| /* arch/sparc64/kernel/kprobes.c |
| * |
| * Copyright (C) 2004 David S. Miller <davem@davemloft.net> |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/kprobes.h> |
| #include <asm/kdebug.h> |
| #include <asm/signal.h> |
| |
| /* We do not have hardware single-stepping on sparc64. |
| * So we implement software single-stepping with breakpoint |
| * traps. The top-level scheme is similar to that used |
| * in the x86 kprobes implementation. |
| * |
| * In the kprobe->ainsn.insn[] array we store the original |
| * instruction at index zero and a break instruction at |
| * index one. |
| * |
| * When we hit a kprobe we: |
| * - Run the pre-handler |
| * - Remember "regs->tnpc" and interrupt level stored in |
| * "regs->tstate" so we can restore them later |
| * - Disable PIL interrupts |
| * - Set regs->tpc to point to kprobe->ainsn.insn[0] |
| * - Set regs->tnpc to point to kprobe->ainsn.insn[1] |
| * - Mark that we are actively in a kprobe |
| * |
| * At this point we wait for the second breakpoint at |
| * kprobe->ainsn.insn[1] to hit. When it does we: |
| * - Run the post-handler |
| * - Set regs->tpc to "remembered" regs->tnpc stored above, |
| * restore the PIL interrupt level in "regs->tstate" as well |
| * - Make any adjustments necessary to regs->tnpc in order |
| * to handle relative branches correctly. See below. |
| * - Mark that we are no longer actively in a kprobe. |
| */ |
| |
| int arch_prepare_kprobe(struct kprobe *p) |
| { |
| return 0; |
| } |
| |
| void arch_copy_kprobe(struct kprobe *p) |
| { |
| p->ainsn.insn[0] = *p->addr; |
| p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2; |
| p->opcode = *p->addr; |
| } |
| |
| void arch_arm_kprobe(struct kprobe *p) |
| { |
| *p->addr = BREAKPOINT_INSTRUCTION; |
| flushi(p->addr); |
| } |
| |
| void arch_disarm_kprobe(struct kprobe *p) |
| { |
| *p->addr = p->opcode; |
| flushi(p->addr); |
| } |
| |
| void arch_remove_kprobe(struct kprobe *p) |
| { |
| } |
| |
| static struct kprobe *current_kprobe; |
| static unsigned long current_kprobe_orig_tnpc; |
| static unsigned long current_kprobe_orig_tstate_pil; |
| static unsigned int kprobe_status; |
| static struct kprobe *kprobe_prev; |
| static unsigned long kprobe_orig_tnpc_prev; |
| static unsigned long kprobe_orig_tstate_pil_prev; |
| static unsigned int kprobe_status_prev; |
| |
| static inline void save_previous_kprobe(void) |
| { |
| kprobe_status_prev = kprobe_status; |
| kprobe_orig_tnpc_prev = current_kprobe_orig_tnpc; |
| kprobe_orig_tstate_pil_prev = current_kprobe_orig_tstate_pil; |
| kprobe_prev = current_kprobe; |
| } |
| |
| static inline void restore_previous_kprobe(void) |
| { |
| kprobe_status = kprobe_status_prev; |
| current_kprobe_orig_tnpc = kprobe_orig_tnpc_prev; |
| current_kprobe_orig_tstate_pil = kprobe_orig_tstate_pil_prev; |
| current_kprobe = kprobe_prev; |
| } |
| |
| static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs) |
| { |
| current_kprobe_orig_tnpc = regs->tnpc; |
| current_kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL); |
| current_kprobe = p; |
| } |
| |
| static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| { |
| regs->tstate |= TSTATE_PIL; |
| |
| /*single step inline, if it a breakpoint instruction*/ |
| if (p->opcode == BREAKPOINT_INSTRUCTION) { |
| regs->tpc = (unsigned long) p->addr; |
| regs->tnpc = current_kprobe_orig_tnpc; |
| } else { |
| regs->tpc = (unsigned long) &p->ainsn.insn[0]; |
| regs->tnpc = (unsigned long) &p->ainsn.insn[1]; |
| } |
| } |
| |
| static int kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| void *addr = (void *) regs->tpc; |
| int ret = 0; |
| |
| preempt_disable(); |
| |
| if (kprobe_running()) { |
| /* We *are* holding lock here, so this is safe. |
| * Disarm the probe we just hit, and ignore it. |
| */ |
| p = get_kprobe(addr); |
| if (p) { |
| if (kprobe_status == KPROBE_HIT_SS) { |
| regs->tstate = ((regs->tstate & ~TSTATE_PIL) | |
| current_kprobe_orig_tstate_pil); |
| unlock_kprobes(); |
| goto no_kprobe; |
| } |
| /* We have reentered the kprobe_handler(), since |
| * another probe was hit while within the handler. |
| * We here save the original kprobes variables and |
| * just single step on the instruction of the new probe |
| * without calling any user handlers. |
| */ |
| save_previous_kprobe(); |
| set_current_kprobe(p, regs); |
| p->nmissed++; |
| kprobe_status = KPROBE_REENTER; |
| prepare_singlestep(p, regs); |
| return 1; |
| } else { |
| p = current_kprobe; |
| if (p->break_handler && p->break_handler(p, regs)) |
| goto ss_probe; |
| } |
| /* If it's not ours, can't be delete race, (we hold lock). */ |
| goto no_kprobe; |
| } |
| |
| lock_kprobes(); |
| p = get_kprobe(addr); |
| if (!p) { |
| unlock_kprobes(); |
| if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| */ |
| ret = 1; |
| } |
| /* Not one of ours: let kernel handle it */ |
| goto no_kprobe; |
| } |
| |
| set_current_kprobe(p, regs); |
| kprobe_status = KPROBE_HIT_ACTIVE; |
| if (p->pre_handler && p->pre_handler(p, regs)) |
| return 1; |
| |
| ss_probe: |
| prepare_singlestep(p, regs); |
| kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| } |
| |
| /* If INSN is a relative control transfer instruction, |
| * return the corrected branch destination value. |
| * |
| * The original INSN location was REAL_PC, it actually |
| * executed at PC and produced destination address NPC. |
| */ |
| static unsigned long relbranch_fixup(u32 insn, unsigned long real_pc, |
| unsigned long pc, unsigned long npc) |
| { |
| /* Branch not taken, no mods necessary. */ |
| if (npc == pc + 0x4UL) |
| return real_pc + 0x4UL; |
| |
| /* The three cases are call, branch w/prediction, |
| * and traditional branch. |
| */ |
| if ((insn & 0xc0000000) == 0x40000000 || |
| (insn & 0xc1c00000) == 0x00400000 || |
| (insn & 0xc1c00000) == 0x00800000) { |
| /* The instruction did all the work for us |
| * already, just apply the offset to the correct |
| * instruction location. |
| */ |
| return (real_pc + (npc - pc)); |
| } |
| |
| return real_pc + 0x4UL; |
| } |
| |
| /* If INSN is an instruction which writes it's PC location |
| * into a destination register, fix that up. |
| */ |
| static void retpc_fixup(struct pt_regs *regs, u32 insn, unsigned long real_pc) |
| { |
| unsigned long *slot = NULL; |
| |
| /* Simplest cast is call, which always uses %o7 */ |
| if ((insn & 0xc0000000) == 0x40000000) { |
| slot = ®s->u_regs[UREG_I7]; |
| } |
| |
| /* Jmpl encodes the register inside of the opcode */ |
| if ((insn & 0xc1f80000) == 0x81c00000) { |
| unsigned long rd = ((insn >> 25) & 0x1f); |
| |
| if (rd <= 15) { |
| slot = ®s->u_regs[rd]; |
| } else { |
| /* Hard case, it goes onto the stack. */ |
| flushw_all(); |
| |
| rd -= 16; |
| slot = (unsigned long *) |
| (regs->u_regs[UREG_FP] + STACK_BIAS); |
| slot += rd; |
| } |
| } |
| if (slot != NULL) |
| *slot = real_pc; |
| } |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the breakpoint |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. |
| * |
| * This function prepares to return from the post-single-step |
| * breakpoint trap. |
| */ |
| static void resume_execution(struct kprobe *p, struct pt_regs *regs) |
| { |
| u32 insn = p->ainsn.insn[0]; |
| |
| regs->tpc = current_kprobe_orig_tnpc; |
| regs->tnpc = relbranch_fixup(insn, |
| (unsigned long) p->addr, |
| (unsigned long) &p->ainsn.insn[0], |
| regs->tnpc); |
| retpc_fixup(regs, insn, (unsigned long) p->addr); |
| |
| regs->tstate = ((regs->tstate & ~TSTATE_PIL) | |
| current_kprobe_orig_tstate_pil); |
| } |
| |
| static inline int post_kprobe_handler(struct pt_regs *regs) |
| { |
| if (!kprobe_running()) |
| return 0; |
| |
| if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) { |
| kprobe_status = KPROBE_HIT_SSDONE; |
| current_kprobe->post_handler(current_kprobe, regs, 0); |
| } |
| |
| resume_execution(current_kprobe, regs); |
| |
| /*Restore back the original saved kprobes variables and continue. */ |
| if (kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(); |
| goto out; |
| } |
| unlock_kprobes(); |
| out: |
| preempt_enable_no_resched(); |
| |
| return 1; |
| } |
| |
| /* Interrupts disabled, kprobe_lock held. */ |
| static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| if (current_kprobe->fault_handler |
| && current_kprobe->fault_handler(current_kprobe, regs, trapnr)) |
| return 1; |
| |
| if (kprobe_status & KPROBE_HIT_SS) { |
| resume_execution(current_kprobe, regs); |
| |
| unlock_kprobes(); |
| preempt_enable_no_resched(); |
| } |
| return 0; |
| } |
| |
| /* |
| * Wrapper routine to for handling exceptions. |
| */ |
| int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, |
| void *data) |
| { |
| struct die_args *args = (struct die_args *)data; |
| switch (val) { |
| case DIE_DEBUG: |
| if (kprobe_handler(args->regs)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_DEBUG_2: |
| if (post_kprobe_handler(args->regs)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_GPF: |
| if (kprobe_running() && |
| kprobe_fault_handler(args->regs, args->trapnr)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_PAGE_FAULT: |
| if (kprobe_running() && |
| kprobe_fault_handler(args->regs, args->trapnr)) |
| return NOTIFY_STOP; |
| break; |
| default: |
| break; |
| } |
| return NOTIFY_DONE; |
| } |
| |
| asmlinkage void kprobe_trap(unsigned long trap_level, struct pt_regs *regs) |
| { |
| BUG_ON(trap_level != 0x170 && trap_level != 0x171); |
| |
| if (user_mode(regs)) { |
| local_irq_enable(); |
| bad_trap(regs, trap_level); |
| return; |
| } |
| |
| /* trap_level == 0x170 --> ta 0x70 |
| * trap_level == 0x171 --> ta 0x71 |
| */ |
| if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2, |
| (trap_level == 0x170) ? "debug" : "debug_2", |
| regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) |
| bad_trap(regs, trap_level); |
| } |
| |
| /* Jprobes support. */ |
| static struct pt_regs jprobe_saved_regs; |
| static struct pt_regs *jprobe_saved_regs_location; |
| static struct sparc_stackf jprobe_saved_stack; |
| |
| int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| |
| jprobe_saved_regs_location = regs; |
| memcpy(&jprobe_saved_regs, regs, sizeof(*regs)); |
| |
| /* Save a whole stack frame, this gets arguments |
| * pushed onto the stack after using up all the |
| * arg registers. |
| */ |
| memcpy(&jprobe_saved_stack, |
| (char *) (regs->u_regs[UREG_FP] + STACK_BIAS), |
| sizeof(jprobe_saved_stack)); |
| |
| regs->tpc = (unsigned long) jp->entry; |
| regs->tnpc = ((unsigned long) jp->entry) + 0x4UL; |
| regs->tstate |= TSTATE_PIL; |
| |
| return 1; |
| } |
| |
| void jprobe_return(void) |
| { |
| preempt_enable_no_resched(); |
| __asm__ __volatile__( |
| ".globl jprobe_return_trap_instruction\n" |
| "jprobe_return_trap_instruction:\n\t" |
| "ta 0x70"); |
| } |
| |
| extern void jprobe_return_trap_instruction(void); |
| |
| extern void __show_regs(struct pt_regs * regs); |
| |
| int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| u32 *addr = (u32 *) regs->tpc; |
| |
| if (addr == (u32 *) jprobe_return_trap_instruction) { |
| if (jprobe_saved_regs_location != regs) { |
| printk("JPROBE: Current regs (%p) does not match " |
| "saved regs (%p).\n", |
| regs, jprobe_saved_regs_location); |
| printk("JPROBE: Saved registers\n"); |
| __show_regs(jprobe_saved_regs_location); |
| printk("JPROBE: Current registers\n"); |
| __show_regs(regs); |
| BUG(); |
| } |
| /* Restore old register state. Do pt_regs |
| * first so that UREG_FP is the original one for |
| * the stack frame restore. |
| */ |
| memcpy(regs, &jprobe_saved_regs, sizeof(*regs)); |
| |
| memcpy((char *) (regs->u_regs[UREG_FP] + STACK_BIAS), |
| &jprobe_saved_stack, |
| sizeof(jprobe_saved_stack)); |
| |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* architecture specific initialization */ |
| int arch_init_kprobes(void) |
| { |
| return 0; |
| } |