_rtc_interrupt; |
| } else { |
| rtc_int_handler_ptr = rtc_interrupt; |
| } |
| |
| if(request_irq(RTC_IRQ, rtc_int_handler_ptr, SA_INTERRUPT, "rtc", NULL)) { |
| /* Yeah right, seeing as irq 8 doesn't even hit the bus. */ |
| printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ); |
| release_region(RTC_PORT(0), RTC_IO_EXTENT); |
| return -EIO; |
| } |
| hpet_rtc_timer_init(); |
| |
| #endif |
| |
| #endif /* __sparc__ vs. others */ |
| |
| if (misc_register(&rtc_dev)) { |
| #ifdef RTC_IRQ |
| free_irq(RTC_IRQ, NULL); |
| #endif |
| release_region(RTC_PORT(0), RTC_IO_EXTENT); |
| return -ENODEV; |
| } |
| |
| ent = create_proc_entry("driver/rtc", 0, NULL); |
| if (!ent) { |
| #ifdef RTC_IRQ |
| free_irq(RTC_IRQ, NULL); |
| #endif |
| release_region(RTC_PORT(0), RTC_IO_EXTENT); |
| misc_deregister(&rtc_dev); |
| return -ENOMEM; |
| } |
| ent->proc_fops = &rtc_proc_fops; |
| |
| #if defined(__alpha__) || defined(__mips__) |
| rtc_freq = HZ; |
| |
| /* Each operating system on an Alpha uses its own epoch. |
| Let's try to guess which one we are using now. */ |
| |
| if (rtc_is_updating() != 0) |
| msleep(20); |
| |
| spin_lock_irq(&rtc_lock); |
| year = CMOS_READ(RTC_YEAR); |
| ctrl = CMOS_READ(RTC_CONTROL); |
| spin_unlock_irq(&rtc_lock); |
| |
| if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) |
| BCD_TO_BIN(year); /* This should never happen... */ |
| |
| if (year < 20) { |
| epoch = 2000; |
| guess = "SRM (post-2000)"; |
| } else if (year >= 20 && year < 48) { |
| epoch = 1980; |
| guess = "ARC console"; |
| } else if (year >= 48 && year < 72) { |
| epoch = 1952; |
| guess = "Digital UNIX"; |
| #if defined(__mips__) |
| } else if (year >= 72 && year < 74) { |
| epoch = 2000; |
| guess = "Digital DECstation"; |
| #else |
| } else if (year >= 70) { |
| epoch = 1900; |
| guess = "Standard PC (1900)"; |
| #endif |
| } |
| if (guess) |
| printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch); |
| #endif |
| #ifdef RTC_IRQ |
| if (rtc_has_irq == 0) |
| goto no_irq2; |
| |
| init_timer(&rtc_irq_timer); |
| rtc_irq_timer.function = rtc_dropped_irq; |
| spin_lock_irq(&rtc_lock); |
| rtc_freq = 1024; |
| if (!hpet_set_periodic_freq(rtc_freq)) { |
| /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */ |
| CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT); |
| } |
| spin_unlock_irq(&rtc_lock); |
| no_irq2: |
| #endif |
| |
| (void) init_sysctl(); |
| |
| printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n"); |
| |
| return 0; |
| } |
| |
| static void __exit rtc_exit (void) |
| { |
| cleanup_sysctl(); |
| remove_proc_entry ("driver/rtc", NULL); |
| misc_deregister(&rtc_dev); |
| |
| #ifdef __sparc__ |
| if (rtc_has_irq) |
| free_irq (rtc_irq, &rtc_port); |
| #else |
| release_region (RTC_PORT (0), RTC_IO_EXTENT); |
| #ifdef RTC_IRQ |
| if (rtc_has_irq) |
| free_irq (RTC_IRQ, NULL); |
| #endif |
| #endif /* __sparc__ */ |
| } |
| |
| module_init(rtc_init); |
| module_exit(rtc_exit); |
| |
| #ifdef RTC_IRQ |
| /* |
| * At IRQ rates >= 4096Hz, an interrupt may get lost altogether. |
| * (usually during an IDE disk interrupt, with IRQ unmasking off) |
| * Since the interrupt handler doesn't get called, the IRQ status |
| * byte doesn't get read, and the RTC stops generating interrupts. |
| * A timer is set, and will call this function if/when that happens. |
| * To get it out of this stalled state, we just read the status. |
| * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost. |
| * (You *really* shouldn't be trying to use a non-realtime system |
| * for something that requires a steady > 1KHz signal anyways.) |
| */ |
| |
| static void rtc_dropped_irq(unsigned long data) |
| { |
| unsigned long freq; |
| |
| spin_lock_irq (&rtc_lock); |
| |
| if (hpet_rtc_dropped_irq()) { |
| spin_unlock_irq(&rtc_lock); |
| return; |
| } |
| |
| /* Just in case someone disabled the timer from behind our back... */ |
| if (rtc_status & RTC_TIMER_ON) |
| mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); |
| |
| rtc_irq_data += ((rtc_freq/HZ)<<8); |
| rtc_irq_data &= ~0xff; |
| rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */ |
| |
| freq = rtc_freq; |
| |
| spin_unlock_irq(&rtc_lock); |
| |
| printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq); |
| |
| /* Now we have new data */ |
| wake_up_interruptible(&rtc_wait); |
| |
| kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); |
| } |
| #endif |
| |
| /* |
| * Info exported via "/proc/driver/rtc". |
| */ |
| |
| static int rtc_proc_show(struct seq_file *seq, void *v) |
| { |
| #define YN(bit) ((ctrl & bit) ? "yes" : "no") |
| #define NY(bit) ((ctrl & bit) ? "no" : "yes") |
| struct rtc_time tm; |
| unsigned char batt, ctrl; |
| unsigned long freq; |
| |
| spin_lock_irq(&rtc_lock); |
| batt = CMOS_READ(RTC_VALID) & RTC_VRT; |
| ctrl = CMOS_READ(RTC_CONTROL); |
| freq = rtc_freq; |
| spin_unlock_irq(&rtc_lock); |
| |
| |
| rtc_get_rtc_time(&tm); |
| |
| /* |
| * There is no way to tell if the luser has the RTC set for local |
| * time or for Universal Standard Time (GMT). Probably local though. |
| */ |
| seq_printf(seq, |
| "rtc_time\t: %02d:%02d:%02d\n" |
| "rtc_date\t: %04d-%02d-%02d\n" |
| "rtc_epoch\t: %04lu\n", |
| tm.tm_hour, tm.tm_min, tm.tm_sec, |
| tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch); |
| |
| get_rtc_alm_time(&tm); |
| |
| /* |
| * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will |
| * match any value for that particular field. Values that are |
| * greater than a valid time, but less than 0xc0 shouldn't appear. |
| */ |
| seq_puts(seq, "alarm\t\t: "); |
| if (tm.tm_hour <= 24) |
| seq_printf(seq, "%02d:", tm.tm_hour); |
| else |
| seq_puts(seq, "**:"); |
| |
| if (tm.tm_min <= 59) |
| seq_printf(seq, "%02d:", tm.tm_min); |
| else |
| seq_puts(seq, "**:"); |
| |
| if (tm.tm_sec <= 59) |
| seq_printf(seq, "%02d\n", tm.tm_sec); |
| else |
| seq_puts(seq, "**\n"); |
| |
| seq_printf(seq, |
| "DST_enable\t: %s\n" |
| "BCD\t\t: %s\n" |
| "24hr\t\t: %s\n" |
| "square_wave\t: %s\n" |
| "alarm_IRQ\t: %s\n" |
| "update_IRQ\t: %s\n" |
| "periodic_IRQ\t: %s\n" |
| "periodic_freq\t: %ld\n" |
| "batt_status\t: %s\n", |
| YN(RTC_DST_EN), |
| NY(RTC_DM_BINARY), |
| YN(RTC_24H), |
| YN(RTC_SQWE), |
| YN(RTC_AIE), |
| YN(RTC_UIE), |
| YN(RTC_PIE), |
| freq, |
| batt ? "okay" : "dead"); |
| |
| return 0; |
| #undef YN |
| #undef NY |
| } |
| |
| static int rtc_proc_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, rtc_proc_show, NULL); |
| } |
| |
| void rtc_get_rtc_time(struct rtc_time *rtc_tm) |
| { |
| unsigned long uip_watchdog = jiffies; |
| unsigned char ctrl; |
| #ifdef CONFIG_MACH_DECSTATION |
| unsigned int real_year; |
| #endif |
| |
| /* |
| * read RTC once any update in progress is done. The update |
| * can take just over 2ms. We wait 20ms. There is no need to |
| * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP. |
| * If you need to know *exactly* when a second has started, enable |
| * periodic update complete interrupts, (via ioctl) and then |
| * immediately read /dev/rtc which will block until you get the IRQ. |
| * Once the read clears, read the RTC time (again via ioctl). Easy. |
| */ |
| |
| while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100) { |
| barrier(); |
| cpu_relax(); |
| } |
| |
| /* |
| * Only the values that we read from the RTC are set. We leave |
| * tm_wday, tm_yday and tm_isdst untouched. Note that while the |
| * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is |
| * only updated by the RTC when initially set to a non-zero value. |
| */ |
| spin_lock_irq(&rtc_lock); |
| rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS); |
| rtc_tm->tm_min = CMOS_READ(RTC_MINUTES); |
| rtc_tm->tm_hour = CMOS_READ(RTC_HOURS); |
| rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH); |
| rtc_tm->tm_mon = CMOS_READ(RTC_MONTH); |
| rtc_tm->tm_year = CMOS_READ(RTC_YEAR); |
| /* Only set from 2.6.16 onwards */ |
| rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK); |
| |
| #ifdef CONFIG_MACH_DECSTATION |
| real_year = CMOS_READ(RTC_DEC_YEAR); |
| #endif |
| ctrl = CMOS_READ(RTC_CONTROL); |
| spin_unlock_irq(&rtc_lock); |
| |
| if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) |
| { |
| BCD_TO_BIN(rtc_tm->tm_sec); |
| BCD_TO_BIN(rtc_tm->tm_min); |
| BCD_TO_BIN(rtc_tm->tm_hour); |
| BCD_TO_BIN(rtc_tm->tm_mday); |
| BCD_TO_BIN(rtc_tm->tm_mon); |
| BCD_TO_BIN(rtc_tm->tm_year); |
| BCD_TO_BIN(rtc_tm->tm_wday); |
| } |
| |
| #ifdef CONFIG_MACH_DECSTATION |
| rtc_tm->tm_year += real_year - 72; |
| #endif |
| |
| /* |
| * Account for differences between how the RTC uses the values |
| * and how they are defined in a struct rtc_time; |
| */ |
| if ((rtc_tm->tm_year += (epoch - 1900)) <= 69) |
| rtc_tm->tm_year += 100; |
| |
| rtc_tm->tm_mon--; |
| } |
| |
| static void get_rtc_alm_time(struct rtc_time *alm_tm) |
| { |
| unsigned char ctrl; |
| |
| /* |
| * Only the values that we read from the RTC are set. That |
| * means only tm_hour, tm_min, and tm_sec. |
| */ |
| spin_lock_irq(&rtc_lock); |
| alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); |
| alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM); |
| alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM); |
| ctrl = CMOS_READ(RTC_CONTROL); |
| spin_unlock_irq(&rtc_lock); |
| |
| if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) |
| { |
| BCD_TO_BIN(alm_tm->tm_sec); |
| BCD_TO_BIN(alm_tm->tm_min); |
| BCD_TO_BIN(alm_tm->tm_hour); |
| } |
| } |
| |
| #ifdef RTC_IRQ |
| /* |
| * Used to disable/enable interrupts for any one of UIE, AIE, PIE. |
| * Rumour has it that if you frob the interrupt enable/disable |
| * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to |
| * ensure you actually start getting interrupts. Probably for |
| * compatibility with older/broken chipset RTC implementations. |
| * We also clear out any old irq data after an ioctl() that |
| * meddles with the interrupt enable/disable bits. |
| */ |
| |
| static void mask_rtc_irq_bit_locked(unsigned char bit) |
| { |
| unsigned char val; |
| |
| if (hpet_mask_rtc_irq_bit(bit)) |
| return; |
| val = CMOS_READ(RTC_CONTROL); |
| val &= ~bit; |
| CMOS_WRITE(val, RTC_CONTROL); |
| CMOS_READ(RTC_INTR_FLAGS); |
| |
| rtc_irq_data = 0; |
| } |
| |
| static void set_rtc_irq_bit_locked(unsigned char bit) |
| { |
| unsigned char val; |
| |
| if (hpet_set_rtc_irq_bit(bit)) |
| return; |
| val = CMOS_READ(RTC_CONTROL); |
| val |= bit; |
| CMOS_WRITE(val, RTC_CONTROL); |
| CMOS_READ(RTC_INTR_FLAGS); |
| |
| rtc_irq_data = 0; |
| } |
| #endif |
| |
| MODULE_AUTHOR("Paul Gortmaker"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS_MISCDEV(RTC_MINOR); |