| /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com | 
 |  * Copyright (c) 2016 Facebook | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of version 2 of the GNU General Public | 
 |  * License as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
 |  * General Public License for more details. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/types.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/bpf.h> | 
 | #include <linux/bpf_verifier.h> | 
 | #include <linux/filter.h> | 
 | #include <net/netlink.h> | 
 | #include <linux/file.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/stringify.h> | 
 | #include <linux/bsearch.h> | 
 | #include <linux/sort.h> | 
 |  | 
 | #include "disasm.h" | 
 |  | 
 | static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { | 
 | #define BPF_PROG_TYPE(_id, _name) \ | 
 | 	[_id] = & _name ## _verifier_ops, | 
 | #define BPF_MAP_TYPE(_id, _ops) | 
 | #include <linux/bpf_types.h> | 
 | #undef BPF_PROG_TYPE | 
 | #undef BPF_MAP_TYPE | 
 | }; | 
 |  | 
 | /* bpf_check() is a static code analyzer that walks eBPF program | 
 |  * instruction by instruction and updates register/stack state. | 
 |  * All paths of conditional branches are analyzed until 'bpf_exit' insn. | 
 |  * | 
 |  * The first pass is depth-first-search to check that the program is a DAG. | 
 |  * It rejects the following programs: | 
 |  * - larger than BPF_MAXINSNS insns | 
 |  * - if loop is present (detected via back-edge) | 
 |  * - unreachable insns exist (shouldn't be a forest. program = one function) | 
 |  * - out of bounds or malformed jumps | 
 |  * The second pass is all possible path descent from the 1st insn. | 
 |  * Since it's analyzing all pathes through the program, the length of the | 
 |  * analysis is limited to 64k insn, which may be hit even if total number of | 
 |  * insn is less then 4K, but there are too many branches that change stack/regs. | 
 |  * Number of 'branches to be analyzed' is limited to 1k | 
 |  * | 
 |  * On entry to each instruction, each register has a type, and the instruction | 
 |  * changes the types of the registers depending on instruction semantics. | 
 |  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is | 
 |  * copied to R1. | 
 |  * | 
 |  * All registers are 64-bit. | 
 |  * R0 - return register | 
 |  * R1-R5 argument passing registers | 
 |  * R6-R9 callee saved registers | 
 |  * R10 - frame pointer read-only | 
 |  * | 
 |  * At the start of BPF program the register R1 contains a pointer to bpf_context | 
 |  * and has type PTR_TO_CTX. | 
 |  * | 
 |  * Verifier tracks arithmetic operations on pointers in case: | 
 |  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), | 
 |  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), | 
 |  * 1st insn copies R10 (which has FRAME_PTR) type into R1 | 
 |  * and 2nd arithmetic instruction is pattern matched to recognize | 
 |  * that it wants to construct a pointer to some element within stack. | 
 |  * So after 2nd insn, the register R1 has type PTR_TO_STACK | 
 |  * (and -20 constant is saved for further stack bounds checking). | 
 |  * Meaning that this reg is a pointer to stack plus known immediate constant. | 
 |  * | 
 |  * Most of the time the registers have SCALAR_VALUE type, which | 
 |  * means the register has some value, but it's not a valid pointer. | 
 |  * (like pointer plus pointer becomes SCALAR_VALUE type) | 
 |  * | 
 |  * When verifier sees load or store instructions the type of base register | 
 |  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer | 
 |  * types recognized by check_mem_access() function. | 
 |  * | 
 |  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' | 
 |  * and the range of [ptr, ptr + map's value_size) is accessible. | 
 |  * | 
 |  * registers used to pass values to function calls are checked against | 
 |  * function argument constraints. | 
 |  * | 
 |  * ARG_PTR_TO_MAP_KEY is one of such argument constraints. | 
 |  * It means that the register type passed to this function must be | 
 |  * PTR_TO_STACK and it will be used inside the function as | 
 |  * 'pointer to map element key' | 
 |  * | 
 |  * For example the argument constraints for bpf_map_lookup_elem(): | 
 |  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, | 
 |  *   .arg1_type = ARG_CONST_MAP_PTR, | 
 |  *   .arg2_type = ARG_PTR_TO_MAP_KEY, | 
 |  * | 
 |  * ret_type says that this function returns 'pointer to map elem value or null' | 
 |  * function expects 1st argument to be a const pointer to 'struct bpf_map' and | 
 |  * 2nd argument should be a pointer to stack, which will be used inside | 
 |  * the helper function as a pointer to map element key. | 
 |  * | 
 |  * On the kernel side the helper function looks like: | 
 |  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) | 
 |  * { | 
 |  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; | 
 |  *    void *key = (void *) (unsigned long) r2; | 
 |  *    void *value; | 
 |  * | 
 |  *    here kernel can access 'key' and 'map' pointers safely, knowing that | 
 |  *    [key, key + map->key_size) bytes are valid and were initialized on | 
 |  *    the stack of eBPF program. | 
 |  * } | 
 |  * | 
 |  * Corresponding eBPF program may look like: | 
 |  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR | 
 |  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK | 
 |  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP | 
 |  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), | 
 |  * here verifier looks at prototype of map_lookup_elem() and sees: | 
 |  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, | 
 |  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes | 
 |  * | 
 |  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, | 
 |  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits | 
 |  * and were initialized prior to this call. | 
 |  * If it's ok, then verifier allows this BPF_CALL insn and looks at | 
 |  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets | 
 |  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function | 
 |  * returns ether pointer to map value or NULL. | 
 |  * | 
 |  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' | 
 |  * insn, the register holding that pointer in the true branch changes state to | 
 |  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false | 
 |  * branch. See check_cond_jmp_op(). | 
 |  * | 
 |  * After the call R0 is set to return type of the function and registers R1-R5 | 
 |  * are set to NOT_INIT to indicate that they are no longer readable. | 
 |  */ | 
 |  | 
 | /* verifier_state + insn_idx are pushed to stack when branch is encountered */ | 
 | struct bpf_verifier_stack_elem { | 
 | 	/* verifer state is 'st' | 
 | 	 * before processing instruction 'insn_idx' | 
 | 	 * and after processing instruction 'prev_insn_idx' | 
 | 	 */ | 
 | 	struct bpf_verifier_state st; | 
 | 	int insn_idx; | 
 | 	int prev_insn_idx; | 
 | 	struct bpf_verifier_stack_elem *next; | 
 | }; | 
 |  | 
 | #define BPF_COMPLEXITY_LIMIT_INSNS	131072 | 
 | #define BPF_COMPLEXITY_LIMIT_STACK	1024 | 
 |  | 
 | #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) | 
 |  | 
 | struct bpf_call_arg_meta { | 
 | 	struct bpf_map *map_ptr; | 
 | 	bool raw_mode; | 
 | 	bool pkt_access; | 
 | 	int regno; | 
 | 	int access_size; | 
 | }; | 
 |  | 
 | static DEFINE_MUTEX(bpf_verifier_lock); | 
 |  | 
 | void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, | 
 | 		       va_list args) | 
 | { | 
 | 	unsigned int n; | 
 |  | 
 | 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); | 
 |  | 
 | 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, | 
 | 		  "verifier log line truncated - local buffer too short\n"); | 
 |  | 
 | 	n = min(log->len_total - log->len_used - 1, n); | 
 | 	log->kbuf[n] = '\0'; | 
 |  | 
 | 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) | 
 | 		log->len_used += n; | 
 | 	else | 
 | 		log->ubuf = NULL; | 
 | } | 
 |  | 
 | /* log_level controls verbosity level of eBPF verifier. | 
 |  * bpf_verifier_log_write() is used to dump the verification trace to the log, | 
 |  * so the user can figure out what's wrong with the program | 
 |  */ | 
 | __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, | 
 | 					   const char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 |  | 
 | 	if (!bpf_verifier_log_needed(&env->log)) | 
 | 		return; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	bpf_verifier_vlog(&env->log, fmt, args); | 
 | 	va_end(args); | 
 | } | 
 | EXPORT_SYMBOL_GPL(bpf_verifier_log_write); | 
 |  | 
 | __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) | 
 | { | 
 | 	struct bpf_verifier_env *env = private_data; | 
 | 	va_list args; | 
 |  | 
 | 	if (!bpf_verifier_log_needed(&env->log)) | 
 | 		return; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	bpf_verifier_vlog(&env->log, fmt, args); | 
 | 	va_end(args); | 
 | } | 
 |  | 
 | static bool type_is_pkt_pointer(enum bpf_reg_type type) | 
 | { | 
 | 	return type == PTR_TO_PACKET || | 
 | 	       type == PTR_TO_PACKET_META; | 
 | } | 
 |  | 
 | /* string representation of 'enum bpf_reg_type' */ | 
 | static const char * const reg_type_str[] = { | 
 | 	[NOT_INIT]		= "?", | 
 | 	[SCALAR_VALUE]		= "inv", | 
 | 	[PTR_TO_CTX]		= "ctx", | 
 | 	[CONST_PTR_TO_MAP]	= "map_ptr", | 
 | 	[PTR_TO_MAP_VALUE]	= "map_value", | 
 | 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", | 
 | 	[PTR_TO_STACK]		= "fp", | 
 | 	[PTR_TO_PACKET]		= "pkt", | 
 | 	[PTR_TO_PACKET_META]	= "pkt_meta", | 
 | 	[PTR_TO_PACKET_END]	= "pkt_end", | 
 | }; | 
 |  | 
 | static void print_liveness(struct bpf_verifier_env *env, | 
 | 			   enum bpf_reg_liveness live) | 
 | { | 
 | 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) | 
 | 	    verbose(env, "_"); | 
 | 	if (live & REG_LIVE_READ) | 
 | 		verbose(env, "r"); | 
 | 	if (live & REG_LIVE_WRITTEN) | 
 | 		verbose(env, "w"); | 
 | } | 
 |  | 
 | static struct bpf_func_state *func(struct bpf_verifier_env *env, | 
 | 				   const struct bpf_reg_state *reg) | 
 | { | 
 | 	struct bpf_verifier_state *cur = env->cur_state; | 
 |  | 
 | 	return cur->frame[reg->frameno]; | 
 | } | 
 |  | 
 | static void print_verifier_state(struct bpf_verifier_env *env, | 
 | 				 const struct bpf_func_state *state) | 
 | { | 
 | 	const struct bpf_reg_state *reg; | 
 | 	enum bpf_reg_type t; | 
 | 	int i; | 
 |  | 
 | 	if (state->frameno) | 
 | 		verbose(env, " frame%d:", state->frameno); | 
 | 	for (i = 0; i < MAX_BPF_REG; i++) { | 
 | 		reg = &state->regs[i]; | 
 | 		t = reg->type; | 
 | 		if (t == NOT_INIT) | 
 | 			continue; | 
 | 		verbose(env, " R%d", i); | 
 | 		print_liveness(env, reg->live); | 
 | 		verbose(env, "=%s", reg_type_str[t]); | 
 | 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && | 
 | 		    tnum_is_const(reg->var_off)) { | 
 | 			/* reg->off should be 0 for SCALAR_VALUE */ | 
 | 			verbose(env, "%lld", reg->var_off.value + reg->off); | 
 | 			if (t == PTR_TO_STACK) | 
 | 				verbose(env, ",call_%d", func(env, reg)->callsite); | 
 | 		} else { | 
 | 			verbose(env, "(id=%d", reg->id); | 
 | 			if (t != SCALAR_VALUE) | 
 | 				verbose(env, ",off=%d", reg->off); | 
 | 			if (type_is_pkt_pointer(t)) | 
 | 				verbose(env, ",r=%d", reg->range); | 
 | 			else if (t == CONST_PTR_TO_MAP || | 
 | 				 t == PTR_TO_MAP_VALUE || | 
 | 				 t == PTR_TO_MAP_VALUE_OR_NULL) | 
 | 				verbose(env, ",ks=%d,vs=%d", | 
 | 					reg->map_ptr->key_size, | 
 | 					reg->map_ptr->value_size); | 
 | 			if (tnum_is_const(reg->var_off)) { | 
 | 				/* Typically an immediate SCALAR_VALUE, but | 
 | 				 * could be a pointer whose offset is too big | 
 | 				 * for reg->off | 
 | 				 */ | 
 | 				verbose(env, ",imm=%llx", reg->var_off.value); | 
 | 			} else { | 
 | 				if (reg->smin_value != reg->umin_value && | 
 | 				    reg->smin_value != S64_MIN) | 
 | 					verbose(env, ",smin_value=%lld", | 
 | 						(long long)reg->smin_value); | 
 | 				if (reg->smax_value != reg->umax_value && | 
 | 				    reg->smax_value != S64_MAX) | 
 | 					verbose(env, ",smax_value=%lld", | 
 | 						(long long)reg->smax_value); | 
 | 				if (reg->umin_value != 0) | 
 | 					verbose(env, ",umin_value=%llu", | 
 | 						(unsigned long long)reg->umin_value); | 
 | 				if (reg->umax_value != U64_MAX) | 
 | 					verbose(env, ",umax_value=%llu", | 
 | 						(unsigned long long)reg->umax_value); | 
 | 				if (!tnum_is_unknown(reg->var_off)) { | 
 | 					char tn_buf[48]; | 
 |  | 
 | 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
 | 					verbose(env, ",var_off=%s", tn_buf); | 
 | 				} | 
 | 			} | 
 | 			verbose(env, ")"); | 
 | 		} | 
 | 	} | 
 | 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { | 
 | 		if (state->stack[i].slot_type[0] == STACK_SPILL) { | 
 | 			verbose(env, " fp%d", | 
 | 				(-i - 1) * BPF_REG_SIZE); | 
 | 			print_liveness(env, state->stack[i].spilled_ptr.live); | 
 | 			verbose(env, "=%s", | 
 | 				reg_type_str[state->stack[i].spilled_ptr.type]); | 
 | 		} | 
 | 		if (state->stack[i].slot_type[0] == STACK_ZERO) | 
 | 			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE); | 
 | 	} | 
 | 	verbose(env, "\n"); | 
 | } | 
 |  | 
 | static int copy_stack_state(struct bpf_func_state *dst, | 
 | 			    const struct bpf_func_state *src) | 
 | { | 
 | 	if (!src->stack) | 
 | 		return 0; | 
 | 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { | 
 | 		/* internal bug, make state invalid to reject the program */ | 
 | 		memset(dst, 0, sizeof(*dst)); | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	memcpy(dst->stack, src->stack, | 
 | 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* do_check() starts with zero-sized stack in struct bpf_verifier_state to | 
 |  * make it consume minimal amount of memory. check_stack_write() access from | 
 |  * the program calls into realloc_func_state() to grow the stack size. | 
 |  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state | 
 |  * which this function copies over. It points to previous bpf_verifier_state | 
 |  * which is never reallocated | 
 |  */ | 
 | static int realloc_func_state(struct bpf_func_state *state, int size, | 
 | 			      bool copy_old) | 
 | { | 
 | 	u32 old_size = state->allocated_stack; | 
 | 	struct bpf_stack_state *new_stack; | 
 | 	int slot = size / BPF_REG_SIZE; | 
 |  | 
 | 	if (size <= old_size || !size) { | 
 | 		if (copy_old) | 
 | 			return 0; | 
 | 		state->allocated_stack = slot * BPF_REG_SIZE; | 
 | 		if (!size && old_size) { | 
 | 			kfree(state->stack); | 
 | 			state->stack = NULL; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 | 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), | 
 | 				  GFP_KERNEL); | 
 | 	if (!new_stack) | 
 | 		return -ENOMEM; | 
 | 	if (copy_old) { | 
 | 		if (state->stack) | 
 | 			memcpy(new_stack, state->stack, | 
 | 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); | 
 | 		memset(new_stack + old_size / BPF_REG_SIZE, 0, | 
 | 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); | 
 | 	} | 
 | 	state->allocated_stack = slot * BPF_REG_SIZE; | 
 | 	kfree(state->stack); | 
 | 	state->stack = new_stack; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_func_state(struct bpf_func_state *state) | 
 | { | 
 | 	if (!state) | 
 | 		return; | 
 | 	kfree(state->stack); | 
 | 	kfree(state); | 
 | } | 
 |  | 
 | static void free_verifier_state(struct bpf_verifier_state *state, | 
 | 				bool free_self) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i <= state->curframe; i++) { | 
 | 		free_func_state(state->frame[i]); | 
 | 		state->frame[i] = NULL; | 
 | 	} | 
 | 	if (free_self) | 
 | 		kfree(state); | 
 | } | 
 |  | 
 | /* copy verifier state from src to dst growing dst stack space | 
 |  * when necessary to accommodate larger src stack | 
 |  */ | 
 | static int copy_func_state(struct bpf_func_state *dst, | 
 | 			   const struct bpf_func_state *src) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = realloc_func_state(dst, src->allocated_stack, false); | 
 | 	if (err) | 
 | 		return err; | 
 | 	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack)); | 
 | 	return copy_stack_state(dst, src); | 
 | } | 
 |  | 
 | static int copy_verifier_state(struct bpf_verifier_state *dst_state, | 
 | 			       const struct bpf_verifier_state *src) | 
 | { | 
 | 	struct bpf_func_state *dst; | 
 | 	int i, err; | 
 |  | 
 | 	/* if dst has more stack frames then src frame, free them */ | 
 | 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) { | 
 | 		free_func_state(dst_state->frame[i]); | 
 | 		dst_state->frame[i] = NULL; | 
 | 	} | 
 | 	dst_state->curframe = src->curframe; | 
 | 	dst_state->parent = src->parent; | 
 | 	for (i = 0; i <= src->curframe; i++) { | 
 | 		dst = dst_state->frame[i]; | 
 | 		if (!dst) { | 
 | 			dst = kzalloc(sizeof(*dst), GFP_KERNEL); | 
 | 			if (!dst) | 
 | 				return -ENOMEM; | 
 | 			dst_state->frame[i] = dst; | 
 | 		} | 
 | 		err = copy_func_state(dst, src->frame[i]); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, | 
 | 		     int *insn_idx) | 
 | { | 
 | 	struct bpf_verifier_state *cur = env->cur_state; | 
 | 	struct bpf_verifier_stack_elem *elem, *head = env->head; | 
 | 	int err; | 
 |  | 
 | 	if (env->head == NULL) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (cur) { | 
 | 		err = copy_verifier_state(cur, &head->st); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	if (insn_idx) | 
 | 		*insn_idx = head->insn_idx; | 
 | 	if (prev_insn_idx) | 
 | 		*prev_insn_idx = head->prev_insn_idx; | 
 | 	elem = head->next; | 
 | 	free_verifier_state(&head->st, false); | 
 | 	kfree(head); | 
 | 	env->head = elem; | 
 | 	env->stack_size--; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, | 
 | 					     int insn_idx, int prev_insn_idx) | 
 | { | 
 | 	struct bpf_verifier_state *cur = env->cur_state; | 
 | 	struct bpf_verifier_stack_elem *elem; | 
 | 	int err; | 
 |  | 
 | 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); | 
 | 	if (!elem) | 
 | 		goto err; | 
 |  | 
 | 	elem->insn_idx = insn_idx; | 
 | 	elem->prev_insn_idx = prev_insn_idx; | 
 | 	elem->next = env->head; | 
 | 	env->head = elem; | 
 | 	env->stack_size++; | 
 | 	err = copy_verifier_state(&elem->st, cur); | 
 | 	if (err) | 
 | 		goto err; | 
 | 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { | 
 | 		verbose(env, "BPF program is too complex\n"); | 
 | 		goto err; | 
 | 	} | 
 | 	return &elem->st; | 
 | err: | 
 | 	free_verifier_state(env->cur_state, true); | 
 | 	env->cur_state = NULL; | 
 | 	/* pop all elements and return */ | 
 | 	while (!pop_stack(env, NULL, NULL)); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #define CALLER_SAVED_REGS 6 | 
 | static const int caller_saved[CALLER_SAVED_REGS] = { | 
 | 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 | 
 | }; | 
 |  | 
 | static void __mark_reg_not_init(struct bpf_reg_state *reg); | 
 |  | 
 | /* Mark the unknown part of a register (variable offset or scalar value) as | 
 |  * known to have the value @imm. | 
 |  */ | 
 | static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) | 
 | { | 
 | 	reg->id = 0; | 
 | 	reg->var_off = tnum_const(imm); | 
 | 	reg->smin_value = (s64)imm; | 
 | 	reg->smax_value = (s64)imm; | 
 | 	reg->umin_value = imm; | 
 | 	reg->umax_value = imm; | 
 | } | 
 |  | 
 | /* Mark the 'variable offset' part of a register as zero.  This should be | 
 |  * used only on registers holding a pointer type. | 
 |  */ | 
 | static void __mark_reg_known_zero(struct bpf_reg_state *reg) | 
 | { | 
 | 	__mark_reg_known(reg, 0); | 
 | } | 
 |  | 
 | static void __mark_reg_const_zero(struct bpf_reg_state *reg) | 
 | { | 
 | 	__mark_reg_known(reg, 0); | 
 | 	reg->off = 0; | 
 | 	reg->type = SCALAR_VALUE; | 
 | } | 
 |  | 
 | static void mark_reg_known_zero(struct bpf_verifier_env *env, | 
 | 				struct bpf_reg_state *regs, u32 regno) | 
 | { | 
 | 	if (WARN_ON(regno >= MAX_BPF_REG)) { | 
 | 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); | 
 | 		/* Something bad happened, let's kill all regs */ | 
 | 		for (regno = 0; regno < MAX_BPF_REG; regno++) | 
 | 			__mark_reg_not_init(regs + regno); | 
 | 		return; | 
 | 	} | 
 | 	__mark_reg_known_zero(regs + regno); | 
 | } | 
 |  | 
 | static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) | 
 | { | 
 | 	return type_is_pkt_pointer(reg->type); | 
 | } | 
 |  | 
 | static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) | 
 | { | 
 | 	return reg_is_pkt_pointer(reg) || | 
 | 	       reg->type == PTR_TO_PACKET_END; | 
 | } | 
 |  | 
 | /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ | 
 | static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, | 
 | 				    enum bpf_reg_type which) | 
 | { | 
 | 	/* The register can already have a range from prior markings. | 
 | 	 * This is fine as long as it hasn't been advanced from its | 
 | 	 * origin. | 
 | 	 */ | 
 | 	return reg->type == which && | 
 | 	       reg->id == 0 && | 
 | 	       reg->off == 0 && | 
 | 	       tnum_equals_const(reg->var_off, 0); | 
 | } | 
 |  | 
 | /* Attempts to improve min/max values based on var_off information */ | 
 | static void __update_reg_bounds(struct bpf_reg_state *reg) | 
 | { | 
 | 	/* min signed is max(sign bit) | min(other bits) */ | 
 | 	reg->smin_value = max_t(s64, reg->smin_value, | 
 | 				reg->var_off.value | (reg->var_off.mask & S64_MIN)); | 
 | 	/* max signed is min(sign bit) | max(other bits) */ | 
 | 	reg->smax_value = min_t(s64, reg->smax_value, | 
 | 				reg->var_off.value | (reg->var_off.mask & S64_MAX)); | 
 | 	reg->umin_value = max(reg->umin_value, reg->var_off.value); | 
 | 	reg->umax_value = min(reg->umax_value, | 
 | 			      reg->var_off.value | reg->var_off.mask); | 
 | } | 
 |  | 
 | /* Uses signed min/max values to inform unsigned, and vice-versa */ | 
 | static void __reg_deduce_bounds(struct bpf_reg_state *reg) | 
 | { | 
 | 	/* Learn sign from signed bounds. | 
 | 	 * If we cannot cross the sign boundary, then signed and unsigned bounds | 
 | 	 * are the same, so combine.  This works even in the negative case, e.g. | 
 | 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. | 
 | 	 */ | 
 | 	if (reg->smin_value >= 0 || reg->smax_value < 0) { | 
 | 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, | 
 | 							  reg->umin_value); | 
 | 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, | 
 | 							  reg->umax_value); | 
 | 		return; | 
 | 	} | 
 | 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign | 
 | 	 * boundary, so we must be careful. | 
 | 	 */ | 
 | 	if ((s64)reg->umax_value >= 0) { | 
 | 		/* Positive.  We can't learn anything from the smin, but smax | 
 | 		 * is positive, hence safe. | 
 | 		 */ | 
 | 		reg->smin_value = reg->umin_value; | 
 | 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, | 
 | 							  reg->umax_value); | 
 | 	} else if ((s64)reg->umin_value < 0) { | 
 | 		/* Negative.  We can't learn anything from the smax, but smin | 
 | 		 * is negative, hence safe. | 
 | 		 */ | 
 | 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, | 
 | 							  reg->umin_value); | 
 | 		reg->smax_value = reg->umax_value; | 
 | 	} | 
 | } | 
 |  | 
 | /* Attempts to improve var_off based on unsigned min/max information */ | 
 | static void __reg_bound_offset(struct bpf_reg_state *reg) | 
 | { | 
 | 	reg->var_off = tnum_intersect(reg->var_off, | 
 | 				      tnum_range(reg->umin_value, | 
 | 						 reg->umax_value)); | 
 | } | 
 |  | 
 | /* Reset the min/max bounds of a register */ | 
 | static void __mark_reg_unbounded(struct bpf_reg_state *reg) | 
 | { | 
 | 	reg->smin_value = S64_MIN; | 
 | 	reg->smax_value = S64_MAX; | 
 | 	reg->umin_value = 0; | 
 | 	reg->umax_value = U64_MAX; | 
 | } | 
 |  | 
 | /* Mark a register as having a completely unknown (scalar) value. */ | 
 | static void __mark_reg_unknown(struct bpf_reg_state *reg) | 
 | { | 
 | 	reg->type = SCALAR_VALUE; | 
 | 	reg->id = 0; | 
 | 	reg->off = 0; | 
 | 	reg->var_off = tnum_unknown; | 
 | 	reg->frameno = 0; | 
 | 	__mark_reg_unbounded(reg); | 
 | } | 
 |  | 
 | static void mark_reg_unknown(struct bpf_verifier_env *env, | 
 | 			     struct bpf_reg_state *regs, u32 regno) | 
 | { | 
 | 	if (WARN_ON(regno >= MAX_BPF_REG)) { | 
 | 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno); | 
 | 		/* Something bad happened, let's kill all regs except FP */ | 
 | 		for (regno = 0; regno < BPF_REG_FP; regno++) | 
 | 			__mark_reg_not_init(regs + regno); | 
 | 		return; | 
 | 	} | 
 | 	__mark_reg_unknown(regs + regno); | 
 | } | 
 |  | 
 | static void __mark_reg_not_init(struct bpf_reg_state *reg) | 
 | { | 
 | 	__mark_reg_unknown(reg); | 
 | 	reg->type = NOT_INIT; | 
 | } | 
 |  | 
 | static void mark_reg_not_init(struct bpf_verifier_env *env, | 
 | 			      struct bpf_reg_state *regs, u32 regno) | 
 | { | 
 | 	if (WARN_ON(regno >= MAX_BPF_REG)) { | 
 | 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno); | 
 | 		/* Something bad happened, let's kill all regs except FP */ | 
 | 		for (regno = 0; regno < BPF_REG_FP; regno++) | 
 | 			__mark_reg_not_init(regs + regno); | 
 | 		return; | 
 | 	} | 
 | 	__mark_reg_not_init(regs + regno); | 
 | } | 
 |  | 
 | static void init_reg_state(struct bpf_verifier_env *env, | 
 | 			   struct bpf_func_state *state) | 
 | { | 
 | 	struct bpf_reg_state *regs = state->regs; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MAX_BPF_REG; i++) { | 
 | 		mark_reg_not_init(env, regs, i); | 
 | 		regs[i].live = REG_LIVE_NONE; | 
 | 	} | 
 |  | 
 | 	/* frame pointer */ | 
 | 	regs[BPF_REG_FP].type = PTR_TO_STACK; | 
 | 	mark_reg_known_zero(env, regs, BPF_REG_FP); | 
 | 	regs[BPF_REG_FP].frameno = state->frameno; | 
 |  | 
 | 	/* 1st arg to a function */ | 
 | 	regs[BPF_REG_1].type = PTR_TO_CTX; | 
 | 	mark_reg_known_zero(env, regs, BPF_REG_1); | 
 | } | 
 |  | 
 | #define BPF_MAIN_FUNC (-1) | 
 | static void init_func_state(struct bpf_verifier_env *env, | 
 | 			    struct bpf_func_state *state, | 
 | 			    int callsite, int frameno, int subprogno) | 
 | { | 
 | 	state->callsite = callsite; | 
 | 	state->frameno = frameno; | 
 | 	state->subprogno = subprogno; | 
 | 	init_reg_state(env, state); | 
 | } | 
 |  | 
 | enum reg_arg_type { | 
 | 	SRC_OP,		/* register is used as source operand */ | 
 | 	DST_OP,		/* register is used as destination operand */ | 
 | 	DST_OP_NO_MARK	/* same as above, check only, don't mark */ | 
 | }; | 
 |  | 
 | static int cmp_subprogs(const void *a, const void *b) | 
 | { | 
 | 	return *(int *)a - *(int *)b; | 
 | } | 
 |  | 
 | static int find_subprog(struct bpf_verifier_env *env, int off) | 
 | { | 
 | 	u32 *p; | 
 |  | 
 | 	p = bsearch(&off, env->subprog_starts, env->subprog_cnt, | 
 | 		    sizeof(env->subprog_starts[0]), cmp_subprogs); | 
 | 	if (!p) | 
 | 		return -ENOENT; | 
 | 	return p - env->subprog_starts; | 
 |  | 
 | } | 
 |  | 
 | static int add_subprog(struct bpf_verifier_env *env, int off) | 
 | { | 
 | 	int insn_cnt = env->prog->len; | 
 | 	int ret; | 
 |  | 
 | 	if (off >= insn_cnt || off < 0) { | 
 | 		verbose(env, "call to invalid destination\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	ret = find_subprog(env, off); | 
 | 	if (ret >= 0) | 
 | 		return 0; | 
 | 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { | 
 | 		verbose(env, "too many subprograms\n"); | 
 | 		return -E2BIG; | 
 | 	} | 
 | 	env->subprog_starts[env->subprog_cnt++] = off; | 
 | 	sort(env->subprog_starts, env->subprog_cnt, | 
 | 	     sizeof(env->subprog_starts[0]), cmp_subprogs, NULL); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_subprogs(struct bpf_verifier_env *env) | 
 | { | 
 | 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; | 
 | 	struct bpf_insn *insn = env->prog->insnsi; | 
 | 	int insn_cnt = env->prog->len; | 
 |  | 
 | 	/* determine subprog starts. The end is one before the next starts */ | 
 | 	for (i = 0; i < insn_cnt; i++) { | 
 | 		if (insn[i].code != (BPF_JMP | BPF_CALL)) | 
 | 			continue; | 
 | 		if (insn[i].src_reg != BPF_PSEUDO_CALL) | 
 | 			continue; | 
 | 		if (!env->allow_ptr_leaks) { | 
 | 			verbose(env, "function calls to other bpf functions are allowed for root only\n"); | 
 | 			return -EPERM; | 
 | 		} | 
 | 		if (bpf_prog_is_dev_bound(env->prog->aux)) { | 
 | 			verbose(env, "function calls in offloaded programs are not supported yet\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		ret = add_subprog(env, i + insn[i].imm + 1); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (env->log.level > 1) | 
 | 		for (i = 0; i < env->subprog_cnt; i++) | 
 | 			verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]); | 
 |  | 
 | 	/* now check that all jumps are within the same subprog */ | 
 | 	subprog_start = 0; | 
 | 	if (env->subprog_cnt == cur_subprog) | 
 | 		subprog_end = insn_cnt; | 
 | 	else | 
 | 		subprog_end = env->subprog_starts[cur_subprog++]; | 
 | 	for (i = 0; i < insn_cnt; i++) { | 
 | 		u8 code = insn[i].code; | 
 |  | 
 | 		if (BPF_CLASS(code) != BPF_JMP) | 
 | 			goto next; | 
 | 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) | 
 | 			goto next; | 
 | 		off = i + insn[i].off + 1; | 
 | 		if (off < subprog_start || off >= subprog_end) { | 
 | 			verbose(env, "jump out of range from insn %d to %d\n", i, off); | 
 | 			return -EINVAL; | 
 | 		} | 
 | next: | 
 | 		if (i == subprog_end - 1) { | 
 | 			/* to avoid fall-through from one subprog into another | 
 | 			 * the last insn of the subprog should be either exit | 
 | 			 * or unconditional jump back | 
 | 			 */ | 
 | 			if (code != (BPF_JMP | BPF_EXIT) && | 
 | 			    code != (BPF_JMP | BPF_JA)) { | 
 | 				verbose(env, "last insn is not an exit or jmp\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			subprog_start = subprog_end; | 
 | 			if (env->subprog_cnt == cur_subprog) | 
 | 				subprog_end = insn_cnt; | 
 | 			else | 
 | 				subprog_end = env->subprog_starts[cur_subprog++]; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static | 
 | struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env, | 
 | 				       const struct bpf_verifier_state *state, | 
 | 				       struct bpf_verifier_state *parent, | 
 | 				       u32 regno) | 
 | { | 
 | 	struct bpf_verifier_state *tmp = NULL; | 
 |  | 
 | 	/* 'parent' could be a state of caller and | 
 | 	 * 'state' could be a state of callee. In such case | 
 | 	 * parent->curframe < state->curframe | 
 | 	 * and it's ok for r1 - r5 registers | 
 | 	 * | 
 | 	 * 'parent' could be a callee's state after it bpf_exit-ed. | 
 | 	 * In such case parent->curframe > state->curframe | 
 | 	 * and it's ok for r0 only | 
 | 	 */ | 
 | 	if (parent->curframe == state->curframe || | 
 | 	    (parent->curframe < state->curframe && | 
 | 	     regno >= BPF_REG_1 && regno <= BPF_REG_5) || | 
 | 	    (parent->curframe > state->curframe && | 
 | 	       regno == BPF_REG_0)) | 
 | 		return parent; | 
 |  | 
 | 	if (parent->curframe > state->curframe && | 
 | 	    regno >= BPF_REG_6) { | 
 | 		/* for callee saved regs we have to skip the whole chain | 
 | 		 * of states that belong to callee and mark as LIVE_READ | 
 | 		 * the registers before the call | 
 | 		 */ | 
 | 		tmp = parent; | 
 | 		while (tmp && tmp->curframe != state->curframe) { | 
 | 			tmp = tmp->parent; | 
 | 		} | 
 | 		if (!tmp) | 
 | 			goto bug; | 
 | 		parent = tmp; | 
 | 	} else { | 
 | 		goto bug; | 
 | 	} | 
 | 	return parent; | 
 | bug: | 
 | 	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp); | 
 | 	verbose(env, "regno %d parent frame %d current frame %d\n", | 
 | 		regno, parent->curframe, state->curframe); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int mark_reg_read(struct bpf_verifier_env *env, | 
 | 			 const struct bpf_verifier_state *state, | 
 | 			 struct bpf_verifier_state *parent, | 
 | 			 u32 regno) | 
 | { | 
 | 	bool writes = parent == state->parent; /* Observe write marks */ | 
 |  | 
 | 	if (regno == BPF_REG_FP) | 
 | 		/* We don't need to worry about FP liveness because it's read-only */ | 
 | 		return 0; | 
 |  | 
 | 	while (parent) { | 
 | 		/* if read wasn't screened by an earlier write ... */ | 
 | 		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN) | 
 | 			break; | 
 | 		parent = skip_callee(env, state, parent, regno); | 
 | 		if (!parent) | 
 | 			return -EFAULT; | 
 | 		/* ... then we depend on parent's value */ | 
 | 		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ; | 
 | 		state = parent; | 
 | 		parent = state->parent; | 
 | 		writes = true; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, | 
 | 			 enum reg_arg_type t) | 
 | { | 
 | 	struct bpf_verifier_state *vstate = env->cur_state; | 
 | 	struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
 | 	struct bpf_reg_state *regs = state->regs; | 
 |  | 
 | 	if (regno >= MAX_BPF_REG) { | 
 | 		verbose(env, "R%d is invalid\n", regno); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (t == SRC_OP) { | 
 | 		/* check whether register used as source operand can be read */ | 
 | 		if (regs[regno].type == NOT_INIT) { | 
 | 			verbose(env, "R%d !read_ok\n", regno); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		return mark_reg_read(env, vstate, vstate->parent, regno); | 
 | 	} else { | 
 | 		/* check whether register used as dest operand can be written to */ | 
 | 		if (regno == BPF_REG_FP) { | 
 | 			verbose(env, "frame pointer is read only\n"); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		regs[regno].live |= REG_LIVE_WRITTEN; | 
 | 		if (t == DST_OP) | 
 | 			mark_reg_unknown(env, regs, regno); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool is_spillable_regtype(enum bpf_reg_type type) | 
 | { | 
 | 	switch (type) { | 
 | 	case PTR_TO_MAP_VALUE: | 
 | 	case PTR_TO_MAP_VALUE_OR_NULL: | 
 | 	case PTR_TO_STACK: | 
 | 	case PTR_TO_CTX: | 
 | 	case PTR_TO_PACKET: | 
 | 	case PTR_TO_PACKET_META: | 
 | 	case PTR_TO_PACKET_END: | 
 | 	case CONST_PTR_TO_MAP: | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | /* Does this register contain a constant zero? */ | 
 | static bool register_is_null(struct bpf_reg_state *reg) | 
 | { | 
 | 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); | 
 | } | 
 |  | 
 | /* check_stack_read/write functions track spill/fill of registers, | 
 |  * stack boundary and alignment are checked in check_mem_access() | 
 |  */ | 
 | static int check_stack_write(struct bpf_verifier_env *env, | 
 | 			     struct bpf_func_state *state, /* func where register points to */ | 
 | 			     int off, int size, int value_regno) | 
 | { | 
 | 	struct bpf_func_state *cur; /* state of the current function */ | 
 | 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; | 
 | 	enum bpf_reg_type type; | 
 |  | 
 | 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), | 
 | 				 true); | 
 | 	if (err) | 
 | 		return err; | 
 | 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, | 
 | 	 * so it's aligned access and [off, off + size) are within stack limits | 
 | 	 */ | 
 | 	if (!env->allow_ptr_leaks && | 
 | 	    state->stack[spi].slot_type[0] == STACK_SPILL && | 
 | 	    size != BPF_REG_SIZE) { | 
 | 		verbose(env, "attempt to corrupt spilled pointer on stack\n"); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	cur = env->cur_state->frame[env->cur_state->curframe]; | 
 | 	if (value_regno >= 0 && | 
 | 	    is_spillable_regtype((type = cur->regs[value_regno].type))) { | 
 |  | 
 | 		/* register containing pointer is being spilled into stack */ | 
 | 		if (size != BPF_REG_SIZE) { | 
 | 			verbose(env, "invalid size of register spill\n"); | 
 | 			return -EACCES; | 
 | 		} | 
 |  | 
 | 		if (state != cur && type == PTR_TO_STACK) { | 
 | 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		/* save register state */ | 
 | 		state->stack[spi].spilled_ptr = cur->regs[value_regno]; | 
 | 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; | 
 |  | 
 | 		for (i = 0; i < BPF_REG_SIZE; i++) | 
 | 			state->stack[spi].slot_type[i] = STACK_SPILL; | 
 | 	} else { | 
 | 		u8 type = STACK_MISC; | 
 |  | 
 | 		/* regular write of data into stack */ | 
 | 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; | 
 |  | 
 | 		/* only mark the slot as written if all 8 bytes were written | 
 | 		 * otherwise read propagation may incorrectly stop too soon | 
 | 		 * when stack slots are partially written. | 
 | 		 * This heuristic means that read propagation will be | 
 | 		 * conservative, since it will add reg_live_read marks | 
 | 		 * to stack slots all the way to first state when programs | 
 | 		 * writes+reads less than 8 bytes | 
 | 		 */ | 
 | 		if (size == BPF_REG_SIZE) | 
 | 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; | 
 |  | 
 | 		/* when we zero initialize stack slots mark them as such */ | 
 | 		if (value_regno >= 0 && | 
 | 		    register_is_null(&cur->regs[value_regno])) | 
 | 			type = STACK_ZERO; | 
 |  | 
 | 		for (i = 0; i < size; i++) | 
 | 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = | 
 | 				type; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* registers of every function are unique and mark_reg_read() propagates | 
 |  * the liveness in the following cases: | 
 |  * - from callee into caller for R1 - R5 that were used as arguments | 
 |  * - from caller into callee for R0 that used as result of the call | 
 |  * - from caller to the same caller skipping states of the callee for R6 - R9, | 
 |  *   since R6 - R9 are callee saved by implicit function prologue and | 
 |  *   caller's R6 != callee's R6, so when we propagate liveness up to | 
 |  *   parent states we need to skip callee states for R6 - R9. | 
 |  * | 
 |  * stack slot marking is different, since stacks of caller and callee are | 
 |  * accessible in both (since caller can pass a pointer to caller's stack to | 
 |  * callee which can pass it to another function), hence mark_stack_slot_read() | 
 |  * has to propagate the stack liveness to all parent states at given frame number. | 
 |  * Consider code: | 
 |  * f1() { | 
 |  *   ptr = fp - 8; | 
 |  *   *ptr = ctx; | 
 |  *   call f2 { | 
 |  *      .. = *ptr; | 
 |  *   } | 
 |  *   .. = *ptr; | 
 |  * } | 
 |  * First *ptr is reading from f1's stack and mark_stack_slot_read() has | 
 |  * to mark liveness at the f1's frame and not f2's frame. | 
 |  * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has | 
 |  * to propagate liveness to f2 states at f1's frame level and further into | 
 |  * f1 states at f1's frame level until write into that stack slot | 
 |  */ | 
 | static void mark_stack_slot_read(struct bpf_verifier_env *env, | 
 | 				 const struct bpf_verifier_state *state, | 
 | 				 struct bpf_verifier_state *parent, | 
 | 				 int slot, int frameno) | 
 | { | 
 | 	bool writes = parent == state->parent; /* Observe write marks */ | 
 |  | 
 | 	while (parent) { | 
 | 		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE) | 
 | 			/* since LIVE_WRITTEN mark is only done for full 8-byte | 
 | 			 * write the read marks are conservative and parent | 
 | 			 * state may not even have the stack allocated. In such case | 
 | 			 * end the propagation, since the loop reached beginning | 
 | 			 * of the function | 
 | 			 */ | 
 | 			break; | 
 | 		/* if read wasn't screened by an earlier write ... */ | 
 | 		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) | 
 | 			break; | 
 | 		/* ... then we depend on parent's value */ | 
 | 		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ; | 
 | 		state = parent; | 
 | 		parent = state->parent; | 
 | 		writes = true; | 
 | 	} | 
 | } | 
 |  | 
 | static int check_stack_read(struct bpf_verifier_env *env, | 
 | 			    struct bpf_func_state *reg_state /* func where register points to */, | 
 | 			    int off, int size, int value_regno) | 
 | { | 
 | 	struct bpf_verifier_state *vstate = env->cur_state; | 
 | 	struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
 | 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; | 
 | 	u8 *stype; | 
 |  | 
 | 	if (reg_state->allocated_stack <= slot) { | 
 | 		verbose(env, "invalid read from stack off %d+0 size %d\n", | 
 | 			off, size); | 
 | 		return -EACCES; | 
 | 	} | 
 | 	stype = reg_state->stack[spi].slot_type; | 
 |  | 
 | 	if (stype[0] == STACK_SPILL) { | 
 | 		if (size != BPF_REG_SIZE) { | 
 | 			verbose(env, "invalid size of register spill\n"); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		for (i = 1; i < BPF_REG_SIZE; i++) { | 
 | 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { | 
 | 				verbose(env, "corrupted spill memory\n"); | 
 | 				return -EACCES; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (value_regno >= 0) { | 
 | 			/* restore register state from stack */ | 
 | 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; | 
 | 			/* mark reg as written since spilled pointer state likely | 
 | 			 * has its liveness marks cleared by is_state_visited() | 
 | 			 * which resets stack/reg liveness for state transitions | 
 | 			 */ | 
 | 			state->regs[value_regno].live |= REG_LIVE_WRITTEN; | 
 | 		} | 
 | 		mark_stack_slot_read(env, vstate, vstate->parent, spi, | 
 | 				     reg_state->frameno); | 
 | 		return 0; | 
 | 	} else { | 
 | 		int zeros = 0; | 
 |  | 
 | 		for (i = 0; i < size; i++) { | 
 | 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) | 
 | 				continue; | 
 | 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { | 
 | 				zeros++; | 
 | 				continue; | 
 | 			} | 
 | 			verbose(env, "invalid read from stack off %d+%d size %d\n", | 
 | 				off, i, size); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		mark_stack_slot_read(env, vstate, vstate->parent, spi, | 
 | 				     reg_state->frameno); | 
 | 		if (value_regno >= 0) { | 
 | 			if (zeros == size) { | 
 | 				/* any size read into register is zero extended, | 
 | 				 * so the whole register == const_zero | 
 | 				 */ | 
 | 				__mark_reg_const_zero(&state->regs[value_regno]); | 
 | 			} else { | 
 | 				/* have read misc data from the stack */ | 
 | 				mark_reg_unknown(env, state->regs, value_regno); | 
 | 			} | 
 | 			state->regs[value_regno].live |= REG_LIVE_WRITTEN; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* check read/write into map element returned by bpf_map_lookup_elem() */ | 
 | static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, | 
 | 			      int size, bool zero_size_allowed) | 
 | { | 
 | 	struct bpf_reg_state *regs = cur_regs(env); | 
 | 	struct bpf_map *map = regs[regno].map_ptr; | 
 |  | 
 | 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || | 
 | 	    off + size > map->value_size) { | 
 | 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", | 
 | 			map->value_size, off, size); | 
 | 		return -EACCES; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* check read/write into a map element with possible variable offset */ | 
 | static int check_map_access(struct bpf_verifier_env *env, u32 regno, | 
 | 			    int off, int size, bool zero_size_allowed) | 
 | { | 
 | 	struct bpf_verifier_state *vstate = env->cur_state; | 
 | 	struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
 | 	struct bpf_reg_state *reg = &state->regs[regno]; | 
 | 	int err; | 
 |  | 
 | 	/* We may have adjusted the register to this map value, so we | 
 | 	 * need to try adding each of min_value and max_value to off | 
 | 	 * to make sure our theoretical access will be safe. | 
 | 	 */ | 
 | 	if (env->log.level) | 
 | 		print_verifier_state(env, state); | 
 | 	/* The minimum value is only important with signed | 
 | 	 * comparisons where we can't assume the floor of a | 
 | 	 * value is 0.  If we are using signed variables for our | 
 | 	 * index'es we need to make sure that whatever we use | 
 | 	 * will have a set floor within our range. | 
 | 	 */ | 
 | 	if (reg->smin_value < 0) { | 
 | 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", | 
 | 			regno); | 
 | 		return -EACCES; | 
 | 	} | 
 | 	err = __check_map_access(env, regno, reg->smin_value + off, size, | 
 | 				 zero_size_allowed); | 
 | 	if (err) { | 
 | 		verbose(env, "R%d min value is outside of the array range\n", | 
 | 			regno); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* If we haven't set a max value then we need to bail since we can't be | 
 | 	 * sure we won't do bad things. | 
 | 	 * If reg->umax_value + off could overflow, treat that as unbounded too. | 
 | 	 */ | 
 | 	if (reg->umax_value >= BPF_MAX_VAR_OFF) { | 
 | 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", | 
 | 			regno); | 
 | 		return -EACCES; | 
 | 	} | 
 | 	err = __check_map_access(env, regno, reg->umax_value + off, size, | 
 | 				 zero_size_allowed); | 
 | 	if (err) | 
 | 		verbose(env, "R%d max value is outside of the array range\n", | 
 | 			regno); | 
 | 	return err; | 
 | } | 
 |  | 
 | #define MAX_PACKET_OFF 0xffff | 
 |  | 
 | static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, | 
 | 				       const struct bpf_call_arg_meta *meta, | 
 | 				       enum bpf_access_type t) | 
 | { | 
 | 	switch (env->prog->type) { | 
 | 	case BPF_PROG_TYPE_LWT_IN: | 
 | 	case BPF_PROG_TYPE_LWT_OUT: | 
 | 		/* dst_input() and dst_output() can't write for now */ | 
 | 		if (t == BPF_WRITE) | 
 | 			return false; | 
 | 		/* fallthrough */ | 
 | 	case BPF_PROG_TYPE_SCHED_CLS: | 
 | 	case BPF_PROG_TYPE_SCHED_ACT: | 
 | 	case BPF_PROG_TYPE_XDP: | 
 | 	case BPF_PROG_TYPE_LWT_XMIT: | 
 | 	case BPF_PROG_TYPE_SK_SKB: | 
 | 	case BPF_PROG_TYPE_SK_MSG: | 
 | 		if (meta) | 
 | 			return meta->pkt_access; | 
 |  | 
 | 		env->seen_direct_write = true; | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, | 
 | 				 int off, int size, bool zero_size_allowed) | 
 | { | 
 | 	struct bpf_reg_state *regs = cur_regs(env); | 
 | 	struct bpf_reg_state *reg = ®s[regno]; | 
 |  | 
 | 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || | 
 | 	    (u64)off + size > reg->range) { | 
 | 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", | 
 | 			off, size, regno, reg->id, reg->off, reg->range); | 
 | 		return -EACCES; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, | 
 | 			       int size, bool zero_size_allowed) | 
 | { | 
 | 	struct bpf_reg_state *regs = cur_regs(env); | 
 | 	struct bpf_reg_state *reg = ®s[regno]; | 
 | 	int err; | 
 |  | 
 | 	/* We may have added a variable offset to the packet pointer; but any | 
 | 	 * reg->range we have comes after that.  We are only checking the fixed | 
 | 	 * offset. | 
 | 	 */ | 
 |  | 
 | 	/* We don't allow negative numbers, because we aren't tracking enough | 
 | 	 * detail to prove they're safe. | 
 | 	 */ | 
 | 	if (reg->smin_value < 0) { | 
 | 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", | 
 | 			regno); | 
 | 		return -EACCES; | 
 | 	} | 
 | 	err = __check_packet_access(env, regno, off, size, zero_size_allowed); | 
 | 	if (err) { | 
 | 		verbose(env, "R%d offset is outside of the packet\n", regno); | 
 | 		return err; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */ | 
 | static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, | 
 | 			    enum bpf_access_type t, enum bpf_reg_type *reg_type) | 
 | { | 
 | 	struct bpf_insn_access_aux info = { | 
 | 		.reg_type = *reg_type, | 
 | 	}; | 
 |  | 
 | 	if (env->ops->is_valid_access && | 
 | 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) { | 
 | 		/* A non zero info.ctx_field_size indicates that this field is a | 
 | 		 * candidate for later verifier transformation to load the whole | 
 | 		 * field and then apply a mask when accessed with a narrower | 
 | 		 * access than actual ctx access size. A zero info.ctx_field_size | 
 | 		 * will only allow for whole field access and rejects any other | 
 | 		 * type of narrower access. | 
 | 		 */ | 
 | 		*reg_type = info.reg_type; | 
 |  | 
 | 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; | 
 | 		/* remember the offset of last byte accessed in ctx */ | 
 | 		if (env->prog->aux->max_ctx_offset < off + size) | 
 | 			env->prog->aux->max_ctx_offset = off + size; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); | 
 | 	return -EACCES; | 
 | } | 
 |  | 
 | static bool __is_pointer_value(bool allow_ptr_leaks, | 
 | 			       const struct bpf_reg_state *reg) | 
 | { | 
 | 	if (allow_ptr_leaks) | 
 | 		return false; | 
 |  | 
 | 	return reg->type != SCALAR_VALUE; | 
 | } | 
 |  | 
 | static bool is_pointer_value(struct bpf_verifier_env *env, int regno) | 
 | { | 
 | 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); | 
 | } | 
 |  | 
 | static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) | 
 | { | 
 | 	const struct bpf_reg_state *reg = cur_regs(env) + regno; | 
 |  | 
 | 	return reg->type == PTR_TO_CTX; | 
 | } | 
 |  | 
 | static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) | 
 | { | 
 | 	const struct bpf_reg_state *reg = cur_regs(env) + regno; | 
 |  | 
 | 	return type_is_pkt_pointer(reg->type); | 
 | } | 
 |  | 
 | static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, | 
 | 				   const struct bpf_reg_state *reg, | 
 | 				   int off, int size, bool strict) | 
 | { | 
 | 	struct tnum reg_off; | 
 | 	int ip_align; | 
 |  | 
 | 	/* Byte size accesses are always allowed. */ | 
 | 	if (!strict || size == 1) | 
 | 		return 0; | 
 |  | 
 | 	/* For platforms that do not have a Kconfig enabling | 
 | 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of | 
 | 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms | 
 | 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get | 
 | 	 * to this code only in strict mode where we want to emulate | 
 | 	 * the NET_IP_ALIGN==2 checking.  Therefore use an | 
 | 	 * unconditional IP align value of '2'. | 
 | 	 */ | 
 | 	ip_align = 2; | 
 |  | 
 | 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); | 
 | 	if (!tnum_is_aligned(reg_off, size)) { | 
 | 		char tn_buf[48]; | 
 |  | 
 | 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
 | 		verbose(env, | 
 | 			"misaligned packet access off %d+%s+%d+%d size %d\n", | 
 | 			ip_align, tn_buf, reg->off, off, size); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_generic_ptr_alignment(struct bpf_verifier_env *env, | 
 | 				       const struct bpf_reg_state *reg, | 
 | 				       const char *pointer_desc, | 
 | 				       int off, int size, bool strict) | 
 | { | 
 | 	struct tnum reg_off; | 
 |  | 
 | 	/* Byte size accesses are always allowed. */ | 
 | 	if (!strict || size == 1) | 
 | 		return 0; | 
 |  | 
 | 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); | 
 | 	if (!tnum_is_aligned(reg_off, size)) { | 
 | 		char tn_buf[48]; | 
 |  | 
 | 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
 | 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", | 
 | 			pointer_desc, tn_buf, reg->off, off, size); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_ptr_alignment(struct bpf_verifier_env *env, | 
 | 			       const struct bpf_reg_state *reg, int off, | 
 | 			       int size, bool strict_alignment_once) | 
 | { | 
 | 	bool strict = env->strict_alignment || strict_alignment_once; | 
 | 	const char *pointer_desc = ""; | 
 |  | 
 | 	switch (reg->type) { | 
 | 	case PTR_TO_PACKET: | 
 | 	case PTR_TO_PACKET_META: | 
 | 		/* Special case, because of NET_IP_ALIGN. Given metadata sits | 
 | 		 * right in front, treat it the very same way. | 
 | 		 */ | 
 | 		return check_pkt_ptr_alignment(env, reg, off, size, strict); | 
 | 	case PTR_TO_MAP_VALUE: | 
 | 		pointer_desc = "value "; | 
 | 		break; | 
 | 	case PTR_TO_CTX: | 
 | 		pointer_desc = "context "; | 
 | 		break; | 
 | 	case PTR_TO_STACK: | 
 | 		pointer_desc = "stack "; | 
 | 		/* The stack spill tracking logic in check_stack_write() | 
 | 		 * and check_stack_read() relies on stack accesses being | 
 | 		 * aligned. | 
 | 		 */ | 
 | 		strict = true; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, | 
 | 					   strict); | 
 | } | 
 |  | 
 | static int update_stack_depth(struct bpf_verifier_env *env, | 
 | 			      const struct bpf_func_state *func, | 
 | 			      int off) | 
 | { | 
 | 	u16 stack = env->subprog_stack_depth[func->subprogno]; | 
 |  | 
 | 	if (stack >= -off) | 
 | 		return 0; | 
 |  | 
 | 	/* update known max for given subprogram */ | 
 | 	env->subprog_stack_depth[func->subprogno] = -off; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* starting from main bpf function walk all instructions of the function | 
 |  * and recursively walk all callees that given function can call. | 
 |  * Ignore jump and exit insns. | 
 |  * Since recursion is prevented by check_cfg() this algorithm | 
 |  * only needs a local stack of MAX_CALL_FRAMES to remember callsites | 
 |  */ | 
 | static int check_max_stack_depth(struct bpf_verifier_env *env) | 
 | { | 
 | 	int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end; | 
 | 	struct bpf_insn *insn = env->prog->insnsi; | 
 | 	int insn_cnt = env->prog->len; | 
 | 	int ret_insn[MAX_CALL_FRAMES]; | 
 | 	int ret_prog[MAX_CALL_FRAMES]; | 
 |  | 
 | process_func: | 
 | 	/* round up to 32-bytes, since this is granularity | 
 | 	 * of interpreter stack size | 
 | 	 */ | 
 | 	depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32); | 
 | 	if (depth > MAX_BPF_STACK) { | 
 | 		verbose(env, "combined stack size of %d calls is %d. Too large\n", | 
 | 			frame + 1, depth); | 
 | 		return -EACCES; | 
 | 	} | 
 | continue_func: | 
 | 	if (env->subprog_cnt == subprog) | 
 | 		subprog_end = insn_cnt; | 
 | 	else | 
 | 		subprog_end = env->subprog_starts[subprog]; | 
 | 	for (; i < subprog_end; i++) { | 
 | 		if (insn[i].code != (BPF_JMP | BPF_CALL)) | 
 | 			continue; | 
 | 		if (insn[i].src_reg != BPF_PSEUDO_CALL) | 
 | 			continue; | 
 | 		/* remember insn and function to return to */ | 
 | 		ret_insn[frame] = i + 1; | 
 | 		ret_prog[frame] = subprog; | 
 |  | 
 | 		/* find the callee */ | 
 | 		i = i + insn[i].imm + 1; | 
 | 		subprog = find_subprog(env, i); | 
 | 		if (subprog < 0) { | 
 | 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", | 
 | 				  i); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		subprog++; | 
 | 		frame++; | 
 | 		if (frame >= MAX_CALL_FRAMES) { | 
 | 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		goto process_func; | 
 | 	} | 
 | 	/* end of for() loop means the last insn of the 'subprog' | 
 | 	 * was reached. Doesn't matter whether it was JA or EXIT | 
 | 	 */ | 
 | 	if (frame == 0) | 
 | 		return 0; | 
 | 	depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32); | 
 | 	frame--; | 
 | 	i = ret_insn[frame]; | 
 | 	subprog = ret_prog[frame]; | 
 | 	goto continue_func; | 
 | } | 
 |  | 
 | #ifndef CONFIG_BPF_JIT_ALWAYS_ON | 
 | static int get_callee_stack_depth(struct bpf_verifier_env *env, | 
 | 				  const struct bpf_insn *insn, int idx) | 
 | { | 
 | 	int start = idx + insn->imm + 1, subprog; | 
 |  | 
 | 	subprog = find_subprog(env, start); | 
 | 	if (subprog < 0) { | 
 | 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", | 
 | 			  start); | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	subprog++; | 
 | 	return env->subprog_stack_depth[subprog]; | 
 | } | 
 | #endif | 
 |  | 
 | /* truncate register to smaller size (in bytes) | 
 |  * must be called with size < BPF_REG_SIZE | 
 |  */ | 
 | static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) | 
 | { | 
 | 	u64 mask; | 
 |  | 
 | 	/* clear high bits in bit representation */ | 
 | 	reg->var_off = tnum_cast(reg->var_off, size); | 
 |  | 
 | 	/* fix arithmetic bounds */ | 
 | 	mask = ((u64)1 << (size * 8)) - 1; | 
 | 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { | 
 | 		reg->umin_value &= mask; | 
 | 		reg->umax_value &= mask; | 
 | 	} else { | 
 | 		reg->umin_value = 0; | 
 | 		reg->umax_value = mask; | 
 | 	} | 
 | 	reg->smin_value = reg->umin_value; | 
 | 	reg->smax_value = reg->umax_value; | 
 | } | 
 |  | 
 | /* check whether memory at (regno + off) is accessible for t = (read | write) | 
 |  * if t==write, value_regno is a register which value is stored into memory | 
 |  * if t==read, value_regno is a register which will receive the value from memory | 
 |  * if t==write && value_regno==-1, some unknown value is stored into memory | 
 |  * if t==read && value_regno==-1, don't care what we read from memory | 
 |  */ | 
 | static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, | 
 | 			    int off, int bpf_size, enum bpf_access_type t, | 
 | 			    int value_regno, bool strict_alignment_once) | 
 | { | 
 | 	struct bpf_reg_state *regs = cur_regs(env); | 
 | 	struct bpf_reg_state *reg = regs + regno; | 
 | 	struct bpf_func_state *state; | 
 | 	int size, err = 0; | 
 |  | 
 | 	size = bpf_size_to_bytes(bpf_size); | 
 | 	if (size < 0) | 
 | 		return size; | 
 |  | 
 | 	/* alignment checks will add in reg->off themselves */ | 
 | 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* for access checks, reg->off is just part of off */ | 
 | 	off += reg->off; | 
 |  | 
 | 	if (reg->type == PTR_TO_MAP_VALUE) { | 
 | 		if (t == BPF_WRITE && value_regno >= 0 && | 
 | 		    is_pointer_value(env, value_regno)) { | 
 | 			verbose(env, "R%d leaks addr into map\n", value_regno); | 
 | 			return -EACCES; | 
 | 		} | 
 |  | 
 | 		err = check_map_access(env, regno, off, size, false); | 
 | 		if (!err && t == BPF_READ && value_regno >= 0) | 
 | 			mark_reg_unknown(env, regs, value_regno); | 
 |  | 
 | 	} else if (reg->type == PTR_TO_CTX) { | 
 | 		enum bpf_reg_type reg_type = SCALAR_VALUE; | 
 |  | 
 | 		if (t == BPF_WRITE && value_regno >= 0 && | 
 | 		    is_pointer_value(env, value_regno)) { | 
 | 			verbose(env, "R%d leaks addr into ctx\n", value_regno); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		/* ctx accesses must be at a fixed offset, so that we can | 
 | 		 * determine what type of data were returned. | 
 | 		 */ | 
 | 		if (reg->off) { | 
 | 			verbose(env, | 
 | 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", | 
 | 				regno, reg->off, off - reg->off); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) { | 
 | 			char tn_buf[48]; | 
 |  | 
 | 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
 | 			verbose(env, | 
 | 				"variable ctx access var_off=%s off=%d size=%d", | 
 | 				tn_buf, off, size); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		err = check_ctx_access(env, insn_idx, off, size, t, ®_type); | 
 | 		if (!err && t == BPF_READ && value_regno >= 0) { | 
 | 			/* ctx access returns either a scalar, or a | 
 | 			 * PTR_TO_PACKET[_META,_END]. In the latter | 
 | 			 * case, we know the offset is zero. | 
 | 			 */ | 
 | 			if (reg_type == SCALAR_VALUE) | 
 | 				mark_reg_unknown(env, regs, value_regno); | 
 | 			else | 
 | 				mark_reg_known_zero(env, regs, | 
 | 						    value_regno); | 
 | 			regs[value_regno].id = 0; | 
 | 			regs[value_regno].off = 0; | 
 | 			regs[value_regno].range = 0; | 
 | 			regs[value_regno].type = reg_type; | 
 | 		} | 
 |  | 
 | 	} else if (reg->type == PTR_TO_STACK) { | 
 | 		/* stack accesses must be at a fixed offset, so that we can | 
 | 		 * determine what type of data were returned. | 
 | 		 * See check_stack_read(). | 
 | 		 */ | 
 | 		if (!tnum_is_const(reg->var_off)) { | 
 | 			char tn_buf[48]; | 
 |  | 
 | 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
 | 			verbose(env, "variable stack access var_off=%s off=%d size=%d", | 
 | 				tn_buf, off, size); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		off += reg->var_off.value; | 
 | 		if (off >= 0 || off < -MAX_BPF_STACK) { | 
 | 			verbose(env, "invalid stack off=%d size=%d\n", off, | 
 | 				size); | 
 | 			return -EACCES; | 
 | 		} | 
 |  | 
 | 		state = func(env, reg); | 
 | 		err = update_stack_depth(env, state, off); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (t == BPF_WRITE) | 
 | 			err = check_stack_write(env, state, off, size, | 
 | 						value_regno); | 
 | 		else | 
 | 			err = check_stack_read(env, state, off, size, | 
 | 					       value_regno); | 
 | 	} else if (reg_is_pkt_pointer(reg)) { | 
 | 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { | 
 | 			verbose(env, "cannot write into packet\n"); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		if (t == BPF_WRITE && value_regno >= 0 && | 
 | 		    is_pointer_value(env, value_regno)) { | 
 | 			verbose(env, "R%d leaks addr into packet\n", | 
 | 				value_regno); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		err = check_packet_access(env, regno, off, size, false); | 
 | 		if (!err && t == BPF_READ && value_regno >= 0) | 
 | 			mark_reg_unknown(env, regs, value_regno); | 
 | 	} else { | 
 | 		verbose(env, "R%d invalid mem access '%s'\n", regno, | 
 | 			reg_type_str[reg->type]); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && | 
 | 	    regs[value_regno].type == SCALAR_VALUE) { | 
 | 		/* b/h/w load zero-extends, mark upper bits as known 0 */ | 
 | 		coerce_reg_to_size(®s[value_regno], size); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || | 
 | 	    insn->imm != 0) { | 
 | 		verbose(env, "BPF_XADD uses reserved fields\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* check src1 operand */ | 
 | 	err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* check src2 operand */ | 
 | 	err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (is_pointer_value(env, insn->src_reg)) { | 
 | 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (is_ctx_reg(env, insn->dst_reg) || | 
 | 	    is_pkt_reg(env, insn->dst_reg)) { | 
 | 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", | 
 | 			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? | 
 | 			"context" : "packet"); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	/* check whether atomic_add can read the memory */ | 
 | 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, | 
 | 			       BPF_SIZE(insn->code), BPF_READ, -1, true); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* check whether atomic_add can write into the same memory */ | 
 | 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, | 
 | 				BPF_SIZE(insn->code), BPF_WRITE, -1, true); | 
 | } | 
 |  | 
 | /* when register 'regno' is passed into function that will read 'access_size' | 
 |  * bytes from that pointer, make sure that it's within stack boundary | 
 |  * and all elements of stack are initialized. | 
 |  * Unlike most pointer bounds-checking functions, this one doesn't take an | 
 |  * 'off' argument, so it has to add in reg->off itself. | 
 |  */ | 
 | static int check_stack_boundary(struct bpf_verifier_env *env, int regno, | 
 | 				int access_size, bool zero_size_allowed, | 
 | 				struct bpf_call_arg_meta *meta) | 
 | { | 
 | 	struct bpf_reg_state *reg = cur_regs(env) + regno; | 
 | 	struct bpf_func_state *state = func(env, reg); | 
 | 	int off, i, slot, spi; | 
 |  | 
 | 	if (reg->type != PTR_TO_STACK) { | 
 | 		/* Allow zero-byte read from NULL, regardless of pointer type */ | 
 | 		if (zero_size_allowed && access_size == 0 && | 
 | 		    register_is_null(reg)) | 
 | 			return 0; | 
 |  | 
 | 		verbose(env, "R%d type=%s expected=%s\n", regno, | 
 | 			reg_type_str[reg->type], | 
 | 			reg_type_str[PTR_TO_STACK]); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	/* Only allow fixed-offset stack reads */ | 
 | 	if (!tnum_is_const(reg->var_off)) { | 
 | 		char tn_buf[48]; | 
 |  | 
 | 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
 | 		verbose(env, "invalid variable stack read R%d var_off=%s\n", | 
 | 			regno, tn_buf); | 
 | 		return -EACCES; | 
 | 	} | 
 | 	off = reg->off + reg->var_off.value; | 
 | 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || | 
 | 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) { | 
 | 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n", | 
 | 			regno, off, access_size); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (meta && meta->raw_mode) { | 
 | 		meta->access_size = access_size; | 
 | 		meta->regno = regno; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < access_size; i++) { | 
 | 		u8 *stype; | 
 |  | 
 | 		slot = -(off + i) - 1; | 
 | 		spi = slot / BPF_REG_SIZE; | 
 | 		if (state->allocated_stack <= slot) | 
 | 			goto err; | 
 | 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; | 
 | 		if (*stype == STACK_MISC) | 
 | 			goto mark; | 
 | 		if (*stype == STACK_ZERO) { | 
 | 			/* helper can write anything into the stack */ | 
 | 			*stype = STACK_MISC; | 
 | 			goto mark; | 
 | 		} | 
 | err: | 
 | 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n", | 
 | 			off, i, access_size); | 
 | 		return -EACCES; | 
 | mark: | 
 | 		/* reading any byte out of 8-byte 'spill_slot' will cause | 
 | 		 * the whole slot to be marked as 'read' | 
 | 		 */ | 
 | 		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent, | 
 | 				     spi, state->frameno); | 
 | 	} | 
 | 	return update_stack_depth(env, state, off); | 
 | } | 
 |  | 
 | static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, | 
 | 				   int access_size, bool zero_size_allowed, | 
 | 				   struct bpf_call_arg_meta *meta) | 
 | { | 
 | 	struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
 |  | 
 | 	switch (reg->type) { | 
 | 	case PTR_TO_PACKET: | 
 | 	case PTR_TO_PACKET_META: | 
 | 		return check_packet_access(env, regno, reg->off, access_size, | 
 | 					   zero_size_allowed); | 
 | 	case PTR_TO_MAP_VALUE: | 
 | 		return check_map_access(env, regno, reg->off, access_size, | 
 | 					zero_size_allowed); | 
 | 	default: /* scalar_value|ptr_to_stack or invalid ptr */ | 
 | 		return check_stack_boundary(env, regno, access_size, | 
 | 					    zero_size_allowed, meta); | 
 | 	} | 
 | } | 
 |  | 
 | static bool arg_type_is_mem_ptr(enum bpf_arg_type type) | 
 | { | 
 | 	return type == ARG_PTR_TO_MEM || | 
 | 	       type == ARG_PTR_TO_MEM_OR_NULL || | 
 | 	       type == ARG_PTR_TO_UNINIT_MEM; | 
 | } | 
 |  | 
 | static bool arg_type_is_mem_size(enum bpf_arg_type type) | 
 | { | 
 | 	return type == ARG_CONST_SIZE || | 
 | 	       type == ARG_CONST_SIZE_OR_ZERO; | 
 | } | 
 |  | 
 | static int check_func_arg(struct bpf_verifier_env *env, u32 regno, | 
 | 			  enum bpf_arg_type arg_type, | 
 | 			  struct bpf_call_arg_meta *meta) | 
 | { | 
 | 	struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | 
 | 	enum bpf_reg_type expected_type, type = reg->type; | 
 | 	int err = 0; | 
 |  | 
 | 	if (arg_type == ARG_DONTCARE) | 
 | 		return 0; | 
 |  | 
 | 	err = check_reg_arg(env, regno, SRC_OP); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (arg_type == ARG_ANYTHING) { | 
 | 		if (is_pointer_value(env, regno)) { | 
 | 			verbose(env, "R%d leaks addr into helper function\n", | 
 | 				regno); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (type_is_pkt_pointer(type) && | 
 | 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) { | 
 | 		verbose(env, "helper access to the packet is not allowed\n"); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (arg_type == ARG_PTR_TO_MAP_KEY || | 
 | 	    arg_type == ARG_PTR_TO_MAP_VALUE) { | 
 | 		expected_type = PTR_TO_STACK; | 
 | 		if (!type_is_pkt_pointer(type) && | 
 | 		    type != expected_type) | 
 | 			goto err_type; | 
 | 	} else if (arg_type == ARG_CONST_SIZE || | 
 | 		   arg_type == ARG_CONST_SIZE_OR_ZERO) { | 
 | 		expected_type = SCALAR_VALUE; | 
 | 		if (type != expected_type) | 
 | 			goto err_type; | 
 | 	} else if (arg_type == ARG_CONST_MAP_PTR) { | 
 | 		expected_type = CONST_PTR_TO_MAP; | 
 | 		if (type != expected_type) | 
 | 			goto err_type; | 
 | 	} else if (arg_type == ARG_PTR_TO_CTX) { | 
 | 		expected_type = PTR_TO_CTX; | 
 | 		if (type != expected_type) | 
 | 			goto err_type; | 
 | 	} else if (arg_type_is_mem_ptr(arg_type)) { | 
 | 		expected_type = PTR_TO_STACK; | 
 | 		/* One exception here. In case function allows for NULL to be | 
 | 		 * passed in as argument, it's a SCALAR_VALUE type. Final test | 
 | 		 * happens during stack boundary checking. | 
 | 		 */ | 
 | 		if (register_is_null(reg) && | 
 | 		    arg_type == ARG_PTR_TO_MEM_OR_NULL) | 
 | 			/* final test in check_stack_boundary() */; | 
 | 		else if (!type_is_pkt_pointer(type) && | 
 | 			 type != PTR_TO_MAP_VALUE && | 
 | 			 type != expected_type) | 
 | 			goto err_type; | 
 | 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; | 
 | 	} else { | 
 | 		verbose(env, "unsupported arg_type %d\n", arg_type); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	if (arg_type == ARG_CONST_MAP_PTR) { | 
 | 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */ | 
 | 		meta->map_ptr = reg->map_ptr; | 
 | 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) { | 
 | 		/* bpf_map_xxx(..., map_ptr, ..., key) call: | 
 | 		 * check that [key, key + map->key_size) are within | 
 | 		 * stack limits and initialized | 
 | 		 */ | 
 | 		if (!meta->map_ptr) { | 
 | 			/* in function declaration map_ptr must come before | 
 | 			 * map_key, so that it's verified and known before | 
 | 			 * we have to check map_key here. Otherwise it means | 
 | 			 * that kernel subsystem misconfigured verifier | 
 | 			 */ | 
 | 			verbose(env, "invalid map_ptr to access map->key\n"); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		if (type_is_pkt_pointer(type)) | 
 | 			err = check_packet_access(env, regno, reg->off, | 
 | 						  meta->map_ptr->key_size, | 
 | 						  false); | 
 | 		else | 
 | 			err = check_stack_boundary(env, regno, | 
 | 						   meta->map_ptr->key_size, | 
 | 						   false, NULL); | 
 | 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) { | 
 | 		/* bpf_map_xxx(..., map_ptr, ..., value) call: | 
 | 		 * check [value, value + map->value_size) validity | 
 | 		 */ | 
 | 		if (!meta->map_ptr) { | 
 | 			/* kernel subsystem misconfigured verifier */ | 
 | 			verbose(env, "invalid map_ptr to access map->value\n"); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		if (type_is_pkt_pointer(type)) | 
 | 			err = check_packet_access(env, regno, reg->off, | 
 | 						  meta->map_ptr->value_size, | 
 | 						  false); | 
 | 		else | 
 | 			err = check_stack_boundary(env, regno, | 
 | 						   meta->map_ptr->value_size, | 
 | 						   false, NULL); | 
 | 	} else if (arg_type_is_mem_size(arg_type)) { | 
 | 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); | 
 |  | 
 | 		/* The register is SCALAR_VALUE; the access check | 
 | 		 * happens using its boundaries. | 
 | 		 */ | 
 | 		if (!tnum_is_const(reg->var_off)) | 
 | 			/* For unprivileged variable accesses, disable raw | 
 | 			 * mode so that the program is required to | 
 | 			 * initialize all the memory that the helper could | 
 | 			 * just partially fill up. | 
 | 			 */ | 
 | 			meta = NULL; | 
 |  | 
 | 		if (reg->smin_value < 0) { | 
 | 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", | 
 | 				regno); | 
 | 			return -EACCES; | 
 | 		} | 
 |  | 
 | 		if (reg->umin_value == 0) { | 
 | 			err = check_helper_mem_access(env, regno - 1, 0, | 
 | 						      zero_size_allowed, | 
 | 						      meta); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) { | 
 | 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", | 
 | 				regno); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		err = check_helper_mem_access(env, regno - 1, | 
 | 					      reg->umax_value, | 
 | 					      zero_size_allowed, meta); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | err_type: | 
 | 	verbose(env, "R%d type=%s expected=%s\n", regno, | 
 | 		reg_type_str[type], reg_type_str[expected_type]); | 
 | 	return -EACCES; | 
 | } | 
 |  | 
 | static int check_map_func_compatibility(struct bpf_verifier_env *env, | 
 | 					struct bpf_map *map, int func_id) | 
 | { | 
 | 	if (!map) | 
 | 		return 0; | 
 |  | 
 | 	/* We need a two way check, first is from map perspective ... */ | 
 | 	switch (map->map_type) { | 
 | 	case BPF_MAP_TYPE_PROG_ARRAY: | 
 | 		if (func_id != BPF_FUNC_tail_call) | 
 | 			goto error; | 
 | 		break; | 
 | 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY: | 
 | 		if (func_id != BPF_FUNC_perf_event_read && | 
 | 		    func_id != BPF_FUNC_perf_event_output && | 
 | 		    func_id != BPF_FUNC_perf_event_read_value) | 
 | 			goto error; | 
 | 		break; | 
 | 	case BPF_MAP_TYPE_STACK_TRACE: | 
 | 		if (func_id != BPF_FUNC_get_stackid) | 
 | 			goto error; | 
 | 		break; | 
 | 	case BPF_MAP_TYPE_CGROUP_ARRAY: | 
 | 		if (func_id != BPF_FUNC_skb_under_cgroup && | 
 | 		    func_id != BPF_FUNC_current_task_under_cgroup) | 
 | 			goto error; | 
 | 		break; | 
 | 	/* devmap returns a pointer to a live net_device ifindex that we cannot | 
 | 	 * allow to be modified from bpf side. So do not allow lookup elements | 
 | 	 * for now. | 
 | 	 */ | 
 | 	case BPF_MAP_TYPE_DEVMAP: | 
 | 		if (func_id != BPF_FUNC_redirect_map) | 
 | 			goto error; | 
 | 		break; | 
 | 	/* Restrict bpf side of cpumap, open when use-cases appear */ | 
 | 	case BPF_MAP_TYPE_CPUMAP: | 
 | 		if (func_id != BPF_FUNC_redirect_map) | 
 | 			goto error; | 
 | 		break; | 
 | 	case BPF_MAP_TYPE_ARRAY_OF_MAPS: | 
 | 	case BPF_MAP_TYPE_HASH_OF_MAPS: | 
 | 		if (func_id != BPF_FUNC_map_lookup_elem) | 
 | 			goto error; | 
 | 		break; | 
 | 	case BPF_MAP_TYPE_SOCKMAP: | 
 | 		if (func_id != BPF_FUNC_sk_redirect_map && | 
 | 		    func_id != BPF_FUNC_sock_map_update && | 
 | 		    func_id != BPF_FUNC_map_delete_elem && | 
 | 		    func_id != BPF_FUNC_msg_redirect_map) | 
 | 			goto error; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* ... and second from the function itself. */ | 
 | 	switch (func_id) { | 
 | 	case BPF_FUNC_tail_call: | 
 | 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) | 
 | 			goto error; | 
 | 		if (env->subprog_cnt) { | 
 | 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	case BPF_FUNC_perf_event_read: | 
 | 	case BPF_FUNC_perf_event_output: | 
 | 	case BPF_FUNC_perf_event_read_value: | 
 | 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) | 
 | 			goto error; | 
 | 		break; | 
 | 	case BPF_FUNC_get_stackid: | 
 | 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) | 
 | 			goto error; | 
 | 		break; | 
 | 	case BPF_FUNC_current_task_under_cgroup: | 
 | 	case BPF_FUNC_skb_under_cgroup: | 
 | 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) | 
 | 			goto error; | 
 | 		break; | 
 | 	case BPF_FUNC_redirect_map: | 
 | 		if (map->map_type != BPF_MAP_TYPE_DEVMAP && | 
 | 		    map->map_type != BPF_MAP_TYPE_CPUMAP) | 
 | 			goto error; | 
 | 		break; | 
 | 	case BPF_FUNC_sk_redirect_map: | 
 | 	case BPF_FUNC_msg_redirect_map: | 
 | 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP) | 
 | 			goto error; | 
 | 		break; | 
 | 	case BPF_FUNC_sock_map_update: | 
 | 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP) | 
 | 			goto error; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | error: | 
 | 	verbose(env, "cannot pass map_type %d into func %s#%d\n", | 
 | 		map->map_type, func_id_name(func_id), func_id); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static bool check_raw_mode_ok(const struct bpf_func_proto *fn) | 
 | { | 
 | 	int count = 0; | 
 |  | 
 | 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) | 
 | 		count++; | 
 | 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) | 
 | 		count++; | 
 | 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) | 
 | 		count++; | 
 | 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) | 
 | 		count++; | 
 | 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) | 
 | 		count++; | 
 |  | 
 | 	/* We only support one arg being in raw mode at the moment, | 
 | 	 * which is sufficient for the helper functions we have | 
 | 	 * right now. | 
 | 	 */ | 
 | 	return count <= 1; | 
 | } | 
 |  | 
 | static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, | 
 | 				    enum bpf_arg_type arg_next) | 
 | { | 
 | 	return (arg_type_is_mem_ptr(arg_curr) && | 
 | 	        !arg_type_is_mem_size(arg_next)) || | 
 | 	       (!arg_type_is_mem_ptr(arg_curr) && | 
 | 		arg_type_is_mem_size(arg_next)); | 
 | } | 
 |  | 
 | static bool check_arg_pair_ok(const struct bpf_func_proto *fn) | 
 | { | 
 | 	/* bpf_xxx(..., buf, len) call will access 'len' | 
 | 	 * bytes from memory 'buf'. Both arg types need | 
 | 	 * to be paired, so make sure there's no buggy | 
 | 	 * helper function specification. | 
 | 	 */ | 
 | 	if (arg_type_is_mem_size(fn->arg1_type) || | 
 | 	    arg_type_is_mem_ptr(fn->arg5_type)  || | 
 | 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || | 
 | 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || | 
 | 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || | 
 | 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int check_func_proto(const struct bpf_func_proto *fn) | 
 | { | 
 | 	return check_raw_mode_ok(fn) && | 
 | 	       check_arg_pair_ok(fn) ? 0 : -EINVAL; | 
 | } | 
 |  | 
 | /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] | 
 |  * are now invalid, so turn them into unknown SCALAR_VALUE. | 
 |  */ | 
 | static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, | 
 | 				     struct bpf_func_state *state) | 
 | { | 
 | 	struct bpf_reg_state *regs = state->regs, *reg; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MAX_BPF_REG; i++) | 
 | 		if (reg_is_pkt_pointer_any(®s[i])) | 
 | 			mark_reg_unknown(env, regs, i); | 
 |  | 
 | 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { | 
 | 		if (state->stack[i].slot_type[0] != STACK_SPILL) | 
 | 			continue; | 
 | 		reg = &state->stack[i].spilled_ptr; | 
 | 		if (reg_is_pkt_pointer_any(reg)) | 
 | 			__mark_reg_unknown(reg); | 
 | 	} | 
 | } | 
 |  | 
 | static void clear_all_pkt_pointers(struct bpf_verifier_env *env) | 
 | { | 
 | 	struct bpf_verifier_state *vstate = env->cur_state; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i <= vstate->curframe; i++) | 
 | 		__clear_all_pkt_pointers(env, vstate->frame[i]); | 
 | } | 
 |  | 
 | static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, | 
 | 			   int *insn_idx) | 
 | { | 
 | 	struct bpf_verifier_state *state = env->cur_state; | 
 | 	struct bpf_func_state *caller, *callee; | 
 | 	int i, subprog, target_insn; | 
 |  | 
 | 	if (state->curframe + 1 >= MAX_CALL_FRAMES) { | 
 | 		verbose(env, "the call stack of %d frames is too deep\n", | 
 | 			state->curframe + 2); | 
 | 		return -E2BIG; | 
 | 	} | 
 |  | 
 | 	target_insn = *insn_idx + insn->imm; | 
 | 	subprog = find_subprog(env, target_insn + 1); | 
 | 	if (subprog < 0) { | 
 | 		verbose(env, "verifier bug. No program starts at insn %d\n", | 
 | 			target_insn + 1); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	caller = state->frame[state->curframe]; | 
 | 	if (state->frame[state->curframe + 1]) { | 
 | 		verbose(env, "verifier bug. Frame %d already allocated\n", | 
 | 			state->curframe + 1); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	callee = kzalloc(sizeof(*callee), GFP_KERNEL); | 
 | 	if (!callee) | 
 | 		return -ENOMEM; | 
 | 	state->frame[state->curframe + 1] = callee; | 
 |  | 
 | 	/* callee cannot access r0, r6 - r9 for reading and has to write | 
 | 	 * into its own stack before reading from it. | 
 | 	 * callee can read/write into caller's stack | 
 | 	 */ | 
 | 	init_func_state(env, callee, | 
 | 			/* remember the callsite, it will be used by bpf_exit */ | 
 | 			*insn_idx /* callsite */, | 
 | 			state->curframe + 1 /* frameno within this callchain */, | 
 | 			subprog + 1 /* subprog number within this prog */); | 
 |  | 
 | 	/* copy r1 - r5 args that callee can access */ | 
 | 	for (i = BPF_REG_1; i <= BPF_REG_5; i++) | 
 | 		callee->regs[i] = caller->regs[i]; | 
 |  | 
 | 	/* after the call regsiters r0 - r5 were scratched */ | 
 | 	for (i = 0; i < CALLER_SAVED_REGS; i++) { | 
 | 		mark_reg_not_init(env, caller->regs, caller_saved[i]); | 
 | 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); | 
 | 	} | 
 |  | 
 | 	/* only increment it after check_reg_arg() finished */ | 
 | 	state->curframe++; | 
 |  | 
 | 	/* and go analyze first insn of the callee */ | 
 | 	*insn_idx = target_insn; | 
 |  | 
 | 	if (env->log.level) { | 
 | 		verbose(env, "caller:\n"); | 
 | 		print_verifier_state(env, caller); | 
 | 		verbose(env, "callee:\n"); | 
 | 		print_verifier_state(env, callee); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) | 
 | { | 
 | 	struct bpf_verifier_state *state = env->cur_state; | 
 | 	struct bpf_func_state *caller, *callee; | 
 | 	struct bpf_reg_state *r0; | 
 |  | 
 | 	callee = state->frame[state->curframe]; | 
 | 	r0 = &callee->regs[BPF_REG_0]; | 
 | 	if (r0->type == PTR_TO_STACK) { | 
 | 		/* technically it's ok to return caller's stack pointer | 
 | 		 * (or caller's caller's pointer) back to the caller, | 
 | 		 * since these pointers are valid. Only current stack | 
 | 		 * pointer will be invalid as soon as function exits, | 
 | 		 * but let's be conservative | 
 | 		 */ | 
 | 		verbose(env, "cannot return stack pointer to the caller\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	state->curframe--; | 
 | 	caller = state->frame[state->curframe]; | 
 | 	/* return to the caller whatever r0 had in the callee */ | 
 | 	caller->regs[BPF_REG_0] = *r0; | 
 |  | 
 | 	*insn_idx = callee->callsite + 1; | 
 | 	if (env->log.level) { | 
 | 		verbose(env, "returning from callee:\n"); | 
 | 		print_verifier_state(env, callee); | 
 | 		verbose(env, "to caller at %d:\n", *insn_idx); | 
 | 		print_verifier_state(env, caller); | 
 | 	} | 
 | 	/* clear everything in the callee */ | 
 | 	free_func_state(callee); | 
 | 	state->frame[state->curframe + 1] = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) | 
 | { | 
 | 	const struct bpf_func_proto *fn = NULL; | 
 | 	struct bpf_reg_state *regs; | 
 | 	struct bpf_call_arg_meta meta; | 
 | 	bool changes_data; | 
 | 	int i, err; | 
 |  | 
 | 	/* find function prototype */ | 
 | 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { | 
 | 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id), | 
 | 			func_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (env->ops->get_func_proto) | 
 | 		fn = env->ops->get_func_proto(func_id, env->prog); | 
 | 	if (!fn) { | 
 | 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id), | 
 | 			func_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* eBPF programs must be GPL compatible to use GPL-ed functions */ | 
 | 	if (!env->prog->gpl_compatible && fn->gpl_only) { | 
 | 		verbose(env, "cannot call GPL only function from proprietary program\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* With LD_ABS/IND some JITs save/restore skb from r1. */ | 
 | 	changes_data = bpf_helper_changes_pkt_data(fn->func); | 
 | 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { | 
 | 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", | 
 | 			func_id_name(func_id), func_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	memset(&meta, 0, sizeof(meta)); | 
 | 	meta.pkt_access = fn->pkt_access; | 
 |  | 
 | 	err = check_func_proto(fn); | 
 | 	if (err) { | 
 | 		verbose(env, "kernel subsystem misconfigured func %s#%d\n", | 
 | 			func_id_name(func_id), func_id); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* check args */ | 
 | 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (func_id == BPF_FUNC_tail_call) { | 
 | 		if (meta.map_ptr == NULL) { | 
 | 			verbose(env, "verifier bug\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr; | 
 | 	} | 
 | 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Mark slots with STACK_MISC in case of raw mode, stack offset | 
 | 	 * is inferred from register state. | 
 | 	 */ | 
 | 	for (i = 0; i < meta.access_size; i++) { | 
 | 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, | 
 | 				       BPF_WRITE, -1, false); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	regs = cur_regs(env); | 
 | 	/* reset caller saved regs */ | 
 | 	for (i = 0; i < CALLER_SAVED_REGS; i++) { | 
 | 		mark_reg_not_init(env, regs, caller_saved[i]); | 
 | 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); | 
 | 	} | 
 |  | 
 | 	/* update return register (already marked as written above) */ | 
 | 	if (fn->ret_type == RET_INTEGER) { | 
 | 		/* sets type to SCALAR_VALUE */ | 
 | 		mark_reg_unknown(env, regs, BPF_REG_0); | 
 | 	} else if (fn->ret_type == RET_VOID) { | 
 | 		regs[BPF_REG_0].type = NOT_INIT; | 
 | 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { | 
 | 		struct bpf_insn_aux_data *insn_aux; | 
 |  | 
 | 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; | 
 | 		/* There is no offset yet applied, variable or fixed */ | 
 | 		mark_reg_known_zero(env, regs, BPF_REG_0); | 
 | 		regs[BPF_REG_0].off = 0; | 
 | 		/* remember map_ptr, so that check_map_access() | 
 | 		 * can check 'value_size' boundary of memory access | 
 | 		 * to map element returned from bpf_map_lookup_elem() | 
 | 		 */ | 
 | 		if (meta.map_ptr == NULL) { | 
 | 			verbose(env, | 
 | 				"kernel subsystem misconfigured verifier\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		regs[BPF_REG_0].map_ptr = meta.map_ptr; | 
 | 		regs[BPF_REG_0].id = ++env->id_gen; | 
 | 		insn_aux = &env->insn_aux_data[insn_idx]; | 
 | 		if (!insn_aux->map_ptr) | 
 | 			insn_aux->map_ptr = meta.map_ptr; | 
 | 		else if (insn_aux->map_ptr != meta.map_ptr) | 
 | 			insn_aux->map_ptr = BPF_MAP_PTR_POISON; | 
 | 	} else { | 
 | 		verbose(env, "unknown return type %d of func %s#%d\n", | 
 | 			fn->ret_type, func_id_name(func_id), func_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	err = check_map_func_compatibility(env, meta.map_ptr, func_id); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (changes_data) | 
 | 		clear_all_pkt_pointers(env); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool signed_add_overflows(s64 a, s64 b) | 
 | { | 
 | 	/* Do the add in u64, where overflow is well-defined */ | 
 | 	s64 res = (s64)((u64)a + (u64)b); | 
 |  | 
 | 	if (b < 0) | 
 | 		return res > a; | 
 | 	return res < a; | 
 | } | 
 |  | 
 | static bool signed_sub_overflows(s64 a, s64 b) | 
 | { | 
 | 	/* Do the sub in u64, where overflow is well-defined */ | 
 | 	s64 res = (s64)((u64)a - (u64)b); | 
 |  | 
 | 	if (b < 0) | 
 | 		return res < a; | 
 | 	return res > a; | 
 | } | 
 |  | 
 | static bool check_reg_sane_offset(struct bpf_verifier_env *env, | 
 | 				  const struct bpf_reg_state *reg, | 
 | 				  enum bpf_reg_type type) | 
 | { | 
 | 	bool known = tnum_is_const(reg->var_off); | 
 | 	s64 val = reg->var_off.value; | 
 | 	s64 smin = reg->smin_value; | 
 |  | 
 | 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { | 
 | 		verbose(env, "math between %s pointer and %lld is not allowed\n", | 
 | 			reg_type_str[type], val); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { | 
 | 		verbose(env, "%s pointer offset %d is not allowed\n", | 
 | 			reg_type_str[type], reg->off); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (smin == S64_MIN) { | 
 | 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", | 
 | 			reg_type_str[type]); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { | 
 | 		verbose(env, "value %lld makes %s pointer be out of bounds\n", | 
 | 			smin, reg_type_str[type]); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. | 
 |  * Caller should also handle BPF_MOV case separately. | 
 |  * If we return -EACCES, caller may want to try again treating pointer as a | 
 |  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks. | 
 |  */ | 
 | static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, | 
 | 				   struct bpf_insn *insn, | 
 | 				   const struct bpf_reg_state *ptr_reg, | 
 | 				   const struct bpf_reg_state *off_reg) | 
 | { | 
 | 	struct bpf_verifier_state *vstate = env->cur_state; | 
 | 	struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
 | 	struct bpf_reg_state *regs = state->regs, *dst_reg; | 
 | 	bool known = tnum_is_const(off_reg->var_off); | 
 | 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, | 
 | 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; | 
 | 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, | 
 | 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; | 
 | 	u8 opcode = BPF_OP(insn->code); | 
 | 	u32 dst = insn->dst_reg; | 
 |  | 
 | 	dst_reg = ®s[dst]; | 
 |  | 
 | 	if ((known && (smin_val != smax_val || umin_val != umax_val)) || | 
 | 	    smin_val > smax_val || umin_val > umax_val) { | 
 | 		/* Taint dst register if offset had invalid bounds derived from | 
 | 		 * e.g. dead branches. | 
 | 		 */ | 
 | 		__mark_reg_unknown(dst_reg); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (BPF_CLASS(insn->code) != BPF_ALU64) { | 
 | 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */ | 
 | 		verbose(env, | 
 | 			"R%d 32-bit pointer arithmetic prohibited\n", | 
 | 			dst); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { | 
 | 		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", | 
 | 			dst); | 
 | 		return -EACCES; | 
 | 	} | 
 | 	if (ptr_reg->type == CONST_PTR_TO_MAP) { | 
 | 		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", | 
 | 			dst); | 
 | 		return -EACCES; | 
 | 	} | 
 | 	if (ptr_reg->type == PTR_TO_PACKET_END) { | 
 | 		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", | 
 | 			dst); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id. | 
 | 	 * The id may be overwritten later if we create a new variable offset. | 
 | 	 */ | 
 | 	dst_reg->type = ptr_reg->type; | 
 | 	dst_reg->id = ptr_reg->id; | 
 |  | 
 | 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || | 
 | 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (opcode) { | 
 | 	case BPF_ADD: | 
 | 		/* We can take a fixed offset as long as it doesn't overflow | 
 | 		 * the s32 'off' field | 
 | 		 */ | 
 | 		if (known && (ptr_reg->off + smin_val == | 
 | 			      (s64)(s32)(ptr_reg->off + smin_val))) { | 
 | 			/* pointer += K.  Accumulate it into fixed offset */ | 
 | 			dst_reg->smin_value = smin_ptr; | 
 | 			dst_reg->smax_value = smax_ptr; | 
 | 			dst_reg->umin_value = umin_ptr; | 
 | 			dst_reg->umax_value = umax_ptr; | 
 | 			dst_reg->var_off = ptr_reg->var_off; | 
 | 			dst_reg->off = ptr_reg->off + smin_val; | 
 | 			dst_reg->range = ptr_reg->range; | 
 | 			break; | 
 | 		} | 
 | 		/* A new variable offset is created.  Note that off_reg->off | 
 | 		 * == 0, since it's a scalar. | 
 | 		 * dst_reg gets the pointer type and since some positive | 
 | 		 * integer value was added to the pointer, give it a new 'id' | 
 | 		 * if it's a PTR_TO_PACKET. | 
 | 		 * this creates a new 'base' pointer, off_reg (variable) gets | 
 | 		 * added into the variable offset, and we copy the fixed offset | 
 | 		 * from ptr_reg. | 
 | 		 */ | 
 | 		if (signed_add_overflows(smin_ptr, smin_val) || | 
 | 		    signed_add_overflows(smax_ptr, smax_val)) { | 
 | 			dst_reg->smin_value = S64_MIN; | 
 | 			dst_reg->smax_value = S64_MAX; | 
 | 		} else { | 
 | 			dst_reg->smin_value = smin_ptr + smin_val; | 
 | 			dst_reg->smax_value = smax_ptr + smax_val; | 
 | 		} | 
 | 		if (umin_ptr + umin_val < umin_ptr || | 
 | 		    umax_ptr + umax_val < umax_ptr) { | 
 | 			dst_reg->umin_value = 0; | 
 | 			dst_reg->umax_value = U64_MAX; | 
 | 		} else { | 
 | 			dst_reg->umin_value = umin_ptr + umin_val; | 
 | 			dst_reg->umax_value = umax_ptr + umax_val; | 
 | 		} | 
 | 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); | 
 | 		dst_reg->off = ptr_reg->off; | 
 | 		if (reg_is_pkt_pointer(ptr_reg)) { | 
 | 			dst_reg->id = ++env->id_gen; | 
 | 			/* something was added to pkt_ptr, set range to zero */ | 
 | 			dst_reg->range = 0; | 
 | 		} | 
 | 		break; | 
 | 	case BPF_SUB: | 
 | 		if (dst_reg == off_reg) { | 
 | 			/* scalar -= pointer.  Creates an unknown scalar */ | 
 | 			verbose(env, "R%d tried to subtract pointer from scalar\n", | 
 | 				dst); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		/* We don't allow subtraction from FP, because (according to | 
 | 		 * test_verifier.c test "invalid fp arithmetic", JITs might not | 
 | 		 * be able to deal with it. | 
 | 		 */ | 
 | 		if (ptr_reg->type == PTR_TO_STACK) { | 
 | 			verbose(env, "R%d subtraction from stack pointer prohibited\n", | 
 | 				dst); | 
 | 			return -EACCES; | 
 | 		} | 
 | 		if (known && (ptr_reg->off - smin_val == | 
 | 			      (s64)(s32)(ptr_reg->off - smin_val))) { | 
 | 			/* pointer -= K.  Subtract it from fixed offset */ | 
 | 			dst_reg->smin_value = smin_ptr; | 
 | 			dst_reg->smax_value = smax_ptr; | 
 | 			dst_reg->umin_value = umin_ptr; | 
 | 			dst_reg->umax_value = umax_ptr; | 
 | 			dst_reg->var_off = ptr_reg->var_off; | 
 | 			dst_reg->id = ptr_reg->id; | 
 | 			dst_reg->off = ptr_reg->off - smin_val; | 
 | 			dst_reg->range = ptr_reg->range; | 
 | 			break; | 
 | 		} | 
 | 		/* A new variable offset is created.  If the subtrahend is known | 
 | 		 * nonnegative, then any reg->range we had before is still good. | 
 | 		 */ | 
 | 		if (signed_sub_overflows(smin_ptr, smax_val) || | 
 | 		    signed_sub_overflows(smax_ptr, smin_val)) { | 
 | 			/* Overflow possible, we know nothing */ | 
 | 			dst_reg->smin_value = S64_MIN; | 
 | 			dst_reg->smax_value = S64_MAX; | 
 | 		} else { | 
 | 			dst_reg->smin_value = smin_ptr - smax_val; | 
 | 			dst_reg->smax_value = smax_ptr - smin_val; | 
 | 		} | 
 | 		if (umin_ptr < umax_val) { | 
 | 			/* Overflow possible, we know nothing */ | 
 | 			dst_reg->umin_value = 0; | 
 | 			dst_reg->umax_value = U64_MAX; | 
 | 		} else { | 
 | 			/* Cannot overflow (as long as bounds are consistent) */ | 
 | 			dst_reg->umin_value = umin_ptr - umax_val; | 
 | 			dst_reg->umax_value = umax_ptr - umin_val; | 
 | 		} | 
 | 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); | 
 | 		dst_reg->off = ptr_reg->off; | 
 | 		if (reg_is_pkt_pointer(ptr_reg)) { | 
 | 			dst_reg->id = ++env->id_gen; | 
 | 			/* something was added to pkt_ptr, set range to zero */ | 
 | 			if (smin_val < 0) | 
 | 				dst_reg->range = 0; | 
 | 		} | 
 | 		break; | 
 | 	case BPF_AND: | 
 | 	case BPF_OR: | 
 | 	case BPF_XOR: | 
 | 		/* bitwise ops on pointers are troublesome, prohibit. */ | 
 | 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n", | 
 | 			dst, bpf_alu_string[opcode >> 4]); | 
 | 		return -EACCES; | 
 | 	default: | 
 | 		/* other operators (e.g. MUL,LSH) produce non-pointer results */ | 
 | 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", | 
 | 			dst, bpf_alu_string[opcode >> 4]); | 
 | 		return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	__update_reg_bounds(dst_reg); | 
 | 	__reg_deduce_bounds(dst_reg); | 
 | 	__reg_bound_offset(dst_reg); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* WARNING: This function does calculations on 64-bit values, but the actual | 
 |  * execution may occur on 32-bit values. Therefore, things like bitshifts | 
 |  * need extra checks in the 32-bit case. | 
 |  */ | 
 | static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, | 
 | 				      struct bpf_insn *insn, | 
 | 				      struct bpf_reg_state *dst_reg, | 
 | 				      struct bpf_reg_state src_reg) | 
 | { | 
 | 	struct bpf_reg_state *regs = cur_regs(env); | 
 | 	u8 opcode = BPF_OP(insn->code); | 
 | 	bool src_known, dst_known; | 
 | 	s64 smin_val, smax_val; | 
 | 	u64 umin_val, umax_val; | 
 | 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; | 
 |  | 
 | 	smin_val = src_reg.smin_value; | 
 | 	smax_val = src_reg.smax_value; | 
 | 	umin_val = src_reg.umin_value; | 
 | 	umax_val = src_reg.umax_value; | 
 | 	src_known = tnum_is_const(src_reg.var_off); | 
 | 	dst_known = tnum_is_const(dst_reg->var_off); | 
 |  | 
 | 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || | 
 | 	    smin_val > smax_val || umin_val > umax_val) { | 
 | 		/* Taint dst register if offset had invalid bounds derived from | 
 | 		 * e.g. dead branches. | 
 | 		 */ | 
 | 		__mark_reg_unknown(dst_reg); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!src_known && | 
 | 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { | 
 | 		__mark_reg_unknown(dst_reg); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	switch (opcode) { | 
 | 	case BPF_ADD: | 
 | 		if (signed_add_overflows(dst_reg->smin_value, smin_val) || | 
 | 		    signed_add_overflows(dst_reg->smax_value, smax_val)) { | 
 | 			dst_reg->smin_value = S64_MIN; | 
 | 			dst_reg->smax_value = S64_MAX; | 
 | 		} else { | 
 | 			dst_reg->smin_value += smin_val; | 
 | 			dst_reg->smax_value += smax_val; | 
 | 		} | 
 | 		if (dst_reg->umin_value + umin_val < umin_val || | 
 | 		    dst_reg->umax_value + umax_val < umax_val) { | 
 | 			dst_reg->umin_value = 0; | 
 | 			dst_reg->umax_value = U64_MAX; | 
 | 		} else { | 
 | 			dst_reg->umin_value += umin_val; | 
 | 			dst_reg->umax_value += umax_val; | 
 | 		} | 
 | 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); | 
 | 		break; | 
 | 	case BPF_SUB: | 
 | 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) || | 
 | 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) { | 
 | 			/* Overflow possible, we know nothing */ | 
 | 			dst_reg->smin_value = S64_MIN; | 
 | 			dst_reg->smax_value = S64_MAX; | 
 | 		} else { | 
 | 			dst_reg->smin_value -= smax_val; | 
 | 			dst_reg->smax_value -= smin_val; | 
 | 		} | 
 | 		if (dst_reg->umin_value < umax_val) { | 
 | 			/* Overflow possible, we know nothing */ | 
 | 			dst_reg->umin_value = 0; | 
 | 			dst_reg->umax_value = U64_MAX; | 
 | 		} else { | 
 | 			/* Cannot overflow (as long as bounds are consistent) */ | 
 | 			dst_reg->umin_value -= umax_val; | 
 | 			dst_reg->umax_value -= umin_val; | 
 | 		} | 
 | 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); | 
 | 		break; | 
 | 	case BPF_MUL: | 
 | 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); | 
 | 		if (smin_val < 0 || dst_reg->smin_value < 0) { | 
 | 			/* Ain't nobody got time to multiply that sign */ | 
 | 			__mark_reg_unbounded(dst_reg); | 
 | 			__update_reg_bounds(dst_reg); | 
 | 			break; | 
 | 		} | 
 | 		/* Both values are positive, so we can work with unsigned and | 
 | 		 * copy the result to signed (unless it exceeds S64_MAX). | 
 | 		 */ | 
 | 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { | 
 | 			/* Potential overflow, we know nothing */ | 
 | 			__mark_reg_unbounded(dst_reg); | 
 | 			/* (except what we can learn from the var_off) */ | 
 | 			__update_reg_bounds(dst_reg); | 
 | 			break; | 
 | 		} | 
 | 		dst_reg->umin_value *= umin_val; | 
 | 		dst_reg->umax_value *= umax_val; | 
 | 		if (dst_reg->umax_value > S64_MAX) { | 
 | 			/* Overflow possible, we know nothing */ | 
 | 			dst_reg->smin_value = S64_MIN; | 
 | 			dst_reg->smax_value = S64_MAX; | 
 | 		} else { | 
 | 			dst_reg->smin_value = dst_reg->umin_value; | 
 | 			dst_reg->smax_value = dst_reg->umax_value; | 
 | 		} | 
 | 		break; | 
 | 	case BPF_AND: | 
 | 		if (src_known && dst_known) { | 
 | 			__mark_reg_known(dst_reg, dst_reg->var_off.value & | 
 | 						  src_reg.var_off.value); | 
 | 			break; | 
 | 		} | 
 | 		/* We get our minimum from the var_off, since that's inherently | 
 | 		 * bitwise.  Our maximum is the minimum of the operands' maxima. | 
 | 		 */ | 
 | 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); | 
 | 		dst_reg->umin_value = dst_reg->var_off.value; | 
 | 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val); | 
 | 		if (dst_reg->smin_value < 0 || smin_val < 0) { | 
 | 			/* Lose signed bounds when ANDing negative numbers, | 
 | 			 * ain't nobody got time for that. | 
 | 			 */ | 
 | 			dst_reg->smin_value = S64_MIN; | 
 | 			dst_reg->smax_value = S64_MAX; | 
 | 		} else { | 
 | 			/* ANDing two positives gives a positive, so safe to | 
 | 			 * cast result into s64. | 
 | 			 */ | 
 | 			dst_reg->smin_value = dst_reg->umin_value; | 
 | 			dst_reg->smax_value = dst_reg->umax_value; | 
 | 		} | 
 | 		/* We may learn something more from the var_off */ | 
 | 		__update_reg_bounds(dst_reg); | 
 | 		break; | 
 | 	case BPF_OR: | 
 | 		if (src_known && dst_known) { | 
 | 			__mark_reg_known(dst_reg, dst_reg->var_off.value | | 
 | 						  src_reg.var_off.value); | 
 | 			break; | 
 | 		} | 
 | 		/* We get our maximum from the var_off, and our minimum is the | 
 | 		 * maximum of the operands' minima | 
 | 		 */ | 
 | 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); | 
 | 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val); | 
 | 		dst_reg->umax_value = dst_reg->var_off.value | | 
 | 				      dst_reg->var_off.mask; | 
 | 		if (dst_reg->smin_value < 0 || smin_val < 0) { | 
 | 			/* Lose signed bounds when ORing negative numbers, | 
 | 			 * ain't nobody got time for that. | 
 | 			 */ | 
 | 			dst_reg->smin_value = S64_MIN; | 
 | 			dst_reg->smax_value = S64_MAX; | 
 | 		} else { | 
 | 			/* ORing two positives gives a positive, so safe to | 
 | 			 * cast result into s64. | 
 | 			 */ | 
 | 			dst_reg->smin_value = dst_reg->umin_value; | 
 | 			dst_reg->smax_value = dst_reg->umax_value; | 
 | 		} | 
 | 		/* We may learn something more from the var_off */ | 
 | 		__update_reg_bounds(dst_reg); | 
 | 		break; | 
 | 	case BPF_LSH: | 
 | 		if (umax_val >= insn_bitness) { | 
 | 			/* Shifts greater than 31 or 63 are undefined. | 
 | 			 * This includes shifts by a negative number. | 
 | 			 */ | 
 | 			mark_reg_unknown(env, regs, insn->dst_reg); | 
 | 			break; | 
 | 		} | 
 | 		/* We lose all sign bit information (except what we can pick | 
 | 		 * up from var_off) | 
 | 		 */ | 
 | 		dst_reg->smin_value = S64_MIN; | 
 | 		dst_reg->smax_value = S64_MAX; | 
 | 		/* If we might shift our top bit out, then we know nothing */ | 
 | 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { | 
 | 			dst_reg->umin_value = 0; | 
 | 			dst_reg->umax_value = U64_MAX; | 
 | 		} else { | 
 | 			dst_reg->umin_value <<= umin_val; | 
 | 			dst_reg->umax_value <<= umax_val; | 
 | 		} | 
 | 		if (src_known) | 
 | 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); | 
 | 		else | 
 | 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); | 
 | 		/* We may learn something more from the var_off */ | 
 | 		__update_reg_bounds(dst_reg); | 
 | 		break; | 
 | 	case BPF_RSH: | 
 | 		if (umax_val >= insn_bitness) { | 
 | 			/* Shifts greater than 31 or 63 are undefined. | 
 | 			 * This includes shifts by a negative number. | 
 | 			 */ | 
 | 			mark_reg_unknown(env, regs, insn->dst_reg); | 
 | 			break; | 
 | 		} | 
 | 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might | 
 | 		 * be negative, then either: | 
 | 		 * 1) src_reg might be zero, so the sign bit of the result is | 
 | 		 *    unknown, so we lose our signed bounds | 
 | 		 * 2) it's known negative, thus the unsigned bounds capture the | 
 | 		 *    signed bounds | 
 | 		 * 3) the signed bounds cross zero, so they tell us nothing | 
 | 		 *    about the result | 
 | 		 * If the value in dst_reg is known nonnegative, then again the | 
 | 		 * unsigned bounts capture the signed bounds. | 
 | 		 * Thus, in all cases it suffices to blow away our signed bounds | 
 | 		 * and rely on inferring new ones from the unsigned bounds and | 
 | 		 * var_off of the result. | 
 | 		 */ | 
 | 		dst_reg->smin_value = S64_MIN; | 
 | 		dst_reg->smax_value = S64_MAX; | 
 | 		if (src_known) | 
 | 			dst_reg->var_off = tnum_rshift(dst_reg->var_off, | 
 | 						       umin_val); | 
 | 		else | 
 | 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); | 
 | 		dst_reg->umin_value >>= umax_val; | 
 | 		dst_reg->umax_value >>= umin_val; | 
 | 		/* We may learn something more from the var_off */ | 
 | 		__update_reg_bounds(dst_reg); | 
 | 		break; | 
 | 	default: | 
 | 		mark_reg_unknown(env, regs, insn->dst_reg); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (BPF_CLASS(insn->code) != BPF_ALU64) { | 
 | 		/* 32-bit ALU ops are (32,32)->32 */ | 
 | 		coerce_reg_to_size(dst_reg, 4); | 
 | 		coerce_reg_to_size(&src_reg, 4); | 
 | 	} | 
 |  | 
 | 	__reg_deduce_bounds(dst_reg); | 
 | 	__reg_bound_offset(dst_reg); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max | 
 |  * and var_off. | 
 |  */ | 
 | static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, | 
 | 				   struct bpf_insn *insn) | 
 | { | 
 | 	struct bpf_verifier_state *vstate = env->cur_state; | 
 | 	struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
 | 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; | 
 | 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; | 
 | 	u8 opcode = BPF_OP(insn->code); | 
 |  | 
 | 	dst_reg = ®s[insn->dst_reg]; | 
 | 	src_reg = NULL; | 
 | 	if (dst_reg->type != SCALAR_VALUE) | 
 | 		ptr_reg = dst_reg; | 
 | 	if (BPF_SRC(insn->code) == BPF_X) { | 
 | 		src_reg = ®s[insn->src_reg]; | 
 | 		if (src_reg->type != SCALAR_VALUE) { | 
 | 			if (dst_reg->type != SCALAR_VALUE) { | 
 | 				/* Combining two pointers by any ALU op yields | 
 | 				 * an arbitrary scalar. Disallow all math except | 
 | 				 * pointer subtraction | 
 | 				 */ | 
 | 				if (opcode == BPF_SUB){ | 
 | 					mark_reg_unknown(env, regs, insn->dst_reg); | 
 | 					return 0; | 
 | 				} | 
 | 				verbose(env, "R%d pointer %s pointer prohibited\n", | 
 | 					insn->dst_reg, | 
 | 					bpf_alu_string[opcode >> 4]); | 
 | 				return -EACCES; | 
 | 			} else { | 
 | 				/* scalar += pointer | 
 | 				 * This is legal, but we have to reverse our | 
 | 				 * src/dest handling in computing the range | 
 | 				 */ | 
 | 				return adjust_ptr_min_max_vals(env, insn, | 
 | 							       src_reg, dst_reg); | 
 | 			} | 
 | 		} else if (ptr_reg) { | 
 | 			/* pointer += scalar */ | 
 | 			return adjust_ptr_min_max_vals(env, insn, | 
 | 						       dst_reg, src_reg); | 
 | 		} | 
 | 	} else { | 
 | 		/* Pretend the src is a reg with a known value, since we only | 
 | 		 * need to be able to read from this state. | 
 | 		 */ | 
 | 		off_reg.type = SCALAR_VALUE; | 
 | 		__mark_reg_known(&off_reg, insn->imm); | 
 | 		src_reg = &off_reg; | 
 | 		if (ptr_reg) /* pointer += K */ | 
 | 			return adjust_ptr_min_max_vals(env, insn, | 
 | 						       ptr_reg, src_reg); | 
 | 	} | 
 |  | 
 | 	/* Got here implies adding two SCALAR_VALUEs */ | 
 | 	if (WARN_ON_ONCE(ptr_reg)) { | 
 | 		print_verifier_state(env, state); | 
 | 		verbose(env, "verifier internal error: unexpected ptr_reg\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (WARN_ON(!src_reg)) { | 
 | 		print_verifier_state(env, state); | 
 | 		verbose(env, "verifier internal error: no src_reg\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); | 
 | } | 
 |  | 
 | /* check validity of 32-bit and 64-bit arithmetic operations */ | 
 | static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) | 
 | { | 
 | 	struct bpf_reg_state *regs = cur_regs(env); | 
 | 	u8 opcode = BPF_OP(insn->code); | 
 | 	int err; | 
 |  | 
 | 	if (opcode == BPF_END || opcode == BPF_NEG) { | 
 | 		if (opcode == BPF_NEG) { | 
 | 			if (BPF_SRC(insn->code) != 0 || | 
 | 			    insn->src_reg != BPF_REG_0 || | 
 | 			    insn->off != 0 || insn->imm != 0) { | 
 | 				verbose(env, "BPF_NEG uses reserved fields\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} else { | 
 | 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 || | 
 | 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || | 
 | 			    BPF_CLASS(insn->code) == BPF_ALU64) { | 
 | 				verbose(env, "BPF_END uses reserved fields\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* check src operand */ | 
 | 		err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (is_pointer_value(env, insn->dst_reg)) { | 
 | 			verbose(env, "R%d pointer arithmetic prohibited\n", | 
 | 				insn->dst_reg); | 
 | 			return -EACCES; | 
 | 		} | 
 |  | 
 | 		/* check dest operand */ | 
 | 		err = check_reg_arg(env, insn->dst_reg, DST_OP); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 	} else if (opcode == BPF_MOV) { | 
 |  | 
 | 		if (BPF_SRC(insn->code) == BPF_X) { | 
 | 			if (insn->imm != 0 || insn->off != 0) { | 
 | 				verbose(env, "BPF_MOV uses reserved fields\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			/* check src operand */ | 
 | 			err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} else { | 
 | 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) { | 
 | 				verbose(env, "BPF_MOV uses reserved fields\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* check dest operand */ | 
 | 		err = check_reg_arg(env, insn->dst_reg, DST_OP); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (BPF_SRC(insn->code) == BPF_X) { | 
 | 			if (BPF_CLASS(insn->code) == BPF_ALU64) { | 
 | 				/* case: R1 = R2 | 
 | 				 * copy register state to dest reg | 
 | 				 */ | 
 | 				regs[insn->dst_reg] = regs[insn->src_reg]; | 
 | 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; | 
 | 			} else { | 
 | 				/* R1 = (u32) R2 */ | 
 | 				if (is_pointer_value(env, insn->src_reg)) { | 
 | 					verbose(env, | 
 | 						"R%d partial copy of pointer\n", | 
 | 						insn->src_reg); | 
 | 					return -EACCES; | 
 | 				} | 
 | 				mark_reg_unknown(env, regs, insn->dst_reg); | 
 | 				coerce_reg_to_size(®s[insn->dst_reg], 4); | 
 | 			} | 
 | 		} else { | 
 | 			/* case: R = imm | 
 | 			 * remember the value we stored into this reg | 
 | 			 */ | 
 | 			regs[insn->dst_reg].type = SCALAR_VALUE; | 
 | 			if (BPF_CLASS(insn->code) == BPF_ALU64) { | 
 | 				__mark_reg_known(regs + insn->dst_reg, | 
 | 						 insn->imm); | 
 | 			} else { | 
 | 				__mark_reg_known(regs + insn->dst_reg, | 
 | 						 (u32)insn->imm); | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} else if (opcode > BPF_END) { | 
 | 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode); | 
 | 		return -EINVAL; | 
 |  | 
 | 	} else {	/* all other ALU ops: and, sub, xor, add, ... */ | 
 |  | 
 | 		if (BPF_SRC(insn->code) == BPF_X) { | 
 | 			if (insn->imm != 0 || insn->off != 0) { | 
 | 				verbose(env, "BPF_ALU uses reserved fields\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			/* check src1 operand */ | 
 | 			err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} else { | 
 | 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) { | 
 | 				verbose(env, "BPF_ALU uses reserved fields\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* check src2 operand */ | 
 | 		err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if ((opcode == BPF_MOD || opcode == BPF_DIV) && | 
 | 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { | 
 | 			verbose(env, "div by zero\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { | 
 | 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if ((opcode == BPF_LSH || opcode == BPF_RSH || | 
 | 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { | 
 | 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; | 
 |  | 
 | 			if (insn->imm < 0 || insn->imm >= size) { | 
 | 				verbose(env, "invalid shift %d\n", insn->imm); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* check dest operand */ | 
 | 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		return adjust_reg_min_max_vals(env, insn); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, | 
 | 				   struct bpf_reg_state *dst_reg, | 
 | 				   enum bpf_reg_type type, | 
 | 				   bool range_right_open) | 
 | { | 
 | 	struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
 | 	struct bpf_reg_state *regs = state->regs, *reg; | 
 | 	u16 new_range; | 
 | 	int i, j; | 
 |  | 
 | 	if (dst_reg->off < 0 || | 
 | 	    (dst_reg->off == 0 && range_right_open)) | 
 | 		/* This doesn't give us any range */ | 
 | 		return; | 
 |  | 
 | 	if (dst_reg->umax_value > MAX_PACKET_OFF || | 
 | 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) | 
 | 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less | 
 | 		 * than pkt_end, but that's because it's also less than pkt. | 
 | 		 */ | 
 | 		return; | 
 |  | 
 | 	new_range = dst_reg->off; | 
 | 	if (range_right_open) | 
 | 		new_range--; | 
 |  | 
 | 	/* Examples for register markings: | 
 | 	 * | 
 | 	 * pkt_data in dst register: | 
 | 	 * | 
 | 	 *   r2 = r3; | 
 | 	 *   r2 += 8; | 
 | 	 *   if (r2 > pkt_end) goto <handle exception> | 
 | 	 *   <access okay> | 
 | 	 * | 
 | 	 *   r2 = r3; | 
 | 	 *   r2 += 8; | 
 | 	 *   if (r2 < pkt_end) goto <access okay> | 
 | 	 *   <handle exception> | 
 | 	 * | 
 | 	 *   Where: | 
 | 	 *     r2 == dst_reg, pkt_end == src_reg | 
 | 	 *     r2=pkt(id=n,off=8,r=0) | 
 | 	 *     r3=pkt(id=n,off=0,r=0) | 
 | 	 * | 
 | 	 * pkt_data in src register: | 
 | 	 * | 
 | 	 *   r2 = r3; | 
 | 	 *   r2 += 8; | 
 | 	 *   if (pkt_end >= r2) goto <access okay> | 
 | 	 *   <handle exception> | 
 | 	 * | 
 | 	 *   r2 = r3; | 
 | 	 *   r2 += 8; | 
 | 	 *   if (pkt_end <= r2) goto <handle exception> | 
 | 	 *   <access okay> | 
 | 	 * | 
 | 	 *   Where: | 
 | 	 *     pkt_end == dst_reg, r2 == src_reg | 
 | 	 *     r2=pkt(id=n,off=8,r=0) | 
 | 	 *     r3=pkt(id=n,off=0,r=0) | 
 | 	 * | 
 | 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) | 
 | 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) | 
 | 	 * and [r3, r3 + 8-1) respectively is safe to access depending on | 
 | 	 * the check. | 
 | 	 */ | 
 |  | 
 | 	/* If our ids match, then we must have the same max_value.  And we | 
 | 	 * don't care about the other reg's fixed offset, since if it's too big | 
 | 	 * the range won't allow anything. | 
 | 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. | 
 | 	 */ | 
 | 	for (i = 0; i < MAX_BPF_REG; i++) | 
 | 		if (regs[i].type == type && regs[i].id == dst_reg->id) | 
 | 			/* keep the maximum range already checked */ | 
 | 			regs[i].range = max(regs[i].range, new_range); | 
 |  | 
 | 	for (j = 0; j <= vstate->curframe; j++) { | 
 | 		state = vstate->frame[j]; | 
 | 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { | 
 | 			if (state->stack[i].slot_type[0] != STACK_SPILL) | 
 | 				continue; | 
 | 			reg = &state->stack[i].spilled_ptr; | 
 | 			if (reg->type == type && reg->id == dst_reg->id) | 
 | 				reg->range = max(reg->range, new_range); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Adjusts the register min/max values in the case that the dst_reg is the | 
 |  * variable register that we are working on, and src_reg is a constant or we're | 
 |  * simply doing a BPF_K check. | 
 |  * In JEQ/JNE cases we also adjust the var_off values. | 
 |  */ | 
 | static void reg_set_min_max(struct bpf_reg_state *true_reg, | 
 | 			    struct bpf_reg_state *false_reg, u64 val, | 
 | 			    u8 opcode) | 
 | { | 
 | 	/* If the dst_reg is a pointer, we can't learn anything about its | 
 | 	 * variable offset from the compare (unless src_reg were a pointer into | 
 | 	 * the same object, but we don't bother with that. | 
 | 	 * Since false_reg and true_reg have the same type by construction, we | 
 | 	 * only need to check one of them for pointerness. | 
 | 	 */ | 
 | 	if (__is_pointer_value(false, false_reg)) | 
 | 		return; | 
 |  | 
 | 	switch (opcode) { | 
 | 	case BPF_JEQ: | 
 | 		/* If this is false then we know nothing Jon Snow, but if it is | 
 | 		 * true then we know for sure. | 
 | 		 */ | 
 | 		__mark_reg_known(true_reg, val); | 
 | 		break; | 
 | 	case BPF_JNE: | 
 | 		/* If this is true we know nothing Jon Snow, but if it is false | 
 | 		 * we know the value for sure; | 
 | 		 */ | 
 | 		__mark_reg_known(false_reg, val); | 
 | 		break; | 
 | 	case BPF_JGT: | 
 | 		false_reg->umax_value = min(false_reg->umax_value, val); | 
 | 		true_reg->umin_value = max(true_reg->umin_value, val + 1); | 
 | 		break; | 
 | 	case BPF_JSGT: | 
 | 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val); | 
 | 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); | 
 | 		break; | 
 | 	case BPF_JLT: | 
 | 		false_reg->umin_value = max(false_reg->umin_value, val); | 
 | 		true_reg->umax_value = min(true_reg->umax_value, val - 1); | 
 | 		break; | 
 | 	case BPF_JSLT: | 
 | 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val); | 
 | 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); | 
 | 		break; | 
 | 	case BPF_JGE: | 
 | 		false_reg->umax_value = min(false_reg->umax_value, val - 1); | 
 | 		true_reg->umin_value = max(true_reg->umin_value, val); | 
 | 		break; | 
 | 	case BPF_JSGE: | 
 | 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); | 
 | 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val); | 
 | 		break; | 
 | 	case BPF_JLE: | 
 | 		false_reg->umin_value = max(false_reg->umin_value, val + 1); | 
 | 		true_reg->umax_value = min(true_reg->umax_value, val); | 
 | 		break; | 
 | 	case BPF_JSLE: | 
 | 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); | 
 | 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	__reg_deduce_bounds(false_reg); | 
 | 	__reg_deduce_bounds(true_reg); | 
 | 	/* We might have learned some bits from the bounds. */ | 
 | 	__reg_bound_offset(false_reg); | 
 | 	__reg_bound_offset(true_reg); | 
 | 	/* Intersecting with the old var_off might have improved our bounds | 
 | 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), | 
 | 	 * then new var_off is (0; 0x7f...fc) which improves our umax. | 
 | 	 */ | 
 | 	__update_reg_bounds(false_reg); | 
 | 	__update_reg_bounds(true_reg); | 
 | } | 
 |  | 
 | /* Same as above, but for the case that dst_reg holds a constant and src_reg is | 
 |  * the variable reg. | 
 |  */ | 
 | static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, | 
 | 				struct bpf_reg_state *false_reg, u64 val, | 
 | 				u8 opcode) | 
 | { | 
 | 	if (__is_pointer_value(false, false_reg)) | 
 | 		return; | 
 |  | 
 | 	switch (opcode) { | 
 | 	case BPF_JEQ: | 
 | 		/* If this is false then we know nothing Jon Snow, but if it is | 
 | 		 * true then we know for sure. | 
 | 		 */ | 
 | 		__mark_reg_known(true_reg, val); | 
 | 		break; | 
 | 	case BPF_JNE: | 
 | 		/* If this is true we know nothing Jon Snow, but if it is false | 
 | 		 * we know the value for sure; | 
 | 		 */ | 
 | 		__mark_reg_known(false_reg, val); | 
 | 		break; | 
 | 	case BPF_JGT: | 
 | 		true_reg->umax_value = min(true_reg->umax_value, val - 1); | 
 | 		false_reg->umin_value = max(false_reg->umin_value, val); | 
 | 		break; | 
 | 	case BPF_JSGT: | 
 | 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); | 
 | 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val); | 
 | 		break; | 
 | 	case BPF_JLT: | 
 | 		true_reg->umin_value = max(true_reg->umin_value, val + 1); | 
 | 		false_reg->umax_value = min(false_reg->umax_value, val); | 
 | 		break; | 
 | 	case BPF_JSLT: | 
 | 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); | 
 | 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val); | 
 | 		break; | 
 | 	case BPF_JGE: | 
 | 		true_reg->umax_value = min(true_reg->umax_value, val); | 
 | 		false_reg->umin_value = max(false_reg->umin_value, val + 1); | 
 | 		break; | 
 | 	case BPF_JSGE: | 
 | 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val); | 
 | 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); | 
 | 		break; | 
 | 	case BPF_JLE: | 
 | 		true_reg->umin_value = max(true_reg->umin_value, val); | 
 | 		false_reg->umax_value = min(false_reg->umax_value, val - 1); | 
 | 		break; | 
 | 	case BPF_JSLE: | 
 | 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val); | 
 | 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	__reg_deduce_bounds(false_reg); | 
 | 	__reg_deduce_bounds(true_reg); | 
 | 	/* We might have learned some bits from the bounds. */ | 
 | 	__reg_bound_offset(false_reg); | 
 | 	__reg_bound_offset(true_reg); | 
 | 	/* Intersecting with the old var_off might have improved our bounds | 
 | 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), | 
 | 	 * then new var_off is (0; 0x7f...fc) which improves our umax. | 
 | 	 */ | 
 | 	__update_reg_bounds(false_reg); | 
 | 	__update_reg_bounds(true_reg); | 
 | } | 
 |  | 
 | /* Regs are known to be equal, so intersect their min/max/var_off */ | 
 | static void __reg_combine_min_max(struct bpf_reg_state *src_reg, | 
 | 				  struct bpf_reg_state *dst_reg) | 
 | { | 
 | 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, | 
 | 							dst_reg->umin_value); | 
 | 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, | 
 | 							dst_reg->umax_value); | 
 | 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, | 
 | 							dst_reg->smin_value); | 
 | 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, | 
 | 							dst_reg->smax_value); | 
 | 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, | 
 | 							     dst_reg->var_off); | 
 | 	/* We might have learned new bounds from the var_off. */ | 
 | 	__update_reg_bounds(src_reg); | 
 | 	__update_reg_bounds(dst_reg); | 
 | 	/* We might have learned something about the sign bit. */ | 
 | 	__reg_deduce_bounds(src_reg); | 
 | 	__reg_deduce_bounds(dst_reg); | 
 | 	/* We might have learned some bits from the bounds. */ | 
 | 	__reg_bound_offset(src_reg); | 
 | 	__reg_bound_offset(dst_reg); | 
 | 	/* Intersecting with the old var_off might have improved our bounds | 
 | 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), | 
 | 	 * then new var_off is (0; 0x7f...fc) which improves our umax. | 
 | 	 */ | 
 | 	__update_reg_bounds(src_reg); | 
 | 	__update_reg_bounds(dst_reg); | 
 | } | 
 |  | 
 | static void reg_combine_min_max(struct bpf_reg_state *true_src, | 
 | 				struct bpf_reg_state *true_dst, | 
 | 				struct bpf_reg_state *false_src, | 
 | 				struct bpf_reg_state *false_dst, | 
 | 				u8 opcode) | 
 | { | 
 | 	switch (opcode) { | 
 | 	case BPF_JEQ: | 
 | 		__reg_combine_min_max(true_src, true_dst); | 
 | 		break; | 
 | 	case BPF_JNE: | 
 | 		__reg_combine_min_max(false_src, false_dst); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, | 
 | 			 bool is_null) | 
 | { | 
 | 	struct bpf_reg_state *reg = ®s[regno]; | 
 |  | 
 | 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { | 
 | 		/* Old offset (both fixed and variable parts) should | 
 | 		 * have been known-zero, because we don't allow pointer | 
 | 		 * arithmetic on pointers that might be NULL. | 
 | 		 */ | 
 | 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || | 
 | 				 !tnum_equals_const(reg->var_off, 0) || | 
 | 				 reg->off)) { | 
 | 			__mark_reg_known_zero(reg); | 
 | 			reg->off = 0; | 
 | 		} | 
 | 		if (is_null) { | 
 | 			reg->type = SCALAR_VALUE; | 
 | 		} else if (reg->map_ptr->inner_map_meta) { | 
 | 			reg->type = CONST_PTR_TO_MAP; | 
 | 			reg->map_ptr = reg->map_ptr->inner_map_meta; | 
 | 		} else { | 
 | 			reg->type = PTR_TO_MAP_VALUE; | 
 | 		} | 
 | 		/* We don't need id from this point onwards anymore, thus we | 
 | 		 * should better reset it, so that state pruning has chances | 
 | 		 * to take effect. | 
 | 		 */ | 
 | 		reg->id = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* The logic is similar to find_good_pkt_pointers(), both could eventually | 
 |  * be folded together at some point. | 
 |  */ | 
 | static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno, | 
 | 			  bool is_null) | 
 | { | 
 | 	struct bpf_func_state *state = vstate->frame[vstate->curframe]; | 
 | 	struct bpf_reg_state *regs = state->regs; | 
 | 	u32 id = regs[regno].id; | 
 | 	int i, j; | 
 |  | 
 | 	for (i = 0; i < MAX_BPF_REG; i++) | 
 | 		mark_map_reg(regs, i, id, is_null); | 
 |  | 
 | 	for (j = 0; j <= vstate->curframe; j++) { | 
 | 		state = vstate->frame[j]; | 
 | 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { | 
 | 			if (state->stack[i].slot_type[0] != STACK_SPILL) | 
 | 				continue; | 
 | 			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static bool try_match_pkt_pointers(const struct bpf_insn *insn, | 
 | 				   struct bpf_reg_state *dst_reg, | 
 | 				   struct bpf_reg_state *src_reg, | 
 | 				   struct bpf_verifier_state *this_branch, | 
 | 				   struct bpf_verifier_state *other_branch) | 
 | { | 
 | 	if (BPF_SRC(insn->code) != BPF_X) | 
 | 		return false; | 
 |  | 
 | 	switch (BPF_OP(insn->code)) { | 
 | 	case BPF_JGT: | 
 | 		if ((dst_reg->type == PTR_TO_PACKET && | 
 | 		     src_reg->type == PTR_TO_PACKET_END) || | 
 | 		    (dst_reg->type == PTR_TO_PACKET_META && | 
 | 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | 
 | 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */ | 
 | 			find_good_pkt_pointers(this_branch, dst_reg, | 
 | 					       dst_reg->type, false); | 
 | 		} else if ((dst_reg->type == PTR_TO_PACKET_END && | 
 | 			    src_reg->type == PTR_TO_PACKET) || | 
 | 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | 
 | 			    src_reg->type == PTR_TO_PACKET_META)) { | 
 | 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */ | 
 | 			find_good_pkt_pointers(other_branch, src_reg, | 
 | 					       src_reg->type, true); | 
 | 		} else { | 
 | 			return false; | 
 | 		} | 
 | 		break; | 
 | 	case BPF_JLT: | 
 | 		if ((dst_reg->type == PTR_TO_PACKET && | 
 | 		     src_reg->type == PTR_TO_PACKET_END) || | 
 | 		    (dst_reg->type == PTR_TO_PACKET_META && | 
 | 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | 
 | 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */ | 
 | 			find_good_pkt_pointers(other_branch, dst_reg, | 
 | 					       dst_reg->type, true); | 
 | 		} else if ((dst_reg->type == PTR_TO_PACKET_END && | 
 | 			    src_reg->type == PTR_TO_PACKET) || | 
 | 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | 
 | 			    src_reg->type == PTR_TO_PACKET_META)) { | 
 | 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */ | 
 | 			find_good_pkt_pointers(this_branch, src_reg, | 
 | 					       src_reg->type, false); | 
 | 		} else { | 
 | 			return false; | 
 | 		} | 
 | 		break; | 
 | 	case BPF_JGE: | 
 | 		if ((dst_reg->type == PTR_TO_PACKET && | 
 | 		     src_reg->type == PTR_TO_PACKET_END) || | 
 | 		    (dst_reg->type == PTR_TO_PACKET_META && | 
 | 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | 
 | 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ | 
 | 			find_good_pkt_pointers(this_branch, dst_reg, | 
 | 					       dst_reg->type, true); | 
 | 		} else if ((dst_reg->type == PTR_TO_PACKET_END && | 
 | 			    src_reg->type == PTR_TO_PACKET) || | 
 | 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | 
 | 			    src_reg->type == PTR_TO_PACKET_META)) { | 
 | 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ | 
 | 			find_good_pkt_pointers(other_branch, src_reg, | 
 | 					       src_reg->type, false); | 
 | 		} else { | 
 | 			return false; | 
 | 		} | 
 | 		break; | 
 | 	case BPF_JLE: | 
 | 		if ((dst_reg->type == PTR_TO_PACKET && | 
 | 		     src_reg->type == PTR_TO_PACKET_END) || | 
 | 		    (dst_reg->type == PTR_TO_PACKET_META && | 
 | 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | 
 | 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ | 
 | 			find_good_pkt_pointers(other_branch, dst_reg, | 
 | 					       dst_reg->type, false); | 
 | 		} else if ((dst_reg->type == PTR_TO_PACKET_END && | 
 | 			    src_reg->type == PTR_TO_PACKET) || | 
 | 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | 
 | 			    src_reg->type == PTR_TO_PACKET_META)) { | 
 | 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ | 
 | 			find_good_pkt_pointers(this_branch, src_reg, | 
 | 					       src_reg->type, true); | 
 | 		} else { | 
 | 			return false; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int check_cond_jmp_op(struct bpf_verifier_env *env, | 
 | 			     struct bpf_insn *insn, int *insn_idx) | 
 | { | 
 | 	struct bpf_verifier_state *this_branch = env->cur_state; | 
 | 	struct bpf_verifier_state *other_branch; | 
 | 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; | 
 | 	struct bpf_reg_state *dst_reg, *other_branch_regs; | 
 | 	u8 opcode = BPF_OP(insn->code); | 
 | 	int err; | 
 |  | 
 | 	if (opcode > BPF_JSLE) { | 
 | 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (BPF_SRC(insn->code) == BPF_X) { | 
 | 		if (insn->imm != 0) { | 
 | 			verbose(env, "BPF_JMP uses reserved fields\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		/* check src1 operand */ | 
 | 		err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (is_pointer_value(env, insn->src_reg)) { | 
 | 			verbose(env, "R%d pointer comparison prohibited\n", | 
 | 				insn->src_reg); | 
 | 			return -EACCES; | 
 | 		} | 
 | 	} else { | 
 | 		if (insn->src_reg != BPF_REG_0) { | 
 | 			verbose(env, "BPF_JMP uses reserved fields\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* check src2 operand */ | 
 | 	err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	dst_reg = ®s[insn->dst_reg]; | 
 |  | 
 | 	/* detect if R == 0 where R was initialized to zero earlier */ | 
 | 	if (BPF_SRC(insn->code) == BPF_K && | 
 | 	    (opcode == BPF_JEQ || opcode == BPF_JNE) && | 
 | 	    dst_reg->type == SCALAR_VALUE && | 
 | 	    tnum_is_const(dst_reg->var_off)) { | 
 | 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) || | 
 | 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) { | 
 | 			/* if (imm == imm) goto pc+off; | 
 | 			 * only follow the goto, ignore fall-through | 
 | 			 */ | 
 | 			*insn_idx += insn->off; | 
 | 			return 0; | 
 | 		} else { | 
 | 			/* if (imm != imm) goto pc+off; | 
 | 			 * only follow fall-through branch, since | 
 | 			 * that's where the program will go | 
 | 			 */ | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); | 
 | 	if (!other_branch) | 
 | 		return -EFAULT; | 
 | 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs; | 
 |  | 
 | 	/* detect if we are comparing against a constant value so we can adjust | 
 | 	 * our min/max values for our dst register. | 
 | 	 * this is only legit if both are scalars (or pointers to the same | 
 | 	 * object, I suppose, but we don't support that right now), because | 
 | 	 * otherwise the different base pointers mean the offsets aren't | 
 | 	 * comparable. | 
 | 	 */ | 
 | 	if (BPF_SRC(insn->code) == BPF_X) { | 
 | 		if (dst_reg->type == SCALAR_VALUE && | 
 | 		    regs[insn->src_reg].type == SCALAR_VALUE) { | 
 | 			if (tnum_is_const(regs[insn->src_reg].var_off)) | 
 | 				reg_set_min_max(&other_branch_regs[insn->dst_reg], | 
 | 						dst_reg, regs[insn->src_reg].var_off.value, | 
 | 						opcode); | 
 | 			else if (tnum_is_const(dst_reg->var_off)) | 
 | 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg], | 
 | 						    ®s[insn->src_reg], | 
 | 						    dst_reg->var_off.value, opcode); | 
 | 			else if (opcode == BPF_JEQ || opcode == BPF_JNE) | 
 | 				/* Comparing for equality, we can combine knowledge */ | 
 | 				reg_combine_min_max(&other_branch_regs[insn->src_reg], | 
 | 						    &other_branch_regs[insn->dst_reg], | 
 | 						    ®s[insn->src_reg], | 
 | 						    ®s[insn->dst_reg], opcode); | 
 | 		} | 
 | 	} else if (dst_reg->type == SCALAR_VALUE) { | 
 | 		reg_set_min_max(&other_branch_regs[insn->dst_reg], | 
 | 					dst_reg, insn->imm, opcode); | 
 | 	} | 
 |  | 
 | 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ | 
 | 	if (BPF_SRC(insn->code) == BPF_K && | 
 | 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && | 
 | 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { | 
 | 		/* Mark all identical map registers in each branch as either | 
 | 		 * safe or unknown depending R == 0 or R != 0 conditional. | 
 | 		 */ | 
 | 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); | 
 | 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); | 
 | 	} else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], | 
 | 					   this_branch, other_branch) && | 
 | 		   is_pointer_value(env, insn->dst_reg)) { | 
 | 		verbose(env, "R%d pointer comparison prohibited\n", | 
 | 			insn->dst_reg); | 
 | 		return -EACCES; | 
 | 	} | 
 | 	if (env->log.level) | 
 | 		print_verifier_state(env, this_branch->frame[this_branch->curframe]); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* return the map pointer stored inside BPF_LD_IMM64 instruction */ | 
 | static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) | 
 | { | 
 | 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; | 
 |  | 
 | 	return (struct bpf_map *) (unsigned long) imm64; | 
 | } | 
 |  | 
 | /* verify BPF_LD_IMM64 instruction */ | 
 | static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) | 
 | { | 
 | 	struct bpf_reg_state *regs = cur_regs(env); | 
 | 	int err; | 
 |  | 
 | 	if (BPF_SIZE(insn->code) != BPF_DW) { | 
 | 		verbose(env, "invalid BPF_LD_IMM insn\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (insn->off != 0) { | 
 | 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	err = check_reg_arg(env, insn->dst_reg, DST_OP); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (insn->src_reg == 0) { | 
 | 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; | 
 |  | 
 | 		regs[insn->dst_reg].type = SCALAR_VALUE; | 
 | 		__mark_reg_known(®s[insn->dst_reg], imm); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ | 
 | 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); | 
 |  | 
 | 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP; | 
 | 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool may_access_skb(enum bpf_prog_type type) | 
 | { | 
 | 	switch (type) { | 
 | 	case BPF_PROG_TYPE_SOCKET_FILTER: | 
 | 	case BPF_PROG_TYPE_SCHED_CLS: | 
 | 	case BPF_PROG_TYPE_SCHED_ACT: | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | /* verify safety of LD_ABS|LD_IND instructions: | 
 |  * - they can only appear in the programs where ctx == skb | 
 |  * - since they are wrappers of function calls, they scratch R1-R5 registers, | 
 |  *   preserve R6-R9, and store return value into R0 | 
 |  * | 
 |  * Implicit input: | 
 |  *   ctx == skb == R6 == CTX | 
 |  * | 
 |  * Explicit input: | 
 |  *   SRC == any register | 
 |  *   IMM == 32-bit immediate | 
 |  * | 
 |  * Output: | 
 |  *   R0 - 8/16/32-bit skb data converted to cpu endianness | 
 |  */ | 
 | static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) | 
 | { | 
 | 	struct bpf_reg_state *regs = cur_regs(env); | 
 | 	u8 mode = BPF_MODE(insn->code); | 
 | 	int i, err; | 
 |  | 
 | 	if (!may_access_skb(env->prog->type)) { | 
 | 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (env->subprog_cnt) { | 
 | 		/* when program has LD_ABS insn JITs and interpreter assume | 
 | 		 * that r1 == ctx == skb which is not the case for callees | 
 | 		 * that can have arbitrary arguments. It's problematic | 
 | 		 * for main prog as well since JITs would need to analyze | 
 | 		 * all functions in order to make proper register save/restore | 
 | 		 * decisions in the main prog. Hence disallow LD_ABS with calls | 
 | 		 */ | 
 | 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || | 
 | 	    BPF_SIZE(insn->code) == BPF_DW || | 
 | 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { | 
 | 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* check whether implicit source operand (register R6) is readable */ | 
 | 	err = check_reg_arg(env, BPF_REG_6, SRC_OP); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (regs[BPF_REG_6].type != PTR_TO_CTX) { | 
 | 		verbose(env, | 
 | 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (mode == BPF_IND) { | 
 | 		/* check explicit source operand */ | 
 | 		err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	/* reset caller saved regs to unreadable */ | 
 | 	for (i = 0; i < CALLER_SAVED_REGS; i++) { | 
 | 		mark_reg_not_init(env, regs, caller_saved[i]); | 
 | 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); | 
 | 	} | 
 |  | 
 | 	/* mark destination R0 register as readable, since it contains | 
 | 	 * the value fetched from the packet. | 
 | 	 * Already marked as written above. | 
 | 	 */ | 
 | 	mark_reg_unknown(env, regs, BPF_REG_0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_return_code(struct bpf_verifier_env *env) | 
 | { | 
 | 	struct bpf_reg_state *reg; | 
 | 	struct tnum range = tnum_range(0, 1); | 
 |  | 
 | 	switch (env->prog->type) { | 
 | 	case BPF_PROG_TYPE_CGROUP_SKB: | 
 | 	case BPF_PROG_TYPE_CGROUP_SOCK: | 
 | 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: | 
 | 	case BPF_PROG_TYPE_SOCK_OPS: | 
 | 	case BPF_PROG_TYPE_CGROUP_DEVICE: | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	reg = cur_regs(env) + BPF_REG_0; | 
 | 	if (reg->type != SCALAR_VALUE) { | 
 | 		verbose(env, "At program exit the register R0 is not a known value (%s)\n", | 
 | 			reg_type_str[reg->type]); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!tnum_in(range, reg->var_off)) { | 
 | 		verbose(env, "At program exit the register R0 "); | 
 | 		if (!tnum_is_unknown(reg->var_off)) { | 
 | 			char tn_buf[48]; | 
 |  | 
 | 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 
 | 			verbose(env, "has value %s", tn_buf); | 
 | 		} else { | 
 | 			verbose(env, "has unknown scalar value"); | 
 | 		} | 
 | 		verbose(env, " should have been 0 or 1\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* non-recursive DFS pseudo code | 
 |  * 1  procedure DFS-iterative(G,v): | 
 |  * 2      label v as discovered | 
 |  * 3      let S be a stack | 
 |  * 4      S.push(v) | 
 |  * 5      while S is not empty | 
 |  * 6            t <- S.pop() | 
 |  * 7            if t is what we're looking for: | 
 |  * 8                return t | 
 |  * 9            for all edges e in G.adjacentEdges(t) do | 
 |  * 10               if edge e is already labelled | 
 |  * 11                   continue with the next edge | 
 |  * 12               w <- G.adjacentVertex(t,e) | 
 |  * 13               if vertex w is not discovered and not explored | 
 |  * 14                   label e as tree-edge | 
 |  * 15                   label w as discovered | 
 |  * 16                   S.push(w) | 
 |  * 17                   continue at 5 | 
 |  * 18               else if vertex w is discovered | 
 |  * 19                   label e as back-edge | 
 |  * 20               else | 
 |  * 21                   // vertex w is explored | 
 |  * 22                   label e as forward- or cross-edge | 
 |  * 23           label t as explored | 
 |  * 24           S.pop() | 
 |  * | 
 |  * convention: | 
 |  * 0x10 - discovered | 
 |  * 0x11 - discovered and fall-through edge labelled | 
 |  * 0x12 - discovered and fall-through and branch edges labelled | 
 |  * 0x20 - explored | 
 |  */ | 
 |  | 
 | enum { | 
 | 	DISCOVERED = 0x10, | 
 | 	EXPLORED = 0x20, | 
 | 	FALLTHROUGH = 1, | 
 | 	BRANCH = 2, | 
 | }; | 
 |  | 
 | #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) | 
 |  | 
 | static int *insn_stack;	/* stack of insns to process */ | 
 | static int cur_stack;	/* current stack index */ | 
 | static int *insn_state; | 
 |  | 
 | /* t, w, e - match pseudo-code above: | 
 |  * t - index of current instruction | 
 |  * w - next instruction | 
 |  * e - edge | 
 |  */ | 
 | static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) | 
 | { | 
 | 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) | 
 | 		return 0; | 
 |  | 
 | 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) | 
 | 		return 0; | 
 |  | 
 | 	if (w < 0 || w >= env->prog->len) { | 
 | 		verbose(env, "jump out of range from insn %d to %d\n", t, w); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (e == BRANCH) | 
 | 		/* mark branch target for state pruning */ | 
 | 		env->explored_states[w] = STATE_LIST_MARK; | 
 |  | 
 | 	if (insn_state[w] == 0) { | 
 | 		/* tree-edge */ | 
 | 		insn_state[t] = DISCOVERED | e; | 
 | 		insn_state[w] = DISCOVERED; | 
 | 		if (cur_stack >= env->prog->len) | 
 | 			return -E2BIG; | 
 | 		insn_stack[cur_stack++] = w; | 
 | 		return 1; | 
 | 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) { | 
 | 		verbose(env, "back-edge from insn %d to %d\n", t, w); | 
 | 		return -EINVAL; | 
 | 	} else if (insn_state[w] == EXPLORED) { | 
 | 		/* forward- or cross-edge */ | 
 | 		insn_state[t] = DISCOVERED | e; | 
 | 	} else { | 
 | 		verbose(env, "insn state internal bug\n"); | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* non-recursive depth-first-search to detect loops in BPF program | 
 |  * loop == back-edge in directed graph | 
 |  */ | 
 | static int check_cfg(struct bpf_verifier_env *env) | 
 | { | 
 | 	struct bpf_insn *insns = env->prog->insnsi; | 
 | 	int insn_cnt = env->prog->len; | 
 | 	int ret = 0; | 
 | 	int i, t; | 
 |  | 
 | 	ret = check_subprogs(env); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); | 
 | 	if (!insn_state) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); | 
 | 	if (!insn_stack) { | 
 | 		kfree(insn_state); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ | 
 | 	insn_stack[0] = 0; /* 0 is the first instruction */ | 
 | 	cur_stack = 1; | 
 |  | 
 | peek_stack: | 
 | 	if (cur_stack == 0) | 
 | 		goto check_state; | 
 | 	t = insn_stack[cur_stack - 1]; | 
 |  | 
 | 	if (BPF_CLASS(insns[t].code) == BPF_JMP) { | 
 | 		u8 opcode = BPF_OP(insns[t].code); | 
 |  | 
 | 		if (opcode == BPF_EXIT) { | 
 | 			goto mark_explored; | 
 | 		} else if (opcode == BPF_CALL) { | 
 | 			ret = push_insn(t, t + 1, FALLTHROUGH, env); | 
 | 			if (ret == 1) | 
 | 				goto peek_stack; | 
 | 			else if (ret < 0) | 
 | 				goto err_free; | 
 | 			if (t + 1 < insn_cnt) | 
 | 				env->explored_states[t + 1] = STATE_LIST_MARK; | 
 | 			if (insns[t].src_reg == BPF_PSEUDO_CALL) { | 
 | 				env->explored_states[t] = STATE_LIST_MARK; | 
 | 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); | 
 | 				if (ret == 1) | 
 | 					goto peek_stack; | 
 | 				else if (ret < 0) | 
 | 					goto err_free; | 
 | 			} | 
 | 		} else if (opcode == BPF_JA) { | 
 | 			if (BPF_SRC(insns[t].code) != BPF_K) { | 
 | 				ret = -EINVAL; | 
 | 				goto err_free; | 
 | 			} | 
 | 			/* unconditional jump with single edge */ | 
 | 			ret = push_insn(t, t + insns[t].off + 1, | 
 | 					FALLTHROUGH, env); | 
 | 			if (ret == 1) | 
 | 				goto peek_stack; | 
 | 			else if (ret < 0) | 
 | 				goto err_free; | 
 | 			/* tell verifier to check for equivalent states | 
 | 			 * after every call and jump | 
 | 			 */ | 
 | 			if (t + 1 < insn_cnt) | 
 | 				env->explored_states[t + 1] = STATE_LIST_MARK; | 
 | 		} else { | 
 | 			/* conditional jump with two edges */ | 
 | 			env->explored_states[t] = STATE_LIST_MARK; | 
 | 			ret = push_insn(t, t + 1, FALLTHROUGH, env); | 
 | 			if (ret == 1) | 
 | 				goto peek_stack; | 
 | 			else if (ret < 0) | 
 | 				goto err_free; | 
 |  | 
 | 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); | 
 | 			if (ret == 1) | 
 | 				goto peek_stack; | 
 | 			else if (ret < 0) | 
 | 				goto err_free; | 
 | 		} | 
 | 	} else { | 
 | 		/* all other non-branch instructions with single | 
 | 		 * fall-through edge | 
 | 		 */ | 
 | 		ret = push_insn(t, t + 1, FALLTHROUGH, env); | 
 | 		if (ret == 1) | 
 | 			goto peek_stack; | 
 | 		else if (ret < 0) | 
 | 			goto err_free; | 
 | 	} | 
 |  | 
 | mark_explored: | 
 | 	insn_state[t] = EXPLORED; | 
 | 	if (cur_stack-- <= 0) { | 
 | 		verbose(env, "pop stack internal bug\n"); | 
 | 		ret = -EFAULT; | 
 | 		goto err_free; | 
 | 	} | 
 | 	goto peek_stack; | 
 |  | 
 | check_state: | 
 | 	for (i = 0; i < insn_cnt; i++) { | 
 | 		if (insn_state[i] != EXPLORED) { | 
 | 			verbose(env, "unreachable insn %d\n", i); | 
 | 			ret = -EINVAL; | 
 | 			goto err_free; | 
 | 		} | 
 | 	} | 
 | 	ret = 0; /* cfg looks good */ | 
 |  | 
 | err_free: | 
 | 	kfree(insn_state); | 
 | 	kfree(insn_stack); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* check %cur's range satisfies %old's */ | 
 | static bool range_within(struct bpf_reg_state *old, | 
 | 			 struct bpf_reg_state *cur) | 
 | { | 
 | 	return old->umin_value <= cur->umin_value && | 
 | 	       old->umax_value >= cur->umax_value && | 
 | 	       old->smin_value <= cur->smin_value && | 
 | 	       old->smax_value >= cur->smax_value; | 
 | } | 
 |  | 
 | /* Maximum number of register states that can exist at once */ | 
 | #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) | 
 | struct idpair { | 
 | 	u32 old; | 
 | 	u32 cur; | 
 | }; | 
 |  | 
 | /* If in the old state two registers had the same id, then they need to have | 
 |  * the same id in the new state as well.  But that id could be different from | 
 |  * the old state, so we need to track the mapping from old to new ids. | 
 |  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent | 
 |  * regs with old id 5 must also have new id 9 for the new state to be safe.  But | 
 |  * regs with a different old id could still have new id 9, we don't care about | 
 |  * that. | 
 |  * So we look through our idmap to see if this old id has been seen before.  If | 
 |  * so, we require the new id to match; otherwise, we add the id pair to the map. | 
 |  */ | 
 | static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < ID_MAP_SIZE; i++) { | 
 | 		if (!idmap[i].old) { | 
 | 			/* Reached an empty slot; haven't seen this id before */ | 
 | 			idmap[i].old = old_id; | 
 | 			idmap[i].cur = cur_id; | 
 | 			return true; | 
 | 		} | 
 | 		if (idmap[i].old == old_id) | 
 | 			return idmap[i].cur == cur_id; | 
 | 	} | 
 | 	/* We ran out of idmap slots, which should be impossible */ | 
 | 	WARN_ON_ONCE(1); | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Returns true if (rold safe implies rcur safe) */ | 
 | static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, | 
 | 		    struct idpair *idmap) | 
 | { | 
 | 	bool equal; | 
 |  | 
 | 	if (!(rold->live & REG_LIVE_READ)) | 
 | 		/* explored state didn't use this */ | 
 | 		return true; | 
 |  | 
 | 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0; | 
 |  | 
 | 	if (rold->type == PTR_TO_STACK) | 
 | 		/* two stack pointers are equal only if they're pointing to | 
 | 		 * the same stack frame, since fp-8 in foo != fp-8 in bar | 
 | 		 */ | 
 | 		return equal && rold->frameno == rcur->frameno; | 
 |  | 
 | 	if (equal) | 
 | 		return true; | 
 |  | 
 | 	if (rold->type == NOT_INIT) | 
 | 		/* explored state can't have used this */ | 
 | 		return true; | 
 | 	if (rcur->type == NOT_INIT) | 
 | 		return false; | 
 | 	switch (rold->type) { | 
 | 	case SCALAR_VALUE: | 
 | 		if (rcur->type == SCALAR_VALUE) { | 
 | 			/* new val must satisfy old val knowledge */ | 
 | 			return range_within(rold, rcur) && | 
 | 			       tnum_in(rold->var_off, rcur->var_off); | 
 | 		} else { | 
 | 			/* We're trying to use a pointer in place of a scalar. | 
 | 			 * Even if the scalar was unbounded, this could lead to | 
 | 			 * pointer leaks because scalars are allowed to leak | 
 | 			 * while pointers are not. We could make this safe in | 
 | 			 * special cases if root is calling us, but it's | 
 | 			 * probably not worth the hassle. | 
 | 			 */ | 
 | 			return false; | 
 | 		} | 
 | 	case PTR_TO_MAP_VALUE: | 
 | 		/* If the new min/max/var_off satisfy the old ones and | 
 | 		 * everything else matches, we are OK. | 
 | 		 * We don't care about the 'id' value, because nothing | 
 | 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) | 
 | 		 */ | 
 | 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && | 
 | 		       range_within(rold, rcur) && | 
 | 		       tnum_in(rold->var_off, rcur->var_off); | 
 | 	case PTR_TO_MAP_VALUE_OR_NULL: | 
 | 		/* a PTR_TO_MAP_VALUE could be safe to use as a | 
 | 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map. | 
 | 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- | 
 | 		 * checked, doing so could have affected others with the same | 
 | 		 * id, and we can't check for that because we lost the id when | 
 | 		 * we converted to a PTR_TO_MAP_VALUE. | 
 | 		 */ | 
 | 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) | 
 | 			return false; | 
 | 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) | 
 | 			return false; | 
 | 		/* Check our ids match any regs they're supposed to */ | 
 | 		return check_ids(rold->id, rcur->id, idmap); | 
 | 	case PTR_TO_PACKET_META: | 
 | 	case PTR_TO_PACKET: | 
 | 		if (rcur->type != rold->type) | 
 | 			return false; | 
 | 		/* We must have at least as much range as the old ptr | 
 | 		 * did, so that any accesses which were safe before are | 
 | 		 * still safe.  This is true even if old range < old off, | 
 | 		 * since someone could have accessed through (ptr - k), or | 
 | 		 * even done ptr -= k in a register, to get a safe access. | 
 | 		 */ | 
 | 		if (rold->range > rcur->range) | 
 | 			return false; | 
 | 		/* If the offsets don't match, we can't trust our alignment; | 
 | 		 * nor can we be sure that we won't fall out of range. | 
 | 		 */ | 
 | 		if (rold->off != rcur->off) | 
 | 			return false; | 
 | 		/* id relations must be preserved */ | 
 | 		if (rold->id && !check_ids(rold->id, rcur->id, idmap)) | 
 | 			return false; | 
 | 		/* new val must satisfy old val knowledge */ | 
 | 		return range_within(rold, rcur) && | 
 | 		       tnum_in(rold->var_off, rcur->var_off); | 
 | 	case PTR_TO_CTX: | 
 | 	case CONST_PTR_TO_MAP: | 
 | 	case PTR_TO_PACKET_END: | 
 | 		/* Only valid matches are exact, which memcmp() above | 
 | 		 * would have accepted | 
 | 		 */ | 
 | 	default: | 
 | 		/* Don't know what's going on, just say it's not safe */ | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* Shouldn't get here; if we do, say it's not safe */ | 
 | 	WARN_ON_ONCE(1); | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool stacksafe(struct bpf_func_state *old, | 
 | 		      struct bpf_func_state *cur, | 
 | 		      struct idpair *idmap) | 
 | { | 
 | 	int i, spi; | 
 |  | 
 | 	/* if explored stack has more populated slots than current stack | 
 | 	 * such stacks are not equivalent | 
 | 	 */ | 
 | 	if (old->allocated_stack > cur->allocated_stack) | 
 | 		return false; | 
 |  | 
 | 	/* walk slots of the explored stack and ignore any additional | 
 | 	 * slots in the current stack, since explored(safe) state | 
 | 	 * didn't use them | 
 | 	 */ | 
 | 	for (i = 0; i < old->allocated_stack; i++) { | 
 | 		spi = i / BPF_REG_SIZE; | 
 |  | 
 | 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) | 
 | 			/* explored state didn't use this */ | 
 | 			continue; | 
 |  | 
 | 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) | 
 | 			continue; | 
 | 		/* if old state was safe with misc data in the stack | 
 | 		 * it will be safe with zero-initialized stack. | 
 | 		 * The opposite is not true | 
 | 		 */ | 
 | 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && | 
 | 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) | 
 | 			continue; | 
 | 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != | 
 | 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE]) | 
 | 			/* Ex: old explored (safe) state has STACK_SPILL in | 
 | 			 * this stack slot, but current has has STACK_MISC -> | 
 | 			 * this verifier states are not equivalent, | 
 | 			 * return false to continue verification of this path | 
 | 			 */ | 
 | 			return false; | 
 | 		if (i % BPF_REG_SIZE) | 
 | 			continue; | 
 | 		if (old->stack[spi].slot_type[0] != STACK_SPILL) | 
 | 			continue; | 
 | 		if (!regsafe(&old->stack[spi].spilled_ptr, | 
 | 			     &cur->stack[spi].spilled_ptr, | 
 | 			     idmap)) | 
 | 			/* when explored and current stack slot are both storing | 
 | 			 * spilled registers, check that stored pointers types | 
 | 			 * are the same as well. | 
 | 			 * Ex: explored safe path could have stored | 
 | 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} | 
 | 			 * but current path has stored: | 
 | 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} | 
 | 			 * such verifier states are not equivalent. | 
 | 			 * return false to continue verification of this path | 
 | 			 */ | 
 | 			return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | /* compare two verifier states | 
 |  * | 
 |  * all states stored in state_list are known to be valid, since | 
 |  * verifier reached 'bpf_exit' instruction through them | 
 |  * | 
 |  * this function is called when verifier exploring different branches of | 
 |  * execution popped from the state stack. If it sees an old state that has | 
 |  * more strict register state and more strict stack state then this execution | 
 |  * branch doesn't need to be explored further, since verifier already | 
 |  * concluded that more strict state leads to valid finish. | 
 |  * | 
 |  * Therefore two states are equivalent if register state is more conservative | 
 |  * and explored stack state is more conservative than the current one. | 
 |  * Example: | 
 |  *       explored                   current | 
 |  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) | 
 |  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) | 
 |  * | 
 |  * In other words if current stack state (one being explored) has more | 
 |  * valid slots than old one that already passed validation, it means | 
 |  * the verifier can stop exploring and conclude that current state is valid too | 
 |  * | 
 |  * Similarly with registers. If explored state has register type as invalid | 
 |  * whereas register type in current state is meaningful, it means that | 
 |  * the current state will reach 'bpf_exit' instruction safely | 
 |  */ | 
 | static bool func_states_equal(struct bpf_func_state *old, | 
 | 			      struct bpf_func_state *cur) | 
 | { | 
 | 	struct idpair *idmap; | 
 | 	bool ret = false; | 
 | 	int i; | 
 |  | 
 | 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); | 
 | 	/* If we failed to allocate the idmap, just say it's not safe */ | 
 | 	if (!idmap) | 
 | 		return false; | 
 |  | 
 | 	for (i = 0; i < MAX_BPF_REG; i++) { | 
 | 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) | 
 | 			goto out_free; | 
 | 	} | 
 |  | 
 | 	if (!stacksafe(old, cur, idmap)) | 
 | 		goto out_free; | 
 | 	ret = true; | 
 | out_free: | 
 | 	kfree(idmap); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool states_equal(struct bpf_verifier_env *env, | 
 | 			 struct bpf_verifier_state *old, | 
 | 			 struct bpf_verifier_state *cur) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (old->curframe != cur->curframe) | 
 | 		return false; | 
 |  | 
 | 	/* for states to be equal callsites have to be the same | 
 | 	 * and all frame states need to be equivalent | 
 | 	 */ | 
 | 	for (i = 0; i <= old->curframe; i++) { | 
 | 		if (old->frame[i]->callsite != cur->frame[i]->callsite) | 
 | 			return false; | 
 | 		if (!func_states_equal(old->frame[i], cur->frame[i])) | 
 | 			return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | /* A write screens off any subsequent reads; but write marks come from the | 
 |  * straight-line code between a state and its parent.  When we arrive at an | 
 |  * equivalent state (jump target or such) we didn't arrive by the straight-line | 
 |  * code, so read marks in the state must propagate to the parent regardless | 
 |  * of the state's write marks. That's what 'parent == state->parent' comparison | 
 |  * in mark_reg_read() and mark_stack_slot_read() is for. | 
 |  */ | 
 | static int propagate_liveness(struct bpf_verifier_env *env, | 
 | 			      const struct bpf_verifier_state *vstate, | 
 | 			      struct bpf_verifier_state *vparent) | 
 | { | 
 | 	int i, frame, err = 0; | 
 | 	struct bpf_func_state *state, *parent; | 
 |  | 
 | 	if (vparent->curframe != vstate->curframe) { | 
 | 		WARN(1, "propagate_live: parent frame %d current frame %d\n", | 
 | 		     vparent->curframe, vstate->curframe); | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	/* Propagate read liveness of registers... */ | 
 | 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); | 
 | 	/* We don't need to worry about FP liveness because it's read-only */ | 
 | 	for (i = 0; i < BPF_REG_FP; i++) { | 
 | 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) | 
 | 			continue; | 
 | 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { | 
 | 			err = mark_reg_read(env, vstate, vparent, i); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* ... and stack slots */ | 
 | 	for (frame = 0; frame <= vstate->curframe; frame++) { | 
 | 		state = vstate->frame[frame]; | 
 | 		parent = vparent->frame[frame]; | 
 | 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && | 
 | 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) { | 
 | 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) | 
 | 				continue; | 
 | 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) | 
 | 				mark_stack_slot_read(env, vstate, vparent, i, frame); | 
 | 		} | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) | 
 | { | 
 | 	struct bpf_verifier_state_list *new_sl; | 
 | 	struct bpf_verifier_state_list *sl; | 
 | 	struct bpf_verifier_state *cur = env->cur_state; | 
 | 	int i, j, err; | 
 |  | 
 | 	sl = env->explored_states[insn_idx]; | 
 | 	if (!sl) | 
 | 		/* this 'insn_idx' instruction wasn't marked, so we will not | 
 | 		 * be doing state search here | 
 | 		 */ | 
 | 		return 0; | 
 |  | 
 | 	while (sl != STATE_LIST_MARK) { | 
 | 		if (states_equal(env, &sl->state, cur)) { | 
 | 			/* reached equivalent register/stack state, | 
 | 			 * prune the search. | 
 | 			 * Registers read by the continuation are read by us. | 
 | 			 * If we have any write marks in env->cur_state, they | 
 | 			 * will prevent corresponding reads in the continuation | 
 | 			 * from reaching our parent (an explored_state).  Our | 
 | 			 * own state will get the read marks recorded, but | 
 | 			 * they'll be immediately forgotten as we're pruning | 
 | 			 * this state and will pop a new one. | 
 | 			 */ | 
 | 			err = propagate_liveness(env, &sl->state, cur); | 
 | 			if (err) | 
 | 				return err; | 
 | 			return 1; | 
 | 		} | 
 | 		sl = sl->next; | 
 | 	} | 
 |  | 
 | 	/* there were no equivalent states, remember current one. | 
 | 	 * technically the current state is not proven to be safe yet, | 
 | 	 * but it will either reach outer most bpf_exit (which means it's safe) | 
 | 	 * or it will be rejected. Since there are no loops, we won't be | 
 | 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) | 
 | 	 * again on the way to bpf_exit | 
 | 	 */ | 
 | 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); | 
 | 	if (!new_sl) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* add new state to the head of linked list */ | 
 | 	err = copy_verifier_state(&new_sl->state, cur); | 
 | 	if (err) { | 
 | 		free_verifier_state(&new_sl->state, false); | 
 | 		kfree(new_sl); | 
 | 		return err; | 
 | 	} | 
 | 	new_sl->next = env->explored_states[insn_idx]; | 
 | 	env->explored_states[insn_idx] = new_sl; | 
 | 	/* connect new state to parentage chain */ | 
 | 	cur->parent = &new_sl->state; | 
 | 	/* clear write marks in current state: the writes we did are not writes | 
 | 	 * our child did, so they don't screen off its reads from us. | 
 | 	 * (There are no read marks in current state, because reads always mark | 
 | 	 * their parent and current state never has children yet.  Only | 
 | 	 * explored_states can get read marks.) | 
 | 	 */ | 
 | 	for (i = 0; i < BPF_REG_FP; i++) | 
 | 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; | 
 |  | 
 | 	/* all stack frames are accessible from callee, clear them all */ | 
 | 	for (j = 0; j <= cur->curframe; j++) { | 
 | 		struct bpf_func_state *frame = cur->frame[j]; | 
 |  | 
 | 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) | 
 | 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_check(struct bpf_verifier_env *env) | 
 | { | 
 | 	struct bpf_verifier_state *state; | 
 | 	struct bpf_insn *insns = env->prog->insnsi; | 
 | 	struct bpf_reg_state *regs; | 
 | 	int insn_cnt = env->prog->len, i; | 
 | 	int insn_idx, prev_insn_idx = 0; | 
 | 	int insn_processed = 0; | 
 | 	bool do_print_state = false; | 
 |  | 
 | 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); | 
 | 	if (!state) | 
 | 		return -ENOMEM; | 
 | 	state->curframe = 0; | 
 | 	state->parent = NULL; | 
 | 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); | 
 | 	if (!state->frame[0]) { | 
 | 		kfree(state); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	env->cur_state = state; | 
 | 	init_func_state(env, state->frame[0], | 
 | 			BPF_MAIN_FUNC /* callsite */, | 
 | 			0 /* frameno */, | 
 | 			0 /* subprogno, zero == main subprog */); | 
 | 	insn_idx = 0; | 
 | 	for (;;) { | 
 | 		struct bpf_insn *insn; | 
 | 		u8 class; | 
 | 		int err; | 
 |  | 
 | 		if (insn_idx >= insn_cnt) { | 
 | 			verbose(env, "invalid insn idx %d insn_cnt %d\n", | 
 | 				insn_idx, insn_cnt); | 
 | 			return -EFAULT; | 
 | 		} | 
 |  | 
 | 		insn = &insns[insn_idx]; | 
 | 		class = BPF_CLASS(insn->code); | 
 |  | 
 | 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { | 
 | 			verbose(env, | 
 | 				"BPF program is too large. Processed %d insn\n", | 
 | 				insn_processed); | 
 | 			return -E2BIG; | 
 | 		} | 
 |  | 
 | 		err = is_state_visited(env, insn_idx); | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 		if (err == 1) { | 
 | 			/* found equivalent state, can prune the search */ | 
 | 			if (env->log.level) { | 
 | 				if (do_print_state) | 
 | 					verbose(env, "\nfrom %d to %d: safe\n", | 
 | 						prev_insn_idx, insn_idx); | 
 | 				else | 
 | 					verbose(env, "%d: safe\n", insn_idx); | 
 | 			} | 
 | 			goto process_bpf_exit; | 
 | 		} | 
 |  | 
 | 		if (need_resched()) | 
 | 			cond_resched(); | 
 |  | 
 | 		if (env->log.level > 1 || (env->log.level && do_print_state)) { | 
 | 			if (env->log.level > 1) | 
 | 				verbose(env, "%d:", insn_idx); | 
 | 			else | 
 | 				verbose(env, "\nfrom %d to %d:", | 
 | 					prev_insn_idx, insn_idx); | 
 | 			print_verifier_state(env, state->frame[state->curframe]); | 
 | 			do_print_state = false; | 
 | 		} | 
 |  | 
 | 		if (env->log.level) { | 
 | 			const struct bpf_insn_cbs cbs = { | 
 | 				.cb_print	= verbose, | 
 | 				.private_data	= env, | 
 | 			}; | 
 |  | 
 | 			verbose(env, "%d: ", insn_idx); | 
 | 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); | 
 | 		} | 
 |  | 
 | 		if (bpf_prog_is_dev_bound(env->prog->aux)) { | 
 | 			err = bpf_prog_offload_verify_insn(env, insn_idx, | 
 | 							   prev_insn_idx); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		regs = cur_regs(env); | 
 | 		env->insn_aux_data[insn_idx].seen = true; | 
 | 		if (class == BPF_ALU || class == BPF_ALU64) { | 
 | 			err = check_alu_op(env, insn); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 		} else if (class == BPF_LDX) { | 
 | 			enum bpf_reg_type *prev_src_type, src_reg_type; | 
 |  | 
 | 			/* check for reserved fields is already done */ | 
 |  | 
 | 			/* check src operand */ | 
 | 			err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			src_reg_type = regs[insn->src_reg].type; | 
 |  | 
 | 			/* check that memory (src_reg + off) is readable, | 
 | 			 * the state of dst_reg will be updated by this func | 
 | 			 */ | 
 | 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, | 
 | 					       BPF_SIZE(insn->code), BPF_READ, | 
 | 					       insn->dst_reg, false); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; | 
 |  | 
 | 			if (*prev_src_type == NOT_INIT) { | 
 | 				/* saw a valid insn | 
 | 				 * dst_reg = *(u32 *)(src_reg + off) | 
 | 				 * save type to validate intersecting paths | 
 | 				 */ | 
 | 				*prev_src_type = src_reg_type; | 
 |  | 
 | 			} else if (src_reg_type != *prev_src_type && | 
 | 				   (src_reg_type == PTR_TO_CTX || | 
 | 				    *prev_src_type == PTR_TO_CTX)) { | 
 | 				/* ABuser program is trying to use the same insn | 
 | 				 * dst_reg = *(u32*) (src_reg + off) | 
 | 				 * with different pointer types: | 
 | 				 * src_reg == ctx in one branch and | 
 | 				 * src_reg == stack|map in some other branch. | 
 | 				 * Reject it. | 
 | 				 */ | 
 | 				verbose(env, "same insn cannot be used with different pointers\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 		} else if (class == BPF_STX) { | 
 | 			enum bpf_reg_type *prev_dst_type, dst_reg_type; | 
 |  | 
 | 			if (BPF_MODE(insn->code) == BPF_XADD) { | 
 | 				err = check_xadd(env, insn_idx, insn); | 
 | 				if (err) | 
 | 					return err; | 
 | 				insn_idx++; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* check src1 operand */ | 
 | 			err = check_reg_arg(env, insn->src_reg, SRC_OP); | 
 | 			if (err) | 
 | 				return err; | 
 | 			/* check src2 operand */ | 
 | 			err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			dst_reg_type = regs[insn->dst_reg].type; | 
 |  | 
 | 			/* check that memory (dst_reg + off) is writeable */ | 
 | 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, | 
 | 					       BPF_SIZE(insn->code), BPF_WRITE, | 
 | 					       insn->src_reg, false); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; | 
 |  | 
 | 			if (*prev_dst_type == NOT_INIT) { | 
 | 				*prev_dst_type = dst_reg_type; | 
 | 			} else if (dst_reg_type != *prev_dst_type && | 
 | 				   (dst_reg_type == PTR_TO_CTX || | 
 | 				    *prev_dst_type == PTR_TO_CTX)) { | 
 | 				verbose(env, "same insn cannot be used with different pointers\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 		} else if (class == BPF_ST) { | 
 | 			if (BPF_MODE(insn->code) != BPF_MEM || | 
 | 			    insn->src_reg != BPF_REG_0) { | 
 | 				verbose(env, "BPF_ST uses reserved fields\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			/* check src operand */ | 
 | 			err = check_reg_arg(env, insn->dst_reg, SRC_OP); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			if (is_ctx_reg(env, insn->dst_reg)) { | 
 | 				verbose(env, "BPF_ST stores into R%d context is not allowed\n", | 
 | 					insn->dst_reg); | 
 | 				return -EACCES; | 
 | 			} | 
 |  | 
 | 			/* check that memory (dst_reg + off) is writeable */ | 
 | 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, | 
 | 					       BPF_SIZE(insn->code), BPF_WRITE, | 
 | 					       -1, false); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 		} else if (class == BPF_JMP) { | 
 | 			u8 opcode = BPF_OP(insn->code); | 
 |  | 
 | 			if (opcode == BPF_CALL) { | 
 | 				if (BPF_SRC(insn->code) != BPF_K || | 
 | 				    insn->off != 0 || | 
 | 				    (insn->src_reg != BPF_REG_0 && | 
 | 				     insn->src_reg != BPF_PSEUDO_CALL) || | 
 | 				    insn->dst_reg != BPF_REG_0) { | 
 | 					verbose(env, "BPF_CALL uses reserved fields\n"); | 
 | 					return -EINVAL; | 
 | 				} | 
 |  | 
 | 				if (insn->src_reg == BPF_PSEUDO_CALL) | 
 | 					err = check_func_call(env, insn, &insn_idx); | 
 | 				else | 
 | 					err = check_helper_call(env, insn->imm, insn_idx); | 
 | 				if (err) | 
 | 					return err; | 
 |  | 
 | 			} else if (opcode == BPF_JA) { | 
 | 				if (BPF_SRC(insn->code) != BPF_K || | 
 | 				    insn->imm != 0 || | 
 | 				    insn->src_reg != BPF_REG_0 || | 
 | 				    insn->dst_reg != BPF_REG_0) { | 
 | 					verbose(env, "BPF_JA uses reserved fields\n"); | 
 | 					return -EINVAL; | 
 | 				} | 
 |  | 
 | 				insn_idx += insn->off + 1; | 
 | 				continue; | 
 |  | 
 | 			} else if (opcode == BPF_EXIT) { | 
 | 				if (BPF_SRC(insn->code) != BPF_K || | 
 | 				    insn->imm != 0 || | 
 | 				    insn->src_reg != BPF_REG_0 || | 
 | 				    insn->dst_reg != BPF_REG_0) { | 
 | 					verbose(env, "BPF_EXIT uses reserved fields\n"); | 
 | 					return -EINVAL; | 
 | 				} | 
 |  | 
 | 				if (state->curframe) { | 
 | 					/* exit from nested function */ | 
 | 					prev_insn_idx = insn_idx; | 
 | 					err = prepare_func_exit(env, &insn_idx); | 
 | 					if (err) | 
 | 						return err; | 
 | 					do_print_state = true; | 
 | 					continue; | 
 | 				} | 
 |  | 
 | 				/* eBPF calling convetion is such that R0 is used | 
 | 				 * to return the value from eBPF program. | 
 | 				 * Make sure that it's readable at this time | 
 | 				 * of bpf_exit, which means that program wrote | 
 | 				 * something into it earlier | 
 | 				 */ | 
 | 				err = check_reg_arg(env, BPF_REG_0, SRC_OP); | 
 | 				if (err) | 
 | 					return err; | 
 |  | 
 | 				if (is_pointer_value(env, BPF_REG_0)) { | 
 | 					verbose(env, "R0 leaks addr as return value\n"); | 
 | 					return -EACCES; | 
 | 				} | 
 |  | 
 | 				err = check_return_code(env); | 
 | 				if (err) | 
 | 					return err; | 
 | process_bpf_exit: | 
 | 				err = pop_stack(env, &prev_insn_idx, &insn_idx); | 
 | 				if (err < 0) { | 
 | 					if (err != -ENOENT) | 
 | 						return err; | 
 | 					break; | 
 | 				} else { | 
 | 					do_print_state = true; | 
 | 					continue; | 
 | 				} | 
 | 			} else { | 
 | 				err = check_cond_jmp_op(env, insn, &insn_idx); | 
 | 				if (err) | 
 | 					return err; | 
 | 			} | 
 | 		} else if (class == BPF_LD) { | 
 | 			u8 mode = BPF_MODE(insn->code); | 
 |  | 
 | 			if (mode == BPF_ABS || mode == BPF_IND) { | 
 | 				err = check_ld_abs(env, insn); | 
 | 				if (err) | 
 | 					return err; | 
 |  | 
 | 			} else if (mode == BPF_IMM) { | 
 | 				err = check_ld_imm(env, insn); | 
 | 				if (err) | 
 | 					return err; | 
 |  | 
 | 				insn_idx++; | 
 | 				env->insn_aux_data[insn_idx].seen = true; | 
 | 			} else { | 
 | 				verbose(env, "invalid BPF_LD mode\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} else { | 
 | 			verbose(env, "unknown insn class %d\n", class); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		insn_idx++; | 
 | 	} | 
 |  | 
 | 	verbose(env, "processed %d insns (limit %d), stack depth ", | 
 | 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); | 
 | 	for (i = 0; i < env->subprog_cnt + 1; i++) { | 
 | 		u32 depth = env->subprog_stack_depth[i]; | 
 |  | 
 | 		verbose(env, "%d", depth); | 
 | 		if (i + 1 < env->subprog_cnt + 1) | 
 | 			verbose(env, "+"); | 
 | 	} | 
 | 	verbose(env, "\n"); | 
 | 	env->prog->aux->stack_depth = env->subprog_stack_depth[0]; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_map_prealloc(struct bpf_map *map) | 
 | { | 
 | 	return (map->map_type != BPF_MAP_TYPE_HASH && | 
 | 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH && | 
 | 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || | 
 | 		!(map->map_flags & BPF_F_NO_PREALLOC); | 
 | } | 
 |  | 
 | static int check_map_prog_compatibility(struct bpf_verifier_env *env, | 
 | 					struct bpf_map *map, | 
 | 					struct bpf_prog *prog) | 
 |  | 
 | { | 
 | 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use | 
 | 	 * preallocated hash maps, since doing memory allocation | 
 | 	 * in overflow_handler can crash depending on where nmi got | 
 | 	 * triggered. | 
 | 	 */ | 
 | 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { | 
 | 		if (!check_map_prealloc(map)) { | 
 | 			verbose(env, "perf_event programs can only use preallocated hash map\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (map->inner_map_meta && | 
 | 		    !check_map_prealloc(map->inner_map_meta)) { | 
 | 			verbose(env, "perf_event programs can only use preallocated inner hash map\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && | 
 | 	    !bpf_offload_dev_match(prog, map)) { | 
 | 		verbose(env, "offload device mismatch between prog and map\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* look for pseudo eBPF instructions that access map FDs and | 
 |  * replace them with actual map pointers | 
 |  */ | 
 | static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) | 
 | { | 
 | 	struct bpf_insn *insn = env->prog->insnsi; | 
 | 	int insn_cnt = env->prog->len; | 
 | 	int i, j, err; | 
 |  | 
 | 	err = bpf_prog_calc_tag(env->prog); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	for (i = 0; i < insn_cnt; i++, insn++) { | 
 | 		if (BPF_CLASS(insn->code) == BPF_LDX && | 
 | 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { | 
 | 			verbose(env, "BPF_LDX uses reserved fields\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (BPF_CLASS(insn->code) == BPF_STX && | 
 | 		    ((BPF_MODE(insn->code) != BPF_MEM && | 
 | 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { | 
 | 			verbose(env, "BPF_STX uses reserved fields\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { | 
 | 			struct bpf_map *map; | 
 | 			struct fd f; | 
 |  | 
 | 			if (i == insn_cnt - 1 || insn[1].code != 0 || | 
 | 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 || | 
 | 			    insn[1].off != 0) { | 
 | 				verbose(env, "invalid bpf_ld_imm64 insn\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			if (insn->src_reg == 0) | 
 | 				/* valid generic load 64-bit imm */ | 
 | 				goto next_insn; | 
 |  | 
 | 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) { | 
 | 				verbose(env, | 
 | 					"unrecognized bpf_ld_imm64 insn\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			f = fdget(insn->imm); | 
 | 			map = __bpf_map_get(f); | 
 | 			if (IS_ERR(map)) { | 
 | 				verbose(env, "fd %d is not pointing to valid bpf_map\n", | 
 | 					insn->imm); | 
 | 				return PTR_ERR(map); | 
 | 			} | 
 |  | 
 | 			err = check_map_prog_compatibility(env, map, env->prog); | 
 | 			if (err) { | 
 | 				fdput(f); | 
 | 				return err; | 
 | 			} | 
 |  | 
 | 			/* store map pointer inside BPF_LD_IMM64 instruction */ | 
 | 			insn[0].imm = (u32) (unsigned long) map; | 
 | 			insn[1].imm = ((u64) (unsigned long) map) >> 32; | 
 |  | 
 | 			/* check whether we recorded this map already */ | 
 | 			for (j = 0; j < env->used_map_cnt; j++) | 
 | 				if (env->used_maps[j] == map) { | 
 | 					fdput(f); | 
 | 					goto next_insn; | 
 | 				} | 
 |  | 
 | 			if (env->used_map_cnt >= MAX_USED_MAPS) { | 
 | 				fdput(f); | 
 | 				return -E2BIG; | 
 | 			} | 
 |  | 
 | 			/* hold the map. If the program is rejected by verifier, | 
 | 			 * the map will be released by release_maps() or it | 
 | 			 * will be used by the valid program until it's unloaded | 
 | 			 * and all maps are released in free_bpf_prog_info() | 
 | 			 */ | 
 | 			map = bpf_map_inc(map, false); | 
 | 			if (IS_ERR(map)) { | 
 | 				fdput(f); | 
 | 				return PTR_ERR(map); | 
 | 			} | 
 | 			env->used_maps[env->used_map_cnt++] = map; | 
 |  | 
 | 			fdput(f); | 
 | next_insn: | 
 | 			insn++; | 
 | 			i++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Basic sanity check before we invest more work here. */ | 
 | 		if (!bpf_opcode_in_insntable(insn->code)) { | 
 | 			verbose(env, "unknown opcode %02x\n", insn->code); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* now all pseudo BPF_LD_IMM64 instructions load valid | 
 | 	 * 'struct bpf_map *' into a register instead of user map_fd. | 
 | 	 * These pointers will be used later by verifier to validate map access. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* drop refcnt of maps used by the rejected program */ | 
 | static void release_maps(struct bpf_verifier_env *env) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < env->used_map_cnt; i++) | 
 | 		bpf_map_put(env->used_maps[i]); | 
 | } | 
 |  | 
 | /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ | 
 | static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) | 
 | { | 
 | 	struct bpf_insn *insn = env->prog->insnsi; | 
 | 	int insn_cnt = env->prog->len; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < insn_cnt; i++, insn++) | 
 | 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) | 
 | 			insn->src_reg = 0; | 
 | } | 
 |  | 
 | /* single env->prog->insni[off] instruction was replaced with the range | 
 |  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying | 
 |  * [0, off) and [off, end) to new locations, so the patched range stays zero | 
 |  */ | 
 | static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, | 
 | 				u32 off, u32 cnt) | 
 | { | 
 | 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; | 
 | 	int i; | 
 |  | 
 | 	if (cnt == 1) | 
 | 		return 0; | 
 | 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); | 
 | 	if (!new_data) | 
 | 		return -ENOMEM; | 
 | 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); | 
 | 	memcpy(new_data + off + cnt - 1, old_data + off, | 
 | 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); | 
 | 	for (i = off; i < off + cnt - 1; i++) | 
 | 		new_data[i].seen = true; | 
 | 	env->insn_aux_data = new_data; | 
 | 	vfree(old_data); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (len == 1) | 
 | 		return; | 
 | 	for (i = 0; i < env->subprog_cnt; i++) { | 
 | 		if (env->subprog_starts[i] < off) | 
 | 			continue; | 
 | 		env->subprog_starts[i] += len - 1; | 
 | 	} | 
 | } | 
 |  | 
 | static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, | 
 | 					    const struct bpf_insn *patch, u32 len) | 
 | { | 
 | 	struct bpf_prog *new_prog; | 
 |  | 
 | 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len); | 
 | 	if (!new_prog) | 
 | 		return NULL; | 
 | 	if (adjust_insn_aux_data(env, new_prog->len, off, len)) | 
 | 		return NULL; | 
 | 	adjust_subprog_starts(env, off, len); | 
 | 	return new_prog; | 
 | } | 
 |  | 
 | /* The verifier does more data flow analysis than llvm and will not | 
 |  * explore branches that are dead at run time. Malicious programs can | 
 |  * have dead code too. Therefore replace all dead at-run-time code | 
 |  * with 'ja -1'. | 
 |  * | 
 |  * Just nops are not optimal, e.g. if they would sit at the end of the | 
 |  * program and through another bug we would manage to jump there, then | 
 |  * we'd execute beyond program memory otherwise. Returning exception | 
 |  * code also wouldn't work since we can have subprogs where the dead | 
 |  * code could be located. | 
 |  */ | 
 | static void sanitize_dead_code(struct bpf_verifier_env *env) | 
 | { | 
 | 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data; | 
 | 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); | 
 | 	struct bpf_insn *insn = env->prog->insnsi; | 
 | 	const int insn_cnt = env->prog->len; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < insn_cnt; i++) { | 
 | 		if (aux_data[i].seen) | 
 | 			continue; | 
 | 		memcpy(insn + i, &trap, sizeof(trap)); | 
 | 	} | 
 | } | 
 |  | 
 | /* convert load instructions that access fields of 'struct __sk_buff' | 
 |  * into sequence of instructions that access fields of 'struct sk_buff' | 
 |  */ | 
 | static int convert_ctx_accesses(struct bpf_verifier_env *env) | 
 | { | 
 | 	const struct bpf_verifier_ops *ops = env->ops; | 
 | 	int i, cnt, size, ctx_field_size, delta = 0; | 
 | 	const int insn_cnt = env->prog->len; | 
 | 	struct bpf_insn insn_buf[16], *insn; | 
 | 	struct bpf_prog *new_prog; | 
 | 	enum bpf_access_type type; | 
 | 	bool is_narrower_load; | 
 | 	u32 target_size; | 
 |  | 
 | 	if (ops->gen_prologue) { | 
 | 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, | 
 | 					env->prog); | 
 | 		if (cnt >= ARRAY_SIZE(insn_buf)) { | 
 | 			verbose(env, "bpf verifier is misconfigured\n"); | 
 | 			return -EINVAL; | 
 | 		} else if (cnt) { | 
 | 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); | 
 | 			if (!new_prog) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			env->prog = new_prog; | 
 | 			delta += cnt - 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!ops->convert_ctx_access) | 
 | 		return 0; | 
 |  | 
 | 	insn = env->prog->insnsi + delta; | 
 |  | 
 | 	for (i = 0; i < insn_cnt; i++, insn++) { | 
 | 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || | 
 | 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) || | 
 | 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) || | 
 | 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) | 
 | 			type = BPF_READ; | 
 | 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || | 
 | 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) || | 
 | 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) || | 
 | 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) | 
 | 			type = BPF_WRITE; | 
 | 		else | 
 | 			continue; | 
 |  | 
 | 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) | 
 | 			continue; | 
 |  | 
 | 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; | 
 | 		size = BPF_LDST_BYTES(insn); | 
 |  | 
 | 		/* If the read access is a narrower load of the field, | 
 | 		 * convert to a 4/8-byte load, to minimum program type specific | 
 | 		 * convert_ctx_access changes. If conversion is successful, | 
 | 		 * we will apply proper mask to the result. | 
 | 		 */ | 
 | 		is_narrower_load = size < ctx_field_size; | 
 | 		if (is_narrower_load) { | 
 | 			u32 off = insn->off; | 
 | 			u8 size_code; | 
 |  | 
 | 			if (type == BPF_WRITE) { | 
 | 				verbose(env, "bpf verifier narrow ctx access misconfigured\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			size_code = BPF_H; | 
 | 			if (ctx_field_size == 4) | 
 | 				size_code = BPF_W; | 
 | 			else if (ctx_field_size == 8) | 
 | 				size_code = BPF_DW; | 
 |  | 
 | 			insn->off = off & ~(ctx_field_size - 1); | 
 | 			insn->code = BPF_LDX | BPF_MEM | size_code; | 
 | 		} | 
 |  | 
 | 		target_size = 0; | 
 | 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, | 
 | 					      &target_size); | 
 | 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || | 
 | 		    (ctx_field_size && !target_size)) { | 
 | 			verbose(env, "bpf verifier is misconfigured\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (is_narrower_load && size < target_size) { | 
 | 			if (ctx_field_size <= 4) | 
 | 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, | 
 | 								(1 << size * 8) - 1); | 
 | 			else | 
 | 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, | 
 | 								(1 << size * 8) - 1); | 
 | 		} | 
 |  | 
 | 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
 | 		if (!new_prog) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		delta += cnt - 1; | 
 |  | 
 | 		/* keep walking new program and skip insns we just inserted */ | 
 | 		env->prog = new_prog; | 
 | 		insn      = new_prog->insnsi + i + delta; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int jit_subprogs(struct bpf_verifier_env *env) | 
 | { | 
 | 	struct bpf_prog *prog = env->prog, **func, *tmp; | 
 | 	int i, j, subprog_start, subprog_end = 0, len, subprog; | 
 | 	struct bpf_insn *insn; | 
 | 	void *old_bpf_func; | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	if (env->subprog_cnt == 0) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { | 
 | 		if (insn->code != (BPF_JMP | BPF_CALL) || | 
 | 		    insn->src_reg != BPF_PSEUDO_CALL) | 
 | 			continue; | 
 | 		subprog = find_subprog(env, i + insn->imm + 1); | 
 | 		if (subprog < 0) { | 
 | 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", | 
 | 				  i + insn->imm + 1); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		/* temporarily remember subprog id inside insn instead of | 
 | 		 * aux_data, since next loop will split up all insns into funcs | 
 | 		 */ | 
 | 		insn->off = subprog + 1; | 
 | 		/* remember original imm in case JIT fails and fallback | 
 | 		 * to interpreter will be needed | 
 | 		 */ | 
 | 		env->insn_aux_data[i].call_imm = insn->imm; | 
 | 		/* point imm to __bpf_call_base+1 from JITs point of view */ | 
 | 		insn->imm = 1; | 
 | 	} | 
 |  | 
 | 	func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL); | 
 | 	if (!func) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i <= env->subprog_cnt; i++) { | 
 | 		subprog_start = subprog_end; | 
 | 		if (env->subprog_cnt == i) | 
 | 			subprog_end = prog->len; | 
 | 		else | 
 | 			subprog_end = env->subprog_starts[i]; | 
 |  | 
 | 		len = subprog_end - subprog_start; | 
 | 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); | 
 | 		if (!func[i]) | 
 | 			goto out_free; | 
 | 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], | 
 | 		       len * sizeof(struct bpf_insn)); | 
 | 		func[i]->type = prog->type; | 
 | 		func[i]->len = len; | 
 | 		if (bpf_prog_calc_tag(func[i])) | 
 | 			goto out_free; | 
 | 		func[i]->is_func = 1; | 
 | 		/* Use bpf_prog_F_tag to indicate functions in stack traces. | 
 | 		 * Long term would need debug info to populate names | 
 | 		 */ | 
 | 		func[i]->aux->name[0] = 'F'; | 
 | 		func[i]->aux->stack_depth = env->subprog_stack_depth[i]; | 
 | 		func[i]->jit_requested = 1; | 
 | 		func[i] = bpf_int_jit_compile(func[i]); | 
 | 		if (!func[i]->jited) { | 
 | 			err = -ENOTSUPP; | 
 | 			goto out_free; | 
 | 		} | 
 | 		cond_resched(); | 
 | 	} | 
 | 	/* at this point all bpf functions were successfully JITed | 
 | 	 * now populate all bpf_calls with correct addresses and | 
 | 	 * run last pass of JIT | 
 | 	 */ | 
 | 	for (i = 0; i <= env->subprog_cnt; i++) { | 
 | 		insn = func[i]->insnsi; | 
 | 		for (j = 0; j < func[i]->len; j++, insn++) { | 
 | 			if (insn->code != (BPF_JMP | BPF_CALL) || | 
 | 			    insn->src_reg != BPF_PSEUDO_CALL) | 
 | 				continue; | 
 | 			subprog = insn->off; | 
 | 			insn->off = 0; | 
 | 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) | 
 | 				func[subprog]->bpf_func - | 
 | 				__bpf_call_base; | 
 | 		} | 
 | 	} | 
 | 	for (i = 0; i <= env->subprog_cnt; i++) { | 
 | 		old_bpf_func = func[i]->bpf_func; | 
 | 		tmp = bpf_int_jit_compile(func[i]); | 
 | 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { | 
 | 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); | 
 | 			err = -EFAULT; | 
 | 			goto out_free; | 
 | 		} | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* finally lock prog and jit images for all functions and | 
 | 	 * populate kallsysm | 
 | 	 */ | 
 | 	for (i = 0; i <= env->subprog_cnt; i++) { | 
 | 		bpf_prog_lock_ro(func[i]); | 
 | 		bpf_prog_kallsyms_add(func[i]); | 
 | 	} | 
 |  | 
 | 	/* Last step: make now unused interpreter insns from main | 
 | 	 * prog consistent for later dump requests, so they can | 
 | 	 * later look the same as if they were interpreted only. | 
 | 	 */ | 
 | 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { | 
 | 		unsigned long addr; | 
 |  | 
 | 		if (insn->code != (BPF_JMP | BPF_CALL) || | 
 | 		    insn->src_reg != BPF_PSEUDO_CALL) | 
 | 			continue; | 
 | 		insn->off = env->insn_aux_data[i].call_imm; | 
 | 		subprog = find_subprog(env, i + insn->off + 1); | 
 | 		addr  = (unsigned long)func[subprog + 1]->bpf_func; | 
 | 		addr &= PAGE_MASK; | 
 | 		insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) | 
 | 			    addr - __bpf_call_base; | 
 | 	} | 
 |  | 
 | 	prog->jited = 1; | 
 | 	prog->bpf_func = func[0]->bpf_func; | 
 | 	prog->aux->func = func; | 
 | 	prog->aux->func_cnt = env->subprog_cnt + 1; | 
 | 	return 0; | 
 | out_free: | 
 | 	for (i = 0; i <= env->subprog_cnt; i++) | 
 | 		if (func[i]) | 
 | 			bpf_jit_free(func[i]); | 
 | 	kfree(func); | 
 | 	/* cleanup main prog to be interpreted */ | 
 | 	prog->jit_requested = 0; | 
 | 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { | 
 | 		if (insn->code != (BPF_JMP | BPF_CALL) || | 
 | 		    insn->src_reg != BPF_PSEUDO_CALL) | 
 | 			continue; | 
 | 		insn->off = 0; | 
 | 		insn->imm = env->insn_aux_data[i].call_imm; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int fixup_call_args(struct bpf_verifier_env *env) | 
 | { | 
 | #ifndef CONFIG_BPF_JIT_ALWAYS_ON | 
 | 	struct bpf_prog *prog = env->prog; | 
 | 	struct bpf_insn *insn = prog->insnsi; | 
 | 	int i, depth; | 
 | #endif | 
 | 	int err; | 
 |  | 
 | 	err = 0; | 
 | 	if (env->prog->jit_requested) { | 
 | 		err = jit_subprogs(env); | 
 | 		if (err == 0) | 
 | 			return 0; | 
 | 	} | 
 | #ifndef CONFIG_BPF_JIT_ALWAYS_ON | 
 | 	for (i = 0; i < prog->len; i++, insn++) { | 
 | 		if (insn->code != (BPF_JMP | BPF_CALL) || | 
 | 		    insn->src_reg != BPF_PSEUDO_CALL) | 
 | 			continue; | 
 | 		depth = get_callee_stack_depth(env, insn, i); | 
 | 		if (depth < 0) | 
 | 			return depth; | 
 | 		bpf_patch_call_args(insn, depth); | 
 | 	} | 
 | 	err = 0; | 
 | #endif | 
 | 	return err; | 
 | } | 
 |  | 
 | /* fixup insn->imm field of bpf_call instructions | 
 |  * and inline eligible helpers as explicit sequence of BPF instructions | 
 |  * | 
 |  * this function is called after eBPF program passed verification | 
 |  */ | 
 | static int fixup_bpf_calls(struct bpf_verifier_env *env) | 
 | { | 
 | 	struct bpf_prog *prog = env->prog; | 
 | 	struct bpf_insn *insn = prog->insnsi; | 
 | 	const struct bpf_func_proto *fn; | 
 | 	const int insn_cnt = prog->len; | 
 | 	struct bpf_insn insn_buf[16]; | 
 | 	struct bpf_prog *new_prog; | 
 | 	struct bpf_map *map_ptr; | 
 | 	int i, cnt, delta = 0; | 
 |  | 
 | 	for (i = 0; i < insn_cnt; i++, insn++) { | 
 | 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || | 
 | 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || | 
 | 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) || | 
 | 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { | 
 | 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; | 
 | 			struct bpf_insn mask_and_div[] = { | 
 | 				BPF_MOV32_REG(insn->src_reg, insn->src_reg), | 
 | 				/* Rx div 0 -> 0 */ | 
 | 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), | 
 | 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), | 
 | 				BPF_JMP_IMM(BPF_JA, 0, 0, 1), | 
 | 				*insn, | 
 | 			}; | 
 | 			struct bpf_insn mask_and_mod[] = { | 
 | 				BPF_MOV32_REG(insn->src_reg, insn->src_reg), | 
 | 				/* Rx mod 0 -> Rx */ | 
 | 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), | 
 | 				*insn, | 
 | 			}; | 
 | 			struct bpf_insn *patchlet; | 
 |  | 
 | 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || | 
 | 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { | 
 | 				patchlet = mask_and_div + (is64 ? 1 : 0); | 
 | 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); | 
 | 			} else { | 
 | 				patchlet = mask_and_mod + (is64 ? 1 : 0); | 
 | 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); | 
 | 			} | 
 |  | 
 | 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); | 
 | 			if (!new_prog) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			delta    += cnt - 1; | 
 | 			env->prog = prog = new_prog; | 
 | 			insn      = new_prog->insnsi + i + delta; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (insn->code != (BPF_JMP | BPF_CALL)) | 
 | 			continue; | 
 | 		if (insn->src_reg == BPF_PSEUDO_CALL) | 
 | 			continue; | 
 |  | 
 | 		if (insn->imm == BPF_FUNC_get_route_realm) | 
 | 			prog->dst_needed = 1; | 
 | 		if (insn->imm == BPF_FUNC_get_prandom_u32) | 
 | 			bpf_user_rnd_init_once(); | 
 | 		if (insn->imm == BPF_FUNC_override_return) | 
 | 			prog->kprobe_override = 1; | 
 | 		if (insn->imm == BPF_FUNC_tail_call) { | 
 | 			/* If we tail call into other programs, we | 
 | 			 * cannot make any assumptions since they can | 
 | 			 * be replaced dynamically during runtime in | 
 | 			 * the program array. | 
 | 			 */ | 
 | 			prog->cb_access = 1; | 
 | 			env->prog->aux->stack_depth = MAX_BPF_STACK; | 
 |  | 
 | 			/* mark bpf_tail_call as different opcode to avoid | 
 | 			 * conditional branch in the interpeter for every normal | 
 | 			 * call and to prevent accidental JITing by JIT compiler | 
 | 			 * that doesn't support bpf_tail_call yet | 
 | 			 */ | 
 | 			insn->imm = 0; | 
 | 			insn->code = BPF_JMP | BPF_TAIL_CALL; | 
 |  | 
 | 			/* instead of changing every JIT dealing with tail_call | 
 | 			 * emit two extra insns: | 
 | 			 * if (index >= max_entries) goto out; | 
 | 			 * index &= array->index_mask; | 
 | 			 * to avoid out-of-bounds cpu speculation | 
 | 			 */ | 
 | 			map_ptr = env->insn_aux_data[i + delta].map_ptr; | 
 | 			if (map_ptr == BPF_MAP_PTR_POISON) { | 
 | 				verbose(env, "tail_call abusing map_ptr\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			if (!map_ptr->unpriv_array) | 
 | 				continue; | 
 | 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, | 
 | 						  map_ptr->max_entries, 2); | 
 | 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, | 
 | 						    container_of(map_ptr, | 
 | 								 struct bpf_array, | 
 | 								 map)->index_mask); | 
 | 			insn_buf[2] = *insn; | 
 | 			cnt = 3; | 
 | 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | 
 | 			if (!new_prog) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			delta    += cnt - 1; | 
 | 			env->prog = prog = new_prog; | 
 | 			insn      = new_prog->insnsi + i + delta; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup | 
 | 		 * handlers are currently limited to 64 bit only. | 
 | 		 */ | 
 | 		if (prog->jit_requested && BITS_PER_LONG == 64 && | 
 | 		    insn->imm == BPF_FUNC_map_lookup_elem) { | 
 | 			map_ptr = env->insn_aux_data[i + delta].map_ptr; | 
 | 			if (map_ptr == BPF_MAP_PTR_POISON || | 
 | 			    !map_ptr->ops->map_gen_lookup) | 
 | 				goto patch_call_imm; | 
 |  | 
 | 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); | 
 | 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { | 
 | 				verbose(env, "bpf verifier is misconfigured\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, | 
 | 						       cnt); | 
 | 			if (!new_prog) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			delta += cnt - 1; | 
 |  | 
 | 			/* keep walking new program and skip insns we just inserted */ | 
 | 			env->prog = prog = new_prog; | 
 | 			insn      = new_prog->insnsi + i + delta; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (insn->imm == BPF_FUNC_redirect_map) { | 
 | 			/* Note, we cannot use prog directly as imm as subsequent | 
 | 			 * rewrites would still change the prog pointer. The only | 
 | 			 * stable address we can use is aux, which also works with | 
 | 			 * prog clones during blinding. | 
 | 			 */ | 
 | 			u64 addr = (unsigned long)prog->aux; | 
 | 			struct bpf_insn r4_ld[] = { | 
 | 				BPF_LD_IMM64(BPF_REG_4, addr), | 
 | 				*insn, | 
 | 			}; | 
 | 			cnt = ARRAY_SIZE(r4_ld); | 
 |  | 
 | 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); | 
 | 			if (!new_prog) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			delta    += cnt - 1; | 
 | 			env->prog = prog = new_prog; | 
 | 			insn      = new_prog->insnsi + i + delta; | 
 | 		} | 
 | patch_call_imm: | 
 | 		fn = env->ops->get_func_proto(insn->imm, env->prog); | 
 | 		/* all functions that have prototype and verifier allowed | 
 | 		 * programs to call them, must be real in-kernel functions | 
 | 		 */ | 
 | 		if (!fn->func) { | 
 | 			verbose(env, | 
 | 				"kernel subsystem misconfigured func %s#%d\n", | 
 | 				func_id_name(insn->imm), insn->imm); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		insn->imm = fn->func - __bpf_call_base; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_states(struct bpf_verifier_env *env) | 
 | { | 
 | 	struct bpf_verifier_state_list *sl, *sln; | 
 | 	int i; | 
 |  | 
 | 	if (!env->explored_states) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < env->prog->len; i++) { | 
 | 		sl = env->explored_states[i]; | 
 |  | 
 | 		if (sl) | 
 | 			while (sl != STATE_LIST_MARK) { | 
 | 				sln = sl->next; | 
 | 				free_verifier_state(&sl->state, false); | 
 | 				kfree(sl); | 
 | 				sl = sln; | 
 | 			} | 
 | 	} | 
 |  | 
 | 	kfree(env->explored_states); | 
 | } | 
 |  | 
 | int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) | 
 | { | 
 | 	struct bpf_verifier_env *env; | 
 | 	struct bpf_verifier_log *log; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	/* no program is valid */ | 
 | 	if (ARRAY_SIZE(bpf_verifier_ops) == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* 'struct bpf_verifier_env' can be global, but since it's not small, | 
 | 	 * allocate/free it every time bpf_check() is called | 
 | 	 */ | 
 | 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); | 
 | 	if (!env) | 
 | 		return -ENOMEM; | 
 | 	log = &env->log; | 
 |  | 
 | 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * | 
 | 				     (*prog)->len); | 
 | 	ret = -ENOMEM; | 
 | 	if (!env->insn_aux_data) | 
 | 		goto err_free_env; | 
 | 	env->prog = *prog; | 
 | 	env->ops = bpf_verifier_ops[env->prog->type]; | 
 |  | 
 | 	/* grab the mutex to protect few globals used by verifier */ | 
 | 	mutex_lock(&bpf_verifier_lock); | 
 |  | 
 | 	if (attr->log_level || attr->log_buf || attr->log_size) { | 
 | 		/* user requested verbose verifier output | 
 | 		 * and supplied buffer to store the verification trace | 
 | 		 */ | 
 | 		log->level = attr->log_level; | 
 | 		log->ubuf = (char __user *) (unsigned long) attr->log_buf; | 
 | 		log->len_total = attr->log_size; | 
 |  | 
 | 		ret = -EINVAL; | 
 | 		/* log attributes have to be sane */ | 
 | 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || | 
 | 		    !log->level || !log->ubuf) | 
 | 			goto err_unlock; | 
 | 	} | 
 |  | 
 | 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); | 
 | 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) | 
 | 		env->strict_alignment = true; | 
 |  | 
 | 	if (bpf_prog_is_dev_bound(env->prog->aux)) { | 
 | 		ret = bpf_prog_offload_verifier_prep(env); | 
 | 		if (ret) | 
 | 			goto err_unlock; | 
 | 	} | 
 |  | 
 | 	ret = replace_map_fd_with_map_ptr(env); | 
 | 	if (ret < 0) | 
 | 		goto skip_full_check; | 
 |  | 
 | 	env->explored_states = kcalloc(env->prog->len, | 
 | 				       sizeof(struct bpf_verifier_state_list *), | 
 | 				       GFP_USER); | 
 | 	ret = -ENOMEM; | 
 | 	if (!env->explored_states) | 
 | 		goto skip_full_check; | 
 |  | 
 | 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); | 
 |  | 
 | 	ret = check_cfg(env); | 
 | 	if (ret < 0) | 
 | 		goto skip_full_check; | 
 |  | 
 | 	ret = do_check(env); | 
 | 	if (env->cur_state) { | 
 | 		free_verifier_state(env->cur_state, true); | 
 | 		env->cur_state = NULL; | 
 | 	} | 
 |  | 
 | skip_full_check: | 
 | 	while (!pop_stack(env, NULL, NULL)); | 
 | 	free_states(env); | 
 |  | 
 | 	if (ret == 0) | 
 | 		sanitize_dead_code(env); | 
 |  | 
 | 	if (ret == 0) | 
 | 		ret = check_max_stack_depth(env); | 
 |  | 
 | 	if (ret == 0) | 
 | 		/* program is valid, convert *(u32*)(ctx + off) accesses */ | 
 | 		ret = convert_ctx_accesses(env); | 
 |  | 
 | 	if (ret == 0) | 
 | 		ret = fixup_bpf_calls(env); | 
 |  | 
 | 	if (ret == 0) | 
 | 		ret = fixup_call_args(env); | 
 |  | 
 | 	if (log->level && bpf_verifier_log_full(log)) | 
 | 		ret = -ENOSPC; | 
 | 	if (log->level && !log->ubuf) { | 
 | 		ret = -EFAULT; | 
 | 		goto err_release_maps; | 
 | 	} | 
 |  | 
 | 	if (ret == 0 && env->used_map_cnt) { | 
 | 		/* if program passed verifier, update used_maps in bpf_prog_info */ | 
 | 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, | 
 | 							  sizeof(env->used_maps[0]), | 
 | 							  GFP_KERNEL); | 
 |  | 
 | 		if (!env->prog->aux->used_maps) { | 
 | 			ret = -ENOMEM; | 
 | 			goto err_release_maps; | 
 | 		} | 
 |  | 
 | 		memcpy(env->prog->aux->used_maps, env->used_maps, | 
 | 		       sizeof(env->used_maps[0]) * env->used_map_cnt); | 
 | 		env->prog->aux->used_map_cnt = env->used_map_cnt; | 
 |  | 
 | 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic | 
 | 		 * bpf_ld_imm64 instructions | 
 | 		 */ | 
 | 		convert_pseudo_ld_imm64(env); | 
 | 	} | 
 |  | 
 | err_release_maps: | 
 | 	if (!env->prog->aux->used_maps) | 
 | 		/* if we didn't copy map pointers into bpf_prog_info, release | 
 | 		 * them now. Otherwise free_bpf_prog_info() will release them. | 
 | 		 */ | 
 | 		release_maps(env); | 
 | 	*prog = env->prog; | 
 | err_unlock: | 
 | 	mutex_unlock(&bpf_verifier_lock); | 
 | 	vfree(env->insn_aux_data); | 
 | err_free_env: | 
 | 	kfree(env); | 
 | 	return ret; | 
 | } |