| /* |
| * Generic VM initialization for x86-64 NUMA setups. |
| * Copyright 2002,2003 Andi Kleen, SuSE Labs. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/mmzone.h> |
| #include <linux/ctype.h> |
| #include <linux/module.h> |
| #include <linux/nodemask.h> |
| |
| #include <asm/e820.h> |
| #include <asm/proto.h> |
| #include <asm/dma.h> |
| #include <asm/numa.h> |
| #include <asm/acpi.h> |
| |
| #ifndef Dprintk |
| #define Dprintk(x...) |
| #endif |
| |
| struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; |
| bootmem_data_t plat_node_bdata[MAX_NUMNODES]; |
| |
| struct memnode memnode; |
| |
| unsigned char cpu_to_node[NR_CPUS] __read_mostly = { |
| [0 ... NR_CPUS-1] = NUMA_NO_NODE |
| }; |
| unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { |
| [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE |
| }; |
| cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly; |
| |
| int numa_off __initdata; |
| unsigned long __initdata nodemap_addr; |
| unsigned long __initdata nodemap_size; |
| |
| |
| /* |
| * Given a shift value, try to populate memnodemap[] |
| * Returns : |
| * 1 if OK |
| * 0 if memnodmap[] too small (of shift too small) |
| * -1 if node overlap or lost ram (shift too big) |
| */ |
| static int __init |
| populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift) |
| { |
| int i; |
| int res = -1; |
| unsigned long addr, end; |
| |
| memset(memnodemap, 0xff, memnodemapsize); |
| for (i = 0; i < numnodes; i++) { |
| addr = nodes[i].start; |
| end = nodes[i].end; |
| if (addr >= end) |
| continue; |
| if ((end >> shift) >= memnodemapsize) |
| return 0; |
| do { |
| if (memnodemap[addr >> shift] != 0xff) |
| return -1; |
| memnodemap[addr >> shift] = i; |
| addr += (1UL << shift); |
| } while (addr < end); |
| res = 1; |
| } |
| return res; |
| } |
| |
| static int __init allocate_cachealigned_memnodemap(void) |
| { |
| unsigned long pad, pad_addr; |
| |
| memnodemap = memnode.embedded_map; |
| if (memnodemapsize <= 48) |
| return 0; |
| |
| pad = L1_CACHE_BYTES - 1; |
| pad_addr = 0x8000; |
| nodemap_size = pad + memnodemapsize; |
| nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT, |
| nodemap_size); |
| if (nodemap_addr == -1UL) { |
| printk(KERN_ERR |
| "NUMA: Unable to allocate Memory to Node hash map\n"); |
| nodemap_addr = nodemap_size = 0; |
| return -1; |
| } |
| pad_addr = (nodemap_addr + pad) & ~pad; |
| memnodemap = phys_to_virt(pad_addr); |
| |
| printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n", |
| nodemap_addr, nodemap_addr + nodemap_size); |
| return 0; |
| } |
| |
| /* |
| * The LSB of all start and end addresses in the node map is the value of the |
| * maximum possible shift. |
| */ |
| static int __init |
| extract_lsb_from_nodes (const struct bootnode *nodes, int numnodes) |
| { |
| int i, nodes_used = 0; |
| unsigned long start, end; |
| unsigned long bitfield = 0, memtop = 0; |
| |
| for (i = 0; i < numnodes; i++) { |
| start = nodes[i].start; |
| end = nodes[i].end; |
| if (start >= end) |
| continue; |
| bitfield |= start; |
| nodes_used++; |
| if (end > memtop) |
| memtop = end; |
| } |
| if (nodes_used <= 1) |
| i = 63; |
| else |
| i = find_first_bit(&bitfield, sizeof(unsigned long)*8); |
| memnodemapsize = (memtop >> i)+1; |
| return i; |
| } |
| |
| int __init compute_hash_shift(struct bootnode *nodes, int numnodes) |
| { |
| int shift; |
| |
| shift = extract_lsb_from_nodes(nodes, numnodes); |
| if (allocate_cachealigned_memnodemap()) |
| return -1; |
| printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", |
| shift); |
| |
| if (populate_memnodemap(nodes, numnodes, shift) != 1) { |
| printk(KERN_INFO |
| "Your memory is not aligned you need to rebuild your kernel " |
| "with a bigger NODEMAPSIZE shift=%d\n", |
| shift); |
| return -1; |
| } |
| return shift; |
| } |
| |
| #ifdef CONFIG_SPARSEMEM |
| int early_pfn_to_nid(unsigned long pfn) |
| { |
| return phys_to_nid(pfn << PAGE_SHIFT); |
| } |
| #endif |
| |
| static void * __init |
| early_node_mem(int nodeid, unsigned long start, unsigned long end, |
| unsigned long size) |
| { |
| unsigned long mem = find_e820_area(start, end, size); |
| void *ptr; |
| if (mem != -1L) |
| return __va(mem); |
| ptr = __alloc_bootmem_nopanic(size, |
| SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS)); |
| if (ptr == 0) { |
| printk(KERN_ERR "Cannot find %lu bytes in node %d\n", |
| size, nodeid); |
| return NULL; |
| } |
| return ptr; |
| } |
| |
| /* Initialize bootmem allocator for a node */ |
| void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) |
| { |
| unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start; |
| unsigned long nodedata_phys; |
| void *bootmap; |
| const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE); |
| |
| start = round_up(start, ZONE_ALIGN); |
| |
| printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end); |
| |
| start_pfn = start >> PAGE_SHIFT; |
| end_pfn = end >> PAGE_SHIFT; |
| |
| node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size); |
| if (node_data[nodeid] == NULL) |
| return; |
| nodedata_phys = __pa(node_data[nodeid]); |
| |
| memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); |
| NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid]; |
| NODE_DATA(nodeid)->node_start_pfn = start_pfn; |
| NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn; |
| |
| /* Find a place for the bootmem map */ |
| bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); |
| bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE); |
| bootmap = early_node_mem(nodeid, bootmap_start, end, |
| bootmap_pages<<PAGE_SHIFT); |
| if (bootmap == NULL) { |
| if (nodedata_phys < start || nodedata_phys >= end) |
| free_bootmem((unsigned long)node_data[nodeid],pgdat_size); |
| node_data[nodeid] = NULL; |
| return; |
| } |
| bootmap_start = __pa(bootmap); |
| Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages); |
| |
| bootmap_size = init_bootmem_node(NODE_DATA(nodeid), |
| bootmap_start >> PAGE_SHIFT, |
| start_pfn, end_pfn); |
| |
| free_bootmem_with_active_regions(nodeid, end); |
| |
| reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size); |
| reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<<PAGE_SHIFT); |
| #ifdef CONFIG_ACPI_NUMA |
| srat_reserve_add_area(nodeid); |
| #endif |
| node_set_online(nodeid); |
| } |
| |
| /* Initialize final allocator for a zone */ |
| void __init setup_node_zones(int nodeid) |
| { |
| unsigned long start_pfn, end_pfn, memmapsize, limit; |
| |
| start_pfn = node_start_pfn(nodeid); |
| end_pfn = node_end_pfn(nodeid); |
| |
| Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n", |
| nodeid, start_pfn, end_pfn); |
| |
| /* Try to allocate mem_map at end to not fill up precious <4GB |
| memory. */ |
| memmapsize = sizeof(struct page) * (end_pfn-start_pfn); |
| limit = end_pfn << PAGE_SHIFT; |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP |
| NODE_DATA(nodeid)->node_mem_map = |
| __alloc_bootmem_core(NODE_DATA(nodeid)->bdata, |
| memmapsize, SMP_CACHE_BYTES, |
| round_down(limit - memmapsize, PAGE_SIZE), |
| limit); |
| #endif |
| } |
| |
| void __init numa_init_array(void) |
| { |
| int rr, i; |
| /* There are unfortunately some poorly designed mainboards around |
| that only connect memory to a single CPU. This breaks the 1:1 cpu->node |
| mapping. To avoid this fill in the mapping for all possible |
| CPUs, as the number of CPUs is not known yet. |
| We round robin the existing nodes. */ |
| rr = first_node(node_online_map); |
| for (i = 0; i < NR_CPUS; i++) { |
| if (cpu_to_node[i] != NUMA_NO_NODE) |
| continue; |
| numa_set_node(i, rr); |
| rr = next_node(rr, node_online_map); |
| if (rr == MAX_NUMNODES) |
| rr = first_node(node_online_map); |
| } |
| |
| } |
| |
| #ifdef CONFIG_NUMA_EMU |
| /* Numa emulation */ |
| int numa_fake __initdata = 0; |
| |
| /* |
| * This function is used to find out if the start and end correspond to |
| * different zones. |
| */ |
| int zone_cross_over(unsigned long start, unsigned long end) |
| { |
| if ((start < (MAX_DMA32_PFN << PAGE_SHIFT)) && |
| (end >= (MAX_DMA32_PFN << PAGE_SHIFT))) |
| return 1; |
| return 0; |
| } |
| |
| static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| int i, big; |
| struct bootnode nodes[MAX_NUMNODES]; |
| unsigned long sz, old_sz; |
| unsigned long hole_size; |
| unsigned long start, end; |
| unsigned long max_addr = (end_pfn << PAGE_SHIFT); |
| |
| start = (start_pfn << PAGE_SHIFT); |
| hole_size = e820_hole_size(start, max_addr); |
| sz = (max_addr - start - hole_size) / numa_fake; |
| |
| /* Kludge needed for the hash function */ |
| |
| old_sz = sz; |
| /* |
| * Round down to the nearest FAKE_NODE_MIN_SIZE. |
| */ |
| sz &= FAKE_NODE_MIN_HASH_MASK; |
| |
| /* |
| * We ensure that each node is at least 64MB big. Smaller than this |
| * size can cause VM hiccups. |
| */ |
| if (sz == 0) { |
| printk(KERN_INFO "Not enough memory for %d nodes. Reducing " |
| "the number of nodes\n", numa_fake); |
| numa_fake = (max_addr - start - hole_size) / FAKE_NODE_MIN_SIZE; |
| printk(KERN_INFO "Number of fake nodes will be = %d\n", |
| numa_fake); |
| sz = FAKE_NODE_MIN_SIZE; |
| } |
| /* |
| * Find out how many nodes can get an extra NODE_MIN_SIZE granule. |
| * This logic ensures the extra memory gets distributed among as many |
| * nodes as possible (as compared to one single node getting all that |
| * extra memory. |
| */ |
| big = ((old_sz - sz) * numa_fake) / FAKE_NODE_MIN_SIZE; |
| printk(KERN_INFO "Fake node Size: %luMB hole_size: %luMB big nodes: " |
| "%d\n", |
| (sz >> 20), (hole_size >> 20), big); |
| memset(&nodes,0,sizeof(nodes)); |
| end = start; |
| for (i = 0; i < numa_fake; i++) { |
| /* |
| * In case we are not able to allocate enough memory for all |
| * the nodes, we reduce the number of fake nodes. |
| */ |
| if (end >= max_addr) { |
| numa_fake = i - 1; |
| break; |
| } |
| start = nodes[i].start = end; |
| /* |
| * Final node can have all the remaining memory. |
| */ |
| if (i == numa_fake-1) |
| sz = max_addr - start; |
| end = nodes[i].start + sz; |
| /* |
| * Fir "big" number of nodes get extra granule. |
| */ |
| if (i < big) |
| end += FAKE_NODE_MIN_SIZE; |
| /* |
| * Iterate over the range to ensure that this node gets at |
| * least sz amount of RAM (excluding holes) |
| */ |
| while ((end - start - e820_hole_size(start, end)) < sz) { |
| end += FAKE_NODE_MIN_SIZE; |
| if (end >= max_addr) |
| break; |
| } |
| /* |
| * Look at the next node to make sure there is some real memory |
| * to map. Bad things happen when the only memory present |
| * in a zone on a fake node is IO hole. |
| */ |
| while (e820_hole_size(end, end + FAKE_NODE_MIN_SIZE) > 0) { |
| if (zone_cross_over(start, end + sz)) { |
| end = (MAX_DMA32_PFN << PAGE_SHIFT); |
| break; |
| } |
| if (end >= max_addr) |
| break; |
| end += FAKE_NODE_MIN_SIZE; |
| } |
| if (end > max_addr) |
| end = max_addr; |
| nodes[i].end = end; |
| printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", |
| i, |
| nodes[i].start, nodes[i].end, |
| (nodes[i].end - nodes[i].start) >> 20); |
| node_set_online(i); |
| } |
| memnode_shift = compute_hash_shift(nodes, numa_fake); |
| if (memnode_shift < 0) { |
| memnode_shift = 0; |
| printk(KERN_ERR "No NUMA hash function found. Emulation disabled.\n"); |
| return -1; |
| } |
| for_each_online_node(i) { |
| e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT, |
| nodes[i].end >> PAGE_SHIFT); |
| setup_node_bootmem(i, nodes[i].start, nodes[i].end); |
| } |
| numa_init_array(); |
| return 0; |
| } |
| #endif |
| |
| void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| int i; |
| |
| #ifdef CONFIG_NUMA_EMU |
| if (numa_fake && !numa_emulation(start_pfn, end_pfn)) |
| return; |
| #endif |
| |
| #ifdef CONFIG_ACPI_NUMA |
| if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT, |
| end_pfn << PAGE_SHIFT)) |
| return; |
| #endif |
| |
| #ifdef CONFIG_K8_NUMA |
| if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT)) |
| return; |
| #endif |
| printk(KERN_INFO "%s\n", |
| numa_off ? "NUMA turned off" : "No NUMA configuration found"); |
| |
| printk(KERN_INFO "Faking a node at %016lx-%016lx\n", |
| start_pfn << PAGE_SHIFT, |
| end_pfn << PAGE_SHIFT); |
| /* setup dummy node covering all memory */ |
| memnode_shift = 63; |
| memnodemap = memnode.embedded_map; |
| memnodemap[0] = 0; |
| nodes_clear(node_online_map); |
| node_set_online(0); |
| for (i = 0; i < NR_CPUS; i++) |
| numa_set_node(i, 0); |
| node_to_cpumask[0] = cpumask_of_cpu(0); |
| e820_register_active_regions(0, start_pfn, end_pfn); |
| setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); |
| } |
| |
| __cpuinit void numa_add_cpu(int cpu) |
| { |
| set_bit(cpu, &node_to_cpumask[cpu_to_node(cpu)]); |
| } |
| |
| void __cpuinit numa_set_node(int cpu, int node) |
| { |
| cpu_pda(cpu)->nodenumber = node; |
| cpu_to_node[cpu] = node; |
| } |
| |
| unsigned long __init numa_free_all_bootmem(void) |
| { |
| int i; |
| unsigned long pages = 0; |
| for_each_online_node(i) { |
| pages += free_all_bootmem_node(NODE_DATA(i)); |
| } |
| return pages; |
| } |
| |
| #ifdef CONFIG_SPARSEMEM |
| static void __init arch_sparse_init(void) |
| { |
| int i; |
| |
| for_each_online_node(i) |
| memory_present(i, node_start_pfn(i), node_end_pfn(i)); |
| |
| sparse_init(); |
| } |
| #else |
| #define arch_sparse_init() do {} while (0) |
| #endif |
| |
| void __init paging_init(void) |
| { |
| int i; |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; |
| max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; |
| max_zone_pfns[ZONE_NORMAL] = end_pfn; |
| |
| arch_sparse_init(); |
| |
| for_each_online_node(i) { |
| setup_node_zones(i); |
| } |
| |
| free_area_init_nodes(max_zone_pfns); |
| } |
| |
| static __init int numa_setup(char *opt) |
| { |
| if (!opt) |
| return -EINVAL; |
| if (!strncmp(opt,"off",3)) |
| numa_off = 1; |
| #ifdef CONFIG_NUMA_EMU |
| if(!strncmp(opt, "fake=", 5)) { |
| numa_fake = simple_strtoul(opt+5,NULL,0); ; |
| if (numa_fake >= MAX_NUMNODES) |
| numa_fake = MAX_NUMNODES; |
| } |
| #endif |
| #ifdef CONFIG_ACPI_NUMA |
| if (!strncmp(opt,"noacpi",6)) |
| acpi_numa = -1; |
| if (!strncmp(opt,"hotadd=", 7)) |
| hotadd_percent = simple_strtoul(opt+7, NULL, 10); |
| #endif |
| return 0; |
| } |
| |
| early_param("numa", numa_setup); |
| |
| /* |
| * Setup early cpu_to_node. |
| * |
| * Populate cpu_to_node[] only if x86_cpu_to_apicid[], |
| * and apicid_to_node[] tables have valid entries for a CPU. |
| * This means we skip cpu_to_node[] initialisation for NUMA |
| * emulation and faking node case (when running a kernel compiled |
| * for NUMA on a non NUMA box), which is OK as cpu_to_node[] |
| * is already initialized in a round robin manner at numa_init_array, |
| * prior to this call, and this initialization is good enough |
| * for the fake NUMA cases. |
| */ |
| void __init init_cpu_to_node(void) |
| { |
| int i; |
| for (i = 0; i < NR_CPUS; i++) { |
| u8 apicid = x86_cpu_to_apicid[i]; |
| if (apicid == BAD_APICID) |
| continue; |
| if (apicid_to_node[apicid] == NUMA_NO_NODE) |
| continue; |
| numa_set_node(i,apicid_to_node[apicid]); |
| } |
| } |
| |
| EXPORT_SYMBOL(cpu_to_node); |
| EXPORT_SYMBOL(node_to_cpumask); |
| EXPORT_SYMBOL(memnode); |
| EXPORT_SYMBOL(node_data); |
| |
| #ifdef CONFIG_DISCONTIGMEM |
| /* |
| * Functions to convert PFNs from/to per node page addresses. |
| * These are out of line because they are quite big. |
| * They could be all tuned by pre caching more state. |
| * Should do that. |
| */ |
| |
| int pfn_valid(unsigned long pfn) |
| { |
| unsigned nid; |
| if (pfn >= num_physpages) |
| return 0; |
| nid = pfn_to_nid(pfn); |
| if (nid == 0xff) |
| return 0; |
| return pfn >= node_start_pfn(nid) && (pfn) < node_end_pfn(nid); |
| } |
| EXPORT_SYMBOL(pfn_valid); |
| #endif |