|  | /* | 
|  | *  linux/kernel/fork.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  'fork.c' contains the help-routines for the 'fork' system call | 
|  | * (see also entry.S and others). | 
|  | * Fork is rather simple, once you get the hang of it, but the memory | 
|  | * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/mnt_namespace.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/sem.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/futex.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/acct.h> | 
|  | #include <linux/tsacct_kern.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/taskstats_kern.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/proc_fs.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | /* | 
|  | * Protected counters by write_lock_irq(&tasklist_lock) | 
|  | */ | 
|  | unsigned long total_forks;	/* Handle normal Linux uptimes. */ | 
|  | int nr_threads; 		/* The idle threads do not count.. */ | 
|  |  | 
|  | int max_threads;		/* tunable limit on nr_threads */ | 
|  |  | 
|  | DEFINE_PER_CPU(unsigned long, process_counts) = 0; | 
|  |  | 
|  | __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */ | 
|  |  | 
|  | int nr_processes(void) | 
|  | { | 
|  | int cpu; | 
|  | int total = 0; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | total += per_cpu(process_counts, cpu); | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR | 
|  | # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) | 
|  | # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk)) | 
|  | static struct kmem_cache *task_struct_cachep; | 
|  | #endif | 
|  |  | 
|  | /* SLAB cache for signal_struct structures (tsk->signal) */ | 
|  | static struct kmem_cache *signal_cachep; | 
|  |  | 
|  | /* SLAB cache for sighand_struct structures (tsk->sighand) */ | 
|  | struct kmem_cache *sighand_cachep; | 
|  |  | 
|  | /* SLAB cache for files_struct structures (tsk->files) */ | 
|  | struct kmem_cache *files_cachep; | 
|  |  | 
|  | /* SLAB cache for fs_struct structures (tsk->fs) */ | 
|  | struct kmem_cache *fs_cachep; | 
|  |  | 
|  | /* SLAB cache for vm_area_struct structures */ | 
|  | struct kmem_cache *vm_area_cachep; | 
|  |  | 
|  | /* SLAB cache for mm_struct structures (tsk->mm) */ | 
|  | static struct kmem_cache *mm_cachep; | 
|  |  | 
|  | void free_task(struct task_struct *tsk) | 
|  | { | 
|  | prop_local_destroy_single(&tsk->dirties); | 
|  | free_thread_info(tsk->stack); | 
|  | rt_mutex_debug_task_free(tsk); | 
|  | free_task_struct(tsk); | 
|  | } | 
|  | EXPORT_SYMBOL(free_task); | 
|  |  | 
|  | void __put_task_struct(struct task_struct *tsk) | 
|  | { | 
|  | WARN_ON(!tsk->exit_state); | 
|  | WARN_ON(atomic_read(&tsk->usage)); | 
|  | WARN_ON(tsk == current); | 
|  |  | 
|  | security_task_free(tsk); | 
|  | free_uid(tsk->user); | 
|  | put_group_info(tsk->group_info); | 
|  | delayacct_tsk_free(tsk); | 
|  |  | 
|  | if (!profile_handoff_task(tsk)) | 
|  | free_task(tsk); | 
|  | } | 
|  |  | 
|  | void __init fork_init(unsigned long mempages) | 
|  | { | 
|  | #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR | 
|  | #ifndef ARCH_MIN_TASKALIGN | 
|  | #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES | 
|  | #endif | 
|  | /* create a slab on which task_structs can be allocated */ | 
|  | task_struct_cachep = | 
|  | kmem_cache_create("task_struct", sizeof(struct task_struct), | 
|  | ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The default maximum number of threads is set to a safe | 
|  | * value: the thread structures can take up at most half | 
|  | * of memory. | 
|  | */ | 
|  | max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * we need to allow at least 20 threads to boot a system | 
|  | */ | 
|  | if(max_threads < 20) | 
|  | max_threads = 20; | 
|  |  | 
|  | init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; | 
|  | init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; | 
|  | init_task.signal->rlim[RLIMIT_SIGPENDING] = | 
|  | init_task.signal->rlim[RLIMIT_NPROC]; | 
|  | } | 
|  |  | 
|  | static struct task_struct *dup_task_struct(struct task_struct *orig) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | struct thread_info *ti; | 
|  | int err; | 
|  |  | 
|  | prepare_to_copy(orig); | 
|  |  | 
|  | tsk = alloc_task_struct(); | 
|  | if (!tsk) | 
|  | return NULL; | 
|  |  | 
|  | ti = alloc_thread_info(tsk); | 
|  | if (!ti) { | 
|  | free_task_struct(tsk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | *tsk = *orig; | 
|  | tsk->stack = ti; | 
|  |  | 
|  | err = prop_local_init_single(&tsk->dirties); | 
|  | if (err) { | 
|  | free_thread_info(ti); | 
|  | free_task_struct(tsk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | setup_thread_stack(tsk, orig); | 
|  |  | 
|  | #ifdef CONFIG_CC_STACKPROTECTOR | 
|  | tsk->stack_canary = get_random_int(); | 
|  | #endif | 
|  |  | 
|  | /* One for us, one for whoever does the "release_task()" (usually parent) */ | 
|  | atomic_set(&tsk->usage,2); | 
|  | atomic_set(&tsk->fs_excl, 0); | 
|  | #ifdef CONFIG_BLK_DEV_IO_TRACE | 
|  | tsk->btrace_seq = 0; | 
|  | #endif | 
|  | tsk->splice_pipe = NULL; | 
|  | return tsk; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | 
|  | { | 
|  | struct vm_area_struct *mpnt, *tmp, **pprev; | 
|  | struct rb_node **rb_link, *rb_parent; | 
|  | int retval; | 
|  | unsigned long charge; | 
|  | struct mempolicy *pol; | 
|  |  | 
|  | down_write(&oldmm->mmap_sem); | 
|  | flush_cache_dup_mm(oldmm); | 
|  | /* | 
|  | * Not linked in yet - no deadlock potential: | 
|  | */ | 
|  | down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | mm->locked_vm = 0; | 
|  | mm->mmap = NULL; | 
|  | mm->mmap_cache = NULL; | 
|  | mm->free_area_cache = oldmm->mmap_base; | 
|  | mm->cached_hole_size = ~0UL; | 
|  | mm->map_count = 0; | 
|  | cpus_clear(mm->cpu_vm_mask); | 
|  | mm->mm_rb = RB_ROOT; | 
|  | rb_link = &mm->mm_rb.rb_node; | 
|  | rb_parent = NULL; | 
|  | pprev = &mm->mmap; | 
|  |  | 
|  | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { | 
|  | struct file *file; | 
|  |  | 
|  | if (mpnt->vm_flags & VM_DONTCOPY) { | 
|  | long pages = vma_pages(mpnt); | 
|  | mm->total_vm -= pages; | 
|  | vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, | 
|  | -pages); | 
|  | continue; | 
|  | } | 
|  | charge = 0; | 
|  | if (mpnt->vm_flags & VM_ACCOUNT) { | 
|  | unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; | 
|  | if (security_vm_enough_memory(len)) | 
|  | goto fail_nomem; | 
|  | charge = len; | 
|  | } | 
|  | tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!tmp) | 
|  | goto fail_nomem; | 
|  | *tmp = *mpnt; | 
|  | pol = mpol_copy(vma_policy(mpnt)); | 
|  | retval = PTR_ERR(pol); | 
|  | if (IS_ERR(pol)) | 
|  | goto fail_nomem_policy; | 
|  | vma_set_policy(tmp, pol); | 
|  | tmp->vm_flags &= ~VM_LOCKED; | 
|  | tmp->vm_mm = mm; | 
|  | tmp->vm_next = NULL; | 
|  | anon_vma_link(tmp); | 
|  | file = tmp->vm_file; | 
|  | if (file) { | 
|  | struct inode *inode = file->f_path.dentry->d_inode; | 
|  | get_file(file); | 
|  | if (tmp->vm_flags & VM_DENYWRITE) | 
|  | atomic_dec(&inode->i_writecount); | 
|  |  | 
|  | /* insert tmp into the share list, just after mpnt */ | 
|  | spin_lock(&file->f_mapping->i_mmap_lock); | 
|  | tmp->vm_truncate_count = mpnt->vm_truncate_count; | 
|  | flush_dcache_mmap_lock(file->f_mapping); | 
|  | vma_prio_tree_add(tmp, mpnt); | 
|  | flush_dcache_mmap_unlock(file->f_mapping); | 
|  | spin_unlock(&file->f_mapping->i_mmap_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link in the new vma and copy the page table entries. | 
|  | */ | 
|  | *pprev = tmp; | 
|  | pprev = &tmp->vm_next; | 
|  |  | 
|  | __vma_link_rb(mm, tmp, rb_link, rb_parent); | 
|  | rb_link = &tmp->vm_rb.rb_right; | 
|  | rb_parent = &tmp->vm_rb; | 
|  |  | 
|  | mm->map_count++; | 
|  | retval = copy_page_range(mm, oldmm, mpnt); | 
|  |  | 
|  | if (tmp->vm_ops && tmp->vm_ops->open) | 
|  | tmp->vm_ops->open(tmp); | 
|  |  | 
|  | if (retval) | 
|  | goto out; | 
|  | } | 
|  | /* a new mm has just been created */ | 
|  | arch_dup_mmap(oldmm, mm); | 
|  | retval = 0; | 
|  | out: | 
|  | up_write(&mm->mmap_sem); | 
|  | flush_tlb_mm(oldmm); | 
|  | up_write(&oldmm->mmap_sem); | 
|  | return retval; | 
|  | fail_nomem_policy: | 
|  | kmem_cache_free(vm_area_cachep, tmp); | 
|  | fail_nomem: | 
|  | retval = -ENOMEM; | 
|  | vm_unacct_memory(charge); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static inline int mm_alloc_pgd(struct mm_struct * mm) | 
|  | { | 
|  | mm->pgd = pgd_alloc(mm); | 
|  | if (unlikely(!mm->pgd)) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void mm_free_pgd(struct mm_struct * mm) | 
|  | { | 
|  | pgd_free(mm->pgd); | 
|  | } | 
|  | #else | 
|  | #define dup_mmap(mm, oldmm)	(0) | 
|  | #define mm_alloc_pgd(mm)	(0) | 
|  | #define mm_free_pgd(mm) | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); | 
|  |  | 
|  | #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL)) | 
|  | #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm))) | 
|  |  | 
|  | #include <linux/init_task.h> | 
|  |  | 
|  | static struct mm_struct * mm_init(struct mm_struct * mm) | 
|  | { | 
|  | atomic_set(&mm->mm_users, 1); | 
|  | atomic_set(&mm->mm_count, 1); | 
|  | init_rwsem(&mm->mmap_sem); | 
|  | INIT_LIST_HEAD(&mm->mmlist); | 
|  | mm->flags = (current->mm) ? current->mm->flags | 
|  | : MMF_DUMP_FILTER_DEFAULT; | 
|  | mm->core_waiters = 0; | 
|  | mm->nr_ptes = 0; | 
|  | set_mm_counter(mm, file_rss, 0); | 
|  | set_mm_counter(mm, anon_rss, 0); | 
|  | spin_lock_init(&mm->page_table_lock); | 
|  | rwlock_init(&mm->ioctx_list_lock); | 
|  | mm->ioctx_list = NULL; | 
|  | mm->free_area_cache = TASK_UNMAPPED_BASE; | 
|  | mm->cached_hole_size = ~0UL; | 
|  |  | 
|  | if (likely(!mm_alloc_pgd(mm))) { | 
|  | mm->def_flags = 0; | 
|  | return mm; | 
|  | } | 
|  | free_mm(mm); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an mm_struct. | 
|  | */ | 
|  | struct mm_struct * mm_alloc(void) | 
|  | { | 
|  | struct mm_struct * mm; | 
|  |  | 
|  | mm = allocate_mm(); | 
|  | if (mm) { | 
|  | memset(mm, 0, sizeof(*mm)); | 
|  | mm = mm_init(mm); | 
|  | } | 
|  | return mm; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when the last reference to the mm | 
|  | * is dropped: either by a lazy thread or by | 
|  | * mmput. Free the page directory and the mm. | 
|  | */ | 
|  | void fastcall __mmdrop(struct mm_struct *mm) | 
|  | { | 
|  | BUG_ON(mm == &init_mm); | 
|  | mm_free_pgd(mm); | 
|  | destroy_context(mm); | 
|  | free_mm(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decrement the use count and release all resources for an mm. | 
|  | */ | 
|  | void mmput(struct mm_struct *mm) | 
|  | { | 
|  | might_sleep(); | 
|  |  | 
|  | if (atomic_dec_and_test(&mm->mm_users)) { | 
|  | exit_aio(mm); | 
|  | exit_mmap(mm); | 
|  | if (!list_empty(&mm->mmlist)) { | 
|  | spin_lock(&mmlist_lock); | 
|  | list_del(&mm->mmlist); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  | put_swap_token(mm); | 
|  | mmdrop(mm); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mmput); | 
|  |  | 
|  | /** | 
|  | * get_task_mm - acquire a reference to the task's mm | 
|  | * | 
|  | * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning | 
|  | * this kernel workthread has transiently adopted a user mm with use_mm, | 
|  | * to do its AIO) is not set and if so returns a reference to it, after | 
|  | * bumping up the use count.  User must release the mm via mmput() | 
|  | * after use.  Typically used by /proc and ptrace. | 
|  | */ | 
|  | struct mm_struct *get_task_mm(struct task_struct *task) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | task_lock(task); | 
|  | mm = task->mm; | 
|  | if (mm) { | 
|  | if (task->flags & PF_BORROWED_MM) | 
|  | mm = NULL; | 
|  | else | 
|  | atomic_inc(&mm->mm_users); | 
|  | } | 
|  | task_unlock(task); | 
|  | return mm; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_task_mm); | 
|  |  | 
|  | /* Please note the differences between mmput and mm_release. | 
|  | * mmput is called whenever we stop holding onto a mm_struct, | 
|  | * error success whatever. | 
|  | * | 
|  | * mm_release is called after a mm_struct has been removed | 
|  | * from the current process. | 
|  | * | 
|  | * This difference is important for error handling, when we | 
|  | * only half set up a mm_struct for a new process and need to restore | 
|  | * the old one.  Because we mmput the new mm_struct before | 
|  | * restoring the old one. . . | 
|  | * Eric Biederman 10 January 1998 | 
|  | */ | 
|  | void mm_release(struct task_struct *tsk, struct mm_struct *mm) | 
|  | { | 
|  | struct completion *vfork_done = tsk->vfork_done; | 
|  |  | 
|  | /* Get rid of any cached register state */ | 
|  | deactivate_mm(tsk, mm); | 
|  |  | 
|  | /* notify parent sleeping on vfork() */ | 
|  | if (vfork_done) { | 
|  | tsk->vfork_done = NULL; | 
|  | complete(vfork_done); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're exiting normally, clear a user-space tid field if | 
|  | * requested.  We leave this alone when dying by signal, to leave | 
|  | * the value intact in a core dump, and to save the unnecessary | 
|  | * trouble otherwise.  Userland only wants this done for a sys_exit. | 
|  | */ | 
|  | if (tsk->clear_child_tid | 
|  | && !(tsk->flags & PF_SIGNALED) | 
|  | && atomic_read(&mm->mm_users) > 1) { | 
|  | u32 __user * tidptr = tsk->clear_child_tid; | 
|  | tsk->clear_child_tid = NULL; | 
|  |  | 
|  | /* | 
|  | * We don't check the error code - if userspace has | 
|  | * not set up a proper pointer then tough luck. | 
|  | */ | 
|  | put_user(0, tidptr); | 
|  | sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a new mm structure and copy contents from the | 
|  | * mm structure of the passed in task structure. | 
|  | */ | 
|  | static struct mm_struct *dup_mm(struct task_struct *tsk) | 
|  | { | 
|  | struct mm_struct *mm, *oldmm = current->mm; | 
|  | int err; | 
|  |  | 
|  | if (!oldmm) | 
|  | return NULL; | 
|  |  | 
|  | mm = allocate_mm(); | 
|  | if (!mm) | 
|  | goto fail_nomem; | 
|  |  | 
|  | memcpy(mm, oldmm, sizeof(*mm)); | 
|  |  | 
|  | /* Initializing for Swap token stuff */ | 
|  | mm->token_priority = 0; | 
|  | mm->last_interval = 0; | 
|  |  | 
|  | if (!mm_init(mm)) | 
|  | goto fail_nomem; | 
|  |  | 
|  | if (init_new_context(tsk, mm)) | 
|  | goto fail_nocontext; | 
|  |  | 
|  | err = dup_mmap(mm, oldmm); | 
|  | if (err) | 
|  | goto free_pt; | 
|  |  | 
|  | mm->hiwater_rss = get_mm_rss(mm); | 
|  | mm->hiwater_vm = mm->total_vm; | 
|  |  | 
|  | return mm; | 
|  |  | 
|  | free_pt: | 
|  | mmput(mm); | 
|  |  | 
|  | fail_nomem: | 
|  | return NULL; | 
|  |  | 
|  | fail_nocontext: | 
|  | /* | 
|  | * If init_new_context() failed, we cannot use mmput() to free the mm | 
|  | * because it calls destroy_context() | 
|  | */ | 
|  | mm_free_pgd(mm); | 
|  | free_mm(mm); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) | 
|  | { | 
|  | struct mm_struct * mm, *oldmm; | 
|  | int retval; | 
|  |  | 
|  | tsk->min_flt = tsk->maj_flt = 0; | 
|  | tsk->nvcsw = tsk->nivcsw = 0; | 
|  |  | 
|  | tsk->mm = NULL; | 
|  | tsk->active_mm = NULL; | 
|  |  | 
|  | /* | 
|  | * Are we cloning a kernel thread? | 
|  | * | 
|  | * We need to steal a active VM for that.. | 
|  | */ | 
|  | oldmm = current->mm; | 
|  | if (!oldmm) | 
|  | return 0; | 
|  |  | 
|  | if (clone_flags & CLONE_VM) { | 
|  | atomic_inc(&oldmm->mm_users); | 
|  | mm = oldmm; | 
|  | goto good_mm; | 
|  | } | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | mm = dup_mm(tsk); | 
|  | if (!mm) | 
|  | goto fail_nomem; | 
|  |  | 
|  | good_mm: | 
|  | /* Initializing for Swap token stuff */ | 
|  | mm->token_priority = 0; | 
|  | mm->last_interval = 0; | 
|  |  | 
|  | tsk->mm = mm; | 
|  | tsk->active_mm = mm; | 
|  | return 0; | 
|  |  | 
|  | fail_nomem: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static struct fs_struct *__copy_fs_struct(struct fs_struct *old) | 
|  | { | 
|  | struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); | 
|  | /* We don't need to lock fs - think why ;-) */ | 
|  | if (fs) { | 
|  | atomic_set(&fs->count, 1); | 
|  | rwlock_init(&fs->lock); | 
|  | fs->umask = old->umask; | 
|  | read_lock(&old->lock); | 
|  | fs->rootmnt = mntget(old->rootmnt); | 
|  | fs->root = dget(old->root); | 
|  | fs->pwdmnt = mntget(old->pwdmnt); | 
|  | fs->pwd = dget(old->pwd); | 
|  | if (old->altroot) { | 
|  | fs->altrootmnt = mntget(old->altrootmnt); | 
|  | fs->altroot = dget(old->altroot); | 
|  | } else { | 
|  | fs->altrootmnt = NULL; | 
|  | fs->altroot = NULL; | 
|  | } | 
|  | read_unlock(&old->lock); | 
|  | } | 
|  | return fs; | 
|  | } | 
|  |  | 
|  | struct fs_struct *copy_fs_struct(struct fs_struct *old) | 
|  | { | 
|  | return __copy_fs_struct(old); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(copy_fs_struct); | 
|  |  | 
|  | static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) | 
|  | { | 
|  | if (clone_flags & CLONE_FS) { | 
|  | atomic_inc(¤t->fs->count); | 
|  | return 0; | 
|  | } | 
|  | tsk->fs = __copy_fs_struct(current->fs); | 
|  | if (!tsk->fs) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int count_open_files(struct fdtable *fdt) | 
|  | { | 
|  | int size = fdt->max_fds; | 
|  | int i; | 
|  |  | 
|  | /* Find the last open fd */ | 
|  | for (i = size/(8*sizeof(long)); i > 0; ) { | 
|  | if (fdt->open_fds->fds_bits[--i]) | 
|  | break; | 
|  | } | 
|  | i = (i+1) * 8 * sizeof(long); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static struct files_struct *alloc_files(void) | 
|  | { | 
|  | struct files_struct *newf; | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); | 
|  | if (!newf) | 
|  | goto out; | 
|  |  | 
|  | atomic_set(&newf->count, 1); | 
|  |  | 
|  | spin_lock_init(&newf->file_lock); | 
|  | newf->next_fd = 0; | 
|  | fdt = &newf->fdtab; | 
|  | fdt->max_fds = NR_OPEN_DEFAULT; | 
|  | fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; | 
|  | fdt->open_fds = (fd_set *)&newf->open_fds_init; | 
|  | fdt->fd = &newf->fd_array[0]; | 
|  | INIT_RCU_HEAD(&fdt->rcu); | 
|  | fdt->next = NULL; | 
|  | rcu_assign_pointer(newf->fdt, fdt); | 
|  | out: | 
|  | return newf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a new files structure and copy contents from the | 
|  | * passed in files structure. | 
|  | * errorp will be valid only when the returned files_struct is NULL. | 
|  | */ | 
|  | static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) | 
|  | { | 
|  | struct files_struct *newf; | 
|  | struct file **old_fds, **new_fds; | 
|  | int open_files, size, i; | 
|  | struct fdtable *old_fdt, *new_fdt; | 
|  |  | 
|  | *errorp = -ENOMEM; | 
|  | newf = alloc_files(); | 
|  | if (!newf) | 
|  | goto out; | 
|  |  | 
|  | spin_lock(&oldf->file_lock); | 
|  | old_fdt = files_fdtable(oldf); | 
|  | new_fdt = files_fdtable(newf); | 
|  | open_files = count_open_files(old_fdt); | 
|  |  | 
|  | /* | 
|  | * Check whether we need to allocate a larger fd array and fd set. | 
|  | * Note: we're not a clone task, so the open count won't change. | 
|  | */ | 
|  | if (open_files > new_fdt->max_fds) { | 
|  | new_fdt->max_fds = 0; | 
|  | spin_unlock(&oldf->file_lock); | 
|  | spin_lock(&newf->file_lock); | 
|  | *errorp = expand_files(newf, open_files-1); | 
|  | spin_unlock(&newf->file_lock); | 
|  | if (*errorp < 0) | 
|  | goto out_release; | 
|  | new_fdt = files_fdtable(newf); | 
|  | /* | 
|  | * Reacquire the oldf lock and a pointer to its fd table | 
|  | * who knows it may have a new bigger fd table. We need | 
|  | * the latest pointer. | 
|  | */ | 
|  | spin_lock(&oldf->file_lock); | 
|  | old_fdt = files_fdtable(oldf); | 
|  | } | 
|  |  | 
|  | old_fds = old_fdt->fd; | 
|  | new_fds = new_fdt->fd; | 
|  |  | 
|  | memcpy(new_fdt->open_fds->fds_bits, | 
|  | old_fdt->open_fds->fds_bits, open_files/8); | 
|  | memcpy(new_fdt->close_on_exec->fds_bits, | 
|  | old_fdt->close_on_exec->fds_bits, open_files/8); | 
|  |  | 
|  | for (i = open_files; i != 0; i--) { | 
|  | struct file *f = *old_fds++; | 
|  | if (f) { | 
|  | get_file(f); | 
|  | } else { | 
|  | /* | 
|  | * The fd may be claimed in the fd bitmap but not yet | 
|  | * instantiated in the files array if a sibling thread | 
|  | * is partway through open().  So make sure that this | 
|  | * fd is available to the new process. | 
|  | */ | 
|  | FD_CLR(open_files - i, new_fdt->open_fds); | 
|  | } | 
|  | rcu_assign_pointer(*new_fds++, f); | 
|  | } | 
|  | spin_unlock(&oldf->file_lock); | 
|  |  | 
|  | /* compute the remainder to be cleared */ | 
|  | size = (new_fdt->max_fds - open_files) * sizeof(struct file *); | 
|  |  | 
|  | /* This is long word aligned thus could use a optimized version */ | 
|  | memset(new_fds, 0, size); | 
|  |  | 
|  | if (new_fdt->max_fds > open_files) { | 
|  | int left = (new_fdt->max_fds-open_files)/8; | 
|  | int start = open_files / (8 * sizeof(unsigned long)); | 
|  |  | 
|  | memset(&new_fdt->open_fds->fds_bits[start], 0, left); | 
|  | memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); | 
|  | } | 
|  |  | 
|  | return newf; | 
|  |  | 
|  | out_release: | 
|  | kmem_cache_free(files_cachep, newf); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int copy_files(unsigned long clone_flags, struct task_struct * tsk) | 
|  | { | 
|  | struct files_struct *oldf, *newf; | 
|  | int error = 0; | 
|  |  | 
|  | /* | 
|  | * A background process may not have any files ... | 
|  | */ | 
|  | oldf = current->files; | 
|  | if (!oldf) | 
|  | goto out; | 
|  |  | 
|  | if (clone_flags & CLONE_FILES) { | 
|  | atomic_inc(&oldf->count); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: we may be using current for both targets (See exec.c) | 
|  | * This works because we cache current->files (old) as oldf. Don't | 
|  | * break this. | 
|  | */ | 
|  | tsk->files = NULL; | 
|  | newf = dup_fd(oldf, &error); | 
|  | if (!newf) | 
|  | goto out; | 
|  |  | 
|  | tsk->files = newf; | 
|  | error = 0; | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Helper to unshare the files of the current task. | 
|  | *	We don't want to expose copy_files internals to | 
|  | *	the exec layer of the kernel. | 
|  | */ | 
|  |  | 
|  | int unshare_files(void) | 
|  | { | 
|  | struct files_struct *files  = current->files; | 
|  | int rc; | 
|  |  | 
|  | BUG_ON(!files); | 
|  |  | 
|  | /* This can race but the race causes us to copy when we don't | 
|  | need to and drop the copy */ | 
|  | if(atomic_read(&files->count) == 1) | 
|  | { | 
|  | atomic_inc(&files->count); | 
|  | return 0; | 
|  | } | 
|  | rc = copy_files(0, current); | 
|  | if(rc) | 
|  | current->files = files; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(unshare_files); | 
|  |  | 
|  | static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) | 
|  | { | 
|  | struct sighand_struct *sig; | 
|  |  | 
|  | if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { | 
|  | atomic_inc(¤t->sighand->count); | 
|  | return 0; | 
|  | } | 
|  | sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | 
|  | rcu_assign_pointer(tsk->sighand, sig); | 
|  | if (!sig) | 
|  | return -ENOMEM; | 
|  | atomic_set(&sig->count, 1); | 
|  | memcpy(sig->action, current->sighand->action, sizeof(sig->action)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cleanup_sighand(struct sighand_struct *sighand) | 
|  | { | 
|  | if (atomic_dec_and_test(&sighand->count)) | 
|  | kmem_cache_free(sighand_cachep, sighand); | 
|  | } | 
|  |  | 
|  | static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct *sig; | 
|  | int ret; | 
|  |  | 
|  | if (clone_flags & CLONE_THREAD) { | 
|  | atomic_inc(¤t->signal->count); | 
|  | atomic_inc(¤t->signal->live); | 
|  | return 0; | 
|  | } | 
|  | sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); | 
|  | tsk->signal = sig; | 
|  | if (!sig) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = copy_thread_group_keys(tsk); | 
|  | if (ret < 0) { | 
|  | kmem_cache_free(signal_cachep, sig); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | atomic_set(&sig->count, 1); | 
|  | atomic_set(&sig->live, 1); | 
|  | init_waitqueue_head(&sig->wait_chldexit); | 
|  | sig->flags = 0; | 
|  | sig->group_exit_code = 0; | 
|  | sig->group_exit_task = NULL; | 
|  | sig->group_stop_count = 0; | 
|  | sig->curr_target = NULL; | 
|  | init_sigpending(&sig->shared_pending); | 
|  | INIT_LIST_HEAD(&sig->posix_timers); | 
|  |  | 
|  | hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | sig->it_real_incr.tv64 = 0; | 
|  | sig->real_timer.function = it_real_fn; | 
|  | sig->tsk = tsk; | 
|  |  | 
|  | sig->it_virt_expires = cputime_zero; | 
|  | sig->it_virt_incr = cputime_zero; | 
|  | sig->it_prof_expires = cputime_zero; | 
|  | sig->it_prof_incr = cputime_zero; | 
|  |  | 
|  | sig->leader = 0;	/* session leadership doesn't inherit */ | 
|  | sig->tty_old_pgrp = NULL; | 
|  |  | 
|  | sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; | 
|  | sig->gtime = cputime_zero; | 
|  | sig->cgtime = cputime_zero; | 
|  | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; | 
|  | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; | 
|  | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; | 
|  | sig->sum_sched_runtime = 0; | 
|  | INIT_LIST_HEAD(&sig->cpu_timers[0]); | 
|  | INIT_LIST_HEAD(&sig->cpu_timers[1]); | 
|  | INIT_LIST_HEAD(&sig->cpu_timers[2]); | 
|  | taskstats_tgid_init(sig); | 
|  |  | 
|  | task_lock(current->group_leader); | 
|  | memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); | 
|  | task_unlock(current->group_leader); | 
|  |  | 
|  | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 
|  | /* | 
|  | * New sole thread in the process gets an expiry time | 
|  | * of the whole CPU time limit. | 
|  | */ | 
|  | tsk->it_prof_expires = | 
|  | secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); | 
|  | } | 
|  | acct_init_pacct(&sig->pacct); | 
|  |  | 
|  | tty_audit_fork(sig); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cleanup_signal(struct signal_struct *sig) | 
|  | { | 
|  | exit_thread_group_keys(sig); | 
|  | kmem_cache_free(signal_cachep, sig); | 
|  | } | 
|  |  | 
|  | static void cleanup_signal(struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct *sig = tsk->signal; | 
|  |  | 
|  | atomic_dec(&sig->live); | 
|  |  | 
|  | if (atomic_dec_and_test(&sig->count)) | 
|  | __cleanup_signal(sig); | 
|  | } | 
|  |  | 
|  | static void copy_flags(unsigned long clone_flags, struct task_struct *p) | 
|  | { | 
|  | unsigned long new_flags = p->flags; | 
|  |  | 
|  | new_flags &= ~PF_SUPERPRIV; | 
|  | new_flags |= PF_FORKNOEXEC; | 
|  | if (!(clone_flags & CLONE_PTRACE)) | 
|  | p->ptrace = 0; | 
|  | p->flags = new_flags; | 
|  | clear_freeze_flag(p); | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_set_tid_address(int __user *tidptr) | 
|  | { | 
|  | current->clear_child_tid = tidptr; | 
|  |  | 
|  | return task_pid_vnr(current); | 
|  | } | 
|  |  | 
|  | static void rt_mutex_init_task(struct task_struct *p) | 
|  | { | 
|  | spin_lock_init(&p->pi_lock); | 
|  | #ifdef CONFIG_RT_MUTEXES | 
|  | plist_head_init(&p->pi_waiters, &p->pi_lock); | 
|  | p->pi_blocked_on = NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This creates a new process as a copy of the old one, | 
|  | * but does not actually start it yet. | 
|  | * | 
|  | * It copies the registers, and all the appropriate | 
|  | * parts of the process environment (as per the clone | 
|  | * flags). The actual kick-off is left to the caller. | 
|  | */ | 
|  | static struct task_struct *copy_process(unsigned long clone_flags, | 
|  | unsigned long stack_start, | 
|  | struct pt_regs *regs, | 
|  | unsigned long stack_size, | 
|  | int __user *child_tidptr, | 
|  | struct pid *pid) | 
|  | { | 
|  | int retval; | 
|  | struct task_struct *p; | 
|  | int cgroup_callbacks_done = 0; | 
|  |  | 
|  | if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* | 
|  | * Thread groups must share signals as well, and detached threads | 
|  | * can only be started up within the thread group. | 
|  | */ | 
|  | if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* | 
|  | * Shared signal handlers imply shared VM. By way of the above, | 
|  | * thread groups also imply shared VM. Blocking this case allows | 
|  | * for various simplifications in other code. | 
|  | */ | 
|  | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | retval = security_task_create(clone_flags); | 
|  | if (retval) | 
|  | goto fork_out; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | p = dup_task_struct(current); | 
|  | if (!p) | 
|  | goto fork_out; | 
|  |  | 
|  | rt_mutex_init_task(p); | 
|  |  | 
|  | #ifdef CONFIG_TRACE_IRQFLAGS | 
|  | DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); | 
|  | DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); | 
|  | #endif | 
|  | retval = -EAGAIN; | 
|  | if (atomic_read(&p->user->processes) >= | 
|  | p->signal->rlim[RLIMIT_NPROC].rlim_cur) { | 
|  | if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && | 
|  | p->user != current->nsproxy->user_ns->root_user) | 
|  | goto bad_fork_free; | 
|  | } | 
|  |  | 
|  | atomic_inc(&p->user->__count); | 
|  | atomic_inc(&p->user->processes); | 
|  | get_group_info(p->group_info); | 
|  |  | 
|  | /* | 
|  | * If multiple threads are within copy_process(), then this check | 
|  | * triggers too late. This doesn't hurt, the check is only there | 
|  | * to stop root fork bombs. | 
|  | */ | 
|  | if (nr_threads >= max_threads) | 
|  | goto bad_fork_cleanup_count; | 
|  |  | 
|  | if (!try_module_get(task_thread_info(p)->exec_domain->module)) | 
|  | goto bad_fork_cleanup_count; | 
|  |  | 
|  | if (p->binfmt && !try_module_get(p->binfmt->module)) | 
|  | goto bad_fork_cleanup_put_domain; | 
|  |  | 
|  | p->did_exec = 0; | 
|  | delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */ | 
|  | copy_flags(clone_flags, p); | 
|  | INIT_LIST_HEAD(&p->children); | 
|  | INIT_LIST_HEAD(&p->sibling); | 
|  | p->vfork_done = NULL; | 
|  | spin_lock_init(&p->alloc_lock); | 
|  |  | 
|  | clear_tsk_thread_flag(p, TIF_SIGPENDING); | 
|  | init_sigpending(&p->pending); | 
|  |  | 
|  | p->utime = cputime_zero; | 
|  | p->stime = cputime_zero; | 
|  | p->gtime = cputime_zero; | 
|  | p->utimescaled = cputime_zero; | 
|  | p->stimescaled = cputime_zero; | 
|  | p->prev_utime = cputime_zero; | 
|  | p->prev_stime = cputime_zero; | 
|  |  | 
|  | #ifdef CONFIG_TASK_XACCT | 
|  | p->rchar = 0;		/* I/O counter: bytes read */ | 
|  | p->wchar = 0;		/* I/O counter: bytes written */ | 
|  | p->syscr = 0;		/* I/O counter: read syscalls */ | 
|  | p->syscw = 0;		/* I/O counter: write syscalls */ | 
|  | #endif | 
|  | task_io_accounting_init(p); | 
|  | acct_clear_integrals(p); | 
|  |  | 
|  | p->it_virt_expires = cputime_zero; | 
|  | p->it_prof_expires = cputime_zero; | 
|  | p->it_sched_expires = 0; | 
|  | INIT_LIST_HEAD(&p->cpu_timers[0]); | 
|  | INIT_LIST_HEAD(&p->cpu_timers[1]); | 
|  | INIT_LIST_HEAD(&p->cpu_timers[2]); | 
|  |  | 
|  | p->lock_depth = -1;		/* -1 = no lock */ | 
|  | do_posix_clock_monotonic_gettime(&p->start_time); | 
|  | p->real_start_time = p->start_time; | 
|  | monotonic_to_bootbased(&p->real_start_time); | 
|  | #ifdef CONFIG_SECURITY | 
|  | p->security = NULL; | 
|  | #endif | 
|  | p->io_context = NULL; | 
|  | p->audit_context = NULL; | 
|  | cgroup_fork(p); | 
|  | #ifdef CONFIG_NUMA | 
|  | p->mempolicy = mpol_copy(p->mempolicy); | 
|  | if (IS_ERR(p->mempolicy)) { | 
|  | retval = PTR_ERR(p->mempolicy); | 
|  | p->mempolicy = NULL; | 
|  | goto bad_fork_cleanup_cgroup; | 
|  | } | 
|  | mpol_fix_fork_child_flag(p); | 
|  | #endif | 
|  | #ifdef CONFIG_TRACE_IRQFLAGS | 
|  | p->irq_events = 0; | 
|  | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
|  | p->hardirqs_enabled = 1; | 
|  | #else | 
|  | p->hardirqs_enabled = 0; | 
|  | #endif | 
|  | p->hardirq_enable_ip = 0; | 
|  | p->hardirq_enable_event = 0; | 
|  | p->hardirq_disable_ip = _THIS_IP_; | 
|  | p->hardirq_disable_event = 0; | 
|  | p->softirqs_enabled = 1; | 
|  | p->softirq_enable_ip = _THIS_IP_; | 
|  | p->softirq_enable_event = 0; | 
|  | p->softirq_disable_ip = 0; | 
|  | p->softirq_disable_event = 0; | 
|  | p->hardirq_context = 0; | 
|  | p->softirq_context = 0; | 
|  | #endif | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | p->lockdep_depth = 0; /* no locks held yet */ | 
|  | p->curr_chain_key = 0; | 
|  | p->lockdep_recursion = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_MUTEXES | 
|  | p->blocked_on = NULL; /* not blocked yet */ | 
|  | #endif | 
|  |  | 
|  | /* Perform scheduler related setup. Assign this task to a CPU. */ | 
|  | sched_fork(p, clone_flags); | 
|  |  | 
|  | if ((retval = security_task_alloc(p))) | 
|  | goto bad_fork_cleanup_policy; | 
|  | if ((retval = audit_alloc(p))) | 
|  | goto bad_fork_cleanup_security; | 
|  | /* copy all the process information */ | 
|  | if ((retval = copy_semundo(clone_flags, p))) | 
|  | goto bad_fork_cleanup_audit; | 
|  | if ((retval = copy_files(clone_flags, p))) | 
|  | goto bad_fork_cleanup_semundo; | 
|  | if ((retval = copy_fs(clone_flags, p))) | 
|  | goto bad_fork_cleanup_files; | 
|  | if ((retval = copy_sighand(clone_flags, p))) | 
|  | goto bad_fork_cleanup_fs; | 
|  | if ((retval = copy_signal(clone_flags, p))) | 
|  | goto bad_fork_cleanup_sighand; | 
|  | if ((retval = copy_mm(clone_flags, p))) | 
|  | goto bad_fork_cleanup_signal; | 
|  | if ((retval = copy_keys(clone_flags, p))) | 
|  | goto bad_fork_cleanup_mm; | 
|  | if ((retval = copy_namespaces(clone_flags, p))) | 
|  | goto bad_fork_cleanup_keys; | 
|  | retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); | 
|  | if (retval) | 
|  | goto bad_fork_cleanup_namespaces; | 
|  |  | 
|  | if (pid != &init_struct_pid) { | 
|  | retval = -ENOMEM; | 
|  | pid = alloc_pid(task_active_pid_ns(p)); | 
|  | if (!pid) | 
|  | goto bad_fork_cleanup_namespaces; | 
|  |  | 
|  | if (clone_flags & CLONE_NEWPID) { | 
|  | retval = pid_ns_prepare_proc(task_active_pid_ns(p)); | 
|  | if (retval < 0) | 
|  | goto bad_fork_free_pid; | 
|  | } | 
|  | } | 
|  |  | 
|  | p->pid = pid_nr(pid); | 
|  | p->tgid = p->pid; | 
|  | if (clone_flags & CLONE_THREAD) | 
|  | p->tgid = current->tgid; | 
|  |  | 
|  | p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; | 
|  | /* | 
|  | * Clear TID on mm_release()? | 
|  | */ | 
|  | p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; | 
|  | #ifdef CONFIG_FUTEX | 
|  | p->robust_list = NULL; | 
|  | #ifdef CONFIG_COMPAT | 
|  | p->compat_robust_list = NULL; | 
|  | #endif | 
|  | INIT_LIST_HEAD(&p->pi_state_list); | 
|  | p->pi_state_cache = NULL; | 
|  | #endif | 
|  | /* | 
|  | * sigaltstack should be cleared when sharing the same VM | 
|  | */ | 
|  | if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) | 
|  | p->sas_ss_sp = p->sas_ss_size = 0; | 
|  |  | 
|  | /* | 
|  | * Syscall tracing should be turned off in the child regardless | 
|  | * of CLONE_PTRACE. | 
|  | */ | 
|  | clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); | 
|  | #ifdef TIF_SYSCALL_EMU | 
|  | clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); | 
|  | #endif | 
|  |  | 
|  | /* Our parent execution domain becomes current domain | 
|  | These must match for thread signalling to apply */ | 
|  | p->parent_exec_id = p->self_exec_id; | 
|  |  | 
|  | /* ok, now we should be set up.. */ | 
|  | p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); | 
|  | p->pdeath_signal = 0; | 
|  | p->exit_state = 0; | 
|  |  | 
|  | /* | 
|  | * Ok, make it visible to the rest of the system. | 
|  | * We dont wake it up yet. | 
|  | */ | 
|  | p->group_leader = p; | 
|  | INIT_LIST_HEAD(&p->thread_group); | 
|  | INIT_LIST_HEAD(&p->ptrace_children); | 
|  | INIT_LIST_HEAD(&p->ptrace_list); | 
|  |  | 
|  | /* Now that the task is set up, run cgroup callbacks if | 
|  | * necessary. We need to run them before the task is visible | 
|  | * on the tasklist. */ | 
|  | cgroup_fork_callbacks(p); | 
|  | cgroup_callbacks_done = 1; | 
|  |  | 
|  | /* Need tasklist lock for parent etc handling! */ | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */ | 
|  | p->ioprio = current->ioprio; | 
|  |  | 
|  | /* | 
|  | * The task hasn't been attached yet, so its cpus_allowed mask will | 
|  | * not be changed, nor will its assigned CPU. | 
|  | * | 
|  | * The cpus_allowed mask of the parent may have changed after it was | 
|  | * copied first time - so re-copy it here, then check the child's CPU | 
|  | * to ensure it is on a valid CPU (and if not, just force it back to | 
|  | * parent's CPU). This avoids alot of nasty races. | 
|  | */ | 
|  | p->cpus_allowed = current->cpus_allowed; | 
|  | if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || | 
|  | !cpu_online(task_cpu(p)))) | 
|  | set_task_cpu(p, smp_processor_id()); | 
|  |  | 
|  | /* CLONE_PARENT re-uses the old parent */ | 
|  | if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) | 
|  | p->real_parent = current->real_parent; | 
|  | else | 
|  | p->real_parent = current; | 
|  | p->parent = p->real_parent; | 
|  |  | 
|  | spin_lock(¤t->sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Process group and session signals need to be delivered to just the | 
|  | * parent before the fork or both the parent and the child after the | 
|  | * fork. Restart if a signal comes in before we add the new process to | 
|  | * it's process group. | 
|  | * A fatal signal pending means that current will exit, so the new | 
|  | * thread can't slip out of an OOM kill (or normal SIGKILL). | 
|  | */ | 
|  | recalc_sigpending(); | 
|  | if (signal_pending(current)) { | 
|  | spin_unlock(¤t->sighand->siglock); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | retval = -ERESTARTNOINTR; | 
|  | goto bad_fork_free_pid; | 
|  | } | 
|  |  | 
|  | if (clone_flags & CLONE_THREAD) { | 
|  | p->group_leader = current->group_leader; | 
|  | list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); | 
|  |  | 
|  | if (!cputime_eq(current->signal->it_virt_expires, | 
|  | cputime_zero) || | 
|  | !cputime_eq(current->signal->it_prof_expires, | 
|  | cputime_zero) || | 
|  | current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || | 
|  | !list_empty(¤t->signal->cpu_timers[0]) || | 
|  | !list_empty(¤t->signal->cpu_timers[1]) || | 
|  | !list_empty(¤t->signal->cpu_timers[2])) { | 
|  | /* | 
|  | * Have child wake up on its first tick to check | 
|  | * for process CPU timers. | 
|  | */ | 
|  | p->it_prof_expires = jiffies_to_cputime(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(p->pid)) { | 
|  | add_parent(p); | 
|  | if (unlikely(p->ptrace & PT_PTRACED)) | 
|  | __ptrace_link(p, current->parent); | 
|  |  | 
|  | if (thread_group_leader(p)) { | 
|  | if (clone_flags & CLONE_NEWPID) { | 
|  | p->nsproxy->pid_ns->child_reaper = p; | 
|  | p->signal->tty = NULL; | 
|  | set_task_pgrp(p, p->pid); | 
|  | set_task_session(p, p->pid); | 
|  | attach_pid(p, PIDTYPE_PGID, pid); | 
|  | attach_pid(p, PIDTYPE_SID, pid); | 
|  | } else { | 
|  | p->signal->tty = current->signal->tty; | 
|  | set_task_pgrp(p, task_pgrp_nr(current)); | 
|  | set_task_session(p, task_session_nr(current)); | 
|  | attach_pid(p, PIDTYPE_PGID, | 
|  | task_pgrp(current)); | 
|  | attach_pid(p, PIDTYPE_SID, | 
|  | task_session(current)); | 
|  | } | 
|  |  | 
|  | list_add_tail_rcu(&p->tasks, &init_task.tasks); | 
|  | __get_cpu_var(process_counts)++; | 
|  | } | 
|  | attach_pid(p, PIDTYPE_PID, pid); | 
|  | nr_threads++; | 
|  | } | 
|  |  | 
|  | total_forks++; | 
|  | spin_unlock(¤t->sighand->siglock); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | proc_fork_connector(p); | 
|  | cgroup_post_fork(p); | 
|  | return p; | 
|  |  | 
|  | bad_fork_free_pid: | 
|  | if (pid != &init_struct_pid) | 
|  | free_pid(pid); | 
|  | bad_fork_cleanup_namespaces: | 
|  | exit_task_namespaces(p); | 
|  | bad_fork_cleanup_keys: | 
|  | exit_keys(p); | 
|  | bad_fork_cleanup_mm: | 
|  | if (p->mm) | 
|  | mmput(p->mm); | 
|  | bad_fork_cleanup_signal: | 
|  | cleanup_signal(p); | 
|  | bad_fork_cleanup_sighand: | 
|  | __cleanup_sighand(p->sighand); | 
|  | bad_fork_cleanup_fs: | 
|  | exit_fs(p); /* blocking */ | 
|  | bad_fork_cleanup_files: | 
|  | exit_files(p); /* blocking */ | 
|  | bad_fork_cleanup_semundo: | 
|  | exit_sem(p); | 
|  | bad_fork_cleanup_audit: | 
|  | audit_free(p); | 
|  | bad_fork_cleanup_security: | 
|  | security_task_free(p); | 
|  | bad_fork_cleanup_policy: | 
|  | #ifdef CONFIG_NUMA | 
|  | mpol_free(p->mempolicy); | 
|  | bad_fork_cleanup_cgroup: | 
|  | #endif | 
|  | cgroup_exit(p, cgroup_callbacks_done); | 
|  | delayacct_tsk_free(p); | 
|  | if (p->binfmt) | 
|  | module_put(p->binfmt->module); | 
|  | bad_fork_cleanup_put_domain: | 
|  | module_put(task_thread_info(p)->exec_domain->module); | 
|  | bad_fork_cleanup_count: | 
|  | put_group_info(p->group_info); | 
|  | atomic_dec(&p->user->processes); | 
|  | free_uid(p->user); | 
|  | bad_fork_free: | 
|  | free_task(p); | 
|  | fork_out: | 
|  | return ERR_PTR(retval); | 
|  | } | 
|  |  | 
|  | noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs) | 
|  | { | 
|  | memset(regs, 0, sizeof(struct pt_regs)); | 
|  | return regs; | 
|  | } | 
|  |  | 
|  | struct task_struct * __cpuinit fork_idle(int cpu) | 
|  | { | 
|  | struct task_struct *task; | 
|  | struct pt_regs regs; | 
|  |  | 
|  | task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, | 
|  | &init_struct_pid); | 
|  | if (!IS_ERR(task)) | 
|  | init_idle(task, cpu); | 
|  |  | 
|  | return task; | 
|  | } | 
|  |  | 
|  | static int fork_traceflag(unsigned clone_flags) | 
|  | { | 
|  | if (clone_flags & CLONE_UNTRACED) | 
|  | return 0; | 
|  | else if (clone_flags & CLONE_VFORK) { | 
|  | if (current->ptrace & PT_TRACE_VFORK) | 
|  | return PTRACE_EVENT_VFORK; | 
|  | } else if ((clone_flags & CSIGNAL) != SIGCHLD) { | 
|  | if (current->ptrace & PT_TRACE_CLONE) | 
|  | return PTRACE_EVENT_CLONE; | 
|  | } else if (current->ptrace & PT_TRACE_FORK) | 
|  | return PTRACE_EVENT_FORK; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Ok, this is the main fork-routine. | 
|  | * | 
|  | * It copies the process, and if successful kick-starts | 
|  | * it and waits for it to finish using the VM if required. | 
|  | */ | 
|  | long do_fork(unsigned long clone_flags, | 
|  | unsigned long stack_start, | 
|  | struct pt_regs *regs, | 
|  | unsigned long stack_size, | 
|  | int __user *parent_tidptr, | 
|  | int __user *child_tidptr) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int trace = 0; | 
|  | long nr; | 
|  |  | 
|  | if (unlikely(current->ptrace)) { | 
|  | trace = fork_traceflag (clone_flags); | 
|  | if (trace) | 
|  | clone_flags |= CLONE_PTRACE; | 
|  | } | 
|  |  | 
|  | p = copy_process(clone_flags, stack_start, regs, stack_size, | 
|  | child_tidptr, NULL); | 
|  | /* | 
|  | * Do this prior waking up the new thread - the thread pointer | 
|  | * might get invalid after that point, if the thread exits quickly. | 
|  | */ | 
|  | if (!IS_ERR(p)) { | 
|  | struct completion vfork; | 
|  |  | 
|  | /* | 
|  | * this is enough to call pid_nr_ns here, but this if | 
|  | * improves optimisation of regular fork() | 
|  | */ | 
|  | nr = (clone_flags & CLONE_NEWPID) ? | 
|  | task_pid_nr_ns(p, current->nsproxy->pid_ns) : | 
|  | task_pid_vnr(p); | 
|  |  | 
|  | if (clone_flags & CLONE_PARENT_SETTID) | 
|  | put_user(nr, parent_tidptr); | 
|  |  | 
|  | if (clone_flags & CLONE_VFORK) { | 
|  | p->vfork_done = &vfork; | 
|  | init_completion(&vfork); | 
|  | } | 
|  |  | 
|  | if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { | 
|  | /* | 
|  | * We'll start up with an immediate SIGSTOP. | 
|  | */ | 
|  | sigaddset(&p->pending.signal, SIGSTOP); | 
|  | set_tsk_thread_flag(p, TIF_SIGPENDING); | 
|  | } | 
|  |  | 
|  | if (!(clone_flags & CLONE_STOPPED)) | 
|  | wake_up_new_task(p, clone_flags); | 
|  | else | 
|  | p->state = TASK_STOPPED; | 
|  |  | 
|  | if (unlikely (trace)) { | 
|  | current->ptrace_message = nr; | 
|  | ptrace_notify ((trace << 8) | SIGTRAP); | 
|  | } | 
|  |  | 
|  | if (clone_flags & CLONE_VFORK) { | 
|  | freezer_do_not_count(); | 
|  | wait_for_completion(&vfork); | 
|  | freezer_count(); | 
|  | if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) { | 
|  | current->ptrace_message = nr; | 
|  | ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | nr = PTR_ERR(p); | 
|  | } | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | #ifndef ARCH_MIN_MMSTRUCT_ALIGN | 
|  | #define ARCH_MIN_MMSTRUCT_ALIGN 0 | 
|  | #endif | 
|  |  | 
|  | static void sighand_ctor(struct kmem_cache *cachep, void *data) | 
|  | { | 
|  | struct sighand_struct *sighand = data; | 
|  |  | 
|  | spin_lock_init(&sighand->siglock); | 
|  | init_waitqueue_head(&sighand->signalfd_wqh); | 
|  | } | 
|  |  | 
|  | void __init proc_caches_init(void) | 
|  | { | 
|  | sighand_cachep = kmem_cache_create("sighand_cache", | 
|  | sizeof(struct sighand_struct), 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, | 
|  | sighand_ctor); | 
|  | signal_cachep = kmem_cache_create("signal_cache", | 
|  | sizeof(struct signal_struct), 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 
|  | files_cachep = kmem_cache_create("files_cache", | 
|  | sizeof(struct files_struct), 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 
|  | fs_cachep = kmem_cache_create("fs_cache", | 
|  | sizeof(struct fs_struct), 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 
|  | vm_area_cachep = kmem_cache_create("vm_area_struct", | 
|  | sizeof(struct vm_area_struct), 0, | 
|  | SLAB_PANIC, NULL); | 
|  | mm_cachep = kmem_cache_create("mm_struct", | 
|  | sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check constraints on flags passed to the unshare system call and | 
|  | * force unsharing of additional process context as appropriate. | 
|  | */ | 
|  | static void check_unshare_flags(unsigned long *flags_ptr) | 
|  | { | 
|  | /* | 
|  | * If unsharing a thread from a thread group, must also | 
|  | * unshare vm. | 
|  | */ | 
|  | if (*flags_ptr & CLONE_THREAD) | 
|  | *flags_ptr |= CLONE_VM; | 
|  |  | 
|  | /* | 
|  | * If unsharing vm, must also unshare signal handlers. | 
|  | */ | 
|  | if (*flags_ptr & CLONE_VM) | 
|  | *flags_ptr |= CLONE_SIGHAND; | 
|  |  | 
|  | /* | 
|  | * If unsharing signal handlers and the task was created | 
|  | * using CLONE_THREAD, then must unshare the thread | 
|  | */ | 
|  | if ((*flags_ptr & CLONE_SIGHAND) && | 
|  | (atomic_read(¤t->signal->count) > 1)) | 
|  | *flags_ptr |= CLONE_THREAD; | 
|  |  | 
|  | /* | 
|  | * If unsharing namespace, must also unshare filesystem information. | 
|  | */ | 
|  | if (*flags_ptr & CLONE_NEWNS) | 
|  | *flags_ptr |= CLONE_FS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unsharing of tasks created with CLONE_THREAD is not supported yet | 
|  | */ | 
|  | static int unshare_thread(unsigned long unshare_flags) | 
|  | { | 
|  | if (unshare_flags & CLONE_THREAD) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unshare the filesystem structure if it is being shared | 
|  | */ | 
|  | static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) | 
|  | { | 
|  | struct fs_struct *fs = current->fs; | 
|  |  | 
|  | if ((unshare_flags & CLONE_FS) && | 
|  | (fs && atomic_read(&fs->count) > 1)) { | 
|  | *new_fsp = __copy_fs_struct(current->fs); | 
|  | if (!*new_fsp) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unsharing of sighand is not supported yet | 
|  | */ | 
|  | static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) | 
|  | { | 
|  | struct sighand_struct *sigh = current->sighand; | 
|  |  | 
|  | if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) | 
|  | return -EINVAL; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unshare vm if it is being shared | 
|  | */ | 
|  | static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  |  | 
|  | if ((unshare_flags & CLONE_VM) && | 
|  | (mm && atomic_read(&mm->mm_users) > 1)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unshare file descriptor table if it is being shared | 
|  | */ | 
|  | static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) | 
|  | { | 
|  | struct files_struct *fd = current->files; | 
|  | int error = 0; | 
|  |  | 
|  | if ((unshare_flags & CLONE_FILES) && | 
|  | (fd && atomic_read(&fd->count) > 1)) { | 
|  | *new_fdp = dup_fd(fd, &error); | 
|  | if (!*new_fdp) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not | 
|  | * supported yet | 
|  | */ | 
|  | static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp) | 
|  | { | 
|  | if (unshare_flags & CLONE_SYSVSEM) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unshare allows a process to 'unshare' part of the process | 
|  | * context which was originally shared using clone.  copy_* | 
|  | * functions used by do_fork() cannot be used here directly | 
|  | * because they modify an inactive task_struct that is being | 
|  | * constructed. Here we are modifying the current, active, | 
|  | * task_struct. | 
|  | */ | 
|  | asmlinkage long sys_unshare(unsigned long unshare_flags) | 
|  | { | 
|  | int err = 0; | 
|  | struct fs_struct *fs, *new_fs = NULL; | 
|  | struct sighand_struct *new_sigh = NULL; | 
|  | struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; | 
|  | struct files_struct *fd, *new_fd = NULL; | 
|  | struct sem_undo_list *new_ulist = NULL; | 
|  | struct nsproxy *new_nsproxy = NULL; | 
|  |  | 
|  | check_unshare_flags(&unshare_flags); | 
|  |  | 
|  | /* Return -EINVAL for all unsupported flags */ | 
|  | err = -EINVAL; | 
|  | if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| | 
|  | CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| | 
|  | CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER| | 
|  | CLONE_NEWNET)) | 
|  | goto bad_unshare_out; | 
|  |  | 
|  | if ((err = unshare_thread(unshare_flags))) | 
|  | goto bad_unshare_out; | 
|  | if ((err = unshare_fs(unshare_flags, &new_fs))) | 
|  | goto bad_unshare_cleanup_thread; | 
|  | if ((err = unshare_sighand(unshare_flags, &new_sigh))) | 
|  | goto bad_unshare_cleanup_fs; | 
|  | if ((err = unshare_vm(unshare_flags, &new_mm))) | 
|  | goto bad_unshare_cleanup_sigh; | 
|  | if ((err = unshare_fd(unshare_flags, &new_fd))) | 
|  | goto bad_unshare_cleanup_vm; | 
|  | if ((err = unshare_semundo(unshare_flags, &new_ulist))) | 
|  | goto bad_unshare_cleanup_fd; | 
|  | if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, | 
|  | new_fs))) | 
|  | goto bad_unshare_cleanup_semundo; | 
|  |  | 
|  | if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) { | 
|  |  | 
|  | if (new_nsproxy) { | 
|  | switch_task_namespaces(current, new_nsproxy); | 
|  | new_nsproxy = NULL; | 
|  | } | 
|  |  | 
|  | task_lock(current); | 
|  |  | 
|  | if (new_fs) { | 
|  | fs = current->fs; | 
|  | current->fs = new_fs; | 
|  | new_fs = fs; | 
|  | } | 
|  |  | 
|  | if (new_mm) { | 
|  | mm = current->mm; | 
|  | active_mm = current->active_mm; | 
|  | current->mm = new_mm; | 
|  | current->active_mm = new_mm; | 
|  | activate_mm(active_mm, new_mm); | 
|  | new_mm = mm; | 
|  | } | 
|  |  | 
|  | if (new_fd) { | 
|  | fd = current->files; | 
|  | current->files = new_fd; | 
|  | new_fd = fd; | 
|  | } | 
|  |  | 
|  | task_unlock(current); | 
|  | } | 
|  |  | 
|  | if (new_nsproxy) | 
|  | put_nsproxy(new_nsproxy); | 
|  |  | 
|  | bad_unshare_cleanup_semundo: | 
|  | bad_unshare_cleanup_fd: | 
|  | if (new_fd) | 
|  | put_files_struct(new_fd); | 
|  |  | 
|  | bad_unshare_cleanup_vm: | 
|  | if (new_mm) | 
|  | mmput(new_mm); | 
|  |  | 
|  | bad_unshare_cleanup_sigh: | 
|  | if (new_sigh) | 
|  | if (atomic_dec_and_test(&new_sigh->count)) | 
|  | kmem_cache_free(sighand_cachep, new_sigh); | 
|  |  | 
|  | bad_unshare_cleanup_fs: | 
|  | if (new_fs) | 
|  | put_fs_struct(new_fs); | 
|  |  | 
|  | bad_unshare_cleanup_thread: | 
|  | bad_unshare_out: | 
|  | return err; | 
|  | } |