| /* | 
 |  * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved. | 
 |  * | 
 |  * Author: Yu Liu, yu.liu@freescale.com | 
 |  *         Scott Wood, scottwood@freescale.com | 
 |  *         Ashish Kalra, ashish.kalra@freescale.com | 
 |  *         Varun Sethi, varun.sethi@freescale.com | 
 |  *         Alexander Graf, agraf@suse.de | 
 |  * | 
 |  * Description: | 
 |  * This file is based on arch/powerpc/kvm/44x_tlb.c, | 
 |  * by Hollis Blanchard <hollisb@us.ibm.com>. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License, version 2, as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/types.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/string.h> | 
 | #include <linux/kvm.h> | 
 | #include <linux/kvm_host.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/rwsem.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <asm/kvm_ppc.h> | 
 |  | 
 | #include "e500.h" | 
 | #include "trace.h" | 
 | #include "timing.h" | 
 | #include "e500_mmu_host.h" | 
 |  | 
 | #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) | 
 |  | 
 | static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; | 
 |  | 
 | static inline unsigned int tlb1_max_shadow_size(void) | 
 | { | 
 | 	/* reserve one entry for magic page */ | 
 | 	return host_tlb_params[1].entries - tlbcam_index - 1; | 
 | } | 
 |  | 
 | static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) | 
 | { | 
 | 	/* Mask off reserved bits. */ | 
 | 	mas3 &= MAS3_ATTRIB_MASK; | 
 |  | 
 | #ifndef CONFIG_KVM_BOOKE_HV | 
 | 	if (!usermode) { | 
 | 		/* Guest is in supervisor mode, | 
 | 		 * so we need to translate guest | 
 | 		 * supervisor permissions into user permissions. */ | 
 | 		mas3 &= ~E500_TLB_USER_PERM_MASK; | 
 | 		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; | 
 | 	} | 
 | 	mas3 |= E500_TLB_SUPER_PERM_MASK; | 
 | #endif | 
 | 	return mas3; | 
 | } | 
 |  | 
 | static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M; | 
 | #else | 
 | 	return mas2 & MAS2_ATTRIB_MASK; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * writing shadow tlb entry to host TLB | 
 |  */ | 
 | static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, | 
 | 				     uint32_t mas0) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	mtspr(SPRN_MAS0, mas0); | 
 | 	mtspr(SPRN_MAS1, stlbe->mas1); | 
 | 	mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); | 
 | 	mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); | 
 | 	mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); | 
 | #ifdef CONFIG_KVM_BOOKE_HV | 
 | 	mtspr(SPRN_MAS8, stlbe->mas8); | 
 | #endif | 
 | 	asm volatile("isync; tlbwe" : : : "memory"); | 
 |  | 
 | #ifdef CONFIG_KVM_BOOKE_HV | 
 | 	/* Must clear mas8 for other host tlbwe's */ | 
 | 	mtspr(SPRN_MAS8, 0); | 
 | 	isync(); | 
 | #endif | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1, | 
 | 	                              stlbe->mas2, stlbe->mas7_3); | 
 | } | 
 |  | 
 | /* | 
 |  * Acquire a mas0 with victim hint, as if we just took a TLB miss. | 
 |  * | 
 |  * We don't care about the address we're searching for, other than that it's | 
 |  * in the right set and is not present in the TLB.  Using a zero PID and a | 
 |  * userspace address means we don't have to set and then restore MAS5, or | 
 |  * calculate a proper MAS6 value. | 
 |  */ | 
 | static u32 get_host_mas0(unsigned long eaddr) | 
 | { | 
 | 	unsigned long flags; | 
 | 	u32 mas0; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	mtspr(SPRN_MAS6, 0); | 
 | 	asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); | 
 | 	mas0 = mfspr(SPRN_MAS0); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return mas0; | 
 | } | 
 |  | 
 | /* sesel is for tlb1 only */ | 
 | static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, | 
 | 		int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) | 
 | { | 
 | 	u32 mas0; | 
 |  | 
 | 	if (tlbsel == 0) { | 
 | 		mas0 = get_host_mas0(stlbe->mas2); | 
 | 		__write_host_tlbe(stlbe, mas0); | 
 | 	} else { | 
 | 		__write_host_tlbe(stlbe, | 
 | 				  MAS0_TLBSEL(1) | | 
 | 				  MAS0_ESEL(to_htlb1_esel(sesel))); | 
 | 	} | 
 | } | 
 |  | 
 | /* sesel is for tlb1 only */ | 
 | static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, | 
 | 			struct kvm_book3e_206_tlb_entry *gtlbe, | 
 | 			struct kvm_book3e_206_tlb_entry *stlbe, | 
 | 			int stlbsel, int sesel) | 
 | { | 
 | 	int stid; | 
 |  | 
 | 	preempt_disable(); | 
 | 	stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe); | 
 |  | 
 | 	stlbe->mas1 |= MAS1_TID(stid); | 
 | 	write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KVM_E500V2 | 
 | /* XXX should be a hook in the gva2hpa translation */ | 
 | void kvmppc_map_magic(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
 | 	struct kvm_book3e_206_tlb_entry magic; | 
 | 	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; | 
 | 	unsigned int stid; | 
 | 	pfn_t pfn; | 
 |  | 
 | 	pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; | 
 | 	get_page(pfn_to_page(pfn)); | 
 |  | 
 | 	preempt_disable(); | 
 | 	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); | 
 |  | 
 | 	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | | 
 | 		     MAS1_TSIZE(BOOK3E_PAGESZ_4K); | 
 | 	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; | 
 | 	magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | | 
 | 		       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; | 
 | 	magic.mas8 = 0; | 
 |  | 
 | 	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index)); | 
 | 	preempt_enable(); | 
 | } | 
 | #endif | 
 |  | 
 | void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, | 
 | 			 int esel) | 
 | { | 
 | 	struct kvm_book3e_206_tlb_entry *gtlbe = | 
 | 		get_entry(vcpu_e500, tlbsel, esel); | 
 | 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref; | 
 |  | 
 | 	/* Don't bother with unmapped entries */ | 
 | 	if (!(ref->flags & E500_TLB_VALID)) { | 
 | 		WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0), | 
 | 		     "%s: flags %x\n", __func__, ref->flags); | 
 | 		WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]); | 
 | 	} | 
 |  | 
 | 	if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) { | 
 | 		u64 tmp = vcpu_e500->g2h_tlb1_map[esel]; | 
 | 		int hw_tlb_indx; | 
 | 		unsigned long flags; | 
 |  | 
 | 		local_irq_save(flags); | 
 | 		while (tmp) { | 
 | 			hw_tlb_indx = __ilog2_u64(tmp & -tmp); | 
 | 			mtspr(SPRN_MAS0, | 
 | 			      MAS0_TLBSEL(1) | | 
 | 			      MAS0_ESEL(to_htlb1_esel(hw_tlb_indx))); | 
 | 			mtspr(SPRN_MAS1, 0); | 
 | 			asm volatile("tlbwe"); | 
 | 			vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0; | 
 | 			tmp &= tmp - 1; | 
 | 		} | 
 | 		mb(); | 
 | 		vcpu_e500->g2h_tlb1_map[esel] = 0; | 
 | 		ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 |  | 
 | 	if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) { | 
 | 		/* | 
 | 		 * TLB1 entry is backed by 4k pages. This should happen | 
 | 		 * rarely and is not worth optimizing. Invalidate everything. | 
 | 		 */ | 
 | 		kvmppc_e500_tlbil_all(vcpu_e500); | 
 | 		ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID); | 
 | 	} | 
 |  | 
 | 	/* Already invalidated in between */ | 
 | 	if (!(ref->flags & E500_TLB_VALID)) | 
 | 		return; | 
 |  | 
 | 	/* Guest tlbe is backed by at most one host tlbe per shadow pid. */ | 
 | 	kvmppc_e500_tlbil_one(vcpu_e500, gtlbe); | 
 |  | 
 | 	/* Mark the TLB as not backed by the host anymore */ | 
 | 	ref->flags &= ~E500_TLB_VALID; | 
 | } | 
 |  | 
 | static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) | 
 | { | 
 | 	return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); | 
 | } | 
 |  | 
 | static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, | 
 | 					 struct kvm_book3e_206_tlb_entry *gtlbe, | 
 | 					 pfn_t pfn) | 
 | { | 
 | 	ref->pfn = pfn; | 
 | 	ref->flags |= E500_TLB_VALID; | 
 |  | 
 | 	if (tlbe_is_writable(gtlbe)) | 
 | 		kvm_set_pfn_dirty(pfn); | 
 | } | 
 |  | 
 | static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) | 
 | { | 
 | 	if (ref->flags & E500_TLB_VALID) { | 
 | 		/* FIXME: don't log bogus pfn for TLB1 */ | 
 | 		trace_kvm_booke206_ref_release(ref->pfn, ref->flags); | 
 | 		ref->flags = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500) | 
 | { | 
 | 	if (vcpu_e500->g2h_tlb1_map) | 
 | 		memset(vcpu_e500->g2h_tlb1_map, 0, | 
 | 		       sizeof(u64) * vcpu_e500->gtlb_params[1].entries); | 
 | 	if (vcpu_e500->h2g_tlb1_rmap) | 
 | 		memset(vcpu_e500->h2g_tlb1_rmap, 0, | 
 | 		       sizeof(unsigned int) * host_tlb_params[1].entries); | 
 | } | 
 |  | 
 | static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) | 
 | { | 
 | 	int tlbsel; | 
 | 	int i; | 
 |  | 
 | 	for (tlbsel = 0; tlbsel <= 1; tlbsel++) { | 
 | 		for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { | 
 | 			struct tlbe_ref *ref = | 
 | 				&vcpu_e500->gtlb_priv[tlbsel][i].ref; | 
 | 			kvmppc_e500_ref_release(ref); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
 | 	kvmppc_e500_tlbil_all(vcpu_e500); | 
 | 	clear_tlb_privs(vcpu_e500); | 
 | 	clear_tlb1_bitmap(vcpu_e500); | 
 | } | 
 |  | 
 | /* TID must be supplied by the caller */ | 
 | static void kvmppc_e500_setup_stlbe( | 
 | 	struct kvm_vcpu *vcpu, | 
 | 	struct kvm_book3e_206_tlb_entry *gtlbe, | 
 | 	int tsize, struct tlbe_ref *ref, u64 gvaddr, | 
 | 	struct kvm_book3e_206_tlb_entry *stlbe) | 
 | { | 
 | 	pfn_t pfn = ref->pfn; | 
 | 	u32 pr = vcpu->arch.shared->msr & MSR_PR; | 
 |  | 
 | 	BUG_ON(!(ref->flags & E500_TLB_VALID)); | 
 |  | 
 | 	/* Force IPROT=0 for all guest mappings. */ | 
 | 	stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID; | 
 | 	stlbe->mas2 = (gvaddr & MAS2_EPN) | | 
 | 		      e500_shadow_mas2_attrib(gtlbe->mas2, pr); | 
 | 	stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) | | 
 | 			e500_shadow_mas3_attrib(gtlbe->mas7_3, pr); | 
 |  | 
 | #ifdef CONFIG_KVM_BOOKE_HV | 
 | 	stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid; | 
 | #endif | 
 | } | 
 |  | 
 | static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, | 
 | 	u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, | 
 | 	int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, | 
 | 	struct tlbe_ref *ref) | 
 | { | 
 | 	struct kvm_memory_slot *slot; | 
 | 	unsigned long pfn = 0; /* silence GCC warning */ | 
 | 	unsigned long hva; | 
 | 	int pfnmap = 0; | 
 | 	int tsize = BOOK3E_PAGESZ_4K; | 
 |  | 
 | 	/* | 
 | 	 * Translate guest physical to true physical, acquiring | 
 | 	 * a page reference if it is normal, non-reserved memory. | 
 | 	 * | 
 | 	 * gfn_to_memslot() must succeed because otherwise we wouldn't | 
 | 	 * have gotten this far.  Eventually we should just pass the slot | 
 | 	 * pointer through from the first lookup. | 
 | 	 */ | 
 | 	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); | 
 | 	hva = gfn_to_hva_memslot(slot, gfn); | 
 |  | 
 | 	if (tlbsel == 1) { | 
 | 		struct vm_area_struct *vma; | 
 | 		down_read(¤t->mm->mmap_sem); | 
 |  | 
 | 		vma = find_vma(current->mm, hva); | 
 | 		if (vma && hva >= vma->vm_start && | 
 | 		    (vma->vm_flags & VM_PFNMAP)) { | 
 | 			/* | 
 | 			 * This VMA is a physically contiguous region (e.g. | 
 | 			 * /dev/mem) that bypasses normal Linux page | 
 | 			 * management.  Find the overlap between the | 
 | 			 * vma and the memslot. | 
 | 			 */ | 
 |  | 
 | 			unsigned long start, end; | 
 | 			unsigned long slot_start, slot_end; | 
 |  | 
 | 			pfnmap = 1; | 
 |  | 
 | 			start = vma->vm_pgoff; | 
 | 			end = start + | 
 | 			      ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT); | 
 |  | 
 | 			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); | 
 |  | 
 | 			slot_start = pfn - (gfn - slot->base_gfn); | 
 | 			slot_end = slot_start + slot->npages; | 
 |  | 
 | 			if (start < slot_start) | 
 | 				start = slot_start; | 
 | 			if (end > slot_end) | 
 | 				end = slot_end; | 
 |  | 
 | 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> | 
 | 				MAS1_TSIZE_SHIFT; | 
 |  | 
 | 			/* | 
 | 			 * e500 doesn't implement the lowest tsize bit, | 
 | 			 * or 1K pages. | 
 | 			 */ | 
 | 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); | 
 |  | 
 | 			/* | 
 | 			 * Now find the largest tsize (up to what the guest | 
 | 			 * requested) that will cover gfn, stay within the | 
 | 			 * range, and for which gfn and pfn are mutually | 
 | 			 * aligned. | 
 | 			 */ | 
 |  | 
 | 			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { | 
 | 				unsigned long gfn_start, gfn_end, tsize_pages; | 
 | 				tsize_pages = 1 << (tsize - 2); | 
 |  | 
 | 				gfn_start = gfn & ~(tsize_pages - 1); | 
 | 				gfn_end = gfn_start + tsize_pages; | 
 |  | 
 | 				if (gfn_start + pfn - gfn < start) | 
 | 					continue; | 
 | 				if (gfn_end + pfn - gfn > end) | 
 | 					continue; | 
 | 				if ((gfn & (tsize_pages - 1)) != | 
 | 				    (pfn & (tsize_pages - 1))) | 
 | 					continue; | 
 |  | 
 | 				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); | 
 | 				pfn &= ~(tsize_pages - 1); | 
 | 				break; | 
 | 			} | 
 | 		} else if (vma && hva >= vma->vm_start && | 
 | 			   (vma->vm_flags & VM_HUGETLB)) { | 
 | 			unsigned long psize = vma_kernel_pagesize(vma); | 
 |  | 
 | 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> | 
 | 				MAS1_TSIZE_SHIFT; | 
 |  | 
 | 			/* | 
 | 			 * Take the largest page size that satisfies both host | 
 | 			 * and guest mapping | 
 | 			 */ | 
 | 			tsize = min(__ilog2(psize) - 10, tsize); | 
 |  | 
 | 			/* | 
 | 			 * e500 doesn't implement the lowest tsize bit, | 
 | 			 * or 1K pages. | 
 | 			 */ | 
 | 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); | 
 | 		} | 
 |  | 
 | 		up_read(¤t->mm->mmap_sem); | 
 | 	} | 
 |  | 
 | 	if (likely(!pfnmap)) { | 
 | 		unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT); | 
 | 		pfn = gfn_to_pfn_memslot(slot, gfn); | 
 | 		if (is_error_noslot_pfn(pfn)) { | 
 | 			printk(KERN_ERR "Couldn't get real page for gfn %lx!\n", | 
 | 					(long)gfn); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		/* Align guest and physical address to page map boundaries */ | 
 | 		pfn &= ~(tsize_pages - 1); | 
 | 		gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); | 
 | 	} | 
 |  | 
 | 	kvmppc_e500_ref_setup(ref, gtlbe, pfn); | 
 |  | 
 | 	kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize, | 
 | 				ref, gvaddr, stlbe); | 
 |  | 
 | 	/* Clear i-cache for new pages */ | 
 | 	kvmppc_mmu_flush_icache(pfn); | 
 |  | 
 | 	/* Drop refcount on page, so that mmu notifiers can clear it */ | 
 | 	kvm_release_pfn_clean(pfn); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* XXX only map the one-one case, for now use TLB0 */ | 
 | static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel, | 
 | 				struct kvm_book3e_206_tlb_entry *stlbe) | 
 | { | 
 | 	struct kvm_book3e_206_tlb_entry *gtlbe; | 
 | 	struct tlbe_ref *ref; | 
 | 	int stlbsel = 0; | 
 | 	int sesel = 0; | 
 | 	int r; | 
 |  | 
 | 	gtlbe = get_entry(vcpu_e500, 0, esel); | 
 | 	ref = &vcpu_e500->gtlb_priv[0][esel].ref; | 
 |  | 
 | 	r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), | 
 | 			get_tlb_raddr(gtlbe) >> PAGE_SHIFT, | 
 | 			gtlbe, 0, stlbe, ref); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500, | 
 | 				     struct tlbe_ref *ref, | 
 | 				     int esel) | 
 | { | 
 | 	unsigned int sesel = vcpu_e500->host_tlb1_nv++; | 
 |  | 
 | 	if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) | 
 | 		vcpu_e500->host_tlb1_nv = 0; | 
 |  | 
 | 	if (vcpu_e500->h2g_tlb1_rmap[sesel]) { | 
 | 		unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1; | 
 | 		vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel); | 
 | 	} | 
 |  | 
 | 	vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP; | 
 | 	vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel; | 
 | 	vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1; | 
 | 	WARN_ON(!(ref->flags & E500_TLB_VALID)); | 
 |  | 
 | 	return sesel; | 
 | } | 
 |  | 
 | /* Caller must ensure that the specified guest TLB entry is safe to insert into | 
 |  * the shadow TLB. */ | 
 | /* For both one-one and one-to-many */ | 
 | static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, | 
 | 		u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, | 
 | 		struct kvm_book3e_206_tlb_entry *stlbe, int esel) | 
 | { | 
 | 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref; | 
 | 	int sesel; | 
 | 	int r; | 
 |  | 
 | 	r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, | 
 | 				   ref); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* Use TLB0 when we can only map a page with 4k */ | 
 | 	if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) { | 
 | 		vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0; | 
 | 		write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Otherwise map into TLB1 */ | 
 | 	sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel); | 
 | 	write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, | 
 | 		    unsigned int index) | 
 | { | 
 | 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
 | 	struct tlbe_priv *priv; | 
 | 	struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; | 
 | 	int tlbsel = tlbsel_of(index); | 
 | 	int esel = esel_of(index); | 
 |  | 
 | 	gtlbe = get_entry(vcpu_e500, tlbsel, esel); | 
 |  | 
 | 	switch (tlbsel) { | 
 | 	case 0: | 
 | 		priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; | 
 |  | 
 | 		/* Triggers after clear_tlb_privs or on initial mapping */ | 
 | 		if (!(priv->ref.flags & E500_TLB_VALID)) { | 
 | 			kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); | 
 | 		} else { | 
 | 			kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K, | 
 | 						&priv->ref, eaddr, &stlbe); | 
 | 			write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 1: { | 
 | 		gfn_t gfn = gpaddr >> PAGE_SHIFT; | 
 | 		kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe, | 
 | 				     esel); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /************* MMU Notifiers *************/ | 
 |  | 
 | int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) | 
 | { | 
 | 	trace_kvm_unmap_hva(hva); | 
 |  | 
 | 	/* | 
 | 	 * Flush all shadow tlb entries everywhere. This is slow, but | 
 | 	 * we are 100% sure that we catch the to be unmapped page | 
 | 	 */ | 
 | 	kvm_flush_remote_tlbs(kvm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) | 
 | { | 
 | 	/* kvm_unmap_hva flushes everything anyways */ | 
 | 	kvm_unmap_hva(kvm, start); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_age_hva(struct kvm *kvm, unsigned long hva) | 
 | { | 
 | 	/* XXX could be more clever ;) */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) | 
 | { | 
 | 	/* XXX could be more clever ;) */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) | 
 | { | 
 | 	/* The page will get remapped properly on its next fault */ | 
 | 	kvm_unmap_hva(kvm, hva); | 
 | } | 
 |  | 
 | /*****************************************/ | 
 |  | 
 | int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500) | 
 | { | 
 | 	host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; | 
 | 	host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; | 
 |  | 
 | 	/* | 
 | 	 * This should never happen on real e500 hardware, but is | 
 | 	 * architecturally possible -- e.g. in some weird nested | 
 | 	 * virtualization case. | 
 | 	 */ | 
 | 	if (host_tlb_params[0].entries == 0 || | 
 | 	    host_tlb_params[1].entries == 0) { | 
 | 		pr_err("%s: need to know host tlb size\n", __func__); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> | 
 | 				  TLBnCFG_ASSOC_SHIFT; | 
 | 	host_tlb_params[1].ways = host_tlb_params[1].entries; | 
 |  | 
 | 	if (!is_power_of_2(host_tlb_params[0].entries) || | 
 | 	    !is_power_of_2(host_tlb_params[0].ways) || | 
 | 	    host_tlb_params[0].entries < host_tlb_params[0].ways || | 
 | 	    host_tlb_params[0].ways == 0) { | 
 | 		pr_err("%s: bad tlb0 host config: %u entries %u ways\n", | 
 | 		       __func__, host_tlb_params[0].entries, | 
 | 		       host_tlb_params[0].ways); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	host_tlb_params[0].sets = | 
 | 		host_tlb_params[0].entries / host_tlb_params[0].ways; | 
 | 	host_tlb_params[1].sets = 1; | 
 |  | 
 | 	vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) * | 
 | 					   host_tlb_params[1].entries, | 
 | 					   GFP_KERNEL); | 
 | 	if (!vcpu_e500->h2g_tlb1_rmap) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) | 
 | { | 
 | 	kfree(vcpu_e500->h2g_tlb1_rmap); | 
 | } |