| /* | 
 |  *  linux/mm/oom_kill.c | 
 |  *  | 
 |  *  Copyright (C)  1998,2000  Rik van Riel | 
 |  *	Thanks go out to Claus Fischer for some serious inspiration and | 
 |  *	for goading me into coding this file... | 
 |  *  Copyright (C)  2010  Google, Inc. | 
 |  *	Rewritten by David Rientjes | 
 |  * | 
 |  *  The routines in this file are used to kill a process when | 
 |  *  we're seriously out of memory. This gets called from __alloc_pages() | 
 |  *  in mm/page_alloc.c when we really run out of memory. | 
 |  * | 
 |  *  Since we won't call these routines often (on a well-configured | 
 |  *  machine) this file will double as a 'coding guide' and a signpost | 
 |  *  for newbie kernel hackers. It features several pointers to major | 
 |  *  kernel subsystems and hints as to where to find out what things do. | 
 |  */ | 
 |  | 
 | #include <linux/oom.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/err.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/timex.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/export.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/security.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/ratelimit.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/oom.h> | 
 |  | 
 | int sysctl_panic_on_oom; | 
 | int sysctl_oom_kill_allocating_task; | 
 | int sysctl_oom_dump_tasks = 1; | 
 | static DEFINE_SPINLOCK(zone_scan_lock); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /** | 
 |  * has_intersects_mems_allowed() - check task eligiblity for kill | 
 |  * @tsk: task struct of which task to consider | 
 |  * @mask: nodemask passed to page allocator for mempolicy ooms | 
 |  * | 
 |  * Task eligibility is determined by whether or not a candidate task, @tsk, | 
 |  * shares the same mempolicy nodes as current if it is bound by such a policy | 
 |  * and whether or not it has the same set of allowed cpuset nodes. | 
 |  */ | 
 | static bool has_intersects_mems_allowed(struct task_struct *tsk, | 
 | 					const nodemask_t *mask) | 
 | { | 
 | 	struct task_struct *start = tsk; | 
 |  | 
 | 	do { | 
 | 		if (mask) { | 
 | 			/* | 
 | 			 * If this is a mempolicy constrained oom, tsk's | 
 | 			 * cpuset is irrelevant.  Only return true if its | 
 | 			 * mempolicy intersects current, otherwise it may be | 
 | 			 * needlessly killed. | 
 | 			 */ | 
 | 			if (mempolicy_nodemask_intersects(tsk, mask)) | 
 | 				return true; | 
 | 		} else { | 
 | 			/* | 
 | 			 * This is not a mempolicy constrained oom, so only | 
 | 			 * check the mems of tsk's cpuset. | 
 | 			 */ | 
 | 			if (cpuset_mems_allowed_intersects(current, tsk)) | 
 | 				return true; | 
 | 		} | 
 | 	} while_each_thread(start, tsk); | 
 |  | 
 | 	return false; | 
 | } | 
 | #else | 
 | static bool has_intersects_mems_allowed(struct task_struct *tsk, | 
 | 					const nodemask_t *mask) | 
 | { | 
 | 	return true; | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | /* | 
 |  * The process p may have detached its own ->mm while exiting or through | 
 |  * use_mm(), but one or more of its subthreads may still have a valid | 
 |  * pointer.  Return p, or any of its subthreads with a valid ->mm, with | 
 |  * task_lock() held. | 
 |  */ | 
 | struct task_struct *find_lock_task_mm(struct task_struct *p) | 
 | { | 
 | 	struct task_struct *t = p; | 
 |  | 
 | 	do { | 
 | 		task_lock(t); | 
 | 		if (likely(t->mm)) | 
 | 			return t; | 
 | 		task_unlock(t); | 
 | 	} while_each_thread(p, t); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* return true if the task is not adequate as candidate victim task. */ | 
 | static bool oom_unkillable_task(struct task_struct *p, | 
 | 		const struct mem_cgroup *memcg, const nodemask_t *nodemask) | 
 | { | 
 | 	if (is_global_init(p)) | 
 | 		return true; | 
 | 	if (p->flags & PF_KTHREAD) | 
 | 		return true; | 
 |  | 
 | 	/* When mem_cgroup_out_of_memory() and p is not member of the group */ | 
 | 	if (memcg && !task_in_mem_cgroup(p, memcg)) | 
 | 		return true; | 
 |  | 
 | 	/* p may not have freeable memory in nodemask */ | 
 | 	if (!has_intersects_mems_allowed(p, nodemask)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * oom_badness - heuristic function to determine which candidate task to kill | 
 |  * @p: task struct of which task we should calculate | 
 |  * @totalpages: total present RAM allowed for page allocation | 
 |  * | 
 |  * The heuristic for determining which task to kill is made to be as simple and | 
 |  * predictable as possible.  The goal is to return the highest value for the | 
 |  * task consuming the most memory to avoid subsequent oom failures. | 
 |  */ | 
 | unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg, | 
 | 			  const nodemask_t *nodemask, unsigned long totalpages) | 
 | { | 
 | 	long points; | 
 | 	long adj; | 
 |  | 
 | 	if (oom_unkillable_task(p, memcg, nodemask)) | 
 | 		return 0; | 
 |  | 
 | 	p = find_lock_task_mm(p); | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	adj = (long)p->signal->oom_score_adj; | 
 | 	if (adj == OOM_SCORE_ADJ_MIN) { | 
 | 		task_unlock(p); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The baseline for the badness score is the proportion of RAM that each | 
 | 	 * task's rss, pagetable and swap space use. | 
 | 	 */ | 
 | 	points = get_mm_rss(p->mm) + p->mm->nr_ptes + | 
 | 		 get_mm_counter(p->mm, MM_SWAPENTS); | 
 | 	task_unlock(p); | 
 |  | 
 | 	/* | 
 | 	 * Root processes get 3% bonus, just like the __vm_enough_memory() | 
 | 	 * implementation used by LSMs. | 
 | 	 */ | 
 | 	if (has_capability_noaudit(p, CAP_SYS_ADMIN)) | 
 | 		adj -= 30; | 
 |  | 
 | 	/* Normalize to oom_score_adj units */ | 
 | 	adj *= totalpages / 1000; | 
 | 	points += adj; | 
 |  | 
 | 	/* | 
 | 	 * Never return 0 for an eligible task regardless of the root bonus and | 
 | 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here). | 
 | 	 */ | 
 | 	return points > 0 ? points : 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the type of allocation constraint. | 
 |  */ | 
 | #ifdef CONFIG_NUMA | 
 | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | 
 | 				gfp_t gfp_mask, nodemask_t *nodemask, | 
 | 				unsigned long *totalpages) | 
 | { | 
 | 	struct zone *zone; | 
 | 	struct zoneref *z; | 
 | 	enum zone_type high_zoneidx = gfp_zone(gfp_mask); | 
 | 	bool cpuset_limited = false; | 
 | 	int nid; | 
 |  | 
 | 	/* Default to all available memory */ | 
 | 	*totalpages = totalram_pages + total_swap_pages; | 
 |  | 
 | 	if (!zonelist) | 
 | 		return CONSTRAINT_NONE; | 
 | 	/* | 
 | 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid | 
 | 	 * to kill current.We have to random task kill in this case. | 
 | 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. | 
 | 	 */ | 
 | 	if (gfp_mask & __GFP_THISNODE) | 
 | 		return CONSTRAINT_NONE; | 
 |  | 
 | 	/* | 
 | 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in | 
 | 	 * the page allocator means a mempolicy is in effect.  Cpuset policy | 
 | 	 * is enforced in get_page_from_freelist(). | 
 | 	 */ | 
 | 	if (nodemask && !nodes_subset(node_states[N_MEMORY], *nodemask)) { | 
 | 		*totalpages = total_swap_pages; | 
 | 		for_each_node_mask(nid, *nodemask) | 
 | 			*totalpages += node_spanned_pages(nid); | 
 | 		return CONSTRAINT_MEMORY_POLICY; | 
 | 	} | 
 |  | 
 | 	/* Check this allocation failure is caused by cpuset's wall function */ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
 | 			high_zoneidx, nodemask) | 
 | 		if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) | 
 | 			cpuset_limited = true; | 
 |  | 
 | 	if (cpuset_limited) { | 
 | 		*totalpages = total_swap_pages; | 
 | 		for_each_node_mask(nid, cpuset_current_mems_allowed) | 
 | 			*totalpages += node_spanned_pages(nid); | 
 | 		return CONSTRAINT_CPUSET; | 
 | 	} | 
 | 	return CONSTRAINT_NONE; | 
 | } | 
 | #else | 
 | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | 
 | 				gfp_t gfp_mask, nodemask_t *nodemask, | 
 | 				unsigned long *totalpages) | 
 | { | 
 | 	*totalpages = totalram_pages + total_swap_pages; | 
 | 	return CONSTRAINT_NONE; | 
 | } | 
 | #endif | 
 |  | 
 | enum oom_scan_t oom_scan_process_thread(struct task_struct *task, | 
 | 		unsigned long totalpages, const nodemask_t *nodemask, | 
 | 		bool force_kill) | 
 | { | 
 | 	if (task->exit_state) | 
 | 		return OOM_SCAN_CONTINUE; | 
 | 	if (oom_unkillable_task(task, NULL, nodemask)) | 
 | 		return OOM_SCAN_CONTINUE; | 
 |  | 
 | 	/* | 
 | 	 * This task already has access to memory reserves and is being killed. | 
 | 	 * Don't allow any other task to have access to the reserves. | 
 | 	 */ | 
 | 	if (test_tsk_thread_flag(task, TIF_MEMDIE)) { | 
 | 		if (unlikely(frozen(task))) | 
 | 			__thaw_task(task); | 
 | 		if (!force_kill) | 
 | 			return OOM_SCAN_ABORT; | 
 | 	} | 
 | 	if (!task->mm) | 
 | 		return OOM_SCAN_CONTINUE; | 
 |  | 
 | 	/* | 
 | 	 * If task is allocating a lot of memory and has been marked to be | 
 | 	 * killed first if it triggers an oom, then select it. | 
 | 	 */ | 
 | 	if (oom_task_origin(task)) | 
 | 		return OOM_SCAN_SELECT; | 
 |  | 
 | 	if (task->flags & PF_EXITING && !force_kill) { | 
 | 		/* | 
 | 		 * If this task is not being ptraced on exit, then wait for it | 
 | 		 * to finish before killing some other task unnecessarily. | 
 | 		 */ | 
 | 		if (!(task->group_leader->ptrace & PT_TRACE_EXIT)) | 
 | 			return OOM_SCAN_ABORT; | 
 | 	} | 
 | 	return OOM_SCAN_OK; | 
 | } | 
 |  | 
 | /* | 
 |  * Simple selection loop. We chose the process with the highest | 
 |  * number of 'points'. | 
 |  * | 
 |  * (not docbooked, we don't want this one cluttering up the manual) | 
 |  */ | 
 | static struct task_struct *select_bad_process(unsigned int *ppoints, | 
 | 		unsigned long totalpages, const nodemask_t *nodemask, | 
 | 		bool force_kill) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 | 	struct task_struct *chosen = NULL; | 
 | 	unsigned long chosen_points = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	do_each_thread(g, p) { | 
 | 		unsigned int points; | 
 |  | 
 | 		switch (oom_scan_process_thread(p, totalpages, nodemask, | 
 | 						force_kill)) { | 
 | 		case OOM_SCAN_SELECT: | 
 | 			chosen = p; | 
 | 			chosen_points = ULONG_MAX; | 
 | 			/* fall through */ | 
 | 		case OOM_SCAN_CONTINUE: | 
 | 			continue; | 
 | 		case OOM_SCAN_ABORT: | 
 | 			rcu_read_unlock(); | 
 | 			return ERR_PTR(-1UL); | 
 | 		case OOM_SCAN_OK: | 
 | 			break; | 
 | 		}; | 
 | 		points = oom_badness(p, NULL, nodemask, totalpages); | 
 | 		if (points > chosen_points) { | 
 | 			chosen = p; | 
 | 			chosen_points = points; | 
 | 		} | 
 | 	} while_each_thread(g, p); | 
 | 	if (chosen) | 
 | 		get_task_struct(chosen); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	*ppoints = chosen_points * 1000 / totalpages; | 
 | 	return chosen; | 
 | } | 
 |  | 
 | /** | 
 |  * dump_tasks - dump current memory state of all system tasks | 
 |  * @memcg: current's memory controller, if constrained | 
 |  * @nodemask: nodemask passed to page allocator for mempolicy ooms | 
 |  * | 
 |  * Dumps the current memory state of all eligible tasks.  Tasks not in the same | 
 |  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes | 
 |  * are not shown. | 
 |  * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes, | 
 |  * swapents, oom_score_adj value, and name. | 
 |  */ | 
 | static void dump_tasks(const struct mem_cgroup *memcg, const nodemask_t *nodemask) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct task_struct *task; | 
 |  | 
 | 	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes swapents oom_score_adj name\n"); | 
 | 	rcu_read_lock(); | 
 | 	for_each_process(p) { | 
 | 		if (oom_unkillable_task(p, memcg, nodemask)) | 
 | 			continue; | 
 |  | 
 | 		task = find_lock_task_mm(p); | 
 | 		if (!task) { | 
 | 			/* | 
 | 			 * This is a kthread or all of p's threads have already | 
 | 			 * detached their mm's.  There's no need to report | 
 | 			 * them; they can't be oom killed anyway. | 
 | 			 */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pr_info("[%5d] %5d %5d %8lu %8lu %7lu %8lu         %5hd %s\n", | 
 | 			task->pid, from_kuid(&init_user_ns, task_uid(task)), | 
 | 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm), | 
 | 			task->mm->nr_ptes, | 
 | 			get_mm_counter(task->mm, MM_SWAPENTS), | 
 | 			task->signal->oom_score_adj, task->comm); | 
 | 		task_unlock(task); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, | 
 | 			struct mem_cgroup *memcg, const nodemask_t *nodemask) | 
 | { | 
 | 	task_lock(current); | 
 | 	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " | 
 | 		"oom_score_adj=%hd\n", | 
 | 		current->comm, gfp_mask, order, | 
 | 		current->signal->oom_score_adj); | 
 | 	cpuset_print_task_mems_allowed(current); | 
 | 	task_unlock(current); | 
 | 	dump_stack(); | 
 | 	mem_cgroup_print_oom_info(memcg, p); | 
 | 	show_mem(SHOW_MEM_FILTER_NODES); | 
 | 	if (sysctl_oom_dump_tasks) | 
 | 		dump_tasks(memcg, nodemask); | 
 | } | 
 |  | 
 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
 | /* | 
 |  * Must be called while holding a reference to p, which will be released upon | 
 |  * returning. | 
 |  */ | 
 | void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, | 
 | 		      unsigned int points, unsigned long totalpages, | 
 | 		      struct mem_cgroup *memcg, nodemask_t *nodemask, | 
 | 		      const char *message) | 
 | { | 
 | 	struct task_struct *victim = p; | 
 | 	struct task_struct *child; | 
 | 	struct task_struct *t = p; | 
 | 	struct mm_struct *mm; | 
 | 	unsigned int victim_points = 0; | 
 | 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, | 
 | 					      DEFAULT_RATELIMIT_BURST); | 
 |  | 
 | 	/* | 
 | 	 * If the task is already exiting, don't alarm the sysadmin or kill | 
 | 	 * its children or threads, just set TIF_MEMDIE so it can die quickly | 
 | 	 */ | 
 | 	if (p->flags & PF_EXITING) { | 
 | 		set_tsk_thread_flag(p, TIF_MEMDIE); | 
 | 		put_task_struct(p); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (__ratelimit(&oom_rs)) | 
 | 		dump_header(p, gfp_mask, order, memcg, nodemask); | 
 |  | 
 | 	task_lock(p); | 
 | 	pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", | 
 | 		message, task_pid_nr(p), p->comm, points); | 
 | 	task_unlock(p); | 
 |  | 
 | 	/* | 
 | 	 * If any of p's children has a different mm and is eligible for kill, | 
 | 	 * the one with the highest oom_badness() score is sacrificed for its | 
 | 	 * parent.  This attempts to lose the minimal amount of work done while | 
 | 	 * still freeing memory. | 
 | 	 */ | 
 | 	read_lock(&tasklist_lock); | 
 | 	do { | 
 | 		list_for_each_entry(child, &t->children, sibling) { | 
 | 			unsigned int child_points; | 
 |  | 
 | 			if (child->mm == p->mm) | 
 | 				continue; | 
 | 			/* | 
 | 			 * oom_badness() returns 0 if the thread is unkillable | 
 | 			 */ | 
 | 			child_points = oom_badness(child, memcg, nodemask, | 
 | 								totalpages); | 
 | 			if (child_points > victim_points) { | 
 | 				put_task_struct(victim); | 
 | 				victim = child; | 
 | 				victim_points = child_points; | 
 | 				get_task_struct(victim); | 
 | 			} | 
 | 		} | 
 | 	} while_each_thread(p, t); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	p = find_lock_task_mm(victim); | 
 | 	if (!p) { | 
 | 		rcu_read_unlock(); | 
 | 		put_task_struct(victim); | 
 | 		return; | 
 | 	} else if (victim != p) { | 
 | 		get_task_struct(p); | 
 | 		put_task_struct(victim); | 
 | 		victim = p; | 
 | 	} | 
 |  | 
 | 	/* mm cannot safely be dereferenced after task_unlock(victim) */ | 
 | 	mm = victim->mm; | 
 | 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", | 
 | 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm), | 
 | 		K(get_mm_counter(victim->mm, MM_ANONPAGES)), | 
 | 		K(get_mm_counter(victim->mm, MM_FILEPAGES))); | 
 | 	task_unlock(victim); | 
 |  | 
 | 	/* | 
 | 	 * Kill all user processes sharing victim->mm in other thread groups, if | 
 | 	 * any.  They don't get access to memory reserves, though, to avoid | 
 | 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an | 
 | 	 * oom killed thread cannot exit because it requires the semaphore and | 
 | 	 * its contended by another thread trying to allocate memory itself. | 
 | 	 * That thread will now get access to memory reserves since it has a | 
 | 	 * pending fatal signal. | 
 | 	 */ | 
 | 	for_each_process(p) | 
 | 		if (p->mm == mm && !same_thread_group(p, victim) && | 
 | 		    !(p->flags & PF_KTHREAD)) { | 
 | 			if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) | 
 | 				continue; | 
 |  | 
 | 			task_lock(p);	/* Protect ->comm from prctl() */ | 
 | 			pr_err("Kill process %d (%s) sharing same memory\n", | 
 | 				task_pid_nr(p), p->comm); | 
 | 			task_unlock(p); | 
 | 			do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true); | 
 | 		} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	set_tsk_thread_flag(victim, TIF_MEMDIE); | 
 | 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true); | 
 | 	put_task_struct(victim); | 
 | } | 
 | #undef K | 
 |  | 
 | /* | 
 |  * Determines whether the kernel must panic because of the panic_on_oom sysctl. | 
 |  */ | 
 | void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, | 
 | 			int order, const nodemask_t *nodemask) | 
 | { | 
 | 	if (likely(!sysctl_panic_on_oom)) | 
 | 		return; | 
 | 	if (sysctl_panic_on_oom != 2) { | 
 | 		/* | 
 | 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel | 
 | 		 * does not panic for cpuset, mempolicy, or memcg allocation | 
 | 		 * failures. | 
 | 		 */ | 
 | 		if (constraint != CONSTRAINT_NONE) | 
 | 			return; | 
 | 	} | 
 | 	dump_header(NULL, gfp_mask, order, NULL, nodemask); | 
 | 	panic("Out of memory: %s panic_on_oom is enabled\n", | 
 | 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); | 
 | } | 
 |  | 
 | static BLOCKING_NOTIFIER_HEAD(oom_notify_list); | 
 |  | 
 | int register_oom_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return blocking_notifier_chain_register(&oom_notify_list, nb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(register_oom_notifier); | 
 |  | 
 | int unregister_oom_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return blocking_notifier_chain_unregister(&oom_notify_list, nb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(unregister_oom_notifier); | 
 |  | 
 | /* | 
 |  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero | 
 |  * if a parallel OOM killing is already taking place that includes a zone in | 
 |  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1. | 
 |  */ | 
 | int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) | 
 | { | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock(&zone_scan_lock); | 
 | 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { | 
 | 		if (zone_is_oom_locked(zone)) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { | 
 | 		/* | 
 | 		 * Lock each zone in the zonelist under zone_scan_lock so a | 
 | 		 * parallel invocation of try_set_zonelist_oom() doesn't succeed | 
 | 		 * when it shouldn't. | 
 | 		 */ | 
 | 		zone_set_flag(zone, ZONE_OOM_LOCKED); | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock(&zone_scan_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed | 
 |  * allocation attempts with zonelists containing them may now recall the OOM | 
 |  * killer, if necessary. | 
 |  */ | 
 | void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) | 
 | { | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 |  | 
 | 	spin_lock(&zone_scan_lock); | 
 | 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { | 
 | 		zone_clear_flag(zone, ZONE_OOM_LOCKED); | 
 | 	} | 
 | 	spin_unlock(&zone_scan_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * out_of_memory - kill the "best" process when we run out of memory | 
 |  * @zonelist: zonelist pointer | 
 |  * @gfp_mask: memory allocation flags | 
 |  * @order: amount of memory being requested as a power of 2 | 
 |  * @nodemask: nodemask passed to page allocator | 
 |  * @force_kill: true if a task must be killed, even if others are exiting | 
 |  * | 
 |  * If we run out of memory, we have the choice between either | 
 |  * killing a random task (bad), letting the system crash (worse) | 
 |  * OR try to be smart about which process to kill. Note that we | 
 |  * don't have to be perfect here, we just have to be good. | 
 |  */ | 
 | void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, | 
 | 		int order, nodemask_t *nodemask, bool force_kill) | 
 | { | 
 | 	const nodemask_t *mpol_mask; | 
 | 	struct task_struct *p; | 
 | 	unsigned long totalpages; | 
 | 	unsigned long freed = 0; | 
 | 	unsigned int uninitialized_var(points); | 
 | 	enum oom_constraint constraint = CONSTRAINT_NONE; | 
 | 	int killed = 0; | 
 |  | 
 | 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed); | 
 | 	if (freed > 0) | 
 | 		/* Got some memory back in the last second. */ | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If current has a pending SIGKILL or is exiting, then automatically | 
 | 	 * select it.  The goal is to allow it to allocate so that it may | 
 | 	 * quickly exit and free its memory. | 
 | 	 */ | 
 | 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) { | 
 | 		set_thread_flag(TIF_MEMDIE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if there were limitations on the allocation (only relevant for | 
 | 	 * NUMA) that may require different handling. | 
 | 	 */ | 
 | 	constraint = constrained_alloc(zonelist, gfp_mask, nodemask, | 
 | 						&totalpages); | 
 | 	mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL; | 
 | 	check_panic_on_oom(constraint, gfp_mask, order, mpol_mask); | 
 |  | 
 | 	if (sysctl_oom_kill_allocating_task && current->mm && | 
 | 	    !oom_unkillable_task(current, NULL, nodemask) && | 
 | 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { | 
 | 		get_task_struct(current); | 
 | 		oom_kill_process(current, gfp_mask, order, 0, totalpages, NULL, | 
 | 				 nodemask, | 
 | 				 "Out of memory (oom_kill_allocating_task)"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	p = select_bad_process(&points, totalpages, mpol_mask, force_kill); | 
 | 	/* Found nothing?!?! Either we hang forever, or we panic. */ | 
 | 	if (!p) { | 
 | 		dump_header(NULL, gfp_mask, order, NULL, mpol_mask); | 
 | 		panic("Out of memory and no killable processes...\n"); | 
 | 	} | 
 | 	if (PTR_ERR(p) != -1UL) { | 
 | 		oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, | 
 | 				 nodemask, "Out of memory"); | 
 | 		killed = 1; | 
 | 	} | 
 | out: | 
 | 	/* | 
 | 	 * Give the killed threads a good chance of exiting before trying to | 
 | 	 * allocate memory again. | 
 | 	 */ | 
 | 	if (killed) | 
 | 		schedule_timeout_killable(1); | 
 | } | 
 |  | 
 | /* | 
 |  * The pagefault handler calls here because it is out of memory, so kill a | 
 |  * memory-hogging task.  If any populated zone has ZONE_OOM_LOCKED set, a | 
 |  * parallel oom killing is already in progress so do nothing. | 
 |  */ | 
 | void pagefault_out_of_memory(void) | 
 | { | 
 | 	struct zonelist *zonelist = node_zonelist(first_online_node, | 
 | 						  GFP_KERNEL); | 
 |  | 
 | 	if (try_set_zonelist_oom(zonelist, GFP_KERNEL)) { | 
 | 		out_of_memory(NULL, 0, 0, NULL, false); | 
 | 		clear_zonelist_oom(zonelist, GFP_KERNEL); | 
 | 	} | 
 | } |